uipc_socket.c revision 1.243 1 /* $NetBSD: uipc_socket.c,v 1.243 2015/05/02 23:46:04 rtr Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.243 2015/05/02 23:46:04 rtr Exp $");
75
76 #include "opt_compat_netbsd.h"
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80 #include "opt_somaxkva.h"
81 #include "opt_multiprocessor.h" /* XXX */
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/file.h>
87 #include <sys/filedesc.h>
88 #include <sys/kmem.h>
89 #include <sys/mbuf.h>
90 #include <sys/domain.h>
91 #include <sys/kernel.h>
92 #include <sys/protosw.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/uidinfo.h>
98 #include <sys/event.h>
99 #include <sys/poll.h>
100 #include <sys/kauth.h>
101 #include <sys/mutex.h>
102 #include <sys/condvar.h>
103 #include <sys/kthread.h>
104
105 #ifdef COMPAT_50
106 #include <compat/sys/time.h>
107 #include <compat/sys/socket.h>
108 #endif
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm_loan.h>
112 #include <uvm/uvm_page.h>
113
114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
115
116 extern const struct fileops socketops;
117
118 extern int somaxconn; /* patchable (XXX sysctl) */
119 int somaxconn = SOMAXCONN;
120 kmutex_t *softnet_lock;
121
122 #ifdef SOSEND_COUNTERS
123 #include <sys/device.h>
124
125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
126 NULL, "sosend", "loan big");
127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 NULL, "sosend", "copy big");
129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "copy small");
131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "kva limit");
133
134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
135
136 EVCNT_ATTACH_STATIC(sosend_loan_big);
137 EVCNT_ATTACH_STATIC(sosend_copy_big);
138 EVCNT_ATTACH_STATIC(sosend_copy_small);
139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
140 #else
141
142 #define SOSEND_COUNTER_INCR(ev) /* nothing */
143
144 #endif /* SOSEND_COUNTERS */
145
146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
147 int sock_loan_thresh = -1;
148 #else
149 int sock_loan_thresh = 4096;
150 #endif
151
152 static kmutex_t so_pendfree_lock;
153 static struct mbuf *so_pendfree = NULL;
154
155 #ifndef SOMAXKVA
156 #define SOMAXKVA (16 * 1024 * 1024)
157 #endif
158 int somaxkva = SOMAXKVA;
159 static int socurkva;
160 static kcondvar_t socurkva_cv;
161
162 static kauth_listener_t socket_listener;
163
164 #define SOCK_LOAN_CHUNK 65536
165
166 static void sopendfree_thread(void *);
167 static kcondvar_t pendfree_thread_cv;
168 static lwp_t *sopendfree_lwp;
169
170 static void sysctl_kern_socket_setup(void);
171 static struct sysctllog *socket_sysctllog;
172
173 static vsize_t
174 sokvareserve(struct socket *so, vsize_t len)
175 {
176 int error;
177
178 mutex_enter(&so_pendfree_lock);
179 while (socurkva + len > somaxkva) {
180 SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 mutex_exit(&so_pendfree_lock);
189 return len;
190 }
191
192 static void
193 sokvaunreserve(vsize_t len)
194 {
195
196 mutex_enter(&so_pendfree_lock);
197 socurkva -= len;
198 cv_broadcast(&socurkva_cv);
199 mutex_exit(&so_pendfree_lock);
200 }
201
202 /*
203 * sokvaalloc: allocate kva for loan.
204 */
205
206 vaddr_t
207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
208 {
209 vaddr_t lva;
210
211 /*
212 * reserve kva.
213 */
214
215 if (sokvareserve(so, len) == 0)
216 return 0;
217
218 /*
219 * allocate kva.
220 */
221
222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 /*
274 * sopendfree_thread: free mbufs on "pendfree" list.
275 * unlock and relock so_pendfree_lock when freeing mbufs.
276 */
277
278 static void
279 sopendfree_thread(void *v)
280 {
281 struct mbuf *m, *next;
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285
286 for (;;) {
287 rv = 0;
288 while (so_pendfree != NULL) {
289 m = so_pendfree;
290 so_pendfree = NULL;
291 mutex_exit(&so_pendfree_lock);
292
293 for (; m != NULL; m = next) {
294 next = m->m_next;
295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
296 KASSERT(m->m_ext.ext_refcnt == 0);
297
298 rv += m->m_ext.ext_size;
299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
300 m->m_ext.ext_size);
301 pool_cache_put(mb_cache, m);
302 }
303
304 mutex_enter(&so_pendfree_lock);
305 }
306 if (rv)
307 cv_broadcast(&socurkva_cv);
308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
309 }
310 panic("sopendfree_thread");
311 /* NOTREACHED */
312 }
313
314 void
315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
316 {
317
318 KASSERT(m != NULL);
319
320 /*
321 * postpone freeing mbuf.
322 *
323 * we can't do it in interrupt context
324 * because we need to put kva back to kernel_map.
325 */
326
327 mutex_enter(&so_pendfree_lock);
328 m->m_next = so_pendfree;
329 so_pendfree = m;
330 cv_signal(&pendfree_thread_cv);
331 mutex_exit(&so_pendfree_lock);
332 }
333
334 static long
335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
336 {
337 struct iovec *iov = uio->uio_iov;
338 vaddr_t sva, eva;
339 vsize_t len;
340 vaddr_t lva;
341 int npgs, error;
342 vaddr_t va;
343 int i;
344
345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
346 return (0);
347
348 if (iov->iov_len < (size_t) space)
349 space = iov->iov_len;
350 if (space > SOCK_LOAN_CHUNK)
351 space = SOCK_LOAN_CHUNK;
352
353 eva = round_page((vaddr_t) iov->iov_base + space);
354 sva = trunc_page((vaddr_t) iov->iov_base);
355 len = eva - sva;
356 npgs = len >> PAGE_SHIFT;
357
358 KASSERT(npgs <= M_EXT_MAXPAGES);
359
360 lva = sokvaalloc(sva, len, so);
361 if (lva == 0)
362 return 0;
363
364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
366 if (error) {
367 sokvafree(lva, len);
368 return (0);
369 }
370
371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
373 VM_PROT_READ, 0);
374 pmap_update(pmap_kernel());
375
376 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
377
378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
380
381 uio->uio_resid -= space;
382 /* uio_offset not updated, not set/used for write(2) */
383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
384 uio->uio_iov->iov_len -= space;
385 if (uio->uio_iov->iov_len == 0) {
386 uio->uio_iov++;
387 uio->uio_iovcnt--;
388 }
389
390 return (space);
391 }
392
393 struct mbuf *
394 getsombuf(struct socket *so, int type)
395 {
396 struct mbuf *m;
397
398 m = m_get(M_WAIT, type);
399 MCLAIM(m, so->so_mowner);
400 return m;
401 }
402
403 static int
404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
405 void *arg0, void *arg1, void *arg2, void *arg3)
406 {
407 int result;
408 enum kauth_network_req req;
409
410 result = KAUTH_RESULT_DEFER;
411 req = (enum kauth_network_req)arg0;
412
413 if ((action != KAUTH_NETWORK_SOCKET) &&
414 (action != KAUTH_NETWORK_BIND))
415 return result;
416
417 switch (req) {
418 case KAUTH_REQ_NETWORK_BIND_PORT:
419 result = KAUTH_RESULT_ALLOW;
420 break;
421
422 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
423 /* Normal users can only drop their own connections. */
424 struct socket *so = (struct socket *)arg1;
425
426 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
427 result = KAUTH_RESULT_ALLOW;
428
429 break;
430 }
431
432 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
433 /* We allow "raw" routing/bluetooth sockets to anyone. */
434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
435 || (u_long)arg1 == PF_BLUETOOTH) {
436 result = KAUTH_RESULT_ALLOW;
437 } else {
438 /* Privileged, let secmodel handle this. */
439 if ((u_long)arg2 == SOCK_RAW)
440 break;
441 }
442
443 result = KAUTH_RESULT_ALLOW;
444
445 break;
446
447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
448 result = KAUTH_RESULT_ALLOW;
449
450 break;
451
452 default:
453 break;
454 }
455
456 return result;
457 }
458
459 void
460 soinit(void)
461 {
462
463 sysctl_kern_socket_setup();
464
465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
467 cv_init(&socurkva_cv, "sokva");
468 cv_init(&pendfree_thread_cv, "sopendfr");
469 soinit2();
470
471 /* Set the initial adjusted socket buffer size. */
472 if (sb_max_set(sb_max))
473 panic("bad initial sb_max value: %lu", sb_max);
474
475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
476 socket_listener_cb, NULL);
477 }
478
479 void
480 soinit1(void)
481 {
482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
484 if (error)
485 panic("soinit1 %d", error);
486 }
487
488 /*
489 * socreate: create a new socket of the specified type and the protocol.
