Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.249
      1 /*	$NetBSD: uipc_socket.c,v 1.249 2016/10/02 19:26:46 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.249 2016/10/02 19:26:46 christos Exp $");
     75 
     76 #ifdef _KERNEL_OPT
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_sock_counters.h"
     79 #include "opt_sosend_loan.h"
     80 #include "opt_mbuftrace.h"
     81 #include "opt_somaxkva.h"
     82 #include "opt_multiprocessor.h"	/* XXX */
     83 #include "opt_sctp.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/file.h>
     90 #include <sys/filedesc.h>
     91 #include <sys/kmem.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/domain.h>
     94 #include <sys/kernel.h>
     95 #include <sys/protosw.h>
     96 #include <sys/socket.h>
     97 #include <sys/socketvar.h>
     98 #include <sys/signalvar.h>
     99 #include <sys/resourcevar.h>
    100 #include <sys/uidinfo.h>
    101 #include <sys/event.h>
    102 #include <sys/poll.h>
    103 #include <sys/kauth.h>
    104 #include <sys/mutex.h>
    105 #include <sys/condvar.h>
    106 #include <sys/kthread.h>
    107 
    108 #ifdef COMPAT_50
    109 #include <compat/sys/time.h>
    110 #include <compat/sys/socket.h>
    111 #endif
    112 
    113 #include <uvm/uvm_extern.h>
    114 #include <uvm/uvm_loan.h>
    115 #include <uvm/uvm_page.h>
    116 
    117 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    118 
    119 extern const struct fileops socketops;
    120 
    121 extern int	somaxconn;			/* patchable (XXX sysctl) */
    122 int		somaxconn = SOMAXCONN;
    123 kmutex_t	*softnet_lock;
    124 
    125 #ifdef SOSEND_COUNTERS
    126 #include <sys/device.h>
    127 
    128 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    129     NULL, "sosend", "loan big");
    130 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    131     NULL, "sosend", "copy big");
    132 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    133     NULL, "sosend", "copy small");
    134 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    135     NULL, "sosend", "kva limit");
    136 
    137 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    138 
    139 EVCNT_ATTACH_STATIC(sosend_loan_big);
    140 EVCNT_ATTACH_STATIC(sosend_copy_big);
    141 EVCNT_ATTACH_STATIC(sosend_copy_small);
    142 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    143 #else
    144 
    145 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    146 
    147 #endif /* SOSEND_COUNTERS */
    148 
    149 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    150 int sock_loan_thresh = -1;
    151 #else
    152 int sock_loan_thresh = 4096;
    153 #endif
    154 
    155 static kmutex_t so_pendfree_lock;
    156 static struct mbuf *so_pendfree = NULL;
    157 
    158 #ifndef SOMAXKVA
    159 #define	SOMAXKVA (16 * 1024 * 1024)
    160 #endif
    161 int somaxkva = SOMAXKVA;
    162 static int socurkva;
    163 static kcondvar_t socurkva_cv;
    164 
    165 static kauth_listener_t socket_listener;
    166 
    167 #define	SOCK_LOAN_CHUNK		65536
    168 
    169 static void sopendfree_thread(void *);
    170 static kcondvar_t pendfree_thread_cv;
    171 static lwp_t *sopendfree_lwp;
    172 
    173 static void sysctl_kern_socket_setup(void);
    174 static struct sysctllog *socket_sysctllog;
    175 
    176 static vsize_t
    177 sokvareserve(struct socket *so, vsize_t len)
    178 {
    179 	int error;
    180 
    181 	mutex_enter(&so_pendfree_lock);
    182 	while (socurkva + len > somaxkva) {
    183 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    184 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    185 		if (error) {
    186 			len = 0;
    187 			break;
    188 		}
    189 	}
    190 	socurkva += len;
    191 	mutex_exit(&so_pendfree_lock);
    192 	return len;
    193 }
    194 
    195 static void
    196 sokvaunreserve(vsize_t len)
    197 {
    198 
    199 	mutex_enter(&so_pendfree_lock);
    200 	socurkva -= len;
    201 	cv_broadcast(&socurkva_cv);
    202 	mutex_exit(&so_pendfree_lock);
    203 }
    204 
    205 /*
    206  * sokvaalloc: allocate kva for loan.
    207  */
    208 
    209 vaddr_t
    210 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    211 {
    212 	vaddr_t lva;
    213 
    214 	/*
    215 	 * reserve kva.
    216 	 */
    217 
    218 	if (sokvareserve(so, len) == 0)
    219 		return 0;
    220 
    221 	/*
    222 	 * allocate kva.
    223 	 */
    224 
    225 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    226 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    227 	if (lva == 0) {
    228 		sokvaunreserve(len);
    229 		return (0);
    230 	}
    231 
    232 	return lva;
    233 }
    234 
    235 /*
    236  * sokvafree: free kva for loan.
    237  */
    238 
    239 void
    240 sokvafree(vaddr_t sva, vsize_t len)
    241 {
    242 
    243 	/*
    244 	 * free kva.
    245 	 */
    246 
    247 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    248 
    249 	/*
    250 	 * unreserve kva.
    251 	 */
    252 
    253 	sokvaunreserve(len);
    254 }
    255 
    256 static void
    257 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    258 {
    259 	vaddr_t sva, eva;
    260 	vsize_t len;
    261 	int npgs;
    262 
    263 	KASSERT(pgs != NULL);
    264 
    265 	eva = round_page((vaddr_t) buf + size);
    266 	sva = trunc_page((vaddr_t) buf);
    267 	len = eva - sva;
    268 	npgs = len >> PAGE_SHIFT;
    269 
    270 	pmap_kremove(sva, len);
    271 	pmap_update(pmap_kernel());
    272 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    273 	sokvafree(sva, len);
    274 }
    275 
    276 /*
    277  * sopendfree_thread: free mbufs on "pendfree" list.
    278  * unlock and relock so_pendfree_lock when freeing mbufs.
    279  */
    280 
    281 static void
    282 sopendfree_thread(void *v)
    283 {
    284 	struct mbuf *m, *next;
    285 	size_t rv;
    286 
    287 	mutex_enter(&so_pendfree_lock);
    288 
    289 	for (;;) {
    290 		rv = 0;
    291 		while (so_pendfree != NULL) {
    292 			m = so_pendfree;
    293 			so_pendfree = NULL;
    294 			mutex_exit(&so_pendfree_lock);
    295 
    296 			for (; m != NULL; m = next) {
    297 				next = m->m_next;
    298 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    299 				KASSERT(m->m_ext.ext_refcnt == 0);
    300 
    301 				rv += m->m_ext.ext_size;
    302 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    303 				    m->m_ext.ext_size);
    304 				pool_cache_put(mb_cache, m);
    305 			}
    306 
    307 			mutex_enter(&so_pendfree_lock);
    308 		}
    309 		if (rv)
    310 			cv_broadcast(&socurkva_cv);
    311 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    312 	}
    313 	panic("sopendfree_thread");
    314 	/* NOTREACHED */
    315 }
    316 
    317 void
    318 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    319 {
    320 
    321 	KASSERT(m != NULL);
    322 
    323 	/*
    324 	 * postpone freeing mbuf.
    325 	 *
    326 	 * we can't do it in interrupt context
    327 	 * because we need to put kva back to kernel_map.
