Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.252.6.1
      1 /*	$NetBSD: uipc_socket.c,v 1.252.6.1 2017/05/02 03:19:22 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.252.6.1 2017/05/02 03:19:22 pgoyette Exp $");
     75 
     76 #ifdef _KERNEL_OPT
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_sock_counters.h"
     79 #include "opt_sosend_loan.h"
     80 #include "opt_mbuftrace.h"
     81 #include "opt_somaxkva.h"
     82 #include "opt_multiprocessor.h"	/* XXX */
     83 #include "opt_sctp.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/file.h>
     90 #include <sys/filedesc.h>
     91 #include <sys/kmem.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/domain.h>
     94 #include <sys/kernel.h>
     95 #include <sys/protosw.h>
     96 #include <sys/socket.h>
     97 #include <sys/socketvar.h>
     98 #include <sys/signalvar.h>
     99 #include <sys/resourcevar.h>
    100 #include <sys/uidinfo.h>
    101 #include <sys/event.h>
    102 #include <sys/poll.h>
    103 #include <sys/kauth.h>
    104 #include <sys/mutex.h>
    105 #include <sys/condvar.h>
    106 #include <sys/kthread.h>
    107 
    108 #ifdef COMPAT_50
    109 #include <compat/sys/time.h>
    110 #include <compat/sys/socket.h>
    111 #endif
    112 
    113 #include <uvm/uvm_extern.h>
    114 #include <uvm/uvm_loan.h>
    115 #include <uvm/uvm_page.h>
    116 
    117 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    118 
    119 extern const struct fileops socketops;
    120 
    121 extern int	somaxconn;			/* patchable (XXX sysctl) */
    122 int		somaxconn = SOMAXCONN;
    123 kmutex_t	*softnet_lock;
    124 
    125 #ifdef SOSEND_COUNTERS
    126 #include <sys/device.h>
    127 
    128 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    129     NULL, "sosend", "loan big");
    130 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    131     NULL, "sosend", "copy big");
    132 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    133     NULL, "sosend", "copy small");
    134 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    135     NULL, "sosend", "kva limit");
    136 
    137 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    138 
    139 EVCNT_ATTACH_STATIC(sosend_loan_big);
    140 EVCNT_ATTACH_STATIC(sosend_copy_big);
    141 EVCNT_ATTACH_STATIC(sosend_copy_small);
    142 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    143 #else
    144 
    145 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    146 
    147 #endif /* SOSEND_COUNTERS */
    148 
    149 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    150 int sock_loan_thresh = -1;
    151 #else
    152 int sock_loan_thresh = 4096;
    153 #endif
    154 
    155 static kmutex_t so_pendfree_lock;
    156 static struct mbuf *so_pendfree = NULL;
    157 
    158 #ifndef SOMAXKVA
    159 #define	SOMAXKVA (16 * 1024 * 1024)
    160 #endif
    161 int somaxkva = SOMAXKVA;
    162 static int socurkva;
    163 static kcondvar_t socurkva_cv;
    164 
    165 static kauth_listener_t socket_listener;
    166 
    167 #define	SOCK_LOAN_CHUNK		65536
    168 
    169 static void sopendfree_thread(void *);
    170 static kcondvar_t pendfree_thread_cv;
    171 static lwp_t *sopendfree_lwp;
    172 
    173 static void sysctl_kern_socket_setup(void);
    174 static struct sysctllog *socket_sysctllog;
    175 
    176 static vsize_t
    177 sokvareserve(struct socket *so, vsize_t len)
    178 {
    179 	int error;
    180 
    181 	mutex_enter(&so_pendfree_lock);
    182 	while (socurkva + len > somaxkva) {
    183 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    184 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    185 		if (error) {
    186 			len = 0;
    187 			break;
    188 		}
    189 	}
    190 	socurkva += len;
    191 	mutex_exit(&so_pendfree_lock);
    192 	return len;
    193 }
    194 
    195 static void
    196 sokvaunreserve(vsize_t len)
    197 {
    198 
    199 	mutex_enter(&so_pendfree_lock);
    200 	socurkva -= len;
    201 	cv_broadcast(&socurkva_cv);
    202 	mutex_exit(&so_pendfree_lock);
    203 }
    204 
    205 /*
    206  * sokvaalloc: allocate kva for loan.
    207  */
    208 
    209 vaddr_t
    210 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    211 {
    212 	vaddr_t lva;
    213 
    214 	/*
    215 	 * reserve kva.
    216 	 */
    217 
    218 	if (sokvareserve(so, len) == 0)
    219 		return 0;
    220 
    221 	/*
    222 	 * allocate kva.
    223 	 */
    224 
    225 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    226 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    227 	if (lva == 0) {
    228 		sokvaunreserve(len);
    229 		return (0);
    230 	}
    231 
    232 	return lva;
    233 }
    234 
    235 /*
    236  * sokvafree: free kva for loan.
    237  */
    238 
    239 void
    240 sokvafree(vaddr_t sva, vsize_t len)
    241 {
    242 
    243 	/*
    244 	 * free kva.
    245 	 */
    246 
    247 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    248 
    249 	/*
    250 	 * unreserve kva.
    251 	 */
    252 
    253 	sokvaunreserve(len);
    254 }
    255 
    256 static void
    257 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    258 {
    259 	vaddr_t sva, eva;
    260 	vsize_t len;
    261 	int npgs;
    262 
    263 	KASSERT(pgs != NULL);
    264 
    265 	eva = round_page((vaddr_t) buf + size);
    266 	sva = trunc_page((vaddr_t) buf);
    267 	len = eva - sva;
    268 	npgs = len >> PAGE_SHIFT;
    269 
    270 	pmap_kremove(sva, len);
    271 	pmap_update(pmap_kernel());
    272 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    273 	sokvafree(sva, len);
    274 }
    275 
    276 /*
    277  * sopendfree_thread: free mbufs on "pendfree" list.
    278  * unlock and relock so_pendfree_lock when freeing mbufs.
    279  */
    280 
    281 static void
    282 sopendfree_thread(void *v)
    283 {
    284 	struct mbuf *m, *next;
    285 	size_t rv;
    286 
    287 	mutex_enter(&so_pendfree_lock);
    288 
    289 	for (;;) {
    290 		rv = 0;
    291 		while (so_pendfree != NULL) {
    292 			m = so_pendfree;
    293 			so_pendfree = NULL;
    294 			mutex_exit(&so_pendfree_lock);
    295 
    296 			for (; m != NULL; m = next) {
    297 				next = m->m_next;
    298 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
    299 				    0);
    300 				KASSERT(m->m_ext.ext_refcnt == 0);
    301 
    302 				rv += m->m_ext.ext_size;
    303 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    304 				    m->m_ext.ext_size);
    305 				pool_cache_put(mb_cache, m);
    306 			}
    307 
    308 			mutex_enter(&so_pendfree_lock);
    309 		}
    310 		if (rv)
    311 			cv_broadcast(&socurkva_cv);
    312 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    313 	}
    314 	panic("sopendfree_thread");
    315 	/* NOTREACHED */
    316 }
    317 
    318 void
    319 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    320 {
    321 
    322 	KASSERT(m != NULL);
    323 
    324 	/*
    325 	 * postpone freeing mbuf.
    326 	 *
    327 	 * we can't do it in interrupt context
    328 	 * because we need to put kva back to kernel_map.