490 *
491 * => Caller may specify another socket for lock sharing (must not be held).
492 * => Returns the new socket without lock held.
493 */
494 int
495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
496 struct socket *lockso)
497 {
498 const struct protosw *prp;
499 struct socket *so;
500 uid_t uid;
501 int error;
502 kmutex_t *lock;
503
504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
506 KAUTH_ARG(proto));
507 if (error != 0)
508 return error;
509
510 if (proto)
511 prp = pffindproto(dom, proto, type);
512 else
513 prp = pffindtype(dom, type);
514 if (prp == NULL) {
515 /* no support for domain */
516 if (pffinddomain(dom) == 0)
517 return EAFNOSUPPORT;
518 /* no support for socket type */
519 if (proto == 0 && type != 0)
520 return EPROTOTYPE;
521 return EPROTONOSUPPORT;
522 }
523 if (prp->pr_usrreqs == NULL)
524 return EPROTONOSUPPORT;
525 if (prp->pr_type != type)
526 return EPROTOTYPE;
527
528 so = soget(true);
529 so->so_type = type;
530 so->so_proto = prp;
531 so->so_send = sosend;
532 so->so_receive = soreceive;
533 #ifdef MBUFTRACE
534 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
535 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
536 so->so_mowner = &prp->pr_domain->dom_mowner;
537 #endif
538 uid = kauth_cred_geteuid(l->l_cred);
539 so->so_uidinfo = uid_find(uid);
540 so->so_cpid = l->l_proc->p_pid;
541
542 /*
543 * Lock assigned and taken during PCB attach, unless we share
544 * the lock with another socket, e.g. socketpair(2) case.
545 */
546 if (lockso) {
547 lock = lockso->so_lock;
548 so->so_lock = lock;
549 mutex_obj_hold(lock);
550 mutex_enter(lock);
551 }
552
553 /* Attach the PCB (returns with the socket lock held). */
554 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
555 KASSERT(solocked(so));
556
557 if (error) {
558 KASSERT(so->so_pcb == NULL);
559 so->so_state |= SS_NOFDREF;
560 sofree(so);
561 return error;
562 }
563 so->so_cred = kauth_cred_dup(l->l_cred);
564 sounlock(so);
565
566 *aso = so;
567 return 0;
568 }
569
570 /*
571 * fsocreate: create a socket and a file descriptor associated with it.
572 *
573 * => On success, write file descriptor to fdout and return zero.
574 * => On failure, return non-zero; *fdout will be undefined.
575 */
576 int
577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
578 {
579 lwp_t *l = curlwp;
580 int error, fd, flags;
581 struct socket *so;
582 struct file *fp;
583
584 if ((error = fd_allocfile(&fp, &fd)) != 0) {
585 return error;
586 }
587 flags = type & SOCK_FLAGS_MASK;
588 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
589 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
590 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
591 fp->f_type = DTYPE_SOCKET;
592 fp->f_ops = &socketops;
593
594 type &= ~SOCK_FLAGS_MASK;
595 error = socreate(domain, &so, type, proto, l, NULL);
596 if (error) {
597 fd_abort(curproc, fp, fd);
598 return error;
599 }
600 if (flags & SOCK_NONBLOCK) {
601 so->so_state |= SS_NBIO;
602 }
603 fp->f_socket = so;
604 fd_affix(curproc, fp, fd);
605
606 if (sop != NULL) {
607 *sop = so;
608 }
609 *fdout = fd;
610 return error;
611 }
612
613 int
614 sofamily(const struct socket *so)
615 {
616 const struct protosw *pr;
617 const struct domain *dom;
618
619 if ((pr = so->so_proto) == NULL)
620 return AF_UNSPEC;
621 if ((dom = pr->pr_domain) == NULL)
622 return AF_UNSPEC;
623 return dom->dom_family;
624 }
625
626 int
627 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
628 {
629 int error;
630
631 solock(so);
632 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
633 sounlock(so);
634 return EAFNOSUPPORT;
635 }
636 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
637 sounlock(so);
638 return error;
639 }
640
641 int
642 solisten(struct socket *so, int backlog, struct lwp *l)
643 {
644 int error;
645
646 solock(so);
647 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
648 SS_ISDISCONNECTING)) != 0) {
649 sounlock(so);
650 return EINVAL;
651 }
652 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
653 if (error != 0) {
654 sounlock(so);
655 return error;
656 }
657 if (TAILQ_EMPTY(&so->so_q))
658 so->so_options |= SO_ACCEPTCONN;
659 if (backlog < 0)
660 backlog = 0;
661 so->so_qlimit = min(backlog, somaxconn);
662 sounlock(so);
663 return 0;
664 }
665
666 void
667 sofree(struct socket *so)
668 {
669 u_int refs;
670
671 KASSERT(solocked(so));
672
673 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
674 sounlock(so);
675 return;
676 }
677 if (so->so_head) {
678 /*
679 * We must not decommission a socket that's on the accept(2)
680 * queue. If we do, then accept(2) may hang after select(2)
681 * indicated that the listening socket was ready.
682 */
683 if (!soqremque(so, 0)) {
684 sounlock(so);
685 return;
686 }
687 }
688 if (so->so_rcv.sb_hiwat)
689 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
690 RLIM_INFINITY);
691 if (so->so_snd.sb_hiwat)
692 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
693 RLIM_INFINITY);
694 sbrelease(&so->so_snd, so);
695 KASSERT(!cv_has_waiters(&so->so_cv));
696 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
697 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
698 sorflush(so);
699 refs = so->so_aborting; /* XXX */
700 /* Remove acccept filter if one is present. */
701 if (so->so_accf != NULL)
702 (void)accept_filt_clear(so);
703 sounlock(so);
704 if (refs == 0) /* XXX */
705 soput(so);
706 }
707
708 /*
709 * soclose: close a socket on last file table reference removal.
710 * Initiate disconnect if connected. Free socket when disconnect complete.
711 */
712 int
713 soclose(struct socket *so)
714 {
715 struct socket *so2;
716 int error = 0;
717
718 solock(so);
719 if (so->so_options & SO_ACCEPTCONN) {
720 for (;;) {
721 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
722 KASSERT(solocked2(so, so2));
723 (void) soqremque(so2, 0);
724 /* soabort drops the lock. */
725 (void) soabort(so2);
726 solock(so);
727 continue;
728 }
729 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
730 KASSERT(solocked2(so, so2));
731 (void) soqremque(so2, 1);
732 /* soabort drops the lock. */
733 (void) soabort(so2);
734 solock(so);
735 continue;
736 }
737 break;
738 }
739 }
740 if (so->so_pcb == NULL)
741 goto discard;
742 if (so->so_state & SS_ISCONNECTED) {
743 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
744 error = sodisconnect(so);
745 if (error)
746 goto drop;
747 }
748 if (so->so_options & SO_LINGER) {
749 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
750 (SS_ISDISCONNECTING|SS_NBIO))
751 goto drop;
752 while (so->so_state & SS_ISCONNECTED) {
753 error = sowait(so, true, so->so_linger * hz);
754 if (error)
755 break;
756 }
757 }
758 }
759 drop:
760 if (so->so_pcb) {
761 KASSERT(solocked(so));
762 (*so->so_proto->pr_usrreqs->pr_detach)(so);
763 }
764 discard:
765 KASSERT((so->so_state & SS_NOFDREF) == 0);
766 kauth_cred_free(so->so_cred);
767 so->so_state |= SS_NOFDREF;
768 sofree(so);
769 return error;
770 }
771
772 /*
773 * Must be called with the socket locked.. Will return with it unlocked.
