uipc_socket.c revision 1.252.6.1 1 /* $NetBSD: uipc_socket.c,v 1.252.6.1 2017/05/02 03:19:22 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.252.6.1 2017/05/02 03:19:22 pgoyette Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #include "opt_sctp.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/file.h>
90 #include <sys/filedesc.h>
91 #include <sys/kmem.h>
92 #include <sys/mbuf.h>
93 #include <sys/domain.h>
94 #include <sys/kernel.h>
95 #include <sys/protosw.h>
96 #include <sys/socket.h>
97 #include <sys/socketvar.h>
98 #include <sys/signalvar.h>
99 #include <sys/resourcevar.h>
100 #include <sys/uidinfo.h>
101 #include <sys/event.h>
102 #include <sys/poll.h>
103 #include <sys/kauth.h>
104 #include <sys/mutex.h>
105 #include <sys/condvar.h>
106 #include <sys/kthread.h>
107
108 #ifdef COMPAT_50
109 #include <compat/sys/time.h>
110 #include <compat/sys/socket.h>
111 #endif
112
113 #include <uvm/uvm_extern.h>
114 #include <uvm/uvm_loan.h>
115 #include <uvm/uvm_page.h>
116
117 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
118
119 extern const struct fileops socketops;
120
121 extern int somaxconn; /* patchable (XXX sysctl) */
122 int somaxconn = SOMAXCONN;
123 kmutex_t *softnet_lock;
124
125 #ifdef SOSEND_COUNTERS
126 #include <sys/device.h>
127
128 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
129 NULL, "sosend", "loan big");
130 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
131 NULL, "sosend", "copy big");
132 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
133 NULL, "sosend", "copy small");
134 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
135 NULL, "sosend", "kva limit");
136
137 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
138
139 EVCNT_ATTACH_STATIC(sosend_loan_big);
140 EVCNT_ATTACH_STATIC(sosend_copy_big);
141 EVCNT_ATTACH_STATIC(sosend_copy_small);
142 EVCNT_ATTACH_STATIC(sosend_kvalimit);
143 #else
144
145 #define SOSEND_COUNTER_INCR(ev) /* nothing */
146
147 #endif /* SOSEND_COUNTERS */
148
149 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
150 int sock_loan_thresh = -1;
151 #else
152 int sock_loan_thresh = 4096;
153 #endif
154
155 static kmutex_t so_pendfree_lock;
156 static struct mbuf *so_pendfree = NULL;
157
158 #ifndef SOMAXKVA
159 #define SOMAXKVA (16 * 1024 * 1024)
160 #endif
161 int somaxkva = SOMAXKVA;
162 static int socurkva;
163 static kcondvar_t socurkva_cv;
164
165 static kauth_listener_t socket_listener;
166
167 #define SOCK_LOAN_CHUNK 65536
168
169 static void sopendfree_thread(void *);
170 static kcondvar_t pendfree_thread_cv;
171 static lwp_t *sopendfree_lwp;
172
173 static void sysctl_kern_socket_setup(void);
174 static struct sysctllog *socket_sysctllog;
175
176 static vsize_t
177 sokvareserve(struct socket *so, vsize_t len)
178 {
179 int error;
180
181 mutex_enter(&so_pendfree_lock);
182 while (socurkva + len > somaxkva) {
183 SOSEND_COUNTER_INCR(&sosend_kvalimit);
184 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
185 if (error) {
186 len = 0;
187 break;
188 }
189 }
190 socurkva += len;
191 mutex_exit(&so_pendfree_lock);
192 return len;
193 }
194
195 static void
196 sokvaunreserve(vsize_t len)
197 {
198
199 mutex_enter(&so_pendfree_lock);
200 socurkva -= len;
201 cv_broadcast(&socurkva_cv);
202 mutex_exit(&so_pendfree_lock);
203 }
204
205 /*
206 * sokvaalloc: allocate kva for loan.
207 */
208
209 vaddr_t
210 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
211 {
212 vaddr_t lva;
213
214 /*
215 * reserve kva.
216 */
217
218 if (sokvareserve(so, len) == 0)
219 return 0;
220
221 /*
222 * allocate kva.
223 */
224
225 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
226 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
227 if (lva == 0) {
228 sokvaunreserve(len);
229 return (0);
230 }
231
232 return lva;
233 }
234
235 /*
236 * sokvafree: free kva for loan.
237 */
238
239 void
240 sokvafree(vaddr_t sva, vsize_t len)
241 {
242
243 /*
244 * free kva.
245 */
246
247 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
248
249 /*
250 * unreserve kva.
251 */
252
253 sokvaunreserve(len);
254 }
255
256 static void
257 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
258 {
259 vaddr_t sva, eva;
260 vsize_t len;
261 int npgs;
262
263 KASSERT(pgs != NULL);
264
265 eva = round_page((vaddr_t) buf + size);
266 sva = trunc_page((vaddr_t) buf);
267 len = eva - sva;
268 npgs = len >> PAGE_SHIFT;
269
270 pmap_kremove(sva, len);
271 pmap_update(pmap_kernel());
272 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
273 sokvafree(sva, len);
274 }
275
276 /*
277 * sopendfree_thread: free mbufs on "pendfree" list.
278 * unlock and relock so_pendfree_lock when freeing mbufs.
279 */
280
281 static void
282 sopendfree_thread(void *v)
283 {
284 struct mbuf *m, *next;
285 size_t rv;
286
287 mutex_enter(&so_pendfree_lock);
288
289 for (;;) {
290 rv = 0;
291 while (so_pendfree != NULL) {
292 m = so_pendfree;
293 so_pendfree = NULL;
294 mutex_exit(&so_pendfree_lock);
295
296 for (; m != NULL; m = next) {
297 next = m->m_next;
298 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
299 0);
300 KASSERT(m->m_ext.ext_refcnt == 0);
301
302 rv += m->m_ext.ext_size;
303 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
304 m->m_ext.ext_size);
305 pool_cache_put(mb_cache, m);
306 }
307
308 mutex_enter(&so_pendfree_lock);
309 }
310 if (rv)
311 cv_broadcast(&socurkva_cv);
312 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
313 }
314 panic("sopendfree_thread");
315 /* NOTREACHED */
316 }
317
318 void
319 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
320 {
321
322 KASSERT(m != NULL);
323
324 /*
325 * postpone freeing mbuf.
326 *
327 * we can't do it in interrupt context
328 * because we need to put kva back to kernel_map.
329 */
330
331 mutex_enter(&so_pendfree_lock);
332 m->m_next = so_pendfree;
333 so_pendfree = m;
334 cv_signal(&pendfree_thread_cv);
335 mutex_exit(&so_pendfree_lock);
336 }
337
338 static long
339 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
340 {
341 struct iovec *iov = uio->uio_iov;
342 vaddr_t sva, eva;
343 vsize_t len;
344 vaddr_t lva;
345 int npgs, error;
346 vaddr_t va;
347 int i;
348
349 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
350 return (0);
351
352 if (iov->iov_len < (size_t) space)
353 space = iov->iov_len;
354 if (space > SOCK_LOAN_CHUNK)
355 space = SOCK_LOAN_CHUNK;
356
357 eva = round_page((vaddr_t) iov->iov_base + space);
358 sva = trunc_page((vaddr_t) iov->iov_base);
359 len = eva - sva;
360 npgs = len >> PAGE_SHIFT;
361
362 KASSERT(npgs <= M_EXT_MAXPAGES);
363
364 lva = sokvaalloc(sva, len, so);
365 if (lva == 0)
366 return 0;
367
368 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
369 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
370 if (error) {
371 sokvafree(lva, len);
372 return (0);
373 }
374
375 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
376 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
377 VM_PROT_READ, 0);
378 pmap_update(pmap_kernel());
379
380 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
381
382 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
383 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
384
385 uio->uio_resid -= space;
386 /* uio_offset not updated, not set/used for write(2) */
387 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
388 uio->uio_iov->iov_len -= space;
389 if (uio->uio_iov->iov_len == 0) {
390 uio->uio_iov++;
391 uio->uio_iovcnt--;
392 }
393
394 return (space);
395 }
396
397 struct mbuf *
398 getsombuf(struct socket *so, int type)
399 {
400 struct mbuf *m;
401
402 m = m_get(M_WAIT, type);
403 MCLAIM(m, so->so_mowner);
404 return m;
405 }
406
407 static int
408 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
409 void *arg0, void *arg1, void *arg2, void *arg3)
410 {
411 int result;
412 enum kauth_network_req req;
413
414 result = KAUTH_RESULT_DEFER;
415 req = (enum kauth_network_req)arg0;
416
417 if ((action != KAUTH_NETWORK_SOCKET) &&
418 (action != KAUTH_NETWORK_BIND))
419 return result;
420
421 switch (req) {
422 case KAUTH_REQ_NETWORK_BIND_PORT:
423 result = KAUTH_RESULT_ALLOW;
424 break;
425
426 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
427 /* Normal users can only drop their own connections. */
428 struct socket *so = (struct socket *)arg1;
429
430 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
431 result = KAUTH_RESULT_ALLOW;
432
433 break;
434 }
435
436 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
437 /* We allow "raw" routing/bluetooth sockets to anyone. */
438 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
439 || (u_long)arg1 == PF_BLUETOOTH) {
440 result = KAUTH_RESULT_ALLOW;
441 } else {
442 /* Privileged, let secmodel handle this. */
443 if ((u_long)arg2 == SOCK_RAW)
444 break;
445 }
446
447 result = KAUTH_RESULT_ALLOW;
448
449 break;
450
451 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
452 result = KAUTH_RESULT_ALLOW;
453
454 break;
455
456 default:
457 break;
458 }
459
460 return result;
461 }
462
463 void
464 soinit(void)
465 {
466
467 sysctl_kern_socket_setup();
468
469 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
470 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
471 cv_init(&socurkva_cv, "sokva");
472 cv_init(&pendfree_thread_cv, "sopendfr");
473 soinit2();
474
475 /* Set the initial adjusted socket buffer size. */
476 if (sb_max_set(sb_max))
477 panic("bad initial sb_max value: %lu", sb_max);
478
479 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
480 socket_listener_cb, NULL);
481 }
482
483 void
484 soinit1(void)
485 {
486 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
487 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
488 if (error)
489 panic("soinit1 %d", error);
490 }
491
492 /*
493 * socreate: create a new socket of the specified type and the protocol.