    329 	 */
    330 
    331 	mutex_enter(&so_pendfree_lock);
    332 	m->m_next = so_pendfree;
    333 	so_pendfree = m;
    334 	cv_signal(&pendfree_thread_cv);
    335 	mutex_exit(&so_pendfree_lock);
    336 }
    337 
    338 static long
    339 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    340 {
    341 	struct iovec *iov = uio->uio_iov;
    342 	vaddr_t sva, eva;
    343 	vsize_t len;
    344 	vaddr_t lva;
    345 	int npgs, error;
    346 	vaddr_t va;
    347 	int i;
    348 
    349 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    350 		return (0);
    351 
    352 	if (iov->iov_len < (size_t) space)
    353 		space = iov->iov_len;
    354 	if (space > SOCK_LOAN_CHUNK)
    355 		space = SOCK_LOAN_CHUNK;
    356 
    357 	eva = round_page((vaddr_t) iov->iov_base + space);
    358 	sva = trunc_page((vaddr_t) iov->iov_base);
    359 	len = eva - sva;
    360 	npgs = len >> PAGE_SHIFT;
    361 
    362 	KASSERT(npgs <= M_EXT_MAXPAGES);
    363 
    364 	lva = sokvaalloc(sva, len, so);
    365 	if (lva == 0)
    366 		return 0;
    367 
    368 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    369 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    370 	if (error) {
    371 		sokvafree(lva, len);
    372 		return (0);
    373 	}
    374 
    375 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    376 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    377 		    VM_PROT_READ, 0);
    378 	pmap_update(pmap_kernel());
    379 
    380 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    381 
    382 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    383 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    384 
    385 	uio->uio_resid -= space;
    386 	/* uio_offset not updated, not set/used for write(2) */
    387 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    388 	uio->uio_iov->iov_len -= space;
    389 	if (uio->uio_iov->iov_len == 0) {
    390 		uio->uio_iov++;
    391 		uio->uio_iovcnt--;
    392 	}
    393 
    394 	return (space);
    395 }
    396 
    397 struct mbuf *
    398 getsombuf(struct socket *so, int type)
    399 {
    400 	struct mbuf *m;
    401 
    402 	m = m_get(M_WAIT, type);
    403 	MCLAIM(m, so->so_mowner);
    404 	return m;
    405 }
    406 
    407 static int
    408 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    409     void *arg0, void *arg1, void *arg2, void *arg3)
    410 {
    411 	int result;
    412 	enum kauth_network_req req;
    413 
    414 	result = KAUTH_RESULT_DEFER;
    415 	req = (enum kauth_network_req)arg0;
    416 
    417 	if ((action != KAUTH_NETWORK_SOCKET) &&
    418 	    (action != KAUTH_NETWORK_BIND))
    419 		return result;
    420 
    421 	switch (req) {
    422 	case KAUTH_REQ_NETWORK_BIND_PORT:
    423 		result = KAUTH_RESULT_ALLOW;
    424 		break;
    425 
    426 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    427 		/* Normal users can only drop their own connections. */
    428 		struct socket *so = (struct socket *)arg1;
    429 
    430 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    431 			result = KAUTH_RESULT_ALLOW;
    432 
    433 		break;
    434 		}
    435 
    436 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    437 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    438 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    439 		    || (u_long)arg1 == PF_BLUETOOTH) {
    440 			result = KAUTH_RESULT_ALLOW;
    441 		} else {
    442 			/* Privileged, let secmodel handle this. */
    443 			if ((u_long)arg2 == SOCK_RAW)
    444 				break;
    445 		}
    446 
    447 		result = KAUTH_RESULT_ALLOW;
    448 
    449 		break;
    450 
    451 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    452 		result = KAUTH_RESULT_ALLOW;
    453 
    454 		break;
    455 
    456 	default:
    457 		break;
    458 	}
    459 
    460 	return result;
    461 }
    462 
    463 void
    464 soinit(void)
    465 {
    466 
    467 	sysctl_kern_socket_setup();
    468 
    469 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    470 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    471 	cv_init(&socurkva_cv, "sokva");
    472 	cv_init(&pendfree_thread_cv, "sopendfr");
    473 	soinit2();
    474 
    475 	/* Set the initial adjusted socket buffer size. */
    476 	if (sb_max_set(sb_max))
    477 		panic("bad initial sb_max value: %lu", sb_max);
    478 
    479 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    480 	    socket_listener_cb, NULL);
    481 }
    482 
    483 void
    484 soinit1(void)
    485 {
    486 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    487 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    488 	if (error)
    489 		panic("soinit1 %d", error);
    490 }
    491 
    492 /*
    493  * socreate: create a new socket of the specified type and the protocol.
    494  *
    495  * => Caller may specify another socket for lock sharing (must not be held).
    496  * => Returns the new socket without lock held.
    497  */
    498 int
    499 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    500 	 struct socket *lockso)
    501 {
    502 	const struct protosw	*prp;
    503 	struct socket	*so;
    504 	uid_t		uid;
    505 	int		error;
    506 	kmutex_t	*lock;
    507 
    508 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    509 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    510 	    KAUTH_ARG(proto));
    511 	if (error != 0)
    512 		return error;
    513 
    514 	if (proto)
    515 		prp = pffindproto(dom, proto, type);
    516 	else
    517 		prp = pffindtype(dom, type);
    518 	if (prp == NULL) {
    519 		/* no support for domain */
    520 		if (pffinddomain(dom) == 0)
    521 			return EAFNOSUPPORT;
    522 		/* no support for socket type */
    523 		if (proto == 0 && type != 0)
    524 			return EPROTOTYPE;
    525 		return EPROTONOSUPPORT;
    526 	}
    527 	if (prp->pr_usrreqs == NULL)
    528 		return EPROTONOSUPPORT;
    529 	if (prp->pr_type != type)
    530 		return EPROTOTYPE;
    531 
    532 	so = soget(true);
    533 	so->so_type = type;
    534 	so->so_proto = prp;
    535 	so->so_send = sosend;
    536 	so->so_receive = soreceive;
    537 #ifdef MBUFTRACE
    538 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    539 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    540 	so->so_mowner = &prp->pr_domain->dom_mowner;
    541 #endif
    542 	uid = kauth_cred_geteuid(l->l_cred);
    543 	so->so_uidinfo = uid_find(uid);
    544 	so->so_cpid = l->l_proc->p_pid;
    545 
    546 	/*
    547 	 * Lock assigned and taken during PCB attach, unless we share
    548 	 * the lock with another socket, e.g. socketpair(2) case.
    549 	 */
    550 	if (lockso) {
    551 		lock = lockso->so_lock;
    552 		so->so_lock = lock;
    553 		mutex_obj_hold(lock);
    554 		mutex_enter(lock);
    555 	}
    556 
    557 	/* Attach the PCB (returns with the socket lock held). */
    558 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    559 	KASSERT(solocked(so));
    560 
    561 	if (error) {
    562 		KASSERT(so->so_pcb == NULL);
    563 		so->so_state |= SS_NOFDREF;
    564 		sofree(so);
    565 		return error;
    566 	}
    567 	so->so_cred = kauth_cred_dup(l->l_cred);
    568 	sounlock(so);
    569 
    570 	*aso = so;
    571 	return 0;
    572 }
    573 
    574 /*
    575  * fsocreate: create a socket and a file descriptor associated with it.
    576  *
    577  * => On success, write file descriptor to fdout and return zero.
    578  * => On failure, return non-zero; *fdout will be undefined.