    328 	 */
    329 
    330 	mutex_enter(&so_pendfree_lock);
    331 	m->m_next = so_pendfree;
    332 	so_pendfree = m;
    333 	cv_signal(&pendfree_thread_cv);
    334 	mutex_exit(&so_pendfree_lock);
    335 }
    336 
    337 static long
    338 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    339 {
    340 	struct iovec *iov = uio->uio_iov;
    341 	vaddr_t sva, eva;
    342 	vsize_t len;
    343 	vaddr_t lva;
    344 	int npgs, error;
    345 	vaddr_t va;
    346 	int i;
    347 
    348 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    349 		return (0);
    350 
    351 	if (iov->iov_len < (size_t) space)
    352 		space = iov->iov_len;
    353 	if (space > SOCK_LOAN_CHUNK)
    354 		space = SOCK_LOAN_CHUNK;
    355 
    356 	eva = round_page((vaddr_t) iov->iov_base + space);
    357 	sva = trunc_page((vaddr_t) iov->iov_base);
    358 	len = eva - sva;
    359 	npgs = len >> PAGE_SHIFT;
    360 
    361 	KASSERT(npgs <= M_EXT_MAXPAGES);
    362 
    363 	lva = sokvaalloc(sva, len, so);
    364 	if (lva == 0)
    365 		return 0;
    366 
    367 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    368 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    369 	if (error) {
    370 		sokvafree(lva, len);
    371 		return (0);
    372 	}
    373 
    374 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    375 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    376 		    VM_PROT_READ, 0);
    377 	pmap_update(pmap_kernel());
    378 
    379 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    380 
    381 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    382 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    383 
    384 	uio->uio_resid -= space;
    385 	/* uio_offset not updated, not set/used for write(2) */
    386 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    387 	uio->uio_iov->iov_len -= space;
    388 	if (uio->uio_iov->iov_len == 0) {
    389 		uio->uio_iov++;
    390 		uio->uio_iovcnt--;
    391 	}
    392 
    393 	return (space);
    394 }
    395 
    396 struct mbuf *
    397 getsombuf(struct socket *so, int type)
    398 {
    399 	struct mbuf *m;
    400 
    401 	m = m_get(M_WAIT, type);
    402 	MCLAIM(m, so->so_mowner);
    403 	return m;
    404 }
    405 
    406 static int
    407 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    408     void *arg0, void *arg1, void *arg2, void *arg3)
    409 {
    410 	int result;
    411 	enum kauth_network_req req;
    412 
    413 	result = KAUTH_RESULT_DEFER;
    414 	req = (enum kauth_network_req)arg0;
    415 
    416 	if ((action != KAUTH_NETWORK_SOCKET) &&
    417 	    (action != KAUTH_NETWORK_BIND))
    418 		return result;
    419 
    420 	switch (req) {
    421 	case KAUTH_REQ_NETWORK_BIND_PORT:
    422 		result = KAUTH_RESULT_ALLOW;
    423 		break;
    424 
    425 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    426 		/* Normal users can only drop their own connections. */
    427 		struct socket *so = (struct socket *)arg1;
    428 
    429 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    430 			result = KAUTH_RESULT_ALLOW;
    431 
    432 		break;
    433 		}
    434 
    435 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    436 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    437 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    438 		    || (u_long)arg1 == PF_BLUETOOTH) {
    439 			result = KAUTH_RESULT_ALLOW;
    440 		} else {
    441 			/* Privileged, let secmodel handle this. */
    442 			if ((u_long)arg2 == SOCK_RAW)
    443 				break;
    444 		}
    445 
    446 		result = KAUTH_RESULT_ALLOW;
    447 
    448 		break;
    449 
    450 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    451 		result = KAUTH_RESULT_ALLOW;
    452 
    453 		break;
    454 
    455 	default:
    456 		break;
    457 	}
    458 
    459 	return result;
    460 }
    461 
    462 void
    463 soinit(void)
    464 {
    465 
    466 	sysctl_kern_socket_setup();
    467 
    468 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    469 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    470 	cv_init(&socurkva_cv, "sokva");
    471 	cv_init(&pendfree_thread_cv, "sopendfr");
    472 	soinit2();
    473 
    474 	/* Set the initial adjusted socket buffer size. */
    475 	if (sb_max_set(sb_max))
    476 		panic("bad initial sb_max value: %lu", sb_max);
    477 
    478 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    479 	    socket_listener_cb, NULL);
    480 }
    481 
    482 void
    483 soinit1(void)
    484 {
    485 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    486 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    487 	if (error)
    488 		panic("soinit1 %d", error);
    489 }
    490 
    491 /*
    492  * socreate: create a new socket of the specified type and the protocol.
    493  *
    494  * => Caller may specify another socket for lock sharing (must not be held).
    495  * => Returns the new socket without lock held.
    496  */
    497 int
    498 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    499 	 struct socket *lockso)
    500 {
    501 	const struct protosw	*prp;
    502 	struct socket	*so;
    503 	uid_t		uid;
    504 	int		error;
    505 	kmutex_t	*lock;
    506 
    507 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    508 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    509 	    KAUTH_ARG(proto));
    510 	if (error != 0)
    511 		return error;
    512 
    513 	if (proto)
    514 		prp = pffindproto(dom, proto, type);
    515 	else
    516 		prp = pffindtype(dom, type);
    517 	if (prp == NULL) {
    518 		/* no support for domain */
    519 		if (pffinddomain(dom) == 0)
    520 			return EAFNOSUPPORT;
    521 		/* no support for socket type */
    522 		if (proto == 0 && type != 0)
    523 			return EPROTOTYPE;
    524 		return EPROTONOSUPPORT;
    525 	}
    526 	if (prp->pr_usrreqs == NULL)
    527 		return EPROTONOSUPPORT;
    528 	if (prp->pr_type != type)
    529 		return EPROTOTYPE;
    530 
    531 	so = soget(true);
    532 	so->so_type = type;
    533 	so->so_proto = prp;
    534 	so->so_send = sosend;
    535 	so->so_receive = soreceive;
    536 #ifdef MBUFTRACE
    537 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    538 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    539 	so->so_mowner = &prp->pr_domain->dom_mowner;
    540 #endif
    541 	uid = kauth_cred_geteuid(l->l_cred);
    542 	so->so_uidinfo = uid_find(uid);
    543 	so->so_cpid = l->l_proc->p_pid;
    544 
    545 	/*
    546 	 * Lock assigned and taken during PCB attach, unless we share
    547 	 * the lock with another socket, e.g. socketpair(2) case.
    548 	 */
    549 	if (lockso) {
    550 		lock = lockso->so_lock;
    551 		so->so_lock = lock;
    552 		mutex_obj_hold(lock);
    553 		mutex_enter(lock);
    554 	}
    555 
    556 	/* Attach the PCB (returns with the socket lock held). */
    557 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    558 	KASSERT(solocked(so));
    559 
    560 	if (error) {
    561 		KASSERT(so->so_pcb == NULL);
    562 		so->so_state |= SS_NOFDREF;
    563 		sofree(so);
    564 		return error;
    565 	}
    566 	so->so_cred = kauth_cred_dup(l->l_cred);
    567 	sounlock(so);
    568 
    569 	*aso = so;
    570 	return 0;
    571 }
    572 
    573 /*
    574  * fsocreate: create a socket and a file descriptor associated with it.
    575  *
    576  * => On success, write file descriptor to fdout and return zero.
    577  * => On failure, return non-zero; *fdout will be undefined.
    578  */
    579 int
    580 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    581 {
    582 	lwp_t *l = curlwp;
    583 	int error, fd, flags;
    584 	struct socket *so;
    585 	struct file *fp;
    586 
    587 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    588 		return error;
    589 	}
    590 	flags = type & SOCK_FLAGS_MASK;
    591 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    592 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    593 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    594 	fp->f_type = DTYPE_SOCKET;
    595 	fp->f_ops = &socketops;
    596 
    597 	type &= ~SOCK_FLAGS_MASK;
    598 	error = socreate(domain, &so, type, proto, l, NULL);
    599 	if (error) {
    600 		fd_abort(curproc, fp, fd);
    601 		return error;
    602 	}
    603 	if (flags & SOCK_NONBLOCK) {
    604 		so->so_state |= SS_NBIO;
    605 	}
    606 	fp->f_socket = so;
    607 	fd_affix(curproc, fp, fd);
    608 
    609 	if (sop != NULL) {
    610 		*sop = so;
    611 	}
    612 	*fdout = fd;
    613 	return error;
    614 }
    615 
    616 int
    617 sofamily(const struct socket *so)
    618 {
    619 	const struct protosw *pr;
    620 	const struct domain *dom;
    621 
    622 	if ((pr = so->so_proto) == NULL)
    623 		return AF_UNSPEC;
    624 	if ((dom = pr->pr_domain) == NULL)
    625 		return AF_UNSPEC;
    626 	return dom->dom_family;
    627 }
    628 
    629 int
    630 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    631 {
    632 	int	error;
    633 
    634 	solock(so);
    635 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    636 		sounlock(so);
    637 		return EAFNOSUPPORT;
    638 	}
    639 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    640 	sounlock(so);
    641 	return error;
    642 }
    643 
    644 int
    645 solisten(struct socket *so, int backlog, struct lwp *l)
    646 {
    647 	int	error;
    648 	short	oldopt, oldqlimit;
    649 
    650 	solock(so);
    651 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    652 	    SS_ISDISCONNECTING)) != 0) {
    653 		sounlock(so);
    654 		return EINVAL;
    655 	}
    656 	oldopt = so->so_options;
    657 	oldqlimit = so->so_qlimit;
    658 	if (TAILQ_EMPTY(&so->so_q))
    659 		so->so_options |= SO_ACCEPTCONN;
    660 	if (backlog < 0)
    661 		backlog = 0;
    662 	so->so_qlimit = min(backlog, somaxconn);
    663 
    664 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    665 	if (error != 0) {
    666 		so->so_options = oldopt;
    667 		so->so_qlimit = oldqlimit;
    668 		sounlock(so);
    669 		return error;
    670 	}
    671 	sounlock(so);
    672 	return 0;
    673 }
    674 
    675 void
    676 sofree(struct socket *so)
    677 {
    678 	u_int refs;
    679 
    680 	KASSERT(solocked(so));
    681 
    682 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    683 		sounlock(so);
    684 		return;
    685 	}
    686 	if (so->so_head) {
    687 		/*
    688 		 * We must not decommission a socket that's on the accept(2)
    689 		 * queue.  If we do, then accept(2) may hang after select(2)
    690 		 * indicated that the listening socket was ready.
    691 		 */
    692 		if (!soqremque(so, 0)) {
    693 			sounlock(so);
    694 			return;
    695 		}
    696 	}
    697 	if (so->so_rcv.sb_hiwat)
    698 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    699 		    RLIM_INFINITY);
    700 	if (so->so_snd.sb_hiwat)
    701 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    702 		    RLIM_INFINITY);
    703 	sbrelease(&so->so_snd, so);
    704 	KASSERT(!cv_has_waiters(&so->so_cv));
    705 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    706 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    707 	sorflush(so);
    708 	refs = so->so_aborting;	/* XXX */
    709 	/* Remove acccept filter if one is present. */
    710 	if (so->so_accf != NULL)
    711 		(void)accept_filt_clear(so);
    712 	sounlock(so);
    713 	if (refs == 0)		/* XXX */
    714 		soput(so);
    715 }
    716 
    717 /*
    718  * soclose: close a socket on last file table reference removal.
    719  * Initiate disconnect if connected.  Free socket when disconnect complete.