774 */
775 int
776 soabort(struct socket *so)
777 {
778 u_int refs;
779 int error;
780
781 KASSERT(solocked(so));
782 KASSERT(so->so_head == NULL);
783
784 so->so_aborting++; /* XXX */
785 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
786 refs = --so->so_aborting; /* XXX */
787 if (error || (refs == 0)) {
788 sofree(so);
789 } else {
790 sounlock(so);
791 }
792 return error;
793 }
794
795 int
796 soaccept(struct socket *so, struct sockaddr *nam)
797 {
798 int error;
799
800 KASSERT(solocked(so));
801 KASSERT((so->so_state & SS_NOFDREF) != 0);
802
803 so->so_state &= ~SS_NOFDREF;
804 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
805 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
806 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
807 else
808 error = ECONNABORTED;
809
810 return error;
811 }
812
813 int
814 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
815 {
816 int error;
817
818 KASSERT(solocked(so));
819
820 if (so->so_options & SO_ACCEPTCONN)
821 return EOPNOTSUPP;
822 /*
823 * If protocol is connection-based, can only connect once.
824 * Otherwise, if connected, try to disconnect first.
825 * This allows user to disconnect by connecting to, e.g.,
826 * a null address.
827 */
828 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
829 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
830 (error = sodisconnect(so)))) {
831 error = EISCONN;
832 } else {
833 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
834 return EAFNOSUPPORT;
835 }
836 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
837 }
838
839 return error;
840 }
841
842 int
843 soconnect2(struct socket *so1, struct socket *so2)
844 {
845 KASSERT(solocked2(so1, so2));
846
847 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
848 }
849
850 int
851 sodisconnect(struct socket *so)
852 {
853 int error;
854
855 KASSERT(solocked(so));
856
857 if ((so->so_state & SS_ISCONNECTED) == 0) {
858 error = ENOTCONN;
859 } else if (so->so_state & SS_ISDISCONNECTING) {
860 error = EALREADY;
861 } else {
862 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
863 }
864 return (error);
865 }
866
867 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
868 /*
869 * Send on a socket.
870 * If send must go all at once and message is larger than
871 * send buffering, then hard error.
872 * Lock against other senders.
873 * If must go all at once and not enough room now, then
874 * inform user that this would block and do nothing.
875 * Otherwise, if nonblocking, send as much as possible.
876 * The data to be sent is described by "uio" if nonzero,
877 * otherwise by the mbuf chain "top" (which must be null
878 * if uio is not). Data provided in mbuf chain must be small
879 * enough to send all at once.
880 *
881 * Returns nonzero on error, timeout or signal; callers
882 * must check for short counts if EINTR/ERESTART are returned.
883 * Data and control buffers are freed on return.
884 */
885 int
886 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
887 struct mbuf *control, int flags, struct lwp *l)
888 {
889 struct mbuf **mp, *m;
890 long space, len, resid, clen, mlen;
891 int error, s, dontroute, atomic;
892 short wakeup_state = 0;
893
894 clen = 0;
895
896 /*
897 * solock() provides atomicity of access. splsoftnet() prevents
898 * protocol processing soft interrupts from interrupting us and
899 * blocking (expensive).
900 */
901 s = splsoftnet();
902 solock(so);
903 atomic = sosendallatonce(so) || top;
904 if (uio)
905 resid = uio->uio_resid;
906 else
907 resid = top->m_pkthdr.len;
908 /*
909 * In theory resid should be unsigned.
910 * However, space must be signed, as it might be less than 0
911 * if we over-committed, and we must use a signed comparison
912 * of space and resid. On the other hand, a negative resid
913 * causes us to loop sending 0-length segments to the protocol.
914 */
915 if (resid < 0) {
916 error = EINVAL;
917 goto out;
918 }
919 dontroute =
920 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
921 (so->so_proto->pr_flags & PR_ATOMIC);
922 l->l_ru.ru_msgsnd++;
923 if (control)
924 clen = control->m_len;
925 restart:
926 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
927 goto out;
928 do {
929 if (so->so_state & SS_CANTSENDMORE) {
930 error = EPIPE;
931 goto release;
932 }
933 if (so->so_error) {
934 error = so->so_error;
935 so->so_error = 0;
936 goto release;
937 }
938 if ((so->so_state & SS_ISCONNECTED) == 0) {
939 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
940 if (resid || clen == 0) {
941 error = ENOTCONN;
942 goto release;
943 }
944 } else if (NULL == addr) {
945 error = EDESTADDRREQ;
946 goto release;
947 }
948 }
949 space = sbspace(&so->so_snd);
950 if (flags & MSG_OOB)
951 space += 1024;
952 if ((atomic && resid > so->so_snd.sb_hiwat) ||
953 clen > so->so_snd.sb_hiwat) {
954 error = EMSGSIZE;
955 goto release;
956 }
957 if (space < resid + clen &&
958 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
959 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
960 error = EWOULDBLOCK;
961 goto release;
962 }
963 sbunlock(&so->so_snd);
964 if (wakeup_state & SS_RESTARTSYS) {
965 error = ERESTART;
966 goto out;
967 }
968 error = sbwait(&so->so_snd);
969 if (error)
970 goto out;
971 wakeup_state = so->so_state;
972 goto restart;
973 }
974 wakeup_state = 0;
975 mp = ⊤
976 space -= clen;
977 do {
978 if (uio == NULL) {
979 /*
980 * Data is prepackaged in "top".
981 */
982 resid = 0;
983 if (flags & MSG_EOR)
984 top->m_flags |= M_EOR;
985 } else do {
986 sounlock(so);
987 splx(s);
988 if (top == NULL) {
989 m = m_gethdr(M_WAIT, MT_DATA);
990 mlen = MHLEN;
991 m->m_pkthdr.len = 0;
992 m->m_pkthdr.rcvif = NULL;
993 } else {
994 m = m_get(M_WAIT, MT_DATA);
995 mlen = MLEN;
996 }
997 MCLAIM(m, so->so_snd.sb_mowner);
998 if (sock_loan_thresh >= 0 &&
999 uio->uio_iov->iov_len >= sock_loan_thresh &&
1000 space >= sock_loan_thresh &&
1001 (len = sosend_loan(so, uio, m,
1002 space)) != 0) {
1003 SOSEND_COUNTER_INCR(&sosend_loan_big);
1004 space -= len;
1005 goto have_data;
1006 }
1007 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1008 SOSEND_COUNTER_INCR(&sosend_copy_big);
1009 m_clget(m, M_DONTWAIT);
1010 if ((m->m_flags & M_EXT) == 0)
1011 goto nopages;
1012 mlen = MCLBYTES;
1013 if (atomic && top == 0) {
1014 len = lmin(MCLBYTES - max_hdr,
1015 resid);
1016 m->m_data += max_hdr;
1017 } else
1018 len = lmin(MCLBYTES, resid);
1019 space -= len;
1020 } else {
1021 nopages:
1022 SOSEND_COUNTER_INCR(&sosend_copy_small);
1023 len = lmin(lmin(mlen, resid), space);
1024 space -= len;
1025 /*
1026 * For datagram protocols, leave room
1027 * for protocol headers in first mbuf.
1028 */
1029 if (atomic && top == 0 && len < mlen)
1030 MH_ALIGN(m, len);
1031 }
1032 error = uiomove(mtod(m, void *), (int)len, uio);
1033 have_data:
1034 resid = uio->uio_resid;
1035 m->m_len = len;
1036 *mp = m;
1037 top->m_pkthdr.len += len;
1038 s = splsoftnet();
1039 solock(so);
1040 if (error != 0)
1041 goto release;
1042 mp = &m->m_next;
1043 if (resid <= 0) {
1044 if (flags & MSG_EOR)
1045 top->m_flags |= M_EOR;
1046 break;
1047 }
1048 } while (space > 0 && atomic);
1049
1050 if (so->so_state & SS_CANTSENDMORE) {
1051 error = EPIPE;
1052 goto release;
1053 }
1054 if (dontroute)
1055 so->so_options |= SO_DONTROUTE;
1056 if (resid > 0)
1057 so->so_state |= SS_MORETOCOME;
1058 if (flags & MSG_OOB) {
1059 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
1060 top, control);
1061 } else {
1062 struct sockaddr *sin = NULL;
1063 if (addr) {
1064 sin = mtod(addr, struct sockaddr *);
1065 }
1066 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1067 top, sin, control, l);
1068 }
1069 if (dontroute)
1070 so->so_options &= ~SO_DONTROUTE;
1071 if (resid > 0)
1072 so->so_state &= ~SS_MORETOCOME;
1073 clen = 0;
1074 control = NULL;
1075 top = NULL;
1076 mp = ⊤
1077 if (error != 0)
1078 goto release;
1079 } while (resid && space > 0);
1080 } while (resid);
1081
1082 release:
1083 sbunlock(&so->so_snd);
1084 out:
1085 sounlock(so);
1086 splx(s);
1087 if (top)
1088 m_freem(top);
1089 if (control)
1090 m_freem(control);
1091 return (error);
1092 }
1093
1094 /*
1095 * Following replacement or removal of the first mbuf on the first
1096 * mbuf chain of a socket buffer, push necessary state changes back
1097 * into the socket buffer so that other consumers see the values
1098 * consistently. 'nextrecord' is the callers locally stored value of
1099 * the original value of sb->sb_mb->m_nextpkt which must be restored
1100 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1101 */
1102 static void
1103 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1104 {
1105
1106 KASSERT(solocked(sb->sb_so));
1107
1108 /*
1109 * First, update for the new value of nextrecord. If necessary,
1110 * make it the first record.