    579  */
    580 int
    581 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    582 {
    583 	lwp_t *l = curlwp;
    584 	int error, fd, flags;
    585 	struct socket *so;
    586 	struct file *fp;
    587 
    588 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    589 		return error;
    590 	}
    591 	flags = type & SOCK_FLAGS_MASK;
    592 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    593 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    594 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    595 	fp->f_type = DTYPE_SOCKET;
    596 	fp->f_ops = &socketops;
    597 
    598 	type &= ~SOCK_FLAGS_MASK;
    599 	error = socreate(domain, &so, type, proto, l, NULL);
    600 	if (error) {
    601 		fd_abort(curproc, fp, fd);
    602 		return error;
    603 	}
    604 	if (flags & SOCK_NONBLOCK) {
    605 		so->so_state |= SS_NBIO;
    606 	}
    607 	fp->f_socket = so;
    608 	fd_affix(curproc, fp, fd);
    609 
    610 	if (sop != NULL) {
    611 		*sop = so;
    612 	}
    613 	*fdout = fd;
    614 	return error;
    615 }
    616 
    617 int
    618 sofamily(const struct socket *so)
    619 {
    620 	const struct protosw *pr;
    621 	const struct domain *dom;
    622 
    623 	if ((pr = so->so_proto) == NULL)
    624 		return AF_UNSPEC;
    625 	if ((dom = pr->pr_domain) == NULL)
    626 		return AF_UNSPEC;
    627 	return dom->dom_family;
    628 }
    629 
    630 int
    631 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    632 {
    633 	int	error;
    634 
    635 	solock(so);
    636 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    637 		sounlock(so);
    638 		return EAFNOSUPPORT;
    639 	}
    640 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    641 	sounlock(so);
    642 	return error;
    643 }
    644 
    645 int
    646 solisten(struct socket *so, int backlog, struct lwp *l)
    647 {
    648 	int	error;
    649 	short	oldopt, oldqlimit;
    650 
    651 	solock(so);
    652 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    653 	    SS_ISDISCONNECTING)) != 0) {
    654 		sounlock(so);
    655 		return EINVAL;
    656 	}
    657 	oldopt = so->so_options;
    658 	oldqlimit = so->so_qlimit;
    659 	if (TAILQ_EMPTY(&so->so_q))
    660 		so->so_options |= SO_ACCEPTCONN;
    661 	if (backlog < 0)
    662 		backlog = 0;
    663 	so->so_qlimit = min(backlog, somaxconn);
    664 
    665 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    666 	if (error != 0) {
    667 		so->so_options = oldopt;
    668 		so->so_qlimit = oldqlimit;
    669 		sounlock(so);
    670 		return error;
    671 	}
    672 	sounlock(so);
    673 	return 0;
    674 }
    675 
    676 void
    677 sofree(struct socket *so)
    678 {
    679 	u_int refs;
    680 
    681 	KASSERT(solocked(so));
    682 
    683 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    684 		sounlock(so);
    685 		return;
    686 	}
    687 	if (so->so_head) {
    688 		/*
    689 		 * We must not decommission a socket that's on the accept(2)
    690 		 * queue.  If we do, then accept(2) may hang after select(2)
    691 		 * indicated that the listening socket was ready.
    692 		 */
    693 		if (!soqremque(so, 0)) {
    694 			sounlock(so);
    695 			return;
    696 		}
    697 	}
    698 	if (so->so_rcv.sb_hiwat)
    699 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    700 		    RLIM_INFINITY);
    701 	if (so->so_snd.sb_hiwat)
    702 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    703 		    RLIM_INFINITY);
    704 	sbrelease(&so->so_snd, so);
    705 	KASSERT(!cv_has_waiters(&so->so_cv));
    706 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    707 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    708 	sorflush(so);
    709 	refs = so->so_aborting;	/* XXX */
    710 	/* Remove acccept filter if one is present. */
    711 	if (so->so_accf != NULL)
    712 		(void)accept_filt_clear(so);
    713 	sounlock(so);
    714 	if (refs == 0)		/* XXX */
    715 		soput(so);
    716 }
    717 
    718 /*
    719  * soclose: close a socket on last file table reference removal.
    720  * Initiate disconnect if connected.  Free socket when disconnect complete.
    721  */
    722 int
    723 soclose(struct socket *so)
    724 {
    725 	struct socket *so2;
    726 	int error = 0;
    727 
    728 	solock(so);
    729 	if (so->so_options & SO_ACCEPTCONN) {
    730 		for (;;) {
    731 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    732 				KASSERT(solocked2(so, so2));
    733 				(void) soqremque(so2, 0);
    734 				/* soabort drops the lock. */
    735 				(void) soabort(so2);
    736 				solock(so);
    737 				continue;
    738 			}
    739 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    740 				KASSERT(solocked2(so, so2));
    741 				(void) soqremque(so2, 1);
    742 				/* soabort drops the lock. */
    743 				(void) soabort(so2);
    744 				solock(so);
    745 				continue;
    746 			}
    747 			break;
    748 		}
    749 	}
    750 	if (so->so_pcb == NULL)
    751 		goto discard;
    752 	if (so->so_state & SS_ISCONNECTED) {
    753 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    754 			error = sodisconnect(so);
    755 			if (error)
    756 				goto drop;
    757 		}
    758 		if (so->so_options & SO_LINGER) {
    759 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    760 			    (SS_ISDISCONNECTING|SS_NBIO))
    761 				goto drop;
    762 			while (so->so_state & SS_ISCONNECTED) {
    763 				error = sowait(so, true, so->so_linger * hz);
    764 				if (error)
    765 					break;
    766 			}
    767 		}
    768 	}
    769  drop:
    770 	if (so->so_pcb) {
    771 		KASSERT(solocked(so));
    772 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    773 	}
    774  discard:
    775 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    776 	kauth_cred_free(so->so_cred);
    777 	so->so_state |= SS_NOFDREF;
    778 	sofree(so);
    779 	return error;
    780 }
    781 
    782 /*
    783  * Must be called with the socket locked..  Will return with it unlocked.
    784  */
    785 int
    786 soabort(struct socket *so)
    787 {
    788 	u_int refs;
    789 	int error;
    790 
    791 	KASSERT(solocked(so));
    792 	KASSERT(so->so_head == NULL);
    793 
    794 	so->so_aborting++;		/* XXX */
    795 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    796 	refs = --so->so_aborting;	/* XXX */
    797 	if (error || (refs == 0)) {
    798 		sofree(so);
    799 	} else {
    800 		sounlock(so);
    801 	}
    802 	return error;
    803 }
    804 
    805 int
    806 soaccept(struct socket *so, struct sockaddr *nam)
    807 {
    808 	int error;
    809 
    810 	KASSERT(solocked(so));
    811 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    812 
    813 	so->so_state &= ~SS_NOFDREF;
    814 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    815 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    816 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    817 	else
    818 		error = ECONNABORTED;
    819 
    820 	return error;
    821 }
    822 
    823 int
    824 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    825 {
    826 	int error;
    827 
    828 	KASSERT(solocked(so));
    829 
    830 	if (so->so_options & SO_ACCEPTCONN)
    831 		return EOPNOTSUPP;
    832 	/*
    833 	 * If protocol is connection-based, can only connect once.
    834 	 * Otherwise, if connected, try to disconnect first.
    835 	 * This allows user to disconnect by connecting to, e.g.,
    836 	 * a null address.
    837 	 */
    838 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    839 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    840 	    (error = sodisconnect(so)))) {
    841 		error = EISCONN;
    842 	} else {
    843 		if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    844 			return EAFNOSUPPORT;
    845 		}
    846 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    847 	}
    848 
    849 	return error;
    850 }
    851 
    852 int
    853 soconnect2(struct socket *so1, struct socket *so2)
    854 {
    855 	KASSERT(solocked2(so1, so2));
    856 
    857 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    858 }
    859 
    860 int
    861 sodisconnect(struct socket *so)
    862 {
    863 	int	error;
    864 
    865 	KASSERT(solocked(so));
    866 
    867 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    868 		error = ENOTCONN;
    869 	} else if (so->so_state & SS_ISDISCONNECTING) {
    870 		error = EALREADY;
    871 	} else {
    872 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    873 	}
    874 	return (error);
    875 }
    876 
    877 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    878 /*
    879  * Send on a socket.
    880  * If send must go all at once and message is larger than
    881  * send buffering, then hard error.