494 *
495 * => Caller may specify another socket for lock sharing (must not be held).
496 * => Returns the new socket without lock held.
497 */
498 int
499 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
500 struct socket *lockso)
501 {
502 const struct protosw *prp;
503 struct socket *so;
504 uid_t uid;
505 int error;
506 kmutex_t *lock;
507
508 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
509 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
510 KAUTH_ARG(proto));
511 if (error != 0)
512 return error;
513
514 if (proto)
515 prp = pffindproto(dom, proto, type);
516 else
517 prp = pffindtype(dom, type);
518 if (prp == NULL) {
519 /* no support for domain */
520 if (pffinddomain(dom) == 0)
521 return EAFNOSUPPORT;
522 /* no support for socket type */
523 if (proto == 0 && type != 0)
524 return EPROTOTYPE;
525 return EPROTONOSUPPORT;
526 }
527 if (prp->pr_usrreqs == NULL)
528 return EPROTONOSUPPORT;
529 if (prp->pr_type != type)
530 return EPROTOTYPE;
531
532 so = soget(true);
533 so->so_type = type;
534 so->so_proto = prp;
535 so->so_send = sosend;
536 so->so_receive = soreceive;
537 #ifdef MBUFTRACE
538 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
539 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
540 so->so_mowner = &prp->pr_domain->dom_mowner;
541 #endif
542 uid = kauth_cred_geteuid(l->l_cred);
543 so->so_uidinfo = uid_find(uid);
544 so->so_cpid = l->l_proc->p_pid;
545
546 /*
547 * Lock assigned and taken during PCB attach, unless we share
548 * the lock with another socket, e.g. socketpair(2) case.
549 */
550 if (lockso) {
551 lock = lockso->so_lock;
552 so->so_lock = lock;
553 mutex_obj_hold(lock);
554 mutex_enter(lock);
555 }
556
557 /* Attach the PCB (returns with the socket lock held). */
558 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
559 KASSERT(solocked(so));
560
561 if (error) {
562 KASSERT(so->so_pcb == NULL);
563 so->so_state |= SS_NOFDREF;
564 sofree(so);
565 return error;
566 }
567 so->so_cred = kauth_cred_dup(l->l_cred);
568 sounlock(so);
569
570 *aso = so;
571 return 0;
572 }
573
574 /*
575 * fsocreate: create a socket and a file descriptor associated with it.
576 *
577 * => On success, write file descriptor to fdout and return zero.
578 * => On failure, return non-zero; *fdout will be undefined.
579 */
580 int
581 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
582 {
583 lwp_t *l = curlwp;
584 int error, fd, flags;
585 struct socket *so;
586 struct file *fp;
587
588 if ((error = fd_allocfile(&fp, &fd)) != 0) {
589 return error;
590 }
591 flags = type & SOCK_FLAGS_MASK;
592 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
593 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
594 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
595 fp->f_type = DTYPE_SOCKET;
596 fp->f_ops = &socketops;
597
598 type &= ~SOCK_FLAGS_MASK;
599 error = socreate(domain, &so, type, proto, l, NULL);
600 if (error) {
601 fd_abort(curproc, fp, fd);
602 return error;
603 }
604 if (flags & SOCK_NONBLOCK) {
605 so->so_state |= SS_NBIO;
606 }
607 fp->f_socket = so;
608 fd_affix(curproc, fp, fd);
609
610 if (sop != NULL) {
611 *sop = so;
612 }
613 *fdout = fd;
614 return error;
615 }
616
617 int
618 sofamily(const struct socket *so)
619 {
620 const struct protosw *pr;
621 const struct domain *dom;
622
623 if ((pr = so->so_proto) == NULL)
624 return AF_UNSPEC;
625 if ((dom = pr->pr_domain) == NULL)
626 return AF_UNSPEC;
627 return dom->dom_family;
628 }
629
630 int
631 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
632 {
633 int error;
634
635 solock(so);
636 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
637 sounlock(so);
638 return EAFNOSUPPORT;
639 }
640 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
641 sounlock(so);
642 return error;
643 }
644
645 int
646 solisten(struct socket *so, int backlog, struct lwp *l)
647 {
648 int error;
649 short oldopt, oldqlimit;
650
651 solock(so);
652 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
653 SS_ISDISCONNECTING)) != 0) {
654 sounlock(so);
655 return EINVAL;
656 }
657 oldopt = so->so_options;
658 oldqlimit = so->so_qlimit;
659 if (TAILQ_EMPTY(&so->so_q))
660 so->so_options |= SO_ACCEPTCONN;
661 if (backlog < 0)
662 backlog = 0;
663 so->so_qlimit = min(backlog, somaxconn);
664
665 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
666 if (error != 0) {
667 so->so_options = oldopt;
668 so->so_qlimit = oldqlimit;
669 sounlock(so);
670 return error;
671 }
672 sounlock(so);
673 return 0;
674 }
675
676 void
677 sofree(struct socket *so)
678 {
679 u_int refs;
680
681 KASSERT(solocked(so));
682
683 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
684 sounlock(so);
685 return;
686 }
687 if (so->so_head) {
688 /*
689 * We must not decommission a socket that's on the accept(2)
690 * queue. If we do, then accept(2) may hang after select(2)
691 * indicated that the listening socket was ready.
692 */
693 if (!soqremque(so, 0)) {
694 sounlock(so);
695 return;
696 }
697 }
698 if (so->so_rcv.sb_hiwat)
699 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
700 RLIM_INFINITY);
701 if (so->so_snd.sb_hiwat)
702 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
703 RLIM_INFINITY);
704 sbrelease(&so->so_snd, so);
705 KASSERT(!cv_has_waiters(&so->so_cv));
706 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
707 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
708 sorflush(so);
709 refs = so->so_aborting; /* XXX */
710 /* Remove acccept filter if one is present. */
711 if (so->so_accf != NULL)
712 (void)accept_filt_clear(so);
713 sounlock(so);
714 if (refs == 0) /* XXX */
715 soput(so);
716 }
717
718 /*
719 * soclose: close a socket on last file table reference removal.
720 * Initiate disconnect if connected. Free socket when disconnect complete.