1111 */
1112 if (sb->sb_mb != NULL)
1113 sb->sb_mb->m_nextpkt = nextrecord;
1114 else
1115 sb->sb_mb = nextrecord;
1116
1117 /*
1118 * Now update any dependent socket buffer fields to reflect
1119 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1120 * the addition of a second clause that takes care of the
1121 * case where sb_mb has been updated, but remains the last
1122 * record.
1123 */
1124 if (sb->sb_mb == NULL) {
1125 sb->sb_mbtail = NULL;
1126 sb->sb_lastrecord = NULL;
1127 } else if (sb->sb_mb->m_nextpkt == NULL)
1128 sb->sb_lastrecord = sb->sb_mb;
1129 }
1130
1131 /*
1132 * Implement receive operations on a socket.
1133 * We depend on the way that records are added to the sockbuf
1134 * by sbappend*. In particular, each record (mbufs linked through m_next)
1135 * must begin with an address if the protocol so specifies,
1136 * followed by an optional mbuf or mbufs containing ancillary data,
1137 * and then zero or more mbufs of data.
1138 * In order to avoid blocking network interrupts for the entire time here,
1139 * we splx() while doing the actual copy to user space.
1140 * Although the sockbuf is locked, new data may still be appended,
1141 * and thus we must maintain consistency of the sockbuf during that time.
1142 *
1143 * The caller may receive the data as a single mbuf chain by supplying
1144 * an mbuf **mp0 for use in returning the chain. The uio is then used
1145 * only for the count in uio_resid.
1146 */
1147 int
1148 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1149 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1150 {
1151 struct lwp *l = curlwp;
1152 struct mbuf *m, **mp, *mt;
1153 size_t len, offset, moff, orig_resid;
1154 int atomic, flags, error, s, type;
1155 const struct protosw *pr;
1156 struct mbuf *nextrecord;
1157 int mbuf_removed = 0;
1158 const struct domain *dom;
1159 short wakeup_state = 0;
1160
1161 pr = so->so_proto;
1162 atomic = pr->pr_flags & PR_ATOMIC;
1163 dom = pr->pr_domain;
1164 mp = mp0;
1165 type = 0;
1166 orig_resid = uio->uio_resid;
1167
1168 if (paddr != NULL)
1169 *paddr = NULL;
1170 if (controlp != NULL)
1171 *controlp = NULL;
1172 if (flagsp != NULL)
1173 flags = *flagsp &~ MSG_EOR;
1174 else
1175 flags = 0;
1176
1177 if (flags & MSG_OOB) {
1178 m = m_get(M_WAIT, MT_DATA);
1179 solock(so);
1180 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1181 sounlock(so);
1182 if (error)
1183 goto bad;
1184 do {
1185 error = uiomove(mtod(m, void *),
1186 MIN(uio->uio_resid, m->m_len), uio);
1187 m = m_free(m);
1188 } while (uio->uio_resid > 0 && error == 0 && m);
1189 bad:
1190 if (m != NULL)
1191 m_freem(m);
1192 return error;
1193 }
1194 if (mp != NULL)
1195 *mp = NULL;
1196
1197 /*
1198 * solock() provides atomicity of access. splsoftnet() prevents
1199 * protocol processing soft interrupts from interrupting us and
1200 * blocking (expensive).
1201 */
1202 s = splsoftnet();
1203 solock(so);
1204 restart:
1205 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1206 sounlock(so);
1207 splx(s);
1208 return error;
1209 }
1210
1211 m = so->so_rcv.sb_mb;
1212 /*
1213 * If we have less data than requested, block awaiting more
1214 * (subject to any timeout) if:
1215 * 1. the current count is less than the low water mark,
1216 * 2. MSG_WAITALL is set, and it is possible to do the entire
1217 * receive operation at once if we block (resid <= hiwat), or
1218 * 3. MSG_DONTWAIT is not set.
1219 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1220 * we have to do the receive in sections, and thus risk returning
1221 * a short count if a timeout or signal occurs after we start.
1222 */
1223 if (m == NULL ||
1224 ((flags & MSG_DONTWAIT) == 0 &&
1225 so->so_rcv.sb_cc < uio->uio_resid &&
1226 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1227 ((flags & MSG_WAITALL) &&
1228 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1229 m->m_nextpkt == NULL && !atomic)) {
1230 #ifdef DIAGNOSTIC
1231 if (m == NULL && so->so_rcv.sb_cc)
1232 panic("receive 1");
1233 #endif
1234 if (so->so_error) {
1235 if (m != NULL)
1236 goto dontblock;
1237 error = so->so_error;
1238 if ((flags & MSG_PEEK) == 0)
1239 so->so_error = 0;
1240 goto release;
1241 }
1242 if (so->so_state & SS_CANTRCVMORE) {
1243 if (m != NULL)
1244 goto dontblock;
1245 else
1246 goto release;
1247 }
1248 for (; m != NULL; m = m->m_next)
1249 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1250 m = so->so_rcv.sb_mb;
1251 goto dontblock;
1252 }
1253 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1254 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1255 error = ENOTCONN;
1256 goto release;
1257 }
1258 if (uio->uio_resid == 0)
1259 goto release;
1260 if ((so->so_state & SS_NBIO) ||
1261 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1262 error = EWOULDBLOCK;
1263 goto release;
1264 }
1265 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1266 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1267 sbunlock(&so->so_rcv);
1268 if (wakeup_state & SS_RESTARTSYS)
1269 error = ERESTART;
1270 else
1271 error = sbwait(&so->so_rcv);
1272 if (error != 0) {
1273 sounlock(so);
1274 splx(s);
1275 return error;
1276 }
1277 wakeup_state = so->so_state;
1278 goto restart;
1279 }
1280 dontblock:
1281 /*
1282 * On entry here, m points to the first record of the socket buffer.
1283 * From this point onward, we maintain 'nextrecord' as a cache of the
1284 * pointer to the next record in the socket buffer. We must keep the
1285 * various socket buffer pointers and local stack versions of the
1286 * pointers in sync, pushing out modifications before dropping the
1287 * socket lock, and re-reading them when picking it up.
1288 *
1289 * Otherwise, we will race with the network stack appending new data
1290 * or records onto the socket buffer by using inconsistent/stale
1291 * versions of the field, possibly resulting in socket buffer
1292 * corruption.
1293 *
1294 * By holding the high-level sblock(), we prevent simultaneous
1295 * readers from pulling off the front of the socket buffer.
1296 */
1297 if (l != NULL)
1298 l->l_ru.ru_msgrcv++;
1299 KASSERT(m == so->so_rcv.sb_mb);
1300 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1301 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1302 nextrecord = m->m_nextpkt;
1303 if (pr->pr_flags & PR_ADDR) {
1304 #ifdef DIAGNOSTIC
1305 if (m->m_type != MT_SONAME)
1306 panic("receive 1a");
1307 #endif
1308 orig_resid = 0;
1309 if (flags & MSG_PEEK) {
1310 if (paddr)
1311 *paddr = m_copy(m, 0, m->m_len);
1312 m = m->m_next;
1313 } else {
1314 sbfree(&so->so_rcv, m);
1315 mbuf_removed = 1;
1316 if (paddr != NULL) {
1317 *paddr = m;
1318 so->so_rcv.sb_mb = m->m_next;
1319 m->m_next = NULL;
1320 m = so->so_rcv.sb_mb;
1321 } else {
1322 MFREE(m, so->so_rcv.sb_mb);
1323 m = so->so_rcv.sb_mb;
1324 }
1325 sbsync(&so->so_rcv, nextrecord);
1326 }
1327 }
1328
1329 /*
1330 * Process one or more MT_CONTROL mbufs present before any data mbufs
1331 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1332 * just copy the data; if !MSG_PEEK, we call into the protocol to
1333 * perform externalization (or freeing if controlp == NULL).