    882  * Lock against other senders.
    883  * If must go all at once and not enough room now, then
    884  * inform user that this would block and do nothing.
    885  * Otherwise, if nonblocking, send as much as possible.
    886  * The data to be sent is described by "uio" if nonzero,
    887  * otherwise by the mbuf chain "top" (which must be null
    888  * if uio is not).  Data provided in mbuf chain must be small
    889  * enough to send all at once.
    890  *
    891  * Returns nonzero on error, timeout or signal; callers
    892  * must check for short counts if EINTR/ERESTART are returned.
    893  * Data and control buffers are freed on return.
    894  */
    895 int
    896 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
    897 	struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
    898 {
    899 	struct mbuf	**mp, *m;
    900 	long		space, len, resid, clen, mlen;
    901 	int		error, s, dontroute, atomic;
    902 	short		wakeup_state = 0;
    903 
    904 	clen = 0;
    905 
    906 	/*
    907 	 * solock() provides atomicity of access.  splsoftnet() prevents
    908 	 * protocol processing soft interrupts from interrupting us and
    909 	 * blocking (expensive).
    910 	 */
    911 	s = splsoftnet();
    912 	solock(so);
    913 	atomic = sosendallatonce(so) || top;
    914 	if (uio)
    915 		resid = uio->uio_resid;
    916 	else
    917 		resid = top->m_pkthdr.len;
    918 	/*
    919 	 * In theory resid should be unsigned.
    920 	 * However, space must be signed, as it might be less than 0
    921 	 * if we over-committed, and we must use a signed comparison
    922 	 * of space and resid.  On the other hand, a negative resid
    923 	 * causes us to loop sending 0-length segments to the protocol.
    924 	 */
    925 	if (resid < 0) {
    926 		error = EINVAL;
    927 		goto out;
    928 	}
    929 	dontroute =
    930 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    931 	    (so->so_proto->pr_flags & PR_ATOMIC);
    932 	l->l_ru.ru_msgsnd++;
    933 	if (control)
    934 		clen = control->m_len;
    935  restart:
    936 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    937 		goto out;
    938 	do {
    939 		if (so->so_state & SS_CANTSENDMORE) {
    940 			error = EPIPE;
    941 			goto release;
    942 		}
    943 		if (so->so_error) {
    944 			error = so->so_error;
    945 			so->so_error = 0;
    946 			goto release;
    947 		}
    948 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    949 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    950 				if (resid || clen == 0) {
    951 					error = ENOTCONN;
    952 					goto release;
    953 				}
    954 			} else if (addr == NULL) {
    955 				error = EDESTADDRREQ;
    956 				goto release;
    957 			}
    958 		}
    959 		space = sbspace(&so->so_snd);
    960 		if (flags & MSG_OOB)
    961 			space += 1024;
    962 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    963 		    clen > so->so_snd.sb_hiwat) {
    964 			error = EMSGSIZE;
    965 			goto release;
    966 		}
    967 		if (space < resid + clen &&
    968 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    969 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    970 				error = EWOULDBLOCK;
    971 				goto release;
    972 			}
    973 			sbunlock(&so->so_snd);
    974 			if (wakeup_state & SS_RESTARTSYS) {
    975 				error = ERESTART;
    976 				goto out;
    977 			}
    978 			error = sbwait(&so->so_snd);
    979 			if (error)
    980 				goto out;
    981 			wakeup_state = so->so_state;
    982 			goto restart;
    983 		}
    984 		wakeup_state = 0;
    985 		mp = &top;
    986 		space -= clen;
    987 		do {
    988 			if (uio == NULL) {
    989 				/*
    990 				 * Data is prepackaged in "top".
    991 				 */
    992 				resid = 0;
    993 				if (flags & MSG_EOR)
    994 					top->m_flags |= M_EOR;
    995 			} else do {
    996 				sounlock(so);
    997 				splx(s);
    998 				if (top == NULL) {
    999 					m = m_gethdr(M_WAIT, MT_DATA);
   1000 					mlen = MHLEN;
   1001 					m->m_pkthdr.len = 0;
   1002 					m_reset_rcvif(m);
   1003 				} else {
   1004 					m = m_get(M_WAIT, MT_DATA);
   1005 					mlen = MLEN;
   1006 				}
   1007 				MCLAIM(m, so->so_snd.sb_mowner);
   1008 				if (sock_loan_thresh >= 0 &&
   1009 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1010 				    space >= sock_loan_thresh &&
   1011 				    (len = sosend_loan(so, uio, m,
   1012 						       space)) != 0) {
   1013 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1014 					space -= len;
   1015 					goto have_data;
   1016 				}
   1017 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1018 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1019 					m_clget(m, M_DONTWAIT);
   1020 					if ((m->m_flags & M_EXT) == 0)
   1021 						goto nopages;
   1022 					mlen = MCLBYTES;
   1023 					if (atomic && top == 0) {
   1024 						len = lmin(MCLBYTES - max_hdr,
   1025 						    resid);
   1026 						m->m_data += max_hdr;
   1027 					} else
   1028 						len = lmin(MCLBYTES, resid);
   1029 					space -= len;
   1030 				} else {
   1031  nopages:
   1032 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1033 					len = lmin(lmin(mlen, resid), space);
   1034 					space -= len;
   1035 					/*
   1036 					 * For datagram protocols, leave room
   1037 					 * for protocol headers in first mbuf.
   1038 					 */
   1039 					if (atomic && top == 0 && len < mlen)
   1040 						MH_ALIGN(m, len);
   1041 				}
   1042 				error = uiomove(mtod(m, void *), (int)len, uio);
   1043  have_data:
   1044 				resid = uio->uio_resid;
   1045 				m->m_len = len;
   1046 				*mp = m;
   1047 				top->m_pkthdr.len += len;
   1048 				s = splsoftnet();
   1049 				solock(so);
   1050 				if (error != 0)
   1051 					goto release;
   1052 				mp = &m->m_next;
   1053 				if (resid <= 0) {
   1054 					if (flags & MSG_EOR)
   1055 						top->m_flags |= M_EOR;
   1056 					break;
   1057 				}
   1058 			} while (space > 0 && atomic);
   1059 
   1060 			if (so->so_state & SS_CANTSENDMORE) {
   1061 				error = EPIPE;
   1062 				goto release;
   1063 			}
   1064 			if (dontroute)
   1065 				so->so_options |= SO_DONTROUTE;
   1066 			if (resid > 0)
   1067 				so->so_state |= SS_MORETOCOME;
   1068 			if (flags & MSG_OOB) {
   1069 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
   1070 				    so, top, control);
   1071 			} else {
   1072 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1073 				    top, addr, control, l);
   1074 			}
   1075 			if (dontroute)
   1076 				so->so_options &= ~SO_DONTROUTE;
   1077 			if (resid > 0)
   1078 				so->so_state &= ~SS_MORETOCOME;
   1079 			clen = 0;
   1080 			control = NULL;
   1081 			top = NULL;
   1082 			mp = &top;
   1083 			if (error != 0)
   1084 				goto release;
   1085 		} while (resid && space > 0);
   1086 	} while (resid);
   1087 
   1088  release:
   1089 	sbunlock(&so->so_snd);
   1090  out:
   1091 	sounlock(so);
   1092 	splx(s);
   1093 	if (top)
   1094 		m_freem(top);
   1095 	if (control)
   1096 		m_freem(control);
   1097 	return (error);
   1098 }
   1099 
   1100 /*
   1101  * Following replacement or removal of the first mbuf on the first
   1102  * mbuf chain of a socket buffer, push necessary state changes back
   1103  * into the socket buffer so that other consumers see the values
   1104  * consistently.  'nextrecord' is the callers locally stored value of
   1105  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1106  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1107  */
   1108 static void
   1109 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1110 {
   1111 
   1112 	KASSERT(solocked(sb->sb_so));
   1113 
   1114 	/*
   1115 	 * First, update for the new value of nextrecord.  If necessary,
   1116 	 * make it the first record.