    720  */
    721 int
    722 soclose(struct socket *so)
    723 {
    724 	struct socket *so2;
    725 	int error = 0;
    726 
    727 	solock(so);
    728 	if (so->so_options & SO_ACCEPTCONN) {
    729 		for (;;) {
    730 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    731 				KASSERT(solocked2(so, so2));
    732 				(void) soqremque(so2, 0);
    733 				/* soabort drops the lock. */
    734 				(void) soabort(so2);
    735 				solock(so);
    736 				continue;
    737 			}
    738 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    739 				KASSERT(solocked2(so, so2));
    740 				(void) soqremque(so2, 1);
    741 				/* soabort drops the lock. */
    742 				(void) soabort(so2);
    743 				solock(so);
    744 				continue;
    745 			}
    746 			break;
    747 		}
    748 	}
    749 	if (so->so_pcb == NULL)
    750 		goto discard;
    751 	if (so->so_state & SS_ISCONNECTED) {
    752 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    753 			error = sodisconnect(so);
    754 			if (error)
    755 				goto drop;
    756 		}
    757 		if (so->so_options & SO_LINGER) {
    758 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    759 			    (SS_ISDISCONNECTING|SS_NBIO))
    760 				goto drop;
    761 			while (so->so_state & SS_ISCONNECTED) {
    762 				error = sowait(so, true, so->so_linger * hz);
    763 				if (error)
    764 					break;
    765 			}
    766 		}
    767 	}
    768  drop:
    769 	if (so->so_pcb) {
    770 		KASSERT(solocked(so));
    771 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    772 	}
    773  discard:
    774 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    775 	kauth_cred_free(so->so_cred);
    776 	so->so_state |= SS_NOFDREF;
    777 	sofree(so);
    778 	return error;
    779 }
    780 
    781 /*
    782  * Must be called with the socket locked..  Will return with it unlocked.
    783  */
    784 int
    785 soabort(struct socket *so)
    786 {
    787 	u_int refs;
    788 	int error;
    789 
    790 	KASSERT(solocked(so));
    791 	KASSERT(so->so_head == NULL);
    792 
    793 	so->so_aborting++;		/* XXX */
    794 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    795 	refs = --so->so_aborting;	/* XXX */
    796 	if (error || (refs == 0)) {
    797 		sofree(so);
    798 	} else {
    799 		sounlock(so);
    800 	}
    801 	return error;
    802 }
    803 
    804 int
    805 soaccept(struct socket *so, struct sockaddr *nam)
    806 {
    807 	int error;
    808 
    809 	KASSERT(solocked(so));
    810 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    811 
    812 	so->so_state &= ~SS_NOFDREF;
    813 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    814 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    815 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    816 	else
    817 		error = ECONNABORTED;
    818 
    819 	return error;
    820 }
    821 
    822 int
    823 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    824 {
    825 	int error;
    826 
    827 	KASSERT(solocked(so));
    828 
    829 	if (so->so_options & SO_ACCEPTCONN)
    830 		return EOPNOTSUPP;
    831 	/*
    832 	 * If protocol is connection-based, can only connect once.
    833 	 * Otherwise, if connected, try to disconnect first.
    834 	 * This allows user to disconnect by connecting to, e.g.,
    835 	 * a null address.
    836 	 */
    837 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    838 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    839 	    (error = sodisconnect(so)))) {
    840 		error = EISCONN;
    841 	} else {
    842 		if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    843 			return EAFNOSUPPORT;
    844 		}
    845 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    846 	}
    847 
    848 	return error;
    849 }
    850 
    851 int
    852 soconnect2(struct socket *so1, struct socket *so2)
    853 {
    854 	KASSERT(solocked2(so1, so2));
    855 
    856 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    857 }
    858 
    859 int
    860 sodisconnect(struct socket *so)
    861 {
    862 	int	error;
    863 
    864 	KASSERT(solocked(so));
    865 
    866 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    867 		error = ENOTCONN;
    868 	} else if (so->so_state & SS_ISDISCONNECTING) {
    869 		error = EALREADY;
    870 	} else {
    871 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    872 	}
    873 	return (error);
    874 }
    875 
    876 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    877 /*
    878  * Send on a socket.
    879  * If send must go all at once and message is larger than
    880  * send buffering, then hard error.
    881  * Lock against other senders.
    882  * If must go all at once and not enough room now, then
    883  * inform user that this would block and do nothing.
    884  * Otherwise, if nonblocking, send as much as possible.
    885  * The data to be sent is described by "uio" if nonzero,
    886  * otherwise by the mbuf chain "top" (which must be null
    887  * if uio is not).  Data provided in mbuf chain must be small
    888  * enough to send all at once.
    889  *
    890  * Returns nonzero on error, timeout or signal; callers
    891  * must check for short counts if EINTR/ERESTART are returned.
    892  * Data and control buffers are freed on return.
    893  */
    894 int
    895 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
    896 	struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
    897 {
    898 	struct mbuf	**mp, *m;
    899 	long		space, len, resid, clen, mlen;
    900 	int		error, s, dontroute, atomic;
    901 	short		wakeup_state = 0;
    902 
    903 	clen = 0;
    904 
    905 	/*
    906 	 * solock() provides atomicity of access.  splsoftnet() prevents
    907 	 * protocol processing soft interrupts from interrupting us and
    908 	 * blocking (expensive).
    909 	 */
    910 	s = splsoftnet();
    911 	solock(so);
    912 	atomic = sosendallatonce(so) || top;
    913 	if (uio)
    914 		resid = uio->uio_resid;
    915 	else
    916 		resid = top->m_pkthdr.len;
    917 	/*
    918 	 * In theory resid should be unsigned.
    919 	 * However, space must be signed, as it might be less than 0
    920 	 * if we over-committed, and we must use a signed comparison
    921 	 * of space and resid.  On the other hand, a negative resid
    922 	 * causes us to loop sending 0-length segments to the protocol.
    923 	 */
    924 	if (resid < 0) {
    925 		error = EINVAL;
    926 		goto out;
    927 	}
    928 	dontroute =
    929 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    930 	    (so->so_proto->pr_flags & PR_ATOMIC);
    931 	l->l_ru.ru_msgsnd++;
    932 	if (control)
    933 		clen = control->m_len;
    934  restart:
    935 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    936 		goto out;
    937 	do {
    938 		if (so->so_state & SS_CANTSENDMORE) {
    939 			error = EPIPE;
    940 			goto release;
    941 		}
    942 		if (so->so_error) {
    943 			error = so->so_error;
    944 			so->so_error = 0;
    945 			goto release;
    946 		}
    947 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    948 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    949 				if (resid || clen == 0) {
    950 					error = ENOTCONN;
    951 					goto release;
    952 				}
    953 			} else if (addr == NULL) {
    954 				error = EDESTADDRREQ;
    955 				goto release;
    956 			}
    957 		}
    958 		space = sbspace(&so->so_snd);
    959 		if (flags & MSG_OOB)
    960 			space += 1024;
    961 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    962 		    clen > so->so_snd.sb_hiwat) {
    963 			error = EMSGSIZE;
    964 			goto release;
    965 		}
    966 		if (space < resid + clen &&
    967 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    968 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    969 				error = EWOULDBLOCK;
    970 				goto release;
    971 			}
    972 			sbunlock(&so->so_snd);
    973 			if (wakeup_state & SS_RESTARTSYS) {
    974 				error = ERESTART;
    975 				goto out;
    976 			}
    977 			error = sbwait(&so->so_snd);
    978 			if (error)
    979 				goto out;
    980 			wakeup_state = so->so_state;
    981 			goto restart;
    982 		}
    983 		wakeup_state = 0;
    984 		mp = &top;
    985 		space -= clen;
    986 		do {
    987 			if (uio == NULL) {
    988 				/*
    989 				 * Data is prepackaged in "top".
    990 				 */
    991 				resid = 0;
    992 				if (flags & MSG_EOR)
    993 					top->m_flags |= M_EOR;
    994 			} else do {
    995 				sounlock(so);
    996 				splx(s);
    997 				if (top == NULL) {
    998 					m = m_gethdr(M_WAIT, MT_DATA);
    999 					mlen = MHLEN;
   1000 					m->m_pkthdr.len = 0;
   1001 					m_reset_rcvif(m);
   1002 				} else {
   1003 					m = m_get(M_WAIT, MT_DATA);
   1004 					mlen = MLEN;
   1005 				}
   1006 				MCLAIM(m, so->so_snd.sb_mowner);
   1007 				if (sock_loan_thresh >= 0 &&
   1008 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1009 				    space >= sock_loan_thresh &&
   1010 				    (len = sosend_loan(so, uio, m,
   1011 						       space)) != 0) {
   1012 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1013 					space -= len;
   1014 					goto have_data;
   1015 				}
   1016 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1017 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1018 					m_clget(m, M_DONTWAIT);
   1019 					if ((m->m_flags & M_EXT) == 0)
   1020 						goto nopages;
   1021 					mlen = MCLBYTES;
   1022 					if (atomic && top == 0) {
   1023 						len = lmin(MCLBYTES - max_hdr,
   1024 						    resid);
   1025 						m->m_data += max_hdr;
   1026 					} else
   1027 						len = lmin(MCLBYTES, resid);
   1028 					space -= len;
   1029 				} else {
   1030  nopages:
   1031 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1032 					len = lmin(lmin(mlen, resid), space);
   1033 					space -= len;
   1034 					/*
   1035 					 * For datagram protocols, leave room
   1036 					 * for protocol headers in first mbuf.