1334 */
1335 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1336 struct mbuf *cm = NULL, *cmn;
1337 struct mbuf **cme = &cm;
1338
1339 do {
1340 if (flags & MSG_PEEK) {
1341 if (controlp != NULL) {
1342 *controlp = m_copy(m, 0, m->m_len);
1343 controlp = &(*controlp)->m_next;
1344 }
1345 m = m->m_next;
1346 } else {
1347 sbfree(&so->so_rcv, m);
1348 so->so_rcv.sb_mb = m->m_next;
1349 m->m_next = NULL;
1350 *cme = m;
1351 cme = &(*cme)->m_next;
1352 m = so->so_rcv.sb_mb;
1353 }
1354 } while (m != NULL && m->m_type == MT_CONTROL);
1355 if ((flags & MSG_PEEK) == 0)
1356 sbsync(&so->so_rcv, nextrecord);
1357 for (; cm != NULL; cm = cmn) {
1358 cmn = cm->m_next;
1359 cm->m_next = NULL;
1360 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1361 if (controlp != NULL) {
1362 if (dom->dom_externalize != NULL &&
1363 type == SCM_RIGHTS) {
1364 sounlock(so);
1365 splx(s);
1366 error = (*dom->dom_externalize)(cm, l,
1367 (flags & MSG_CMSG_CLOEXEC) ?
1368 O_CLOEXEC : 0);
1369 s = splsoftnet();
1370 solock(so);
1371 }
1372 *controlp = cm;
1373 while (*controlp != NULL)
1374 controlp = &(*controlp)->m_next;
1375 } else {
1376 /*
1377 * Dispose of any SCM_RIGHTS message that went
1378 * through the read path rather than recv.
1379 */
1380 if (dom->dom_dispose != NULL &&
1381 type == SCM_RIGHTS) {
1382 sounlock(so);
1383 (*dom->dom_dispose)(cm);
1384 solock(so);
1385 }
1386 m_freem(cm);
1387 }
1388 }
1389 if (m != NULL)
1390 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1391 else
1392 nextrecord = so->so_rcv.sb_mb;
1393 orig_resid = 0;
1394 }
1395
1396 /* If m is non-NULL, we have some data to read. */
1397 if (__predict_true(m != NULL)) {
1398 type = m->m_type;
1399 if (type == MT_OOBDATA)
1400 flags |= MSG_OOB;
1401 }
1402 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1403 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1404
1405 moff = 0;
1406 offset = 0;
1407 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1408 if (m->m_type == MT_OOBDATA) {
1409 if (type != MT_OOBDATA)
1410 break;
1411 } else if (type == MT_OOBDATA)
1412 break;
1413 #ifdef DIAGNOSTIC
1414 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1415 panic("receive 3");
1416 #endif
1417 so->so_state &= ~SS_RCVATMARK;
1418 wakeup_state = 0;
1419 len = uio->uio_resid;
1420 if (so->so_oobmark && len > so->so_oobmark - offset)
1421 len = so->so_oobmark - offset;
1422 if (len > m->m_len - moff)
1423 len = m->m_len - moff;
1424 /*
1425 * If mp is set, just pass back the mbufs.
1426 * Otherwise copy them out via the uio, then free.
1427 * Sockbuf must be consistent here (points to current mbuf,
1428 * it points to next record) when we drop priority;
1429 * we must note any additions to the sockbuf when we
1430 * block interrupts again.
1431 */
1432 if (mp == NULL) {
1433 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1434 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1435 sounlock(so);
1436 splx(s);
1437 error = uiomove(mtod(m, char *) + moff, len, uio);
1438 s = splsoftnet();
1439 solock(so);
1440 if (error != 0) {
1441 /*
1442 * If any part of the record has been removed
1443 * (such as the MT_SONAME mbuf, which will
1444 * happen when PR_ADDR, and thus also
1445 * PR_ATOMIC, is set), then drop the entire
1446 * record to maintain the atomicity of the
1447 * receive operation.
1448 *
1449 * This avoids a later panic("receive 1a")
1450 * when compiled with DIAGNOSTIC.
1451 */
1452 if (m && mbuf_removed && atomic)
1453 (void) sbdroprecord(&so->so_rcv);
1454
1455 goto release;
1456 }
1457 } else
1458 uio->uio_resid -= len;
1459 if (len == m->m_len - moff) {
1460 if (m->m_flags & M_EOR)
1461 flags |= MSG_EOR;
1462 if (flags & MSG_PEEK) {
1463 m = m->m_next;
1464 moff = 0;
1465 } else {
1466 nextrecord = m->m_nextpkt;
1467 sbfree(&so->so_rcv, m);
1468 if (mp) {
1469 *mp = m;
1470 mp = &m->m_next;
1471 so->so_rcv.sb_mb = m = m->m_next;
1472 *mp = NULL;
1473 } else {
1474 MFREE(m, so->so_rcv.sb_mb);
1475 m = so->so_rcv.sb_mb;
1476 }
1477 /*
1478 * If m != NULL, we also know that
1479 * so->so_rcv.sb_mb != NULL.
1480 */
1481 KASSERT(so->so_rcv.sb_mb == m);
1482 if (m) {
1483 m->m_nextpkt = nextrecord;
1484 if (nextrecord == NULL)
1485 so->so_rcv.sb_lastrecord = m;
1486 } else {
1487 so->so_rcv.sb_mb = nextrecord;
1488 SB_EMPTY_FIXUP(&so->so_rcv);
1489 }
1490 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1491 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1492 }
1493 } else if (flags & MSG_PEEK)
1494 moff += len;
1495 else {
1496 if (mp != NULL) {
1497 mt = m_copym(m, 0, len, M_NOWAIT);
1498 if (__predict_false(mt == NULL)) {
1499 sounlock(so);
1500 mt = m_copym(m, 0, len, M_WAIT);
1501 solock(so);
1502 }
1503 *mp = mt;
1504 }
1505 m->m_data += len;
1506 m->m_len -= len;
1507 so->so_rcv.sb_cc -= len;
1508 }
1509 if (so->so_oobmark) {
1510 if ((flags & MSG_PEEK) == 0) {
1511 so->so_oobmark -= len;
1512 if (so->so_oobmark == 0) {
1513 so->so_state |= SS_RCVATMARK;
1514 break;
1515 }
1516 } else {
1517 offset += len;
1518 if (offset == so->so_oobmark)
1519 break;
1520 }
1521 }
1522 if (flags & MSG_EOR)
1523 break;
1524 /*
1525 * If the MSG_WAITALL flag is set (for non-atomic socket),
1526 * we must not quit until "uio->uio_resid == 0" or an error
1527 * termination. If a signal/timeout occurs, return
1528 * with a short count but without error.
1529 * Keep sockbuf locked against other readers.
1530 */
1531 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1532 !sosendallatonce(so) && !nextrecord) {
1533 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1534 break;
1535 /*
1536 * If we are peeking and the socket receive buffer is
1537 * full, stop since we can't get more data to peek at.
1538 */
1539 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1540 break;
1541 /*
1542 * If we've drained the socket buffer, tell the
1543 * protocol in case it needs to do something to
1544 * get it filled again.
1545 */
1546 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1547 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1548 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1549 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1550 if (wakeup_state & SS_RESTARTSYS)
1551 error = ERESTART;
1552 else
1553 error = sbwait(&so->so_rcv);
1554 if (error != 0) {
1555 sbunlock(&so->so_rcv);
1556 sounlock(so);
1557 splx(s);
1558 return 0;
1559 }
1560 if ((m = so->so_rcv.sb_mb) != NULL)
1561 nextrecord = m->m_nextpkt;
1562 wakeup_state = so->so_state;
1563 }
1564 }
1565
1566 if (m && atomic) {
1567 flags |= MSG_TRUNC;
1568 if ((flags & MSG_PEEK) == 0)
1569 (void) sbdroprecord(&so->so_rcv);
1570 }
1571 if ((flags & MSG_PEEK) == 0) {
1572 if (m == NULL) {
1573 /*
1574 * First part is an inline SB_EMPTY_FIXUP(). Second
1575 * part makes sure sb_lastrecord is up-to-date if
1576 * there is still data in the socket buffer.