   1117 	 */
   1118 	if (sb->sb_mb != NULL)
   1119 		sb->sb_mb->m_nextpkt = nextrecord;
   1120 	else
   1121 		sb->sb_mb = nextrecord;
   1122 
   1123         /*
   1124          * Now update any dependent socket buffer fields to reflect
   1125          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1126          * the addition of a second clause that takes care of the
   1127          * case where sb_mb has been updated, but remains the last
   1128          * record.
   1129          */
   1130         if (sb->sb_mb == NULL) {
   1131                 sb->sb_mbtail = NULL;
   1132                 sb->sb_lastrecord = NULL;
   1133         } else if (sb->sb_mb->m_nextpkt == NULL)
   1134                 sb->sb_lastrecord = sb->sb_mb;
   1135 }
   1136 
   1137 /*
   1138  * Implement receive operations on a socket.
   1139  * We depend on the way that records are added to the sockbuf
   1140  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1141  * must begin with an address if the protocol so specifies,
   1142  * followed by an optional mbuf or mbufs containing ancillary data,
   1143  * and then zero or more mbufs of data.
   1144  * In order to avoid blocking network interrupts for the entire time here,
   1145  * we splx() while doing the actual copy to user space.
   1146  * Although the sockbuf is locked, new data may still be appended,
   1147  * and thus we must maintain consistency of the sockbuf during that time.
   1148  *
   1149  * The caller may receive the data as a single mbuf chain by supplying
   1150  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1151  * only for the count in uio_resid.
   1152  */
   1153 int
   1154 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1155 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1156 {
   1157 	struct lwp *l = curlwp;
   1158 	struct mbuf	*m, **mp, *mt;
   1159 	size_t len, offset, moff, orig_resid;
   1160 	int atomic, flags, error, s, type;
   1161 	const struct protosw	*pr;
   1162 	struct mbuf	*nextrecord;
   1163 	int		mbuf_removed = 0;
   1164 	const struct domain *dom;
   1165 	short		wakeup_state = 0;
   1166 
   1167 	pr = so->so_proto;
   1168 	atomic = pr->pr_flags & PR_ATOMIC;
   1169 	dom = pr->pr_domain;
   1170 	mp = mp0;
   1171 	type = 0;
   1172 	orig_resid = uio->uio_resid;
   1173 
   1174 	if (paddr != NULL)
   1175 		*paddr = NULL;
   1176 	if (controlp != NULL)
   1177 		*controlp = NULL;
   1178 	if (flagsp != NULL)
   1179 		flags = *flagsp &~ MSG_EOR;
   1180 	else
   1181 		flags = 0;
   1182 
   1183 	if (flags & MSG_OOB) {
   1184 		m = m_get(M_WAIT, MT_DATA);
   1185 		solock(so);
   1186 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1187 		sounlock(so);
   1188 		if (error)
   1189 			goto bad;
   1190 		do {
   1191 			error = uiomove(mtod(m, void *),
   1192 			    MIN(uio->uio_resid, m->m_len), uio);
   1193 			m = m_free(m);
   1194 		} while (uio->uio_resid > 0 && error == 0 && m);
   1195  bad:
   1196 		if (m != NULL)
   1197 			m_freem(m);
   1198 		return error;
   1199 	}
   1200 	if (mp != NULL)
   1201 		*mp = NULL;
   1202 
   1203 	/*
   1204 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1205 	 * protocol processing soft interrupts from interrupting us and
   1206 	 * blocking (expensive).
   1207 	 */
   1208 	s = splsoftnet();
   1209 	solock(so);
   1210  restart:
   1211 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1212 		sounlock(so);
   1213 		splx(s);
   1214 		return error;
   1215 	}
   1216 
   1217 	m = so->so_rcv.sb_mb;
   1218 	/*
   1219 	 * If we have less data than requested, block awaiting more
   1220 	 * (subject to any timeout) if:
   1221 	 *   1. the current count is less than the low water mark,
   1222 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1223 	 *	receive operation at once if we block (resid <= hiwat), or
   1224 	 *   3. MSG_DONTWAIT is not set.
   1225 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1226 	 * we have to do the receive in sections, and thus risk returning
   1227 	 * a short count if a timeout or signal occurs after we start.
   1228 	 */
   1229 	if (m == NULL ||
   1230 	    ((flags & MSG_DONTWAIT) == 0 &&
   1231 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1232 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1233 	      ((flags & MSG_WAITALL) &&
   1234 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1235 	     m->m_nextpkt == NULL && !atomic)) {
   1236 #ifdef DIAGNOSTIC
   1237 		if (m == NULL && so->so_rcv.sb_cc)
   1238 			panic("receive 1");
   1239 #endif
   1240 		if (so->so_error) {
   1241 			if (m != NULL)
   1242 				goto dontblock;
   1243 			error = so->so_error;
   1244 			if ((flags & MSG_PEEK) == 0)
   1245 				so->so_error = 0;
   1246 			goto release;
   1247 		}
   1248 		if (so->so_state & SS_CANTRCVMORE) {
   1249 			if (m != NULL)
   1250 				goto dontblock;
   1251 			else
   1252 				goto release;
   1253 		}
   1254 		for (; m != NULL; m = m->m_next)
   1255 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1256 				m = so->so_rcv.sb_mb;
   1257 				goto dontblock;
   1258 			}
   1259 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1260 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1261 			error = ENOTCONN;
   1262 			goto release;
   1263 		}
   1264 		if (uio->uio_resid == 0)
   1265 			goto release;
   1266 		if ((so->so_state & SS_NBIO) ||
   1267 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1268 			error = EWOULDBLOCK;
   1269 			goto release;
   1270 		}
   1271 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1272 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1273 		sbunlock(&so->so_rcv);
   1274 		if (wakeup_state & SS_RESTARTSYS)
   1275 			error = ERESTART;
   1276 		else
   1277 			error = sbwait(&so->so_rcv);
   1278 		if (error != 0) {
   1279 			sounlock(so);
   1280 			splx(s);
   1281 			return error;
   1282 		}
   1283 		wakeup_state = so->so_state;
   1284 		goto restart;
   1285 	}
   1286  dontblock:
   1287 	/*
   1288 	 * On entry here, m points to the first record of the socket buffer.
   1289 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1290 	 * pointer to the next record in the socket buffer.  We must keep the
   1291 	 * various socket buffer pointers and local stack versions of the
   1292 	 * pointers in sync, pushing out modifications before dropping the
   1293 	 * socket lock, and re-reading them when picking it up.
   1294 	 *
   1295 	 * Otherwise, we will race with the network stack appending new data
   1296 	 * or records onto the socket buffer by using inconsistent/stale
   1297 	 * versions of the field, possibly resulting in socket buffer
   1298 	 * corruption.
   1299 	 *
   1300 	 * By holding the high-level sblock(), we prevent simultaneous
   1301 	 * readers from pulling off the front of the socket buffer.