   1037 					 */
   1038 					if (atomic && top == 0 && len < mlen)
   1039 						MH_ALIGN(m, len);
   1040 				}
   1041 				error = uiomove(mtod(m, void *), (int)len, uio);
   1042  have_data:
   1043 				resid = uio->uio_resid;
   1044 				m->m_len = len;
   1045 				*mp = m;
   1046 				top->m_pkthdr.len += len;
   1047 				s = splsoftnet();
   1048 				solock(so);
   1049 				if (error != 0)
   1050 					goto release;
   1051 				mp = &m->m_next;
   1052 				if (resid <= 0) {
   1053 					if (flags & MSG_EOR)
   1054 						top->m_flags |= M_EOR;
   1055 					break;
   1056 				}
   1057 			} while (space > 0 && atomic);
   1058 
   1059 			if (so->so_state & SS_CANTSENDMORE) {
   1060 				error = EPIPE;
   1061 				goto release;
   1062 			}
   1063 			if (dontroute)
   1064 				so->so_options |= SO_DONTROUTE;
   1065 			if (resid > 0)
   1066 				so->so_state |= SS_MORETOCOME;
   1067 			if (flags & MSG_OOB) {
   1068 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
   1069 				    top, control);
   1070 			} else {
   1071 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1072 				    top, addr, control, l);
   1073 			}
   1074 			if (dontroute)
   1075 				so->so_options &= ~SO_DONTROUTE;
   1076 			if (resid > 0)
   1077 				so->so_state &= ~SS_MORETOCOME;
   1078 			clen = 0;
   1079 			control = NULL;
   1080 			top = NULL;
   1081 			mp = &top;
   1082 			if (error != 0)
   1083 				goto release;
   1084 		} while (resid && space > 0);
   1085 	} while (resid);
   1086 
   1087  release:
   1088 	sbunlock(&so->so_snd);
   1089  out:
   1090 	sounlock(so);
   1091 	splx(s);
   1092 	if (top)
   1093 		m_freem(top);
   1094 	if (control)
   1095 		m_freem(control);
   1096 	return (error);
   1097 }
   1098 
   1099 /*
   1100  * Following replacement or removal of the first mbuf on the first
   1101  * mbuf chain of a socket buffer, push necessary state changes back
   1102  * into the socket buffer so that other consumers see the values
   1103  * consistently.  'nextrecord' is the callers locally stored value of
   1104  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1105  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1106  */
   1107 static void
   1108 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1109 {
   1110 
   1111 	KASSERT(solocked(sb->sb_so));
   1112 
   1113 	/*
   1114 	 * First, update for the new value of nextrecord.  If necessary,
   1115 	 * make it the first record.
   1116 	 */
   1117 	if (sb->sb_mb != NULL)
   1118 		sb->sb_mb->m_nextpkt = nextrecord;
   1119 	else
   1120 		sb->sb_mb = nextrecord;
   1121 
   1122         /*
   1123          * Now update any dependent socket buffer fields to reflect
   1124          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1125          * the addition of a second clause that takes care of the
   1126          * case where sb_mb has been updated, but remains the last
   1127          * record.
   1128          */
   1129         if (sb->sb_mb == NULL) {
   1130                 sb->sb_mbtail = NULL;
   1131                 sb->sb_lastrecord = NULL;
   1132         } else if (sb->sb_mb->m_nextpkt == NULL)
   1133                 sb->sb_lastrecord = sb->sb_mb;
   1134 }
   1135 
   1136 /*
   1137  * Implement receive operations on a socket.
   1138  * We depend on the way that records are added to the sockbuf
   1139  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1140  * must begin with an address if the protocol so specifies,
   1141  * followed by an optional mbuf or mbufs containing ancillary data,
   1142  * and then zero or more mbufs of data.
   1143  * In order to avoid blocking network interrupts for the entire time here,
   1144  * we splx() while doing the actual copy to user space.
   1145  * Although the sockbuf is locked, new data may still be appended,
   1146  * and thus we must maintain consistency of the sockbuf during that time.
   1147  *
   1148  * The caller may receive the data as a single mbuf chain by supplying
   1149  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1150  * only for the count in uio_resid.
   1151  */
   1152 int
   1153 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1154 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1155 {
   1156 	struct lwp *l = curlwp;
   1157 	struct mbuf	*m, **mp, *mt;
   1158 	size_t len, offset, moff, orig_resid;
   1159 	int atomic, flags, error, s, type;
   1160 	const struct protosw	*pr;
   1161 	struct mbuf	*nextrecord;
   1162 	int		mbuf_removed = 0;
   1163 	const struct domain *dom;
   1164 	short		wakeup_state = 0;
   1165 
   1166 	pr = so->so_proto;
   1167 	atomic = pr->pr_flags & PR_ATOMIC;
   1168 	dom = pr->pr_domain;
   1169 	mp = mp0;
   1170 	type = 0;
   1171 	orig_resid = uio->uio_resid;
   1172 
   1173 	if (paddr != NULL)
   1174 		*paddr = NULL;
   1175 	if (controlp != NULL)
   1176 		*controlp = NULL;
   1177 	if (flagsp != NULL)
   1178 		flags = *flagsp &~ MSG_EOR;
   1179 	else
   1180 		flags = 0;
   1181 
   1182 	if (flags & MSG_OOB) {
   1183 		m = m_get(M_WAIT, MT_DATA);
   1184 		solock(so);
   1185 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1186 		sounlock(so);
   1187 		if (error)
   1188 			goto bad;
   1189 		do {
   1190 			error = uiomove(mtod(m, void *),
   1191 			    MIN(uio->uio_resid, m->m_len), uio);
   1192 			m = m_free(m);
   1193 		} while (uio->uio_resid > 0 && error == 0 && m);
   1194  bad:
   1195 		if (m != NULL)
   1196 			m_freem(m);
   1197 		return error;
   1198 	}
   1199 	if (mp != NULL)
   1200 		*mp = NULL;
   1201 
   1202 	/*
   1203 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1204 	 * protocol processing soft interrupts from interrupting us and
   1205 	 * blocking (expensive).
   1206 	 */
   1207 	s = splsoftnet();
   1208 	solock(so);
   1209  restart:
   1210 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1211 		sounlock(so);
   1212 		splx(s);
   1213 		return error;
   1214 	}
   1215 
   1216 	m = so->so_rcv.sb_mb;
   1217 	/*
   1218 	 * If we have less data than requested, block awaiting more
   1219 	 * (subject to any timeout) if:
   1220 	 *   1. the current count is less than the low water mark,
   1221 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1222 	 *	receive operation at once if we block (resid <= hiwat), or
   1223 	 *   3. MSG_DONTWAIT is not set.
   1224 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1225 	 * we have to do the receive in sections, and thus risk returning
   1226 	 * a short count if a timeout or signal occurs after we start.
   1227 	 */
   1228 	if (m == NULL ||
   1229 	    ((flags & MSG_DONTWAIT) == 0 &&
   1230 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1231 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1232 	      ((flags & MSG_WAITALL) &&
   1233 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1234 	     m->m_nextpkt == NULL && !atomic)) {
   1235 #ifdef DIAGNOSTIC
   1236 		if (m == NULL && so->so_rcv.sb_cc)
   1237 			panic("receive 1");
   1238 #endif
   1239 		if (so->so_error) {
   1240 			if (m != NULL)
   1241 				goto dontblock;
   1242 			error = so->so_error;
   1243 			if ((flags & MSG_PEEK) == 0)
   1244 				so->so_error = 0;
   1245 			goto release;
   1246 		}
   1247 		if (so->so_state & SS_CANTRCVMORE) {
   1248 			if (m != NULL)
   1249 				goto dontblock;
   1250 			else
   1251 				goto release;
   1252 		}
   1253 		for (; m != NULL; m = m->m_next)
   1254 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1255 				m = so->so_rcv.sb_mb;
   1256 				goto dontblock;
   1257 			}
   1258 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1259 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1260 			error = ENOTCONN;
   1261 			goto release;
   1262 		}
   1263 		if (uio->uio_resid == 0)
   1264 			goto release;
   1265 		if ((so->so_state & SS_NBIO) ||
   1266 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1267 			error = EWOULDBLOCK;
   1268 			goto release;
   1269 		}
   1270 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1271 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1272 		sbunlock(&so->so_rcv);
   1273 		if (wakeup_state & SS_RESTARTSYS)
   1274 			error = ERESTART;
   1275 		else
   1276 			error = sbwait(&so->so_rcv);
   1277 		if (error != 0) {
   1278 			sounlock(so);
   1279 			splx(s);
   1280 			return error;
   1281 		}
   1282 		wakeup_state = so->so_state;
   1283 		goto restart;
   1284 	}
   1285  dontblock:
   1286 	/*
   1287 	 * On entry here, m points to the first record of the socket buffer.
   1288 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1289 	 * pointer to the next record in the socket buffer.  We must keep the
   1290 	 * various socket buffer pointers and local stack versions of the
   1291 	 * pointers in sync, pushing out modifications before dropping the
   1292 	 * socket lock, and re-reading them when picking it up.
   1293 	 *
   1294 	 * Otherwise, we will race with the network stack appending new data
   1295 	 * or records onto the socket buffer by using inconsistent/stale
   1296 	 * versions of the field, possibly resulting in socket buffer
   1297 	 * corruption.
   1298 	 *
   1299 	 * By holding the high-level sblock(), we prevent simultaneous
   1300 	 * readers from pulling off the front of the socket buffer.