1577 */
1578 so->so_rcv.sb_mb = nextrecord;
1579 if (so->so_rcv.sb_mb == NULL) {
1580 so->so_rcv.sb_mbtail = NULL;
1581 so->so_rcv.sb_lastrecord = NULL;
1582 } else if (nextrecord->m_nextpkt == NULL)
1583 so->so_rcv.sb_lastrecord = nextrecord;
1584 }
1585 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1586 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1587 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1588 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1589 }
1590 if (orig_resid == uio->uio_resid && orig_resid &&
1591 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1592 sbunlock(&so->so_rcv);
1593 goto restart;
1594 }
1595
1596 if (flagsp != NULL)
1597 *flagsp |= flags;
1598 release:
1599 sbunlock(&so->so_rcv);
1600 sounlock(so);
1601 splx(s);
1602 return error;
1603 }
1604
1605 int
1606 soshutdown(struct socket *so, int how)
1607 {
1608 const struct protosw *pr;
1609 int error;
1610
1611 KASSERT(solocked(so));
1612
1613 pr = so->so_proto;
1614 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1615 return (EINVAL);
1616
1617 if (how == SHUT_RD || how == SHUT_RDWR) {
1618 sorflush(so);
1619 error = 0;
1620 }
1621 if (how == SHUT_WR || how == SHUT_RDWR)
1622 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1623
1624 return error;
1625 }
1626
1627 void
1628 sorestart(struct socket *so)
1629 {
1630 /*
1631 * An application has called close() on an fd on which another
1632 * of its threads has called a socket system call.
1633 * Mark this and wake everyone up, and code that would block again
1634 * instead returns ERESTART.
1635 * On system call re-entry the fd is validated and EBADF returned.
1636 * Any other fd will block again on the 2nd syscall.
1637 */
1638 solock(so);
1639 so->so_state |= SS_RESTARTSYS;
1640 cv_broadcast(&so->so_cv);
1641 cv_broadcast(&so->so_snd.sb_cv);
1642 cv_broadcast(&so->so_rcv.sb_cv);
1643 sounlock(so);
1644 }
1645
1646 void
1647 sorflush(struct socket *so)
1648 {
1649 struct sockbuf *sb, asb;
1650 const struct protosw *pr;
1651
1652 KASSERT(solocked(so));
1653
1654 sb = &so->so_rcv;
1655 pr = so->so_proto;
1656 socantrcvmore(so);
1657 sb->sb_flags |= SB_NOINTR;
1658 (void )sblock(sb, M_WAITOK);
1659 sbunlock(sb);
1660 asb = *sb;
1661 /*
1662 * Clear most of the sockbuf structure, but leave some of the
1663 * fields valid.
1664 */
1665 memset(&sb->sb_startzero, 0,
1666 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1667 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1668 sounlock(so);
1669 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1670 solock(so);
1671 }
1672 sbrelease(&asb, so);
1673 }
1674
1675 /*
1676 * internal set SOL_SOCKET options
1677 */
1678 static int
1679 sosetopt1(struct socket *so, const struct sockopt *sopt)
1680 {
1681 int error = EINVAL, opt;
1682 int optval = 0; /* XXX: gcc */
1683 struct linger l;
1684 struct timeval tv;
1685
1686 switch ((opt = sopt->sopt_name)) {
1687
1688 case SO_ACCEPTFILTER:
1689 error = accept_filt_setopt(so, sopt);
1690 KASSERT(solocked(so));
1691 break;
1692
1693 case SO_LINGER:
1694 error = sockopt_get(sopt, &l, sizeof(l));
1695 solock(so);
1696 if (error)
1697 break;
1698 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1699 l.l_linger > (INT_MAX / hz)) {
1700 error = EDOM;
1701 break;
1702 }
1703 so->so_linger = l.l_linger;
1704 if (l.l_onoff)
1705 so->so_options |= SO_LINGER;
1706 else
1707 so->so_options &= ~SO_LINGER;
1708 break;
1709
1710 case SO_DEBUG:
1711 case SO_KEEPALIVE:
1712 case SO_DONTROUTE:
1713 case SO_USELOOPBACK:
1714 case SO_BROADCAST:
1715 case SO_REUSEADDR:
1716 case SO_REUSEPORT:
1717 case SO_OOBINLINE:
1718 case SO_TIMESTAMP:
1719 case SO_NOSIGPIPE:
1720 #ifdef SO_OTIMESTAMP
1721 case SO_OTIMESTAMP:
1722 #endif
1723 error = sockopt_getint(sopt, &optval);
1724 solock(so);
1725 if (error)
1726 break;
1727 if (optval)
1728 so->so_options |= opt;
1729 else
1730 so->so_options &= ~opt;
1731 break;
1732
1733 case SO_SNDBUF:
1734 case SO_RCVBUF:
1735 case SO_SNDLOWAT:
1736 case SO_RCVLOWAT:
1737 error = sockopt_getint(sopt, &optval);
1738 solock(so);
1739 if (error)
1740 break;
1741
1742 /*
1743 * Values < 1 make no sense for any of these
1744 * options, so disallow them.
1745 */
1746 if (optval < 1) {
1747 error = EINVAL;
1748 break;
1749 }
1750
1751 switch (opt) {
1752 case SO_SNDBUF:
1753 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1754 error = ENOBUFS;
1755 break;
1756 }
1757 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1758 break;
1759
1760 case SO_RCVBUF:
1761 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1762 error = ENOBUFS;
1763 break;
1764 }
1765 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1766 break;
1767
1768 /*
1769 * Make sure the low-water is never greater than
1770 * the high-water.
1771 */
1772 case SO_SNDLOWAT:
1773 if (optval > so->so_snd.sb_hiwat)
1774 optval = so->so_snd.sb_hiwat;
1775
1776 so->so_snd.sb_lowat = optval;
1777 break;
1778
1779 case SO_RCVLOWAT:
1780 if (optval > so->so_rcv.sb_hiwat)
1781 optval = so->so_rcv.sb_hiwat;
1782
1783 so->so_rcv.sb_lowat = optval;
1784 break;
1785 }
1786 break;
1787
1788 #ifdef COMPAT_50
1789 case SO_OSNDTIMEO:
1790 case SO_ORCVTIMEO: {
1791 struct timeval50 otv;
1792 error = sockopt_get(sopt, &otv, sizeof(otv));
1793 if (error) {
1794 solock(so);
1795 break;
1796 }
1797 timeval50_to_timeval(&otv, &tv);
1798 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1799 error = 0;
1800 /*FALLTHROUGH*/
1801 }
1802 #endif /* COMPAT_50 */
1803
1804 case SO_SNDTIMEO:
1805 case SO_RCVTIMEO:
1806 if (error)
1807 error = sockopt_get(sopt, &tv, sizeof(tv));
1808 solock(so);
1809 if (error)
1810 break;
1811
1812 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1813 error = EDOM;
1814 break;
1815 }
1816
1817 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1818 if (optval == 0 && tv.tv_usec != 0)
1819 optval = 1;
1820
1821 switch (opt) {
1822 case SO_SNDTIMEO:
1823 so->so_snd.sb_timeo = optval;
1824 break;
1825 case SO_RCVTIMEO:
1826 so->so_rcv.sb_timeo = optval;
1827 break;
1828 }
1829 break;
1830
1831 default:
1832 solock(so);
1833 error = ENOPROTOOPT;
1834 break;
1835 }
1836 KASSERT(solocked(so));
1837 return error;
1838 }
1839
1840 int
1841 sosetopt(struct socket *so, struct sockopt *sopt)
1842 {
1843 int error, prerr;
1844
1845 if (sopt->sopt_level == SOL_SOCKET) {
1846 error = sosetopt1(so, sopt);
1847 KASSERT(solocked(so));
1848 } else {
1849 error = ENOPROTOOPT;
1850 solock(so);
1851 }
1852
1853 if ((error == 0 || error == ENOPROTOOPT) &&
1854 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1855 /* give the protocol stack a shot */
1856 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1857 if (prerr == 0)
1858 error = 0;
1859 else if (prerr != ENOPROTOOPT)
1860 error = prerr;
1861 }
1862 sounlock(so);
1863 return error;
1864 }
1865
1866 /*
1867 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1868 */
1869 int
1870 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1871 const void *val, size_t valsize)
1872 {
1873 struct sockopt sopt;