721 */
722 int
723 soclose(struct socket *so)
724 {
725 struct socket *so2;
726 int error = 0;
727
728 solock(so);
729 if (so->so_options & SO_ACCEPTCONN) {
730 for (;;) {
731 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
732 KASSERT(solocked2(so, so2));
733 (void) soqremque(so2, 0);
734 /* soabort drops the lock. */
735 (void) soabort(so2);
736 solock(so);
737 continue;
738 }
739 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
740 KASSERT(solocked2(so, so2));
741 (void) soqremque(so2, 1);
742 /* soabort drops the lock. */
743 (void) soabort(so2);
744 solock(so);
745 continue;
746 }
747 break;
748 }
749 }
750 if (so->so_pcb == NULL)
751 goto discard;
752 if (so->so_state & SS_ISCONNECTED) {
753 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
754 error = sodisconnect(so);
755 if (error)
756 goto drop;
757 }
758 if (so->so_options & SO_LINGER) {
759 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
760 (SS_ISDISCONNECTING|SS_NBIO))
761 goto drop;
762 while (so->so_state & SS_ISCONNECTED) {
763 error = sowait(so, true, so->so_linger * hz);
764 if (error)
765 break;
766 }
767 }
768 }
769 drop:
770 if (so->so_pcb) {
771 KASSERT(solocked(so));
772 (*so->so_proto->pr_usrreqs->pr_detach)(so);
773 }
774 discard:
775 KASSERT((so->so_state & SS_NOFDREF) == 0);
776 kauth_cred_free(so->so_cred);
777 so->so_state |= SS_NOFDREF;
778 sofree(so);
779 return error;
780 }
781
782 /*
783 * Must be called with the socket locked.. Will return with it unlocked.
784 */
785 int
786 soabort(struct socket *so)
787 {
788 u_int refs;
789 int error;
790
791 KASSERT(solocked(so));
792 KASSERT(so->so_head == NULL);
793
794 so->so_aborting++; /* XXX */
795 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
796 refs = --so->so_aborting; /* XXX */
797 if (error || (refs == 0)) {
798 sofree(so);
799 } else {
800 sounlock(so);
801 }
802 return error;
803 }
804
805 int
806 soaccept(struct socket *so, struct sockaddr *nam)
807 {
808 int error;
809
810 KASSERT(solocked(so));
811 KASSERT((so->so_state & SS_NOFDREF) != 0);
812
813 so->so_state &= ~SS_NOFDREF;
814 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
815 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
816 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
817 else
818 error = ECONNABORTED;
819
820 return error;
821 }
822
823 int
824 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
825 {
826 int error;
827
828 KASSERT(solocked(so));
829
830 if (so->so_options & SO_ACCEPTCONN)
831 return EOPNOTSUPP;
832 /*
833 * If protocol is connection-based, can only connect once.
834 * Otherwise, if connected, try to disconnect first.
835 * This allows user to disconnect by connecting to, e.g.,
836 * a null address.
837 */
838 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
839 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
840 (error = sodisconnect(so)))) {
841 error = EISCONN;
842 } else {
843 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
844 return EAFNOSUPPORT;
845 }
846 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
847 }
848
849 return error;
850 }
851
852 int
853 soconnect2(struct socket *so1, struct socket *so2)
854 {
855 KASSERT(solocked2(so1, so2));
856
857 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
858 }
859
860 int
861 sodisconnect(struct socket *so)
862 {
863 int error;
864
865 KASSERT(solocked(so));
866
867 if ((so->so_state & SS_ISCONNECTED) == 0) {
868 error = ENOTCONN;
869 } else if (so->so_state & SS_ISDISCONNECTING) {
870 error = EALREADY;
871 } else {
872 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
873 }
874 return (error);
875 }
876
877 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
878 /*
879 * Send on a socket.
880 * If send must go all at once and message is larger than
881 * send buffering, then hard error.
882 * Lock against other senders.
883 * If must go all at once and not enough room now, then
884 * inform user that this would block and do nothing.
885 * Otherwise, if nonblocking, send as much as possible.
886 * The data to be sent is described by "uio" if nonzero,
887 * otherwise by the mbuf chain "top" (which must be null
888 * if uio is not). Data provided in mbuf chain must be small
889 * enough to send all at once.
890 *
891 * Returns nonzero on error, timeout or signal; callers
892 * must check for short counts if EINTR/ERESTART are returned.
893 * Data and control buffers are freed on return.
894 */
895 int
896 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
897 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
898 {
899 struct mbuf **mp, *m;
900 long space, len, resid, clen, mlen;
901 int error, s, dontroute, atomic;
902 short wakeup_state = 0;
903
904 clen = 0;
905
906 /*
907 * solock() provides atomicity of access. splsoftnet() prevents
908 * protocol processing soft interrupts from interrupting us and
909 * blocking (expensive).
910 */
911 s = splsoftnet();
912 solock(so);
913 atomic = sosendallatonce(so) || top;
914 if (uio)
915 resid = uio->uio_resid;
916 else
917 resid = top->m_pkthdr.len;
918 /*
919 * In theory resid should be unsigned.
920 * However, space must be signed, as it might be less than 0
921 * if we over-committed, and we must use a signed comparison
922 * of space and resid. On the other hand, a negative resid
923 * causes us to loop sending 0-length segments to the protocol.
924 */
925 if (resid < 0) {
926 error = EINVAL;
927 goto out;
928 }
929 dontroute =
930 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
931 (so->so_proto->pr_flags & PR_ATOMIC);
932 l->l_ru.ru_msgsnd++;
933 if (control)
934 clen = control->m_len;
935 restart:
936 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
937 goto out;
938 do {
939 if (so->so_state & SS_CANTSENDMORE) {
940 error = EPIPE;
941 goto release;
942 }
943 if (so->so_error) {
944 error = so->so_error;
945 so->so_error = 0;
946 goto release;
947 }
948 if ((so->so_state & SS_ISCONNECTED) == 0) {
949 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
950 if (resid || clen == 0) {
951 error = ENOTCONN;
952 goto release;
953 }
954 } else if (addr == NULL) {
955 error = EDESTADDRREQ;
956 goto release;
957 }
958 }
959 space = sbspace(&so->so_snd);
960 if (flags & MSG_OOB)
961 space += 1024;
962 if ((atomic && resid > so->so_snd.sb_hiwat) ||
963 clen > so->so_snd.sb_hiwat) {
964 error = EMSGSIZE;
965 goto release;
966 }
967 if (space < resid + clen &&
968 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
969 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
970 error = EWOULDBLOCK;
971 goto release;
972 }
973 sbunlock(&so->so_snd);
974 if (wakeup_state & SS_RESTARTSYS) {
975 error = ERESTART;
976 goto out;
977 }
978 error = sbwait(&so->so_snd);
979 if (error)
980 goto out;
981 wakeup_state = so->so_state;
982 goto restart;
983 }
984 wakeup_state = 0;
985 mp = ⊤
986 space -= clen;
987 do {
988 if (uio == NULL) {
989 /*
990 * Data is prepackaged in "top".
991 */
992 resid = 0;
993 if (flags & MSG_EOR)
994 top->m_flags |= M_EOR;
995 } else do {
996 sounlock(so);
997 splx(s);
998 if (top == NULL) {
999 m = m_gethdr(M_WAIT, MT_DATA);
1000 mlen = MHLEN;
1001 m->m_pkthdr.len = 0;
1002 m_reset_rcvif(m);
1003 } else {
1004 m = m_get(M_WAIT, MT_DATA);
1005 mlen = MLEN;
1006 }
1007 MCLAIM(m, so->so_snd.sb_mowner);
1008 if (sock_loan_thresh >= 0 &&
1009 uio->uio_iov->iov_len >= sock_loan_thresh &&
1010 space >= sock_loan_thresh &&
1011 (len = sosend_loan(so, uio, m,
1012 space)) != 0) {
1013 SOSEND_COUNTER_INCR(&sosend_loan_big);
1014 space -= len;
1015 goto have_data;
1016 }
1017 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1018 SOSEND_COUNTER_INCR(&sosend_copy_big);
1019 m_clget(m, M_DONTWAIT);
1020 if ((m->m_flags & M_EXT) == 0)
1021 goto nopages;
1022 mlen = MCLBYTES;
1023 if (atomic && top == 0) {
1024 len = lmin(MCLBYTES - max_hdr,
1025 resid);
1026 m->m_data += max_hdr;
1027 } else
1028 len = lmin(MCLBYTES, resid);
1029 space -= len;
1030 } else {
1031 nopages:
1032 SOSEND_COUNTER_INCR(&sosend_copy_small);
1033 len = lmin(lmin(mlen, resid), space);
1034 space -= len;
1035 /*
1036 * For datagram protocols, leave room
1037 * for protocol headers in first mbuf.