   1301 	 */
   1302 	if (l != NULL)
   1303 		l->l_ru.ru_msgrcv++;
   1304 	KASSERT(m == so->so_rcv.sb_mb);
   1305 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1306 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1307 	nextrecord = m->m_nextpkt;
   1308 	if (pr->pr_flags & PR_ADDR) {
   1309 #ifdef DIAGNOSTIC
   1310 		if (m->m_type != MT_SONAME)
   1311 			panic("receive 1a");
   1312 #endif
   1313 		orig_resid = 0;
   1314 		if (flags & MSG_PEEK) {
   1315 			if (paddr)
   1316 				*paddr = m_copy(m, 0, m->m_len);
   1317 			m = m->m_next;
   1318 		} else {
   1319 			sbfree(&so->so_rcv, m);
   1320 			mbuf_removed = 1;
   1321 			if (paddr != NULL) {
   1322 				*paddr = m;
   1323 				so->so_rcv.sb_mb = m->m_next;
   1324 				m->m_next = NULL;
   1325 				m = so->so_rcv.sb_mb;
   1326 			} else {
   1327 				m = so->so_rcv.sb_mb = m_free(m);
   1328 			}
   1329 			sbsync(&so->so_rcv, nextrecord);
   1330 		}
   1331 	}
   1332 	if (pr->pr_flags & PR_ADDR_OPT) {
   1333 		/*
   1334 		 * For SCTP we may be getting a
   1335 		 * whole message OR a partial delivery.
   1336 		 */
   1337 		if (m->m_type == MT_SONAME) {
   1338 			orig_resid = 0;
   1339 			if (flags & MSG_PEEK) {
   1340 				if (paddr)
   1341 					*paddr = m_copy(m, 0, m->m_len);
   1342 				m = m->m_next;
   1343 			} else {
   1344 				sbfree(&so->so_rcv, m);
   1345 				if (paddr) {
   1346 					*paddr = m;
   1347 					so->so_rcv.sb_mb = m->m_next;
   1348 					m->m_next = 0;
   1349 					m = so->so_rcv.sb_mb;
   1350 				} else {
   1351 					m = so->so_rcv.sb_mb = m_free(m);
   1352 				}
   1353 			}
   1354 		}
   1355 	}
   1356 
   1357 	/*
   1358 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1359 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1360 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1361 	 * perform externalization (or freeing if controlp == NULL).
   1362 	 */
   1363 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1364 		struct mbuf *cm = NULL, *cmn;
   1365 		struct mbuf **cme = &cm;
   1366 
   1367 		do {
   1368 			if (flags & MSG_PEEK) {
   1369 				if (controlp != NULL) {
   1370 					*controlp = m_copy(m, 0, m->m_len);
   1371 					controlp = &(*controlp)->m_next;
   1372 				}
   1373 				m = m->m_next;
   1374 			} else {
   1375 				sbfree(&so->so_rcv, m);
   1376 				so->so_rcv.sb_mb = m->m_next;
   1377 				m->m_next = NULL;
   1378 				*cme = m;
   1379 				cme = &(*cme)->m_next;
   1380 				m = so->so_rcv.sb_mb;
   1381 			}
   1382 		} while (m != NULL && m->m_type == MT_CONTROL);
   1383 		if ((flags & MSG_PEEK) == 0)
   1384 			sbsync(&so->so_rcv, nextrecord);
   1385 		for (; cm != NULL; cm = cmn) {
   1386 			cmn = cm->m_next;
   1387 			cm->m_next = NULL;
   1388 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1389 			if (controlp != NULL) {
   1390 				if (dom->dom_externalize != NULL &&
   1391 				    type == SCM_RIGHTS) {
   1392 					sounlock(so);
   1393 					splx(s);
   1394 					error = (*dom->dom_externalize)(cm, l,
   1395 					    (flags & MSG_CMSG_CLOEXEC) ?
   1396 					    O_CLOEXEC : 0);
   1397 					s = splsoftnet();
   1398 					solock(so);
   1399 				}
   1400 				*controlp = cm;
   1401 				while (*controlp != NULL)
   1402 					controlp = &(*controlp)->m_next;
   1403 			} else {
   1404 				/*
   1405 				 * Dispose of any SCM_RIGHTS message that went
   1406 				 * through the read path rather than recv.
   1407 				 */
   1408 				if (dom->dom_dispose != NULL &&
   1409 				    type == SCM_RIGHTS) {
   1410 				    	sounlock(so);
   1411 					(*dom->dom_dispose)(cm);
   1412 					solock(so);
   1413 				}
   1414 				m_freem(cm);
   1415 			}
   1416 		}
   1417 		if (m != NULL)
   1418 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1419 		else
   1420 			nextrecord = so->so_rcv.sb_mb;
   1421 		orig_resid = 0;
   1422 	}
   1423 
   1424 	/* If m is non-NULL, we have some data to read. */
   1425 	if (__predict_true(m != NULL)) {
   1426 		type = m->m_type;
   1427 		if (type == MT_OOBDATA)
   1428 			flags |= MSG_OOB;
   1429 	}
   1430 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1431 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1432 
   1433 	moff = 0;
   1434 	offset = 0;
   1435 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1436 		if (m->m_type == MT_OOBDATA) {
   1437 			if (type != MT_OOBDATA)
   1438 				break;
   1439 		} else if (type == MT_OOBDATA)
   1440 			break;
   1441 #ifdef DIAGNOSTIC
   1442 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1443 			panic("receive 3");
   1444 #endif
   1445 		so->so_state &= ~SS_RCVATMARK;
   1446 		wakeup_state = 0;
   1447 		len = uio->uio_resid;
   1448 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1449 			len = so->so_oobmark - offset;
   1450 		if (len > m->m_len - moff)
   1451 			len = m->m_len - moff;
   1452 		/*
   1453 		 * If mp is set, just pass back the mbufs.
   1454 		 * Otherwise copy them out via the uio, then free.
   1455 		 * Sockbuf must be consistent here (points to current mbuf,
   1456 		 * it points to next record) when we drop priority;
   1457 		 * we must note any additions to the sockbuf when we
   1458 		 * block interrupts again.
   1459 		 */
   1460 		if (mp == NULL) {
   1461 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1462 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1463 			sounlock(so);
   1464 			splx(s);
   1465 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1466 			s = splsoftnet();
   1467 			solock(so);
   1468 			if (error != 0) {
   1469 				/*
   1470 				 * If any part of the record has been removed
   1471 				 * (such as the MT_SONAME mbuf, which will
   1472 				 * happen when PR_ADDR, and thus also
   1473 				 * PR_ATOMIC, is set), then drop the entire
   1474 				 * record to maintain the atomicity of the
   1475 				 * receive operation.
   1476 				 *
   1477 				 * This avoids a later panic("receive 1a")
   1478 				 * when compiled with DIAGNOSTIC.
   1479 				 */
   1480 				if (m && mbuf_removed && atomic)
   1481 					(void) sbdroprecord(&so->so_rcv);
   1482 
   1483 				goto release;
   1484 			}
   1485 		} else
   1486 			uio->uio_resid -= len;
   1487 		if (len == m->m_len - moff) {
   1488 			if (m->m_flags & M_EOR)
   1489 				flags |= MSG_EOR;
   1490 #ifdef SCTP
   1491 			if (m->m_flags & M_NOTIFICATION)
   1492 				flags |= MSG_NOTIFICATION;
   1493 #endif /* SCTP */
   1494 			if (flags & MSG_PEEK) {
   1495 				m = m->m_next;
   1496 				moff = 0;
   1497 			} else {
   1498 				nextrecord = m->m_nextpkt;
   1499 				sbfree(&so->so_rcv, m);
   1500 				if (mp) {
   1501 					*mp = m;
   1502 					mp = &m->m_next;
   1503 					so->so_rcv.sb_mb = m = m->m_next;
   1504 					*mp = NULL;
   1505 				} else {
   1506 					m = so->so_rcv.sb_mb = m_free(m);
   1507 				}
   1508 				/*
   1509 				 * If m != NULL, we also know that
   1510 				 * so->so_rcv.sb_mb != NULL.
   1511 				 */
   1512 				KASSERT(so->so_rcv.sb_mb == m);
   1513 				if (m) {
   1514 					m->m_nextpkt = nextrecord;
   1515 					if (nextrecord == NULL)
   1516 						so->so_rcv.sb_lastrecord = m;
   1517 				} else {
   1518 					so->so_rcv.sb_mb = nextrecord;
   1519 					SB_EMPTY_FIXUP(&so->so_rcv);
   1520 				}
   1521 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1522 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1523 			}
   1524 		} else if (flags & MSG_PEEK)
   1525 			moff += len;
   1526 		else {
   1527 			if (mp != NULL) {
   1528 				mt = m_copym(m, 0, len, M_NOWAIT);
   1529 				if (__predict_false(mt == NULL)) {
   1530 					sounlock(so);
   1531 					mt = m_copym(m, 0, len, M_WAIT);
   1532 					solock(so);
   1533 				}
   1534 				*mp = mt;
   1535 			}
   1536 			m->m_data += len;
   1537 			m->m_len -= len;
   1538 			so->so_rcv.sb_cc -= len;
   1539 		}
   1540 		if (so->so_oobmark) {
   1541 			if ((flags & MSG_PEEK) == 0) {
   1542 				so->so_oobmark -= len;
   1543 				if (so->so_oobmark == 0) {
   1544 					so->so_state |= SS_RCVATMARK;
   1545 					break;
   1546 				}
   1547 			} else {
   1548 				offset += len;
   1549 				if (offset == so->so_oobmark)
   1550 					break;
   1551 			}
   1552 		}
   1553 		if (flags & MSG_EOR)
   1554 			break;
   1555 		/*
   1556 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1557 		 * we must not quit until "uio->uio_resid == 0" or an error
   1558 		 * termination.  If a signal/timeout occurs, return
   1559 		 * with a short count but without error.