1874 int error;
1875
1876 KASSERT(valsize == 0 || val != NULL);
1877
1878 sockopt_init(&sopt, level, name, valsize);
1879 sockopt_set(&sopt, val, valsize);
1880
1881 error = sosetopt(so, &sopt);
1882
1883 sockopt_destroy(&sopt);
1884
1885 return error;
1886 }
1887
1888 /*
1889 * internal get SOL_SOCKET options
1890 */
1891 static int
1892 sogetopt1(struct socket *so, struct sockopt *sopt)
1893 {
1894 int error, optval, opt;
1895 struct linger l;
1896 struct timeval tv;
1897
1898 switch ((opt = sopt->sopt_name)) {
1899
1900 case SO_ACCEPTFILTER:
1901 error = accept_filt_getopt(so, sopt);
1902 break;
1903
1904 case SO_LINGER:
1905 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1906 l.l_linger = so->so_linger;
1907
1908 error = sockopt_set(sopt, &l, sizeof(l));
1909 break;
1910
1911 case SO_USELOOPBACK:
1912 case SO_DONTROUTE:
1913 case SO_DEBUG:
1914 case SO_KEEPALIVE:
1915 case SO_REUSEADDR:
1916 case SO_REUSEPORT:
1917 case SO_BROADCAST:
1918 case SO_OOBINLINE:
1919 case SO_TIMESTAMP:
1920 case SO_NOSIGPIPE:
1921 #ifdef SO_OTIMESTAMP
1922 case SO_OTIMESTAMP:
1923 #endif
1924 case SO_ACCEPTCONN:
1925 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1926 break;
1927
1928 case SO_TYPE:
1929 error = sockopt_setint(sopt, so->so_type);
1930 break;
1931
1932 case SO_ERROR:
1933 error = sockopt_setint(sopt, so->so_error);
1934 so->so_error = 0;
1935 break;
1936
1937 case SO_SNDBUF:
1938 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1939 break;
1940
1941 case SO_RCVBUF:
1942 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1943 break;
1944
1945 case SO_SNDLOWAT:
1946 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1947 break;
1948
1949 case SO_RCVLOWAT:
1950 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1951 break;
1952
1953 #ifdef COMPAT_50
1954 case SO_OSNDTIMEO:
1955 case SO_ORCVTIMEO: {
1956 struct timeval50 otv;
1957
1958 optval = (opt == SO_OSNDTIMEO ?
1959 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1960
1961 otv.tv_sec = optval / hz;
1962 otv.tv_usec = (optval % hz) * tick;
1963
1964 error = sockopt_set(sopt, &otv, sizeof(otv));
1965 break;
1966 }
1967 #endif /* COMPAT_50 */
1968
1969 case SO_SNDTIMEO:
1970 case SO_RCVTIMEO:
1971 optval = (opt == SO_SNDTIMEO ?
1972 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1973
1974 tv.tv_sec = optval / hz;
1975 tv.tv_usec = (optval % hz) * tick;
1976
1977 error = sockopt_set(sopt, &tv, sizeof(tv));
1978 break;
1979
1980 case SO_OVERFLOWED:
1981 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1982 break;
1983
1984 default:
1985 error = ENOPROTOOPT;
1986 break;
1987 }
1988
1989 return (error);
1990 }
1991
1992 int
1993 sogetopt(struct socket *so, struct sockopt *sopt)
1994 {
1995 int error;
1996
1997 solock(so);
1998 if (sopt->sopt_level != SOL_SOCKET) {
1999 if (so->so_proto && so->so_proto->pr_ctloutput) {
2000 error = ((*so->so_proto->pr_ctloutput)
2001 (PRCO_GETOPT, so, sopt));
2002 } else
2003 error = (ENOPROTOOPT);
2004 } else {
2005 error = sogetopt1(so, sopt);
2006 }
2007 sounlock(so);
2008 return (error);
2009 }
2010
2011 /*
2012 * alloc sockopt data buffer buffer
2013 * - will be released at destroy
2014 */
2015 static int
2016 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2017 {
2018
2019 KASSERT(sopt->sopt_size == 0);
2020
2021 if (len > sizeof(sopt->sopt_buf)) {
2022 sopt->sopt_data = kmem_zalloc(len, kmflag);
2023 if (sopt->sopt_data == NULL)
2024 return ENOMEM;
2025 } else
2026 sopt->sopt_data = sopt->sopt_buf;
2027
2028 sopt->sopt_size = len;
2029 return 0;
2030 }
2031
2032 /*
2033 * initialise sockopt storage
2034 * - MAY sleep during allocation
2035 */
2036 void
2037 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2038 {
2039
2040 memset(sopt, 0, sizeof(*sopt));
2041
2042 sopt->sopt_level = level;
2043 sopt->sopt_name = name;
2044 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2045 }
2046
2047 /*
2048 * destroy sockopt storage
2049 * - will release any held memory references
2050 */
2051 void
2052 sockopt_destroy(struct sockopt *sopt)
2053 {
2054
2055 if (sopt->sopt_data != sopt->sopt_buf)
2056 kmem_free(sopt->sopt_data, sopt->sopt_size);
2057
2058 memset(sopt, 0, sizeof(*sopt));
2059 }
2060
2061 /*
2062 * set sockopt value
2063 * - value is copied into sockopt
2064 * - memory is allocated when necessary, will not sleep
2065 */
2066 int
2067 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2068 {
2069 int error;
2070
2071 if (sopt->sopt_size == 0) {
2072 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2073 if (error)
2074 return error;
2075 }
2076
2077 KASSERT(sopt->sopt_size == len);
2078 memcpy(sopt->sopt_data, buf, len);
2079 return 0;
2080 }
2081
2082 /*
2083 * common case of set sockopt integer value
2084 */
2085 int
2086 sockopt_setint(struct sockopt *sopt, int val)
2087 {
2088
2089 return sockopt_set(sopt, &val, sizeof(int));
2090 }
2091
2092 /*
2093 * get sockopt value
2094 * - correct size must be given
2095 */
2096 int
2097 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2098 {
2099
2100 if (sopt->sopt_size != len)
2101 return EINVAL;
2102
2103 memcpy(buf, sopt->sopt_data, len);
2104 return 0;
2105 }
2106
2107 /*
2108 * common case of get sockopt integer value
2109 */
2110 int
2111 sockopt_getint(const struct sockopt *sopt, int *valp)
2112 {
2113
2114 return sockopt_get(sopt, valp, sizeof(int));
2115 }
2116
2117 /*
2118 * set sockopt value from mbuf
2119 * - ONLY for legacy code
2120 * - mbuf is released by sockopt
2121 * - will not sleep
2122 */
2123 int
2124 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2125 {
2126 size_t len;
2127 int error;
2128
2129 len = m_length(m);
2130
2131 if (sopt->sopt_size == 0) {
2132 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2133 if (error)
2134 return error;
2135 }
2136
2137 KASSERT(sopt->sopt_size == len);
2138 m_copydata(m, 0, len, sopt->sopt_data);
2139 m_freem(m);
2140
2141 return 0;
2142 }
2143
2144 /*
2145 * get sockopt value into mbuf
2146 * - ONLY for legacy code
2147 * - mbuf to be released by the caller
2148 * - will not sleep
2149 */
2150 struct mbuf *
2151 sockopt_getmbuf(const struct sockopt *sopt)
2152 {
2153 struct mbuf *m;
2154
2155 if (sopt->sopt_size > MCLBYTES)
2156 return NULL;
2157
2158 m = m_get(M_DONTWAIT, MT_SOOPTS);
2159 if (m == NULL)
2160 return NULL;
2161
2162 if (sopt->sopt_size > MLEN) {
2163 MCLGET(m, M_DONTWAIT);
2164 if ((m->m_flags & M_EXT) == 0) {
2165 m_free(m);
2166 return NULL;
2167 }
2168 }
2169
2170 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2171 m->m_len = sopt->sopt_size;
2172
2173 return m;
2174 }
2175
2176 void
2177 sohasoutofband(struct socket *so)
2178 {
2179
2180 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2181 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2182 }
2183
2184 static void
2185 filt_sordetach(struct knote *kn)
2186 {
2187 struct socket *so;
2188
2189 so = ((file_t *)kn->kn_obj)->f_socket;
2190 solock(so);
2191 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2192 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2193 so->so_rcv.sb_flags &= ~SB_KNOTE;