1038 */
1039 if (atomic && top == 0 && len < mlen)
1040 MH_ALIGN(m, len);
1041 }
1042 error = uiomove(mtod(m, void *), (int)len, uio);
1043 have_data:
1044 resid = uio->uio_resid;
1045 m->m_len = len;
1046 *mp = m;
1047 top->m_pkthdr.len += len;
1048 s = splsoftnet();
1049 solock(so);
1050 if (error != 0)
1051 goto release;
1052 mp = &m->m_next;
1053 if (resid <= 0) {
1054 if (flags & MSG_EOR)
1055 top->m_flags |= M_EOR;
1056 break;
1057 }
1058 } while (space > 0 && atomic);
1059
1060 if (so->so_state & SS_CANTSENDMORE) {
1061 error = EPIPE;
1062 goto release;
1063 }
1064 if (dontroute)
1065 so->so_options |= SO_DONTROUTE;
1066 if (resid > 0)
1067 so->so_state |= SS_MORETOCOME;
1068 if (flags & MSG_OOB) {
1069 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1070 so, top, control);
1071 } else {
1072 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1073 top, addr, control, l);
1074 }
1075 if (dontroute)
1076 so->so_options &= ~SO_DONTROUTE;
1077 if (resid > 0)
1078 so->so_state &= ~SS_MORETOCOME;
1079 clen = 0;
1080 control = NULL;
1081 top = NULL;
1082 mp = ⊤
1083 if (error != 0)
1084 goto release;
1085 } while (resid && space > 0);
1086 } while (resid);
1087
1088 release:
1089 sbunlock(&so->so_snd);
1090 out:
1091 sounlock(so);
1092 splx(s);
1093 if (top)
1094 m_freem(top);
1095 if (control)
1096 m_freem(control);
1097 return (error);
1098 }
1099
1100 /*
1101 * Following replacement or removal of the first mbuf on the first
1102 * mbuf chain of a socket buffer, push necessary state changes back
1103 * into the socket buffer so that other consumers see the values
1104 * consistently. 'nextrecord' is the callers locally stored value of
1105 * the original value of sb->sb_mb->m_nextpkt which must be restored
1106 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1107 */
1108 static void
1109 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1110 {
1111
1112 KASSERT(solocked(sb->sb_so));
1113
1114 /*
1115 * First, update for the new value of nextrecord. If necessary,
1116 * make it the first record.
1117 */
1118 if (sb->sb_mb != NULL)
1119 sb->sb_mb->m_nextpkt = nextrecord;
1120 else
1121 sb->sb_mb = nextrecord;
1122
1123 /*
1124 * Now update any dependent socket buffer fields to reflect
1125 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1126 * the addition of a second clause that takes care of the
1127 * case where sb_mb has been updated, but remains the last
1128 * record.
1129 */
1130 if (sb->sb_mb == NULL) {
1131 sb->sb_mbtail = NULL;
1132 sb->sb_lastrecord = NULL;
1133 } else if (sb->sb_mb->m_nextpkt == NULL)
1134 sb->sb_lastrecord = sb->sb_mb;
1135 }
1136
1137 /*
1138 * Implement receive operations on a socket.
1139 * We depend on the way that records are added to the sockbuf
1140 * by sbappend*. In particular, each record (mbufs linked through m_next)
1141 * must begin with an address if the protocol so specifies,
1142 * followed by an optional mbuf or mbufs containing ancillary data,
1143 * and then zero or more mbufs of data.
1144 * In order to avoid blocking network interrupts for the entire time here,
1145 * we splx() while doing the actual copy to user space.
1146 * Although the sockbuf is locked, new data may still be appended,
1147 * and thus we must maintain consistency of the sockbuf during that time.
1148 *
1149 * The caller may receive the data as a single mbuf chain by supplying
1150 * an mbuf **mp0 for use in returning the chain. The uio is then used
1151 * only for the count in uio_resid.
1152 */
1153 int
1154 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1155 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1156 {
1157 struct lwp *l = curlwp;
1158 struct mbuf *m, **mp, *mt;
1159 size_t len, offset, moff, orig_resid;
1160 int atomic, flags, error, s, type;
1161 const struct protosw *pr;
1162 struct mbuf *nextrecord;
1163 int mbuf_removed = 0;
1164 const struct domain *dom;
1165 short wakeup_state = 0;
1166
1167 pr = so->so_proto;
1168 atomic = pr->pr_flags & PR_ATOMIC;
1169 dom = pr->pr_domain;
1170 mp = mp0;
1171 type = 0;
1172 orig_resid = uio->uio_resid;
1173
1174 if (paddr != NULL)
1175 *paddr = NULL;
1176 if (controlp != NULL)
1177 *controlp = NULL;
1178 if (flagsp != NULL)
1179 flags = *flagsp &~ MSG_EOR;
1180 else
1181 flags = 0;
1182
1183 if (flags & MSG_OOB) {
1184 m = m_get(M_WAIT, MT_DATA);
1185 solock(so);
1186 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1187 sounlock(so);
1188 if (error)
1189 goto bad;
1190 do {
1191 error = uiomove(mtod(m, void *),
1192 MIN(uio->uio_resid, m->m_len), uio);
1193 m = m_free(m);
1194 } while (uio->uio_resid > 0 && error == 0 && m);
1195 bad:
1196 if (m != NULL)
1197 m_freem(m);
1198 return error;
1199 }
1200 if (mp != NULL)
1201 *mp = NULL;
1202
1203 /*
1204 * solock() provides atomicity of access. splsoftnet() prevents
1205 * protocol processing soft interrupts from interrupting us and
1206 * blocking (expensive).
1207 */
1208 s = splsoftnet();
1209 solock(so);
1210 restart:
1211 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1212 sounlock(so);
1213 splx(s);
1214 return error;
1215 }
1216
1217 m = so->so_rcv.sb_mb;
1218 /*
1219 * If we have less data than requested, block awaiting more
1220 * (subject to any timeout) if:
1221 * 1. the current count is less than the low water mark,
1222 * 2. MSG_WAITALL is set, and it is possible to do the entire
1223 * receive operation at once if we block (resid <= hiwat), or
1224 * 3. MSG_DONTWAIT is not set.
1225 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1226 * we have to do the receive in sections, and thus risk returning
1227 * a short count if a timeout or signal occurs after we start.
1228 */
1229 if (m == NULL ||
1230 ((flags & MSG_DONTWAIT) == 0 &&
1231 so->so_rcv.sb_cc < uio->uio_resid &&
1232 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1233 ((flags & MSG_WAITALL) &&
1234 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1235 m->m_nextpkt == NULL && !atomic)) {
1236 #ifdef DIAGNOSTIC
1237 if (m == NULL && so->so_rcv.sb_cc)
1238 panic("receive 1");
1239 #endif
1240 if (so->so_error) {
1241 if (m != NULL)
1242 goto dontblock;
1243 error = so->so_error;
1244 if ((flags & MSG_PEEK) == 0)
1245 so->so_error = 0;
1246 goto release;
1247 }
1248 if (so->so_state & SS_CANTRCVMORE) {
1249 if (m != NULL)
1250 goto dontblock;
1251 else
1252 goto release;
1253 }
1254 for (; m != NULL; m = m->m_next)
1255 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1256 m = so->so_rcv.sb_mb;
1257 goto dontblock;
1258 }
1259 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1260 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1261 error = ENOTCONN;
1262 goto release;
1263 }
1264 if (uio->uio_resid == 0)
1265 goto release;
1266 if ((so->so_state & SS_NBIO) ||
1267 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1268 error = EWOULDBLOCK;
1269 goto release;
1270 }
1271 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1272 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1273 sbunlock(&so->so_rcv);
1274 if (wakeup_state & SS_RESTARTSYS)
1275 error = ERESTART;
1276 else
1277 error = sbwait(&so->so_rcv);
1278 if (error != 0) {
1279 sounlock(so);
1280 splx(s);
1281 return error;
1282 }
1283 wakeup_state = so->so_state;
1284 goto restart;
1285 }
1286 dontblock:
1287 /*
1288 * On entry here, m points to the first record of the socket buffer.
1289 * From this point onward, we maintain 'nextrecord' as a cache of the
1290 * pointer to the next record in the socket buffer. We must keep the
1291 * various socket buffer pointers and local stack versions of the
1292 * pointers in sync, pushing out modifications before dropping the
1293 * socket lock, and re-reading them when picking it up.
1294 *
1295 * Otherwise, we will race with the network stack appending new data
1296 * or records onto the socket buffer by using inconsistent/stale
1297 * versions of the field, possibly resulting in socket buffer
1298 * corruption.
1299 *
1300 * By holding the high-level sblock(), we prevent simultaneous
1301 * readers from pulling off the front of the socket buffer.