   1560 		 * Keep sockbuf locked against other readers.
   1561 		 */
   1562 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1563 		    !sosendallatonce(so) && !nextrecord) {
   1564 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1565 				break;
   1566 			/*
   1567 			 * If we are peeking and the socket receive buffer is
   1568 			 * full, stop since we can't get more data to peek at.
   1569 			 */
   1570 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1571 				break;
   1572 			/*
   1573 			 * If we've drained the socket buffer, tell the
   1574 			 * protocol in case it needs to do something to
   1575 			 * get it filled again.
   1576 			 */
   1577 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1578 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1579 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1580 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1581 			if (wakeup_state & SS_RESTARTSYS)
   1582 				error = ERESTART;
   1583 			else
   1584 				error = sbwait(&so->so_rcv);
   1585 			if (error != 0) {
   1586 				sbunlock(&so->so_rcv);
   1587 				sounlock(so);
   1588 				splx(s);
   1589 				return 0;
   1590 			}
   1591 			if ((m = so->so_rcv.sb_mb) != NULL)
   1592 				nextrecord = m->m_nextpkt;
   1593 			wakeup_state = so->so_state;
   1594 		}
   1595 	}
   1596 
   1597 	if (m && atomic) {
   1598 		flags |= MSG_TRUNC;
   1599 		if ((flags & MSG_PEEK) == 0)
   1600 			(void) sbdroprecord(&so->so_rcv);
   1601 	}
   1602 	if ((flags & MSG_PEEK) == 0) {
   1603 		if (m == NULL) {
   1604 			/*
   1605 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1606 			 * part makes sure sb_lastrecord is up-to-date if
   1607 			 * there is still data in the socket buffer.
   1608 			 */
   1609 			so->so_rcv.sb_mb = nextrecord;
   1610 			if (so->so_rcv.sb_mb == NULL) {
   1611 				so->so_rcv.sb_mbtail = NULL;
   1612 				so->so_rcv.sb_lastrecord = NULL;
   1613 			} else if (nextrecord->m_nextpkt == NULL)
   1614 				so->so_rcv.sb_lastrecord = nextrecord;
   1615 		}
   1616 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1617 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1618 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1619 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1620 	}
   1621 	if (orig_resid == uio->uio_resid && orig_resid &&
   1622 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1623 		sbunlock(&so->so_rcv);
   1624 		goto restart;
   1625 	}
   1626 
   1627 	if (flagsp != NULL)
   1628 		*flagsp |= flags;
   1629  release:
   1630 	sbunlock(&so->so_rcv);
   1631 	sounlock(so);
   1632 	splx(s);
   1633 	return error;
   1634 }
   1635 
   1636 int
   1637 soshutdown(struct socket *so, int how)
   1638 {
   1639 	const struct protosw	*pr;
   1640 	int	error;
   1641 
   1642 	KASSERT(solocked(so));
   1643 
   1644 	pr = so->so_proto;
   1645 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1646 		return (EINVAL);
   1647 
   1648 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1649 		sorflush(so);
   1650 		error = 0;
   1651 	}
   1652 	if (how == SHUT_WR || how == SHUT_RDWR)
   1653 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1654 
   1655 	return error;
   1656 }
   1657 
   1658 void
   1659 sorestart(struct socket *so)
   1660 {
   1661 	/*
   1662 	 * An application has called close() on an fd on which another
   1663 	 * of its threads has called a socket system call.
   1664 	 * Mark this and wake everyone up, and code that would block again
   1665 	 * instead returns ERESTART.
   1666 	 * On system call re-entry the fd is validated and EBADF returned.
   1667 	 * Any other fd will block again on the 2nd syscall.
   1668 	 */
   1669 	solock(so);
   1670 	so->so_state |= SS_RESTARTSYS;
   1671 	cv_broadcast(&so->so_cv);
   1672 	cv_broadcast(&so->so_snd.sb_cv);
   1673 	cv_broadcast(&so->so_rcv.sb_cv);
   1674 	sounlock(so);
   1675 }
   1676 
   1677 void
   1678 sorflush(struct socket *so)
   1679 {
   1680 	struct sockbuf	*sb, asb;
   1681 	const struct protosw	*pr;
   1682 
   1683 	KASSERT(solocked(so));
   1684 
   1685 	sb = &so->so_rcv;
   1686 	pr = so->so_proto;
   1687 	socantrcvmore(so);
   1688 	sb->sb_flags |= SB_NOINTR;
   1689 	(void )sblock(sb, M_WAITOK);
   1690 	sbunlock(sb);
   1691 	asb = *sb;
   1692 	/*
   1693 	 * Clear most of the sockbuf structure, but leave some of the
   1694 	 * fields valid.
   1695 	 */
   1696 	memset(&sb->sb_startzero, 0,
   1697 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1698 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1699 		sounlock(so);
   1700 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1701 		solock(so);
   1702 	}
   1703 	sbrelease(&asb, so);
   1704 }
   1705 
   1706 /*
   1707  * internal set SOL_SOCKET options
   1708  */
   1709 static int
   1710 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1711 {
   1712 	int error = EINVAL, opt;
   1713 	int optval = 0; /* XXX: gcc */
   1714 	struct linger l;
   1715 	struct timeval tv;
   1716 
   1717 	switch ((opt = sopt->sopt_name)) {
   1718 
   1719 	case SO_ACCEPTFILTER:
   1720 		error = accept_filt_setopt(so, sopt);
   1721 		KASSERT(solocked(so));
   1722 		break;
   1723 
   1724   	case SO_LINGER:
   1725  		error = sockopt_get(sopt, &l, sizeof(l));
   1726 		solock(so);
   1727  		if (error)
   1728  			break;
   1729  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1730  		    l.l_linger > (INT_MAX / hz)) {
   1731 			error = EDOM;
   1732 			break;
   1733 		}
   1734  		so->so_linger = l.l_linger;
   1735  		if (l.l_onoff)
   1736  			so->so_options |= SO_LINGER;
   1737  		else
   1738  			so->so_options &= ~SO_LINGER;
   1739    		break;
   1740 
   1741 	case SO_DEBUG:
   1742 	case SO_KEEPALIVE:
   1743 	case SO_DONTROUTE:
   1744 	case SO_USELOOPBACK:
   1745 	case SO_BROADCAST:
   1746 	case SO_REUSEADDR:
   1747 	case SO_REUSEPORT:
   1748 	case SO_OOBINLINE:
   1749 	case SO_TIMESTAMP:
   1750 	case SO_NOSIGPIPE:
   1751 #ifdef SO_OTIMESTAMP
   1752 	case SO_OTIMESTAMP:
   1753 #endif
   1754 		error = sockopt_getint(sopt, &optval);
   1755 		solock(so);
   1756 		if (error)
   1757 			break;
   1758 		if (optval)
   1759 			so->so_options |= opt;
   1760 		else
   1761 			so->so_options &= ~opt;
   1762 		break;
   1763 
   1764 	case SO_SNDBUF:
   1765 	case SO_RCVBUF:
   1766 	case SO_SNDLOWAT:
   1767 	case SO_RCVLOWAT:
   1768 		error = sockopt_getint(sopt, &optval);
   1769 		solock(so);
   1770 		if (error)
   1771 			break;
   1772 
   1773 		/*
   1774 		 * Values < 1 make no sense for any of these
   1775 		 * options, so disallow them.
   1776 		 */
   1777 		if (optval < 1) {
   1778 			error = EINVAL;
   1779 			break;
   1780 		}
   1781 
   1782 		switch (opt) {
   1783 		case SO_SNDBUF:
   1784 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1785 				error = ENOBUFS;
   1786 				break;
   1787 			}
   1788 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1789 			break;
   1790 
   1791 		case SO_RCVBUF:
   1792 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1793 				error = ENOBUFS;
   1794 				break;
   1795 			}
   1796 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1797 			break;
   1798 
   1799 		/*
   1800 		 * Make sure the low-water is never greater than
   1801 		 * the high-water.