   1302 	 */
   1303 	if (l != NULL)
   1304 		l->l_ru.ru_msgrcv++;
   1305 	KASSERT(m == so->so_rcv.sb_mb);
   1306 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1307 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1308 	nextrecord = m->m_nextpkt;
   1309 	if (pr->pr_flags & PR_ADDR) {
   1310 #ifdef DIAGNOSTIC
   1311 		if (m->m_type != MT_SONAME)
   1312 			panic("receive 1a");
   1313 #endif
   1314 		orig_resid = 0;
   1315 		if (flags & MSG_PEEK) {
   1316 			if (paddr)
   1317 				*paddr = m_copy(m, 0, m->m_len);
   1318 			m = m->m_next;
   1319 		} else {
   1320 			sbfree(&so->so_rcv, m);
   1321 			mbuf_removed = 1;
   1322 			if (paddr != NULL) {
   1323 				*paddr = m;
   1324 				so->so_rcv.sb_mb = m->m_next;
   1325 				m->m_next = NULL;
   1326 				m = so->so_rcv.sb_mb;
   1327 			} else {
   1328 				m = so->so_rcv.sb_mb = m_free(m);
   1329 			}
   1330 			sbsync(&so->so_rcv, nextrecord);
   1331 		}
   1332 	}
   1333 	if (pr->pr_flags & PR_ADDR_OPT) {
   1334 		/*
   1335 		 * For SCTP we may be getting a
   1336 		 * whole message OR a partial delivery.
   1337 		 */
   1338 		if (m->m_type == MT_SONAME) {
   1339 			orig_resid = 0;
   1340 			if (flags & MSG_PEEK) {
   1341 				if (paddr)
   1342 					*paddr = m_copy(m, 0, m->m_len);
   1343 				m = m->m_next;
   1344 			} else {
   1345 				sbfree(&so->so_rcv, m);
   1346 				if (paddr) {
   1347 					*paddr = m;
   1348 					so->so_rcv.sb_mb = m->m_next;
   1349 					m->m_next = 0;
   1350 					m = so->so_rcv.sb_mb;
   1351 				} else {
   1352 					m = so->so_rcv.sb_mb = m_free(m);
   1353 				}
   1354 			}
   1355 		}
   1356 	}
   1357 
   1358 	/*
   1359 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1360 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1361 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1362 	 * perform externalization (or freeing if controlp == NULL).
   1363 	 */
   1364 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1365 		struct mbuf *cm = NULL, *cmn;
   1366 		struct mbuf **cme = &cm;
   1367 
   1368 		do {
   1369 			if (flags & MSG_PEEK) {
   1370 				if (controlp != NULL) {
   1371 					*controlp = m_copy(m, 0, m->m_len);
   1372 					controlp = &(*controlp)->m_next;
   1373 				}
   1374 				m = m->m_next;
   1375 			} else {
   1376 				sbfree(&so->so_rcv, m);
   1377 				so->so_rcv.sb_mb = m->m_next;
   1378 				m->m_next = NULL;
   1379 				*cme = m;
   1380 				cme = &(*cme)->m_next;
   1381 				m = so->so_rcv.sb_mb;
   1382 			}
   1383 		} while (m != NULL && m->m_type == MT_CONTROL);
   1384 		if ((flags & MSG_PEEK) == 0)
   1385 			sbsync(&so->so_rcv, nextrecord);
   1386 		for (; cm != NULL; cm = cmn) {
   1387 			cmn = cm->m_next;
   1388 			cm->m_next = NULL;
   1389 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1390 			if (controlp != NULL) {
   1391 				if (dom->dom_externalize != NULL &&
   1392 				    type == SCM_RIGHTS) {
   1393 					sounlock(so);
   1394 					splx(s);
   1395 					error = (*dom->dom_externalize)(cm, l,
   1396 					    (flags & MSG_CMSG_CLOEXEC) ?
   1397 					    O_CLOEXEC : 0);
   1398 					s = splsoftnet();
   1399 					solock(so);
   1400 				}
   1401 				*controlp = cm;
   1402 				while (*controlp != NULL)
   1403 					controlp = &(*controlp)->m_next;
   1404 			} else {
   1405 				/*
   1406 				 * Dispose of any SCM_RIGHTS message that went
   1407 				 * through the read path rather than recv.
   1408 				 */
   1409 				if (dom->dom_dispose != NULL &&
   1410 				    type == SCM_RIGHTS) {
   1411 					sounlock(so);
   1412 					(*dom->dom_dispose)(cm);
   1413 					solock(so);
   1414 				}
   1415 				m_freem(cm);
   1416 			}
   1417 		}
   1418 		if (m != NULL)
   1419 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1420 		else
   1421 			nextrecord = so->so_rcv.sb_mb;
   1422 		orig_resid = 0;
   1423 	}
   1424 
   1425 	/* If m is non-NULL, we have some data to read. */
   1426 	if (__predict_true(m != NULL)) {
   1427 		type = m->m_type;
   1428 		if (type == MT_OOBDATA)
   1429 			flags |= MSG_OOB;
   1430 	}
   1431 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1432 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1433 
   1434 	moff = 0;
   1435 	offset = 0;
   1436 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1437 		if (m->m_type == MT_OOBDATA) {
   1438 			if (type != MT_OOBDATA)
   1439 				break;
   1440 		} else if (type == MT_OOBDATA)
   1441 			break;
   1442 #ifdef DIAGNOSTIC
   1443 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1444 			panic("receive 3");
   1445 #endif
   1446 		so->so_state &= ~SS_RCVATMARK;
   1447 		wakeup_state = 0;
   1448 		len = uio->uio_resid;
   1449 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1450 			len = so->so_oobmark - offset;
   1451 		if (len > m->m_len - moff)
   1452 			len = m->m_len - moff;
   1453 		/*
   1454 		 * If mp is set, just pass back the mbufs.
   1455 		 * Otherwise copy them out via the uio, then free.
   1456 		 * Sockbuf must be consistent here (points to current mbuf,
   1457 		 * it points to next record) when we drop priority;
   1458 		 * we must note any additions to the sockbuf when we
   1459 		 * block interrupts again.
   1460 		 */
   1461 		if (mp == NULL) {
   1462 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1463 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1464 			sounlock(so);
   1465 			splx(s);
   1466 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1467 			s = splsoftnet();
   1468 			solock(so);
   1469 			if (error != 0) {
   1470 				/*
   1471 				 * If any part of the record has been removed
   1472 				 * (such as the MT_SONAME mbuf, which will
   1473 				 * happen when PR_ADDR, and thus also
   1474 				 * PR_ATOMIC, is set), then drop the entire
   1475 				 * record to maintain the atomicity of the
   1476 				 * receive operation.
   1477 				 *
   1478 				 * This avoids a later panic("receive 1a")
   1479 				 * when compiled with DIAGNOSTIC.
   1480 				 */
   1481 				if (m && mbuf_removed && atomic)
   1482 					(void) sbdroprecord(&so->so_rcv);
   1483 
   1484 				goto release;
   1485 			}
   1486 		} else
   1487 			uio->uio_resid -= len;
   1488 		if (len == m->m_len - moff) {
   1489 			if (m->m_flags & M_EOR)
   1490 				flags |= MSG_EOR;
   1491 #ifdef SCTP
   1492 			if (m->m_flags & M_NOTIFICATION)
   1493 				flags |= MSG_NOTIFICATION;
   1494 #endif /* SCTP */
   1495 			if (flags & MSG_PEEK) {
   1496 				m = m->m_next;
   1497 				moff = 0;
   1498 			} else {
   1499 				nextrecord = m->m_nextpkt;
   1500 				sbfree(&so->so_rcv, m);
   1501 				if (mp) {
   1502 					*mp = m;
   1503 					mp = &m->m_next;
   1504 					so->so_rcv.sb_mb = m = m->m_next;
   1505 					*mp = NULL;
   1506 				} else {
   1507 					m = so->so_rcv.sb_mb = m_free(m);
   1508 				}
   1509 				/*
   1510 				 * If m != NULL, we also know that
   1511 				 * so->so_rcv.sb_mb != NULL.