1302 */
1303 if (l != NULL)
1304 l->l_ru.ru_msgrcv++;
1305 KASSERT(m == so->so_rcv.sb_mb);
1306 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1307 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1308 nextrecord = m->m_nextpkt;
1309 if (pr->pr_flags & PR_ADDR) {
1310 #ifdef DIAGNOSTIC
1311 if (m->m_type != MT_SONAME)
1312 panic("receive 1a");
1313 #endif
1314 orig_resid = 0;
1315 if (flags & MSG_PEEK) {
1316 if (paddr)
1317 *paddr = m_copy(m, 0, m->m_len);
1318 m = m->m_next;
1319 } else {
1320 sbfree(&so->so_rcv, m);
1321 mbuf_removed = 1;
1322 if (paddr != NULL) {
1323 *paddr = m;
1324 so->so_rcv.sb_mb = m->m_next;
1325 m->m_next = NULL;
1326 m = so->so_rcv.sb_mb;
1327 } else {
1328 m = so->so_rcv.sb_mb = m_free(m);
1329 }
1330 sbsync(&so->so_rcv, nextrecord);
1331 }
1332 }
1333 if (pr->pr_flags & PR_ADDR_OPT) {
1334 /*
1335 * For SCTP we may be getting a
1336 * whole message OR a partial delivery.
1337 */
1338 if (m->m_type == MT_SONAME) {
1339 orig_resid = 0;
1340 if (flags & MSG_PEEK) {
1341 if (paddr)
1342 *paddr = m_copy(m, 0, m->m_len);
1343 m = m->m_next;
1344 } else {
1345 sbfree(&so->so_rcv, m);
1346 if (paddr) {
1347 *paddr = m;
1348 so->so_rcv.sb_mb = m->m_next;
1349 m->m_next = 0;
1350 m = so->so_rcv.sb_mb;
1351 } else {
1352 m = so->so_rcv.sb_mb = m_free(m);
1353 }
1354 }
1355 }
1356 }
1357
1358 /*
1359 * Process one or more MT_CONTROL mbufs present before any data mbufs
1360 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1361 * just copy the data; if !MSG_PEEK, we call into the protocol to
1362 * perform externalization (or freeing if controlp == NULL).
1363 */
1364 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1365 struct mbuf *cm = NULL, *cmn;
1366 struct mbuf **cme = &cm;
1367
1368 do {
1369 if (flags & MSG_PEEK) {
1370 if (controlp != NULL) {
1371 *controlp = m_copy(m, 0, m->m_len);
1372 controlp = &(*controlp)->m_next;
1373 }
1374 m = m->m_next;
1375 } else {
1376 sbfree(&so->so_rcv, m);
1377 so->so_rcv.sb_mb = m->m_next;
1378 m->m_next = NULL;
1379 *cme = m;
1380 cme = &(*cme)->m_next;
1381 m = so->so_rcv.sb_mb;
1382 }
1383 } while (m != NULL && m->m_type == MT_CONTROL);
1384 if ((flags & MSG_PEEK) == 0)
1385 sbsync(&so->so_rcv, nextrecord);
1386 for (; cm != NULL; cm = cmn) {
1387 cmn = cm->m_next;
1388 cm->m_next = NULL;
1389 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1390 if (controlp != NULL) {
1391 if (dom->dom_externalize != NULL &&
1392 type == SCM_RIGHTS) {
1393 sounlock(so);
1394 splx(s);
1395 error = (*dom->dom_externalize)(cm, l,
1396 (flags & MSG_CMSG_CLOEXEC) ?
1397 O_CLOEXEC : 0);
1398 s = splsoftnet();
1399 solock(so);
1400 }
1401 *controlp = cm;
1402 while (*controlp != NULL)
1403 controlp = &(*controlp)->m_next;
1404 } else {
1405 /*
1406 * Dispose of any SCM_RIGHTS message that went
1407 * through the read path rather than recv.
1408 */
1409 if (dom->dom_dispose != NULL &&
1410 type == SCM_RIGHTS) {
1411 sounlock(so);
1412 (*dom->dom_dispose)(cm);
1413 solock(so);
1414 }
1415 m_freem(cm);
1416 }
1417 }
1418 if (m != NULL)
1419 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1420 else
1421 nextrecord = so->so_rcv.sb_mb;
1422 orig_resid = 0;
1423 }
1424
1425 /* If m is non-NULL, we have some data to read. */
1426 if (__predict_true(m != NULL)) {
1427 type = m->m_type;
1428 if (type == MT_OOBDATA)
1429 flags |= MSG_OOB;
1430 }
1431 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1432 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1433
1434 moff = 0;
1435 offset = 0;
1436 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1437 if (m->m_type == MT_OOBDATA) {
1438 if (type != MT_OOBDATA)
1439 break;
1440 } else if (type == MT_OOBDATA)
1441 break;
1442 #ifdef DIAGNOSTIC
1443 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1444 panic("receive 3");
1445 #endif
1446 so->so_state &= ~SS_RCVATMARK;
1447 wakeup_state = 0;
1448 len = uio->uio_resid;
1449 if (so->so_oobmark && len > so->so_oobmark - offset)
1450 len = so->so_oobmark - offset;
1451 if (len > m->m_len - moff)
1452 len = m->m_len - moff;
1453 /*
1454 * If mp is set, just pass back the mbufs.
1455 * Otherwise copy them out via the uio, then free.
1456 * Sockbuf must be consistent here (points to current mbuf,
1457 * it points to next record) when we drop priority;
1458 * we must note any additions to the sockbuf when we
1459 * block interrupts again.
1460 */
1461 if (mp == NULL) {
1462 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1463 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1464 sounlock(so);
1465 splx(s);
1466 error = uiomove(mtod(m, char *) + moff, len, uio);
1467 s = splsoftnet();
1468 solock(so);
1469 if (error != 0) {
1470 /*
1471 * If any part of the record has been removed
1472 * (such as the MT_SONAME mbuf, which will
1473 * happen when PR_ADDR, and thus also
1474 * PR_ATOMIC, is set), then drop the entire
1475 * record to maintain the atomicity of the
1476 * receive operation.
1477 *
1478 * This avoids a later panic("receive 1a")
1479 * when compiled with DIAGNOSTIC.
1480 */
1481 if (m && mbuf_removed && atomic)
1482 (void) sbdroprecord(&so->so_rcv);
1483
1484 goto release;
1485 }
1486 } else
1487 uio->uio_resid -= len;
1488 if (len == m->m_len - moff) {
1489 if (m->m_flags & M_EOR)
1490 flags |= MSG_EOR;
1491 #ifdef SCTP
1492 if (m->m_flags & M_NOTIFICATION)
1493 flags |= MSG_NOTIFICATION;
1494 #endif /* SCTP */
1495 if (flags & MSG_PEEK) {
1496 m = m->m_next;
1497 moff = 0;
1498 } else {
1499 nextrecord = m->m_nextpkt;
1500 sbfree(&so->so_rcv, m);
1501 if (mp) {
1502 *mp = m;
1503 mp = &m->m_next;
1504 so->so_rcv.sb_mb = m = m->m_next;
1505 *mp = NULL;
1506 } else {
1507 m = so->so_rcv.sb_mb = m_free(m);
1508 }
1509 /*
1510 * If m != NULL, we also know that
1511 * so->so_rcv.sb_mb != NULL.
1512 */
1513 KASSERT(so->so_rcv.sb_mb == m);
1514 if (m) {
1515 m->m_nextpkt = nextrecord;
1516 if (nextrecord == NULL)
1517 so->so_rcv.sb_lastrecord = m;
1518 } else {
1519 so->so_rcv.sb_mb = nextrecord;
1520 SB_EMPTY_FIXUP(&so->so_rcv);
1521 }
1522 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1523 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1524 }
1525 } else if (flags & MSG_PEEK)
1526 moff += len;
1527 else {
1528 if (mp != NULL) {
1529 mt = m_copym(m, 0, len, M_NOWAIT);
1530 if (__predict_false(mt == NULL)) {
1531 sounlock(so);
1532 mt = m_copym(m, 0, len, M_WAIT);
1533 solock(so);
1534 }
1535 *mp = mt;
1536 }
1537 m->m_data += len;
1538 m->m_len -= len;
1539 so->so_rcv.sb_cc -= len;
1540 }
1541 if (so->so_oobmark) {
1542 if ((flags & MSG_PEEK) == 0) {
1543 so->so_oobmark -= len;
1544 if (so->so_oobmark == 0) {
1545 so->so_state |= SS_RCVATMARK;
1546 break;
1547 }
1548 } else {
1549 offset += len;
1550 if (offset == so->so_oobmark)
1551 break;
1552 }
1553 }
1554 if (flags & MSG_EOR)
1555 break;
1556 /*
1557 * If the MSG_WAITALL flag is set (for non-atomic socket),
1558 * we must not quit until "uio->uio_resid == 0" or an error
1559 * termination. If a signal/timeout occurs, return
1560 * with a short count but without error.
1561 * Keep sockbuf locked against other readers.
1562 */
1563 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1564 !sosendallatonce(so) && !nextrecord) {
1565 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1566 break;
1567 /*
1568 * If we are peeking and the socket receive buffer is
1569 * full, stop since we can't get more data to peek at.