   1802 		 */
   1803 		case SO_SNDLOWAT:
   1804 			if (optval > so->so_snd.sb_hiwat)
   1805 				optval = so->so_snd.sb_hiwat;
   1806 
   1807 			so->so_snd.sb_lowat = optval;
   1808 			break;
   1809 
   1810 		case SO_RCVLOWAT:
   1811 			if (optval > so->so_rcv.sb_hiwat)
   1812 				optval = so->so_rcv.sb_hiwat;
   1813 
   1814 			so->so_rcv.sb_lowat = optval;
   1815 			break;
   1816 		}
   1817 		break;
   1818 
   1819 #ifdef COMPAT_50
   1820 	case SO_OSNDTIMEO:
   1821 	case SO_ORCVTIMEO: {
   1822 		struct timeval50 otv;
   1823 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1824 		if (error) {
   1825 			solock(so);
   1826 			break;
   1827 		}
   1828 		timeval50_to_timeval(&otv, &tv);
   1829 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1830 		error = 0;
   1831 		/*FALLTHROUGH*/
   1832 	}
   1833 #endif /* COMPAT_50 */
   1834 
   1835 	case SO_SNDTIMEO:
   1836 	case SO_RCVTIMEO:
   1837 		if (error)
   1838 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1839 		solock(so);
   1840 		if (error)
   1841 			break;
   1842 
   1843 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1844 			error = EDOM;
   1845 			break;
   1846 		}
   1847 
   1848 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1849 		if (optval == 0 && tv.tv_usec != 0)
   1850 			optval = 1;
   1851 
   1852 		switch (opt) {
   1853 		case SO_SNDTIMEO:
   1854 			so->so_snd.sb_timeo = optval;
   1855 			break;
   1856 		case SO_RCVTIMEO:
   1857 			so->so_rcv.sb_timeo = optval;
   1858 			break;
   1859 		}
   1860 		break;
   1861 
   1862 	default:
   1863 		solock(so);
   1864 		error = ENOPROTOOPT;
   1865 		break;
   1866 	}
   1867 	KASSERT(solocked(so));
   1868 	return error;
   1869 }
   1870 
   1871 int
   1872 sosetopt(struct socket *so, struct sockopt *sopt)
   1873 {
   1874 	int error, prerr;
   1875 
   1876 	if (sopt->sopt_level == SOL_SOCKET) {
   1877 		error = sosetopt1(so, sopt);
   1878 		KASSERT(solocked(so));
   1879 	} else {
   1880 		error = ENOPROTOOPT;
   1881 		solock(so);
   1882 	}
   1883 
   1884 	if ((error == 0 || error == ENOPROTOOPT) &&
   1885 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1886 		/* give the protocol stack a shot */
   1887 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1888 		if (prerr == 0)
   1889 			error = 0;
   1890 		else if (prerr != ENOPROTOOPT)
   1891 			error = prerr;
   1892 	}
   1893 	sounlock(so);
   1894 	return error;
   1895 }
   1896 
   1897 /*
   1898  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1899  */
   1900 int
   1901 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1902     const void *val, size_t valsize)
   1903 {
   1904 	struct sockopt sopt;
   1905 	int error;
   1906 
   1907 	KASSERT(valsize == 0 || val != NULL);
   1908 
   1909 	sockopt_init(&sopt, level, name, valsize);
   1910 	sockopt_set(&sopt, val, valsize);
   1911 
   1912 	error = sosetopt(so, &sopt);
   1913 
   1914 	sockopt_destroy(&sopt);
   1915 
   1916 	return error;
   1917 }
   1918 
   1919 /*
   1920  * internal get SOL_SOCKET options
   1921  */
   1922 static int
   1923 sogetopt1(struct socket *so, struct sockopt *sopt)
   1924 {
   1925 	int error, optval, opt;
   1926 	struct linger l;
   1927 	struct timeval tv;
   1928 
   1929 	switch ((opt = sopt->sopt_name)) {
   1930 
   1931 	case SO_ACCEPTFILTER:
   1932 		error = accept_filt_getopt(so, sopt);
   1933 		break;
   1934 
   1935 	case SO_LINGER:
   1936 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1937 		l.l_linger = so->so_linger;
   1938 
   1939 		error = sockopt_set(sopt, &l, sizeof(l));
   1940 		break;
   1941 
   1942 	case SO_USELOOPBACK:
   1943 	case SO_DONTROUTE:
   1944 	case SO_DEBUG:
   1945 	case SO_KEEPALIVE:
   1946 	case SO_REUSEADDR:
   1947 	case SO_REUSEPORT:
   1948 	case SO_BROADCAST:
   1949 	case SO_OOBINLINE:
   1950 	case SO_TIMESTAMP:
   1951 	case SO_NOSIGPIPE:
   1952 #ifdef SO_OTIMESTAMP
   1953 	case SO_OTIMESTAMP:
   1954 #endif
   1955 	case SO_ACCEPTCONN:
   1956 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1957 		break;
   1958 
   1959 	case SO_TYPE:
   1960 		error = sockopt_setint(sopt, so->so_type);
   1961 		break;
   1962 
   1963 	case SO_ERROR:
   1964 		error = sockopt_setint(sopt, so->so_error);
   1965 		so->so_error = 0;
   1966 		break;
   1967 
   1968 	case SO_SNDBUF:
   1969 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1970 		break;
   1971 
   1972 	case SO_RCVBUF:
   1973 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1974 		break;
   1975 
   1976 	case SO_SNDLOWAT:
   1977 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1978 		break;
   1979 
   1980 	case SO_RCVLOWAT:
   1981 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1982 		break;
   1983 
   1984 #ifdef COMPAT_50
   1985 	case SO_OSNDTIMEO:
   1986 	case SO_ORCVTIMEO: {
   1987 		struct timeval50 otv;
   1988 
   1989 		optval = (opt == SO_OSNDTIMEO ?
   1990 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1991 
   1992 		otv.tv_sec = optval / hz;
   1993 		otv.tv_usec = (optval % hz) * tick;
   1994 
   1995 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1996 		break;
   1997 	}
   1998 #endif /* COMPAT_50 */
   1999 
   2000 	case SO_SNDTIMEO:
   2001 	case SO_RCVTIMEO:
   2002 		optval = (opt == SO_SNDTIMEO ?
   2003 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   2004 
   2005 		tv.tv_sec = optval / hz;
   2006 		tv.tv_usec = (optval % hz) * tick;
   2007 
   2008 		error = sockopt_set(sopt, &tv, sizeof(tv));
   2009 		break;
   2010 
   2011 	case SO_OVERFLOWED:
   2012 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   2013 		break;
   2014 
   2015 	default:
   2016 		error = ENOPROTOOPT;
   2017 		break;
   2018 	}
   2019 
   2020 	return (error);
   2021 }
   2022 
   2023 int
   2024 sogetopt(struct socket *so, struct sockopt *sopt)
   2025 {
   2026 	int		error;
   2027 
   2028 	solock(so);
   2029 	if (sopt->sopt_level != SOL_SOCKET) {
   2030 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2031 			error = ((*so->so_proto->pr_ctloutput)
   2032 			    (PRCO_GETOPT, so, sopt));
   2033 		} else
   2034 			error = (ENOPROTOOPT);
   2035 	} else {
   2036 		error = sogetopt1(so, sopt);
   2037 	}
   2038 	sounlock(so);
   2039 	return (error);
   2040 }
   2041 
   2042 /*
   2043  * alloc sockopt data buffer buffer
   2044  *	- will be released at destroy
   2045  */
   2046 static int
   2047 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2048 {
   2049 
   2050 	KASSERT(sopt->sopt_size == 0);
   2051 
   2052 	if (len > sizeof(sopt->sopt_buf)) {
   2053 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2054 		if (sopt->sopt_data == NULL)
   2055 			return ENOMEM;
   2056 	} else
   2057 		sopt->sopt_data = sopt->sopt_buf;
   2058 
   2059 	sopt->sopt_size = len;
   2060 	return 0;
   2061 }
   2062 
   2063 /*
   2064  * initialise sockopt storage
   2065  *	- MAY sleep during allocation
   2066  */
   2067 void
   2068 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2069 {
   2070 
   2071 	memset(sopt, 0, sizeof(*sopt));
   2072 
   2073 	sopt->sopt_level = level;
   2074 	sopt->sopt_name = name;
   2075 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2076 }
   2077 
   2078 /*
   2079  * destroy sockopt storage
   2080  *	- will release any held memory references
   2081  */
   2082 void
   2083 sockopt_destroy(struct sockopt *sopt)
   2084 {
   2085 
   2086 	if (sopt->sopt_data != sopt->sopt_buf)
   2087 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2088 
   2089 	memset(sopt, 0, sizeof(*sopt));
   2090 }
   2091 
   2092 /*
   2093  * set sockopt value
   2094  *	- value is copied into sockopt
   2095  * 	- memory is allocated when necessary, will not sleep
   2096  */
   2097 int
   2098 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2099 {
   2100 	int error;
   2101 
   2102 	if (sopt->sopt_size == 0) {
   2103 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2104 		if (error)
   2105 			return error;
   2106 	}
   2107 
   2108 	KASSERT(sopt->sopt_size == len);
   2109 	memcpy(sopt->sopt_data, buf, len);
   2110 	return 0;
   2111 }
   2112 
   2113 /*
   2114  * common case of set sockopt integer value
   2115  */
   2116 int
   2117 sockopt_setint(struct sockopt *sopt, int val)
   2118 {
   2119 
   2120 	return sockopt_set(sopt, &val, sizeof(int));
   2121 }
   2122 
   2123 /*
   2124  * get sockopt value
   2125  *	- correct size must be given
   2126  */
   2127 int
   2128 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2129 {
   2130 
   2131 	if (sopt->sopt_size != len)
   2132 		return EINVAL;
   2133 
   2134 	memcpy(buf, sopt->sopt_data, len);
   2135 	return 0;
   2136 }
   2137 
   2138 /*
   2139  * common case of get sockopt integer value
   2140  */
   2141 int
   2142 sockopt_getint(const struct sockopt *sopt, int *valp)
   2143 {
   2144 
   2145 	return sockopt_get(sopt, valp, sizeof(int));
   2146 }
   2147 
   2148 /*
   2149  * set sockopt value from mbuf
   2150  *	- ONLY for legacy code
   2151  *	- mbuf is released by sockopt
   2152  *	- will not sleep
   2153  */
   2154 int
   2155 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2156 {
   2157 	size_t len;
   2158 	int error;
   2159 
   2160 	len = m_length(m);
   2161 
   2162 	if (sopt->sopt_size == 0) {
   2163 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2164 		if (error)
   2165 			return error;
   2166 	}
   2167 
   2168 	KASSERT(sopt->sopt_size == len);