   1512 				 */
   1513 				KASSERT(so->so_rcv.sb_mb == m);
   1514 				if (m) {
   1515 					m->m_nextpkt = nextrecord;
   1516 					if (nextrecord == NULL)
   1517 						so->so_rcv.sb_lastrecord = m;
   1518 				} else {
   1519 					so->so_rcv.sb_mb = nextrecord;
   1520 					SB_EMPTY_FIXUP(&so->so_rcv);
   1521 				}
   1522 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1523 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1524 			}
   1525 		} else if (flags & MSG_PEEK)
   1526 			moff += len;
   1527 		else {
   1528 			if (mp != NULL) {
   1529 				mt = m_copym(m, 0, len, M_NOWAIT);
   1530 				if (__predict_false(mt == NULL)) {
   1531 					sounlock(so);
   1532 					mt = m_copym(m, 0, len, M_WAIT);
   1533 					solock(so);
   1534 				}
   1535 				*mp = mt;
   1536 			}
   1537 			m->m_data += len;
   1538 			m->m_len -= len;
   1539 			so->so_rcv.sb_cc -= len;
   1540 		}
   1541 		if (so->so_oobmark) {
   1542 			if ((flags & MSG_PEEK) == 0) {
   1543 				so->so_oobmark -= len;
   1544 				if (so->so_oobmark == 0) {
   1545 					so->so_state |= SS_RCVATMARK;
   1546 					break;
   1547 				}
   1548 			} else {
   1549 				offset += len;
   1550 				if (offset == so->so_oobmark)
   1551 					break;
   1552 			}
   1553 		}
   1554 		if (flags & MSG_EOR)
   1555 			break;
   1556 		/*
   1557 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1558 		 * we must not quit until "uio->uio_resid == 0" or an error
   1559 		 * termination.  If a signal/timeout occurs, return
   1560 		 * with a short count but without error.
   1561 		 * Keep sockbuf locked against other readers.
   1562 		 */
   1563 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1564 		    !sosendallatonce(so) && !nextrecord) {
   1565 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1566 				break;
   1567 			/*
   1568 			 * If we are peeking and the socket receive buffer is
   1569 			 * full, stop since we can't get more data to peek at.
   1570 			 */
   1571 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1572 				break;
   1573 			/*
   1574 			 * If we've drained the socket buffer, tell the
   1575 			 * protocol in case it needs to do something to
   1576 			 * get it filled again.
   1577 			 */
   1578 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1579 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1580 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1581 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1582 			if (wakeup_state & SS_RESTARTSYS)
   1583 				error = ERESTART;
   1584 			else
   1585 				error = sbwait(&so->so_rcv);
   1586 			if (error != 0) {
   1587 				sbunlock(&so->so_rcv);
   1588 				sounlock(so);
   1589 				splx(s);
   1590 				return 0;
   1591 			}
   1592 			if ((m = so->so_rcv.sb_mb) != NULL)
   1593 				nextrecord = m->m_nextpkt;
   1594 			wakeup_state = so->so_state;
   1595 		}
   1596 	}
   1597 
   1598 	if (m && atomic) {
   1599 		flags |= MSG_TRUNC;
   1600 		if ((flags & MSG_PEEK) == 0)
   1601 			(void) sbdroprecord(&so->so_rcv);
   1602 	}
   1603 	if ((flags & MSG_PEEK) == 0) {
   1604 		if (m == NULL) {
   1605 			/*
   1606 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1607 			 * part makes sure sb_lastrecord is up-to-date if
   1608 			 * there is still data in the socket buffer.
   1609 			 */
   1610 			so->so_rcv.sb_mb = nextrecord;
   1611 			if (so->so_rcv.sb_mb == NULL) {
   1612 				so->so_rcv.sb_mbtail = NULL;
   1613 				so->so_rcv.sb_lastrecord = NULL;
   1614 			} else if (nextrecord->m_nextpkt == NULL)
   1615 				so->so_rcv.sb_lastrecord = nextrecord;
   1616 		}
   1617 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1618 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1619 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1620 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1621 	}
   1622 	if (orig_resid == uio->uio_resid && orig_resid &&
   1623 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1624 		sbunlock(&so->so_rcv);
   1625 		goto restart;
   1626 	}
   1627 
   1628 	if (flagsp != NULL)
   1629 		*flagsp |= flags;
   1630  release:
   1631 	sbunlock(&so->so_rcv);
   1632 	sounlock(so);
   1633 	splx(s);
   1634 	return error;
   1635 }
   1636 
   1637 int
   1638 soshutdown(struct socket *so, int how)
   1639 {
   1640 	const struct protosw	*pr;
   1641 	int	error;
   1642 
   1643 	KASSERT(solocked(so));
   1644 
   1645 	pr = so->so_proto;
   1646 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1647 		return (EINVAL);
   1648 
   1649 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1650 		sorflush(so);
   1651 		error = 0;
   1652 	}
   1653 	if (how == SHUT_WR || how == SHUT_RDWR)
   1654 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1655 
   1656 	return error;
   1657 }
   1658 
   1659 void
   1660 sorestart(struct socket *so)
   1661 {
   1662 	/*
   1663 	 * An application has called close() on an fd on which another
   1664 	 * of its threads has called a socket system call.
   1665 	 * Mark this and wake everyone up, and code that would block again
   1666 	 * instead returns ERESTART.
   1667 	 * On system call re-entry the fd is validated and EBADF returned.
   1668 	 * Any other fd will block again on the 2nd syscall.
   1669 	 */
   1670 	solock(so);
   1671 	so->so_state |= SS_RESTARTSYS;
   1672 	cv_broadcast(&so->so_cv);
   1673 	cv_broadcast(&so->so_snd.sb_cv);
   1674 	cv_broadcast(&so->so_rcv.sb_cv);
   1675 	sounlock(so);
   1676 }
   1677 
   1678 void
   1679 sorflush(struct socket *so)
   1680 {
   1681 	struct sockbuf	*sb, asb;
   1682 	const struct protosw	*pr;
   1683 
   1684 	KASSERT(solocked(so));
   1685 
   1686 	sb = &so->so_rcv;
   1687 	pr = so->so_proto;
   1688 	socantrcvmore(so);
   1689 	sb->sb_flags |= SB_NOINTR;
   1690 	(void )sblock(sb, M_WAITOK);
   1691 	sbunlock(sb);
   1692 	asb = *sb;
   1693 	/*
   1694 	 * Clear most of the sockbuf structure, but leave some of the
   1695 	 * fields valid.
   1696 	 */
   1697 	memset(&sb->sb_startzero, 0,
   1698 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1699 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1700 		sounlock(so);
   1701 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1702 		solock(so);
   1703 	}
   1704 	sbrelease(&asb, so);
   1705 }
   1706 
   1707 /*
   1708  * internal set SOL_SOCKET options
   1709  */
   1710 static int
   1711 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1712 {
   1713 	int error = EINVAL, opt;
   1714 	int optval = 0; /* XXX: gcc */
   1715 	struct linger l;
   1716 	struct timeval tv;
   1717 
   1718 	switch ((opt = sopt->sopt_name)) {
   1719 
   1720 	case SO_ACCEPTFILTER:
   1721 		error = accept_filt_setopt(so, sopt);
   1722 		KASSERT(solocked(so));
   1723 		break;
   1724 
   1725 	case SO_LINGER:
   1726 		error = sockopt_get(sopt, &l, sizeof(l));
   1727 		solock(so);
   1728 		if (error)
   1729 			break;
   1730 		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1731 		    l.l_linger > (INT_MAX / hz)) {
   1732 			error = EDOM;
   1733 			break;
   1734 		}
   1735 		so->so_linger = l.l_linger;
   1736 		if (l.l_onoff)
   1737 			so->so_options |= SO_LINGER;
   1738 		else
   1739 			so->so_options &= ~SO_LINGER;
   1740 		break;
   1741 
   1742 	case SO_DEBUG:
   1743 	case SO_KEEPALIVE:
   1744 	case SO_DONTROUTE:
   1745 	case SO_USELOOPBACK:
   1746 	case SO_BROADCAST:
   1747 	case SO_REUSEADDR:
   1748 	case SO_REUSEPORT:
   1749 	case SO_OOBINLINE:
   1750 	case SO_TIMESTAMP:
   1751 	case SO_NOSIGPIPE:
   1752 #ifdef SO_OTIMESTAMP
   1753 	case SO_OTIMESTAMP:
   1754 #endif
   1755 		error = sockopt_getint(sopt, &optval);
   1756 		solock(so);
   1757 		if (error)
   1758 			break;
   1759 		if (optval)
   1760 			so->so_options |= opt;
   1761 		else
   1762 			so->so_options &= ~opt;
   1763 		break;
   1764 
   1765 	case SO_SNDBUF:
   1766 	case SO_RCVBUF:
   1767 	case SO_SNDLOWAT:
   1768 	case SO_RCVLOWAT:
   1769 		error = sockopt_getint(sopt, &optval);
   1770 		solock(so);
   1771 		if (error)
   1772 			break;
   1773 
   1774 		/*
   1775 		 * Values < 1 make no sense for any of these
   1776 		 * options, so disallow them.