2194 sounlock(so);
2195 }
2196
2197 /*ARGSUSED*/
2198 static int
2199 filt_soread(struct knote *kn, long hint)
2200 {
2201 struct socket *so;
2202 int rv;
2203
2204 so = ((file_t *)kn->kn_obj)->f_socket;
2205 if (hint != NOTE_SUBMIT)
2206 solock(so);
2207 kn->kn_data = so->so_rcv.sb_cc;
2208 if (so->so_state & SS_CANTRCVMORE) {
2209 kn->kn_flags |= EV_EOF;
2210 kn->kn_fflags = so->so_error;
2211 rv = 1;
2212 } else if (so->so_error) /* temporary udp error */
2213 rv = 1;
2214 else if (kn->kn_sfflags & NOTE_LOWAT)
2215 rv = (kn->kn_data >= kn->kn_sdata);
2216 else
2217 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2218 if (hint != NOTE_SUBMIT)
2219 sounlock(so);
2220 return rv;
2221 }
2222
2223 static void
2224 filt_sowdetach(struct knote *kn)
2225 {
2226 struct socket *so;
2227
2228 so = ((file_t *)kn->kn_obj)->f_socket;
2229 solock(so);
2230 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2231 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2232 so->so_snd.sb_flags &= ~SB_KNOTE;
2233 sounlock(so);
2234 }
2235
2236 /*ARGSUSED*/
2237 static int
2238 filt_sowrite(struct knote *kn, long hint)
2239 {
2240 struct socket *so;
2241 int rv;
2242
2243 so = ((file_t *)kn->kn_obj)->f_socket;
2244 if (hint != NOTE_SUBMIT)
2245 solock(so);
2246 kn->kn_data = sbspace(&so->so_snd);
2247 if (so->so_state & SS_CANTSENDMORE) {
2248 kn->kn_flags |= EV_EOF;
2249 kn->kn_fflags = so->so_error;
2250 rv = 1;
2251 } else if (so->so_error) /* temporary udp error */
2252 rv = 1;
2253 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2254 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2255 rv = 0;
2256 else if (kn->kn_sfflags & NOTE_LOWAT)
2257 rv = (kn->kn_data >= kn->kn_sdata);
2258 else
2259 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2260 if (hint != NOTE_SUBMIT)
2261 sounlock(so);
2262 return rv;
2263 }
2264
2265 /*ARGSUSED*/
2266 static int
2267 filt_solisten(struct knote *kn, long hint)
2268 {
2269 struct socket *so;
2270 int rv;
2271
2272 so = ((file_t *)kn->kn_obj)->f_socket;
2273
2274 /*
2275 * Set kn_data to number of incoming connections, not
2276 * counting partial (incomplete) connections.
2277 */
2278 if (hint != NOTE_SUBMIT)
2279 solock(so);
2280 kn->kn_data = so->so_qlen;
2281 rv = (kn->kn_data > 0);
2282 if (hint != NOTE_SUBMIT)
2283 sounlock(so);
2284 return rv;
2285 }
2286
2287 static const struct filterops solisten_filtops =
2288 { 1, NULL, filt_sordetach, filt_solisten };
2289 static const struct filterops soread_filtops =
2290 { 1, NULL, filt_sordetach, filt_soread };
2291 static const struct filterops sowrite_filtops =
2292 { 1, NULL, filt_sowdetach, filt_sowrite };
2293
2294 int
2295 soo_kqfilter(struct file *fp, struct knote *kn)
2296 {
2297 struct socket *so;
2298 struct sockbuf *sb;
2299
2300 so = ((file_t *)kn->kn_obj)->f_socket;
2301 solock(so);
2302 switch (kn->kn_filter) {
2303 case EVFILT_READ:
2304 if (so->so_options & SO_ACCEPTCONN)
2305 kn->kn_fop = &solisten_filtops;
2306 else
2307 kn->kn_fop = &soread_filtops;
2308 sb = &so->so_rcv;
2309 break;
2310 case EVFILT_WRITE:
2311 kn->kn_fop = &sowrite_filtops;
2312 sb = &so->so_snd;
2313 break;
2314 default:
2315 sounlock(so);
2316 return (EINVAL);
2317 }
2318 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2319 sb->sb_flags |= SB_KNOTE;
2320 sounlock(so);
2321 return (0);
2322 }
2323
2324 static int
2325 sodopoll(struct socket *so, int events)
2326 {
2327 int revents;
2328
2329 revents = 0;
2330
2331 if (events & (POLLIN | POLLRDNORM))
2332 if (soreadable(so))
2333 revents |= events & (POLLIN | POLLRDNORM);
2334
2335 if (events & (POLLOUT | POLLWRNORM))
2336 if (sowritable(so))
2337 revents |= events & (POLLOUT | POLLWRNORM);
2338
2339 if (events & (POLLPRI | POLLRDBAND))
2340 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2341 revents |= events & (POLLPRI | POLLRDBAND);
2342
2343 return revents;
2344 }
2345
2346 int
2347 sopoll(struct socket *so, int events)
2348 {
2349 int revents = 0;
2350
2351 #ifndef DIAGNOSTIC
2352 /*
2353 * Do a quick, unlocked check in expectation that the socket
2354 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2355 * as the solocked() assertions will fail.
2356 */
2357 if ((revents = sodopoll(so, events)) != 0)
2358 return revents;
2359 #endif
2360
2361 solock(so);
2362 if ((revents = sodopoll(so, events)) == 0) {
2363 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2364 selrecord(curlwp, &so->so_rcv.sb_sel);
2365 so->so_rcv.sb_flags |= SB_NOTIFY;
2366 }
2367
2368 if (events & (POLLOUT | POLLWRNORM)) {
2369 selrecord(curlwp, &so->so_snd.sb_sel);
2370 so->so_snd.sb_flags |= SB_NOTIFY;
2371 }
2372 }
2373 sounlock(so);
2374
2375 return revents;
2376 }
2377
2378
2379 #include <sys/sysctl.h>
2380
2381 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2382 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2383
2384 /*
2385 * sysctl helper routine for kern.somaxkva. ensures that the given
2386 * value is not too small.
2387 * (XXX should we maybe make sure it's not too large as well?)
2388 */
2389 static int
2390 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2391 {
2392 int error, new_somaxkva;
2393 struct sysctlnode node;
2394
2395 new_somaxkva = somaxkva;
2396 node = *rnode;
2397 node.sysctl_data = &new_somaxkva;
2398 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2399 if (error || newp == NULL)
2400 return (error);
2401
2402 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2403 return (EINVAL);
2404
2405 mutex_enter(&so_pendfree_lock);
2406 somaxkva = new_somaxkva;
2407 cv_broadcast(&socurkva_cv);
2408 mutex_exit(&so_pendfree_lock);
2409
2410 return (error);
2411 }
2412
2413 /*
2414 * sysctl helper routine for kern.sbmax. Basically just ensures that
2415 * any new value is not too small.
2416 */
2417 static int
2418 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2419 {
2420 int error, new_sbmax;
2421 struct sysctlnode node;
2422
2423 new_sbmax = sb_max;
2424 node = *rnode;
2425 node.sysctl_data = &new_sbmax;
2426 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2427 if (error || newp == NULL)
2428 return (error);
2429
2430 KERNEL_LOCK(1, NULL);
2431 error = sb_max_set(new_sbmax);
2432 KERNEL_UNLOCK_ONE(NULL);
2433
2434 return (error);
2435 }
2436
2437 static void
2438 sysctl_kern_socket_setup(void)
2439 {
2440
2441 KASSERT(socket_sysctllog == NULL);
2442
2443 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2444 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2445 CTLTYPE_INT, "somaxkva",
2446 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2447 "used for socket buffers"),
2448 sysctl_kern_somaxkva, 0, NULL, 0,
2449 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2450
2451 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2452 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2453 CTLTYPE_INT, "sbmax",
2454 SYSCTL_DESCR("Maximum socket buffer size"),
2455 sysctl_kern_sbmax, 0, NULL, 0,
2456 CTL_KERN, KERN_SBMAX, CTL_EOL);
2457 }
2458