1570 */
1571 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1572 break;
1573 /*
1574 * If we've drained the socket buffer, tell the
1575 * protocol in case it needs to do something to
1576 * get it filled again.
1577 */
1578 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1579 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1580 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1581 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1582 if (wakeup_state & SS_RESTARTSYS)
1583 error = ERESTART;
1584 else
1585 error = sbwait(&so->so_rcv);
1586 if (error != 0) {
1587 sbunlock(&so->so_rcv);
1588 sounlock(so);
1589 splx(s);
1590 return 0;
1591 }
1592 if ((m = so->so_rcv.sb_mb) != NULL)
1593 nextrecord = m->m_nextpkt;
1594 wakeup_state = so->so_state;
1595 }
1596 }
1597
1598 if (m && atomic) {
1599 flags |= MSG_TRUNC;
1600 if ((flags & MSG_PEEK) == 0)
1601 (void) sbdroprecord(&so->so_rcv);
1602 }
1603 if ((flags & MSG_PEEK) == 0) {
1604 if (m == NULL) {
1605 /*
1606 * First part is an inline SB_EMPTY_FIXUP(). Second
1607 * part makes sure sb_lastrecord is up-to-date if
1608 * there is still data in the socket buffer.
1609 */
1610 so->so_rcv.sb_mb = nextrecord;
1611 if (so->so_rcv.sb_mb == NULL) {
1612 so->so_rcv.sb_mbtail = NULL;
1613 so->so_rcv.sb_lastrecord = NULL;
1614 } else if (nextrecord->m_nextpkt == NULL)
1615 so->so_rcv.sb_lastrecord = nextrecord;
1616 }
1617 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1618 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1619 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1620 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1621 }
1622 if (orig_resid == uio->uio_resid && orig_resid &&
1623 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1624 sbunlock(&so->so_rcv);
1625 goto restart;
1626 }
1627
1628 if (flagsp != NULL)
1629 *flagsp |= flags;
1630 release:
1631 sbunlock(&so->so_rcv);
1632 sounlock(so);
1633 splx(s);
1634 return error;
1635 }
1636
1637 int
1638 soshutdown(struct socket *so, int how)
1639 {
1640 const struct protosw *pr;
1641 int error;
1642
1643 KASSERT(solocked(so));
1644
1645 pr = so->so_proto;
1646 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1647 return (EINVAL);
1648
1649 if (how == SHUT_RD || how == SHUT_RDWR) {
1650 sorflush(so);
1651 error = 0;
1652 }
1653 if (how == SHUT_WR || how == SHUT_RDWR)
1654 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1655
1656 return error;
1657 }
1658
1659 void
1660 sorestart(struct socket *so)
1661 {
1662 /*
1663 * An application has called close() on an fd on which another
1664 * of its threads has called a socket system call.
1665 * Mark this and wake everyone up, and code that would block again
1666 * instead returns ERESTART.
1667 * On system call re-entry the fd is validated and EBADF returned.
1668 * Any other fd will block again on the 2nd syscall.
1669 */
1670 solock(so);
1671 so->so_state |= SS_RESTARTSYS;
1672 cv_broadcast(&so->so_cv);
1673 cv_broadcast(&so->so_snd.sb_cv);
1674 cv_broadcast(&so->so_rcv.sb_cv);
1675 sounlock(so);
1676 }
1677
1678 void
1679 sorflush(struct socket *so)
1680 {
1681 struct sockbuf *sb, asb;
1682 const struct protosw *pr;
1683
1684 KASSERT(solocked(so));
1685
1686 sb = &so->so_rcv;
1687 pr = so->so_proto;
1688 socantrcvmore(so);
1689 sb->sb_flags |= SB_NOINTR;
1690 (void )sblock(sb, M_WAITOK);
1691 sbunlock(sb);
1692 asb = *sb;
1693 /*
1694 * Clear most of the sockbuf structure, but leave some of the
1695 * fields valid.
1696 */
1697 memset(&sb->sb_startzero, 0,
1698 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1699 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1700 sounlock(so);
1701 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1702 solock(so);
1703 }
1704 sbrelease(&asb, so);
1705 }
1706
1707 /*
1708 * internal set SOL_SOCKET options
1709 */
1710 static int
1711 sosetopt1(struct socket *so, const struct sockopt *sopt)
1712 {
1713 int error = EINVAL, opt;
1714 int optval = 0; /* XXX: gcc */
1715 struct linger l;
1716 struct timeval tv;
1717
1718 switch ((opt = sopt->sopt_name)) {
1719
1720 case SO_ACCEPTFILTER:
1721 error = accept_filt_setopt(so, sopt);
1722 KASSERT(solocked(so));
1723 break;
1724
1725 case SO_LINGER:
1726 error = sockopt_get(sopt, &l, sizeof(l));
1727 solock(so);
1728 if (error)
1729 break;
1730 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1731 l.l_linger > (INT_MAX / hz)) {
1732 error = EDOM;
1733 break;
1734 }
1735 so->so_linger = l.l_linger;
1736 if (l.l_onoff)
1737 so->so_options |= SO_LINGER;
1738 else
1739 so->so_options &= ~SO_LINGER;
1740 break;
1741
1742 case SO_DEBUG:
1743 case SO_KEEPALIVE:
1744 case SO_DONTROUTE:
1745 case SO_USELOOPBACK:
1746 case SO_BROADCAST:
1747 case SO_REUSEADDR:
1748 case SO_REUSEPORT:
1749 case SO_OOBINLINE:
1750 case SO_TIMESTAMP:
1751 case SO_NOSIGPIPE:
1752 #ifdef SO_OTIMESTAMP
1753 case SO_OTIMESTAMP:
1754 #endif
1755 error = sockopt_getint(sopt, &optval);
1756 solock(so);
1757 if (error)
1758 break;
1759 if (optval)
1760 so->so_options |= opt;
1761 else
1762 so->so_options &= ~opt;
1763 break;
1764
1765 case SO_SNDBUF:
1766 case SO_RCVBUF:
1767 case SO_SNDLOWAT:
1768 case SO_RCVLOWAT:
1769 error = sockopt_getint(sopt, &optval);
1770 solock(so);
1771 if (error)
1772 break;
1773
1774 /*
1775 * Values < 1 make no sense for any of these
1776 * options, so disallow them.
1777 */
1778 if (optval < 1) {
1779 error = EINVAL;
1780 break;
1781 }
1782
1783 switch (opt) {
1784 case SO_SNDBUF:
1785 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1786 error = ENOBUFS;
1787 break;
1788 }
1789 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1790 break;
1791
1792 case SO_RCVBUF:
1793 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1794 error = ENOBUFS;
1795 break;
1796 }
1797 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1798 break;
1799
1800 /*
1801 * Make sure the low-water is never greater than
1802 * the high-water.