   2169 	m_copydata(m, 0, len, sopt->sopt_data);
   2170 	m_freem(m);
   2171 
   2172 	return 0;
   2173 }
   2174 
   2175 /*
   2176  * get sockopt value into mbuf
   2177  *	- ONLY for legacy code
   2178  *	- mbuf to be released by the caller
   2179  *	- will not sleep
   2180  */
   2181 struct mbuf *
   2182 sockopt_getmbuf(const struct sockopt *sopt)
   2183 {
   2184 	struct mbuf *m;
   2185 
   2186 	if (sopt->sopt_size > MCLBYTES)
   2187 		return NULL;
   2188 
   2189 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2190 	if (m == NULL)
   2191 		return NULL;
   2192 
   2193 	if (sopt->sopt_size > MLEN) {
   2194 		MCLGET(m, M_DONTWAIT);
   2195 		if ((m->m_flags & M_EXT) == 0) {
   2196 			m_free(m);
   2197 			return NULL;
   2198 		}
   2199 	}
   2200 
   2201 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2202 	m->m_len = sopt->sopt_size;
   2203 
   2204 	return m;
   2205 }
   2206 
   2207 void
   2208 sohasoutofband(struct socket *so)
   2209 {
   2210 
   2211 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2212 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2213 }
   2214 
   2215 static void
   2216 filt_sordetach(struct knote *kn)
   2217 {
   2218 	struct socket	*so;
   2219 
   2220 	so = ((file_t *)kn->kn_obj)->f_socket;
   2221 	solock(so);
   2222 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2223 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2224 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2225 	sounlock(so);
   2226 }
   2227 
   2228 /*ARGSUSED*/
   2229 static int
   2230 filt_soread(struct knote *kn, long hint)
   2231 {
   2232 	struct socket	*so;
   2233 	int rv;
   2234 
   2235 	so = ((file_t *)kn->kn_obj)->f_socket;
   2236 	if (hint != NOTE_SUBMIT)
   2237 		solock(so);
   2238 	kn->kn_data = so->so_rcv.sb_cc;
   2239 	if (so->so_state & SS_CANTRCVMORE) {
   2240 		kn->kn_flags |= EV_EOF;
   2241 		kn->kn_fflags = so->so_error;
   2242 		rv = 1;
   2243 	} else if (so->so_error)	/* temporary udp error */
   2244 		rv = 1;
   2245 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2246 		rv = (kn->kn_data >= kn->kn_sdata);
   2247 	else
   2248 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2249 	if (hint != NOTE_SUBMIT)
   2250 		sounlock(so);
   2251 	return rv;
   2252 }
   2253 
   2254 static void
   2255 filt_sowdetach(struct knote *kn)
   2256 {
   2257 	struct socket	*so;
   2258 
   2259 	so = ((file_t *)kn->kn_obj)->f_socket;
   2260 	solock(so);
   2261 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2262 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2263 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2264 	sounlock(so);
   2265 }
   2266 
   2267 /*ARGSUSED*/
   2268 static int
   2269 filt_sowrite(struct knote *kn, long hint)
   2270 {
   2271 	struct socket	*so;
   2272 	int rv;
   2273 
   2274 	so = ((file_t *)kn->kn_obj)->f_socket;
   2275 	if (hint != NOTE_SUBMIT)
   2276 		solock(so);
   2277 	kn->kn_data = sbspace(&so->so_snd);
   2278 	if (so->so_state & SS_CANTSENDMORE) {
   2279 		kn->kn_flags |= EV_EOF;
   2280 		kn->kn_fflags = so->so_error;
   2281 		rv = 1;
   2282 	} else if (so->so_error)	/* temporary udp error */
   2283 		rv = 1;
   2284 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2285 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2286 		rv = 0;
   2287 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2288 		rv = (kn->kn_data >= kn->kn_sdata);
   2289 	else
   2290 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2291 	if (hint != NOTE_SUBMIT)
   2292 		sounlock(so);
   2293 	return rv;
   2294 }
   2295 
   2296 /*ARGSUSED*/
   2297 static int
   2298 filt_solisten(struct knote *kn, long hint)
   2299 {
   2300 	struct socket	*so;
   2301 	int rv;
   2302 
   2303 	so = ((file_t *)kn->kn_obj)->f_socket;
   2304 
   2305 	/*
   2306 	 * Set kn_data to number of incoming connections, not
   2307 	 * counting partial (incomplete) connections.
   2308 	 */
   2309 	if (hint != NOTE_SUBMIT)
   2310 		solock(so);
   2311 	kn->kn_data = so->so_qlen;
   2312 	rv = (kn->kn_data > 0);
   2313 	if (hint != NOTE_SUBMIT)
   2314 		sounlock(so);
   2315 	return rv;
   2316 }
   2317 
   2318 static const struct filterops solisten_filtops =
   2319 	{ 1, NULL, filt_sordetach, filt_solisten };
   2320 static const struct filterops soread_filtops =
   2321 	{ 1, NULL, filt_sordetach, filt_soread };
   2322 static const struct filterops sowrite_filtops =
   2323 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2324 
   2325 int
   2326 soo_kqfilter(struct file *fp, struct knote *kn)
   2327 {
   2328 	struct socket	*so;
   2329 	struct sockbuf	*sb;
   2330 
   2331 	so = ((file_t *)kn->kn_obj)->f_socket;
   2332 	solock(so);
   2333 	switch (kn->kn_filter) {
   2334 	case EVFILT_READ:
   2335 		if (so->so_options & SO_ACCEPTCONN)
   2336 			kn->kn_fop = &solisten_filtops;
   2337 		else
   2338 			kn->kn_fop = &soread_filtops;
   2339 		sb = &so->so_rcv;
   2340 		break;
   2341 	case EVFILT_WRITE:
   2342 		kn->kn_fop = &sowrite_filtops;
   2343 		sb = &so->so_snd;
   2344 		break;
   2345 	default:
   2346 		sounlock(so);
   2347 		return (EINVAL);
   2348 	}
   2349 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2350 	sb->sb_flags |= SB_KNOTE;
   2351 	sounlock(so);
   2352 	return (0);
   2353 }
   2354 
   2355 static int
   2356 sodopoll(struct socket *so, int events)
   2357 {
   2358 	int revents;
   2359 
   2360 	revents = 0;
   2361 
   2362 	if (events & (POLLIN | POLLRDNORM))
   2363 		if (soreadable(so))
   2364 			revents |= events & (POLLIN | POLLRDNORM);
   2365 
   2366 	if (events & (POLLOUT | POLLWRNORM))
   2367 		if (sowritable(so))
   2368 			revents |= events & (POLLOUT | POLLWRNORM);
   2369 
   2370 	if (events & (POLLPRI | POLLRDBAND))
   2371 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2372 			revents |= events & (POLLPRI | POLLRDBAND);
   2373 
   2374 	return revents;
   2375 }
   2376 
   2377 int
   2378 sopoll(struct socket *so, int events)
   2379 {
   2380 	int revents = 0;
   2381 
   2382 #ifndef DIAGNOSTIC
   2383 	/*
   2384 	 * Do a quick, unlocked check in expectation that the socket
   2385 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2386 	 * as the solocked() assertions will fail.
   2387 	 */
   2388 	if ((revents = sodopoll(so, events)) != 0)
   2389 		return revents;
   2390 #endif
   2391 
   2392 	solock(so);
   2393 	if ((revents = sodopoll(so, events)) == 0) {
   2394 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2395 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2396 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2397 		}
   2398 
   2399 		if (events & (POLLOUT | POLLWRNORM)) {
   2400 			selrecord(curlwp, &so->so_snd.sb_sel);
   2401 			so->so_snd.sb_flags |= SB_NOTIFY;
   2402 		}
   2403 	}
   2404 	sounlock(so);
   2405 
   2406 	return revents;
   2407 }
   2408 
   2409 
   2410 #include <sys/sysctl.h>
   2411 
   2412 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2413 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2414 
   2415 /*
   2416  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2417  * value is not too small.
   2418  * (XXX should we maybe make sure it's not too large as well?)
   2419  */
   2420 static int
   2421 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2422 {
   2423 	int error, new_somaxkva;
   2424 	struct sysctlnode node;
   2425 
   2426 	new_somaxkva = somaxkva;
   2427 	node = *rnode;
   2428 	node.sysctl_data = &new_somaxkva;
   2429 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2430 	if (error || newp == NULL)
   2431 		return (error);
   2432 
   2433 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2434 		return (EINVAL);
   2435 
   2436 	mutex_enter(&so_pendfree_lock);
   2437 	somaxkva = new_somaxkva;
   2438 	cv_broadcast(&socurkva_cv);
   2439 	mutex_exit(&so_pendfree_lock);
   2440 
   2441 	return (error);
   2442 }
   2443 
   2444 /*
   2445  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2446  * any new value is not too small.
   2447  */
   2448 static int
   2449 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2450 {
   2451 	int error, new_sbmax;
   2452 	struct sysctlnode node;
   2453 
   2454 	new_sbmax = sb_max;
   2455 	node = *rnode;
   2456 	node.sysctl_data = &new_sbmax;
   2457 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2458 	if (error || newp == NULL)
   2459 		return (error);
   2460 
   2461 	KERNEL_LOCK(1, NULL);
   2462 	error = sb_max_set(new_sbmax);
   2463 	KERNEL_UNLOCK_ONE(NULL);
   2464 
   2465 	return (error);
   2466 }
   2467 
   2468 static void
   2469 sysctl_kern_socket_setup(void)
   2470 {
   2471 
   2472 	KASSERT(socket_sysctllog == NULL);
   2473 
   2474 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2475 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2476 		       CTLTYPE_INT, "somaxkva",
   2477 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2478 				    "used for socket buffers"),
   2479 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2480 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2481 
   2482 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2483 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2484 		       CTLTYPE_INT, "sbmax",
   2485 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2486 		       sysctl_kern_sbmax, 0, NULL, 0,
   2487 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2488 }
   2489