1803 */
1804 case SO_SNDLOWAT:
1805 if (optval > so->so_snd.sb_hiwat)
1806 optval = so->so_snd.sb_hiwat;
1807
1808 so->so_snd.sb_lowat = optval;
1809 break;
1810
1811 case SO_RCVLOWAT:
1812 if (optval > so->so_rcv.sb_hiwat)
1813 optval = so->so_rcv.sb_hiwat;
1814
1815 so->so_rcv.sb_lowat = optval;
1816 break;
1817 }
1818 break;
1819
1820 #ifdef COMPAT_50
1821 case SO_OSNDTIMEO:
1822 case SO_ORCVTIMEO: {
1823 struct timeval50 otv;
1824 error = sockopt_get(sopt, &otv, sizeof(otv));
1825 if (error) {
1826 solock(so);
1827 break;
1828 }
1829 timeval50_to_timeval(&otv, &tv);
1830 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1831 error = 0;
1832 /*FALLTHROUGH*/
1833 }
1834 #endif /* COMPAT_50 */
1835
1836 case SO_SNDTIMEO:
1837 case SO_RCVTIMEO:
1838 if (error)
1839 error = sockopt_get(sopt, &tv, sizeof(tv));
1840 solock(so);
1841 if (error)
1842 break;
1843
1844 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1845 error = EDOM;
1846 break;
1847 }
1848
1849 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1850 if (optval == 0 && tv.tv_usec != 0)
1851 optval = 1;
1852
1853 switch (opt) {
1854 case SO_SNDTIMEO:
1855 so->so_snd.sb_timeo = optval;
1856 break;
1857 case SO_RCVTIMEO:
1858 so->so_rcv.sb_timeo = optval;
1859 break;
1860 }
1861 break;
1862
1863 default:
1864 solock(so);
1865 error = ENOPROTOOPT;
1866 break;
1867 }
1868 KASSERT(solocked(so));
1869 return error;
1870 }
1871
1872 int
1873 sosetopt(struct socket *so, struct sockopt *sopt)
1874 {
1875 int error, prerr;
1876
1877 if (sopt->sopt_level == SOL_SOCKET) {
1878 error = sosetopt1(so, sopt);
1879 KASSERT(solocked(so));
1880 } else {
1881 error = ENOPROTOOPT;
1882 solock(so);
1883 }
1884
1885 if ((error == 0 || error == ENOPROTOOPT) &&
1886 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1887 /* give the protocol stack a shot */
1888 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1889 if (prerr == 0)
1890 error = 0;
1891 else if (prerr != ENOPROTOOPT)
1892 error = prerr;
1893 }
1894 sounlock(so);
1895 return error;
1896 }
1897
1898 /*
1899 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1900 */
1901 int
1902 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1903 const void *val, size_t valsize)
1904 {
1905 struct sockopt sopt;
1906 int error;
1907
1908 KASSERT(valsize == 0 || val != NULL);
1909
1910 sockopt_init(&sopt, level, name, valsize);
1911 sockopt_set(&sopt, val, valsize);
1912
1913 error = sosetopt(so, &sopt);
1914
1915 sockopt_destroy(&sopt);
1916
1917 return error;
1918 }
1919
1920 /*
1921 * internal get SOL_SOCKET options
1922 */
1923 static int
1924 sogetopt1(struct socket *so, struct sockopt *sopt)
1925 {
1926 int error, optval, opt;
1927 struct linger l;
1928 struct timeval tv;
1929
1930 switch ((opt = sopt->sopt_name)) {
1931
1932 case SO_ACCEPTFILTER:
1933 error = accept_filt_getopt(so, sopt);
1934 break;
1935
1936 case SO_LINGER:
1937 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1938 l.l_linger = so->so_linger;
1939
1940 error = sockopt_set(sopt, &l, sizeof(l));
1941 break;
1942
1943 case SO_USELOOPBACK:
1944 case SO_DONTROUTE:
1945 case SO_DEBUG:
1946 case SO_KEEPALIVE:
1947 case SO_REUSEADDR:
1948 case SO_REUSEPORT:
1949 case SO_BROADCAST:
1950 case SO_OOBINLINE:
1951 case SO_TIMESTAMP:
1952 case SO_NOSIGPIPE:
1953 #ifdef SO_OTIMESTAMP
1954 case SO_OTIMESTAMP:
1955 #endif
1956 case SO_ACCEPTCONN:
1957 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1958 break;
1959
1960 case SO_TYPE:
1961 error = sockopt_setint(sopt, so->so_type);
1962 break;
1963
1964 case SO_ERROR:
1965 error = sockopt_setint(sopt, so->so_error);
1966 so->so_error = 0;
1967 break;
1968
1969 case SO_SNDBUF:
1970 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1971 break;
1972
1973 case SO_RCVBUF:
1974 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1975 break;
1976
1977 case SO_SNDLOWAT:
1978 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1979 break;
1980
1981 case SO_RCVLOWAT:
1982 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1983 break;
1984
1985 #ifdef COMPAT_50
1986 case SO_OSNDTIMEO:
1987 case SO_ORCVTIMEO: {
1988 struct timeval50 otv;
1989
1990 optval = (opt == SO_OSNDTIMEO ?
1991 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1992
1993 otv.tv_sec = optval / hz;
1994 otv.tv_usec = (optval % hz) * tick;
1995
1996 error = sockopt_set(sopt, &otv, sizeof(otv));
1997 break;
1998 }
1999 #endif /* COMPAT_50 */
2000
2001 case SO_SNDTIMEO:
2002 case SO_RCVTIMEO:
2003 optval = (opt == SO_SNDTIMEO ?
2004 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2005
2006 tv.tv_sec = optval / hz;
2007 tv.tv_usec = (optval % hz) * tick;
2008
2009 error = sockopt_set(sopt, &tv, sizeof(tv));
2010 break;
2011
2012 case SO_OVERFLOWED:
2013 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2014 break;
2015
2016 default:
2017 error = ENOPROTOOPT;
2018 break;
2019 }
2020
2021 return (error);
2022 }
2023
2024 int
2025 sogetopt(struct socket *so, struct sockopt *sopt)
2026 {
2027 int error;
2028
2029 solock(so);
2030 if (sopt->sopt_level != SOL_SOCKET) {
2031 if (so->so_proto && so->so_proto->pr_ctloutput) {
2032 error = ((*so->so_proto->pr_ctloutput)
2033 (PRCO_GETOPT, so, sopt));
2034 } else
2035 error = (ENOPROTOOPT);
2036 } else {
2037 error = sogetopt1(so, sopt);
2038 }
2039 sounlock(so);
2040 return (error);
2041 }
2042
2043 /*
2044 * alloc sockopt data buffer buffer
2045 * - will be released at destroy
2046 */
2047 static int
2048 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2049 {
2050
2051 KASSERT(sopt->sopt_size == 0);
2052
2053 if (len > sizeof(sopt->sopt_buf)) {
2054 sopt->sopt_data = kmem_zalloc(len, kmflag);
2055 if (sopt->sopt_data == NULL)
2056 return ENOMEM;
2057 } else
2058 sopt->sopt_data = sopt->sopt_buf;
2059
2060 sopt->sopt_size = len;
2061 return 0;
2062 }
2063
2064 /*
2065 * initialise sockopt storage
2066 * - MAY sleep during allocation
2067 */
2068 void
2069 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2070 {
2071
2072 memset(sopt, 0, sizeof(*sopt));
2073
2074 sopt->sopt_level = level;
2075 sopt->sopt_name = name;
2076 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2077 }
2078
2079 /*
2080 * destroy sockopt storage
2081 * - will release any held memory references
2082 */
2083 void
2084 sockopt_destroy(struct sockopt *sopt)
2085 {
2086
2087 if (sopt->sopt_data != sopt->sopt_buf)
2088 kmem_free(sopt->sopt_data, sopt->sopt_size);
2089
2090 memset(sopt, 0, sizeof(*sopt));
2091 }
2092
2093 /*
2094 * set sockopt value
2095 * - value is copied into sockopt
2096 * - memory is allocated when necessary, will not sleep
2097 */
2098 int
2099 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2100 {
2101 int error;
2102
2103 if (sopt->sopt_size == 0) {
2104 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2105 if (error)
2106 return error;
2107 }
2108
2109 KASSERT(sopt->sopt_size == len);
2110 memcpy(sopt->sopt_data, buf, len);
2111 return 0;
2112 }
2113
2114 /*
2115 * common case of set sockopt integer value
2116 */
2117 int
2118 sockopt_setint(struct sockopt *sopt, int val)
2119 {
2120
2121 return sockopt_set(sopt, &val, sizeof(int));
2122 }
2123
2124 /*
2125 * get sockopt value
2126 * - correct size must be given
2127 */
2128 int
2129 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2130 {
2131
2132 if (sopt->sopt_size != len)
2133 return EINVAL;
2134
2135 memcpy(buf, sopt->sopt_data, len);
2136 return 0;
2137 }
2138
2139 /*
2140 * common case of get sockopt integer value
2141 */
2142 int
2143 sockopt_getint(const struct sockopt *sopt, int *valp)
2144 {
2145
2146 return sockopt_get(sopt, valp, sizeof(int));
2147 }
2148
2149 /*
2150 * set sockopt value from mbuf
2151 * - ONLY for legacy code
2152 * - mbuf is released by sockopt
2153 * - will not sleep
2154 */
2155 int
2156 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2157 {
2158 size_t len;
2159 int error;
2160
2161 len = m_length(m);
2162
2163 if (sopt->sopt_size == 0) {
2164 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2165 if (error)
2166 return error;
2167 }
2168
2169 KASSERT(sopt->sopt_size == len);
2170 m_copydata(m, 0, len, sopt->sopt_data);
2171 m_freem(m);
2172
2173 return 0;
2174 }
2175
2176 /*
2177 * get sockopt value into mbuf
2178 * - ONLY for legacy code
2179 * - mbuf to be released by the caller
2180 * - will not sleep
2181 */
2182 struct mbuf *
2183 sockopt_getmbuf(const struct sockopt *sopt)
2184 {
2185 struct mbuf *m;
2186
2187 if (sopt->sopt_size > MCLBYTES)
2188 return NULL;
2189
2190 m = m_get(M_DONTWAIT, MT_SOOPTS);
2191 if (m == NULL)
2192 return NULL;
2193
2194 if (sopt->sopt_size > MLEN) {
2195 MCLGET(m, M_DONTWAIT);
2196 if ((m->m_flags & M_EXT) == 0) {
2197 m_free(m);
2198 return NULL;
2199 }
2200 }
2201
2202 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2203 m->m_len = sopt->sopt_size;
2204
2205 return m;
2206 }
2207
2208 void
2209 sohasoutofband(struct socket *so)
2210 {
2211
2212 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2213 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2214 }
2215
2216 static void
2217 filt_sordetach(struct knote *kn)
2218 {
2219 struct socket *so;
2220
2221 so = ((file_t *)kn->kn_obj)->f_socket;
2222 solock(so);
2223 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2224 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2225 so->so_rcv.sb_flags &= ~SB_KNOTE;
2226 sounlock(so);
2227 }
2228
2229 /*ARGSUSED*/
2230 static int
2231 filt_soread(struct knote *kn, long hint)
2232 {
2233 struct socket *so;
2234 int rv;
2235
2236 so = ((file_t *)kn->kn_obj)->f_socket;
2237 if (hint != NOTE_SUBMIT)
2238 solock(so);
2239 kn->kn_data = so->so_rcv.sb_cc;
2240 if (so->so_state & SS_CANTRCVMORE) {
2241 kn->kn_flags |= EV_EOF;
2242 kn->kn_fflags = so->so_error;
2243 rv = 1;
2244 } else if (so->so_error) /* temporary udp error */
2245 rv = 1;
2246 else if (kn->kn_sfflags & NOTE_LOWAT)
2247 rv = (kn->kn_data >= kn->kn_sdata);
2248 else
2249 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2250 if (hint != NOTE_SUBMIT)
2251 sounlock(so);
2252 return rv;
2253 }
2254
2255 static void
2256 filt_sowdetach(struct knote *kn)
2257 {
2258 struct socket *so;
2259
2260 so = ((file_t *)kn->kn_obj)->f_socket;
2261 solock(so);
2262 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2263 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2264 so->so_snd.sb_flags &= ~SB_KNOTE;
2265 sounlock(so);
2266 }
2267
2268 /*ARGSUSED*/
2269 static int
2270 filt_sowrite(struct knote *kn, long hint)
2271 {
2272 struct socket *so;
2273 int rv;
2274
2275 so = ((file_t *)kn->kn_obj)->f_socket;
2276 if (hint != NOTE_SUBMIT)
2277 solock(so);
2278 kn->kn_data = sbspace(&so->so_snd);
2279 if (so->so_state & SS_CANTSENDMORE) {
2280 kn->kn_flags |= EV_EOF;
2281 kn->kn_fflags = so->so_error;
2282 rv = 1;
2283 } else if (so->so_error) /* temporary udp error */
2284 rv = 1;
2285 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2286 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2287 rv = 0;
2288 else if (kn->kn_sfflags & NOTE_LOWAT)
2289 rv = (kn->kn_data >= kn->kn_sdata);
2290 else
2291 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2292 if (hint != NOTE_SUBMIT)
2293 sounlock(so);
2294 return rv;
2295 }
2296
2297 /*ARGSUSED*/
2298 static int
2299 filt_solisten(struct knote *kn, long hint)
2300 {
2301 struct socket *so;
2302 int rv;
2303
2304 so = ((file_t *)kn->kn_obj)->f_socket;
2305
2306 /*
2307 * Set kn_data to number of incoming connections, not
2308 * counting partial (incomplete) connections.
2309 */
2310 if (hint != NOTE_SUBMIT)
2311 solock(so);
2312 kn->kn_data = so->so_qlen;
2313 rv = (kn->kn_data > 0);
2314 if (hint != NOTE_SUBMIT)
2315 sounlock(so);
2316 return rv;
2317 }
2318
2319 static const struct filterops solisten_filtops =
2320 { 1, NULL, filt_sordetach, filt_solisten };
2321 static const struct filterops soread_filtops =
2322 { 1, NULL, filt_sordetach, filt_soread };
2323 static const struct filterops sowrite_filtops =
2324 { 1, NULL, filt_sowdetach, filt_sowrite };
2325
2326 int
2327 soo_kqfilter(struct file *fp, struct knote *kn)
2328 {
2329 struct socket *so;
2330 struct sockbuf *sb;
2331
2332 so = ((file_t *)kn->kn_obj)->f_socket;
2333 solock(so);
2334 switch (kn->kn_filter) {
2335 case EVFILT_READ:
2336 if (so->so_options & SO_ACCEPTCONN)
2337 kn->kn_fop = &solisten_filtops;
2338 else
2339 kn->kn_fop = &soread_filtops;
2340 sb = &so->so_rcv;
2341 break;
2342 case EVFILT_WRITE:
2343 kn->kn_fop = &sowrite_filtops;
2344 sb = &so->so_snd;
2345 break;
2346 default:
2347 sounlock(so);
2348 return (EINVAL);
2349 }
2350 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2351 sb->sb_flags |= SB_KNOTE;
2352 sounlock(so);
2353 return (0);
2354 }
2355
2356 static int
2357 sodopoll(struct socket *so, int events)
2358 {
2359 int revents;
2360
2361 revents = 0;
2362
2363 if (events & (POLLIN | POLLRDNORM))
2364 if (soreadable(so))
2365 revents |= events & (POLLIN | POLLRDNORM);
2366
2367 if (events & (POLLOUT | POLLWRNORM))
2368 if (sowritable(so))
2369 revents |= events & (POLLOUT | POLLWRNORM);
2370
2371 if (events & (POLLPRI | POLLRDBAND))
2372 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2373 revents |= events & (POLLPRI | POLLRDBAND);
2374
2375 return revents;
2376 }
2377
2378 int
2379 sopoll(struct socket *so, int events)
2380 {
2381 int revents = 0;
2382
2383 #ifndef DIAGNOSTIC
2384 /*
2385 * Do a quick, unlocked check in expectation that the socket
2386 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2387 * as the solocked() assertions will fail.
2388 */
2389 if ((revents = sodopoll(so, events)) != 0)
2390 return revents;
2391 #endif
2392
2393 solock(so);
2394 if ((revents = sodopoll(so, events)) == 0) {
2395 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2396 selrecord(curlwp, &so->so_rcv.sb_sel);
2397 so->so_rcv.sb_flags |= SB_NOTIFY;
2398 }
2399
2400 if (events & (POLLOUT | POLLWRNORM)) {
2401 selrecord(curlwp, &so->so_snd.sb_sel);
2402 so->so_snd.sb_flags |= SB_NOTIFY;
2403 }
2404 }
2405 sounlock(so);
2406
2407 return revents;
2408 }
2409
2410
2411 #include <sys/sysctl.h>
2412
2413 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2414 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2415
2416 /*
2417 * sysctl helper routine for kern.somaxkva. ensures that the given
2418 * value is not too small.
2419 * (XXX should we maybe make sure it's not too large as well?)
2420 */
2421 static int
2422 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2423 {
2424 int error, new_somaxkva;
2425 struct sysctlnode node;
2426
2427 new_somaxkva = somaxkva;
2428 node = *rnode;
2429 node.sysctl_data = &new_somaxkva;
2430 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2431 if (error || newp == NULL)
2432 return (error);
2433
2434 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2435 return (EINVAL);
2436
2437 mutex_enter(&so_pendfree_lock);
2438 somaxkva = new_somaxkva;
2439 cv_broadcast(&socurkva_cv);
2440 mutex_exit(&so_pendfree_lock);
2441
2442 return (error);
2443 }
2444
2445 /*
2446 * sysctl helper routine for kern.sbmax. Basically just ensures that
2447 * any new value is not too small.
2448 */
2449 static int
2450 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2451 {
2452 int error, new_sbmax;
2453 struct sysctlnode node;
2454
2455 new_sbmax = sb_max;
2456 node = *rnode;
2457 node.sysctl_data = &new_sbmax;
2458 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2459 if (error || newp == NULL)
2460 return (error);
2461
2462 KERNEL_LOCK(1, NULL);
2463 error = sb_max_set(new_sbmax);
2464 KERNEL_UNLOCK_ONE(NULL);
2465
2466 return (error);
2467 }
2468
2469 static void
2470 sysctl_kern_socket_setup(void)
2471 {
2472
2473 KASSERT(socket_sysctllog == NULL);
2474
2475 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2476 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2477 CTLTYPE_INT, "somaxkva",
2478 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2479 "used for socket buffers"),
2480 sysctl_kern_somaxkva, 0, NULL, 0,
2481 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2482
2483 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2484 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2485 CTLTYPE_INT, "sbmax",
2486 SYSCTL_DESCR("Maximum socket buffer size"),
2487 sysctl_kern_sbmax, 0, NULL, 0,
2488 CTL_KERN, KERN_SBMAX, CTL_EOL);
2489 }
2490