   1777 		 */
   1778 		if (optval < 1) {
   1779 			error = EINVAL;
   1780 			break;
   1781 		}
   1782 
   1783 		switch (opt) {
   1784 		case SO_SNDBUF:
   1785 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1786 				error = ENOBUFS;
   1787 				break;
   1788 			}
   1789 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1790 			break;
   1791 
   1792 		case SO_RCVBUF:
   1793 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1794 				error = ENOBUFS;
   1795 				break;
   1796 			}
   1797 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1798 			break;
   1799 
   1800 		/*
   1801 		 * Make sure the low-water is never greater than
   1802 		 * the high-water.
   1803 		 */
   1804 		case SO_SNDLOWAT:
   1805 			if (optval > so->so_snd.sb_hiwat)
   1806 				optval = so->so_snd.sb_hiwat;
   1807 
   1808 			so->so_snd.sb_lowat = optval;
   1809 			break;
   1810 
   1811 		case SO_RCVLOWAT:
   1812 			if (optval > so->so_rcv.sb_hiwat)
   1813 				optval = so->so_rcv.sb_hiwat;
   1814 
   1815 			so->so_rcv.sb_lowat = optval;
   1816 			break;
   1817 		}
   1818 		break;
   1819 
   1820 #ifdef COMPAT_50
   1821 	case SO_OSNDTIMEO:
   1822 	case SO_ORCVTIMEO: {
   1823 		struct timeval50 otv;
   1824 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1825 		if (error) {
   1826 			solock(so);
   1827 			break;
   1828 		}
   1829 		timeval50_to_timeval(&otv, &tv);
   1830 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1831 		error = 0;
   1832 		/*FALLTHROUGH*/
   1833 	}
   1834 #endif /* COMPAT_50 */
   1835 
   1836 	case SO_SNDTIMEO:
   1837 	case SO_RCVTIMEO:
   1838 		if (error)
   1839 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1840 		solock(so);
   1841 		if (error)
   1842 			break;
   1843 
   1844 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1845 			error = EDOM;
   1846 			break;
   1847 		}
   1848 
   1849 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1850 		if (optval == 0 && tv.tv_usec != 0)
   1851 			optval = 1;
   1852 
   1853 		switch (opt) {
   1854 		case SO_SNDTIMEO:
   1855 			so->so_snd.sb_timeo = optval;
   1856 			break;
   1857 		case SO_RCVTIMEO:
   1858 			so->so_rcv.sb_timeo = optval;
   1859 			break;
   1860 		}
   1861 		break;
   1862 
   1863 	default:
   1864 		solock(so);
   1865 		error = ENOPROTOOPT;
   1866 		break;
   1867 	}
   1868 	KASSERT(solocked(so));
   1869 	return error;
   1870 }
   1871 
   1872 int
   1873 sosetopt(struct socket *so, struct sockopt *sopt)
   1874 {
   1875 	int error, prerr;
   1876 
   1877 	if (sopt->sopt_level == SOL_SOCKET) {
   1878 		error = sosetopt1(so, sopt);
   1879 		KASSERT(solocked(so));
   1880 	} else {
   1881 		error = ENOPROTOOPT;
   1882 		solock(so);
   1883 	}
   1884 
   1885 	if ((error == 0 || error == ENOPROTOOPT) &&
   1886 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1887 		/* give the protocol stack a shot */
   1888 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1889 		if (prerr == 0)
   1890 			error = 0;
   1891 		else if (prerr != ENOPROTOOPT)
   1892 			error = prerr;
   1893 	}
   1894 	sounlock(so);
   1895 	return error;
   1896 }
   1897 
   1898 /*
   1899  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1900  */
   1901 int
   1902 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1903     const void *val, size_t valsize)
   1904 {
   1905 	struct sockopt sopt;
   1906 	int error;
   1907 
   1908 	KASSERT(valsize == 0 || val != NULL);
   1909 
   1910 	sockopt_init(&sopt, level, name, valsize);
   1911 	sockopt_set(&sopt, val, valsize);
   1912 
   1913 	error = sosetopt(so, &sopt);
   1914 
   1915 	sockopt_destroy(&sopt);
   1916 
   1917 	return error;
   1918 }
   1919 
   1920 /*
   1921  * internal get SOL_SOCKET options
   1922  */
   1923 static int
   1924 sogetopt1(struct socket *so, struct sockopt *sopt)
   1925 {
   1926 	int error, optval, opt;
   1927 	struct linger l;
   1928 	struct timeval tv;
   1929 
   1930 	switch ((opt = sopt->sopt_name)) {
   1931 
   1932 	case SO_ACCEPTFILTER:
   1933 		error = accept_filt_getopt(so, sopt);
   1934 		break;
   1935 
   1936 	case SO_LINGER:
   1937 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1938 		l.l_linger = so->so_linger;
   1939 
   1940 		error = sockopt_set(sopt, &l, sizeof(l));
   1941 		break;
   1942 
   1943 	case SO_USELOOPBACK:
   1944 	case SO_DONTROUTE:
   1945 	case SO_DEBUG:
   1946 	case SO_KEEPALIVE:
   1947 	case SO_REUSEADDR:
   1948 	case SO_REUSEPORT:
   1949 	case SO_BROADCAST:
   1950 	case SO_OOBINLINE:
   1951 	case SO_TIMESTAMP:
   1952 	case SO_NOSIGPIPE:
   1953 #ifdef SO_OTIMESTAMP
   1954 	case SO_OTIMESTAMP:
   1955 #endif
   1956 	case SO_ACCEPTCONN:
   1957 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1958 		break;
   1959 
   1960 	case SO_TYPE:
   1961 		error = sockopt_setint(sopt, so->so_type);
   1962 		break;
   1963 
   1964 	case SO_ERROR:
   1965 		error = sockopt_setint(sopt, so->so_error);
   1966 		so->so_error = 0;
   1967 		break;
   1968 
   1969 	case SO_SNDBUF:
   1970 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1971 		break;
   1972 
   1973 	case SO_RCVBUF:
   1974 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1975 		break;
   1976 
   1977 	case SO_SNDLOWAT:
   1978 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1979 		break;
   1980 
   1981 	case SO_RCVLOWAT:
   1982 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1983 		break;
   1984 
   1985 #ifdef COMPAT_50
   1986 	case SO_OSNDTIMEO:
   1987 	case SO_ORCVTIMEO: {
   1988 		struct timeval50 otv;
   1989 
   1990 		optval = (opt == SO_OSNDTIMEO ?
   1991 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1992 
   1993 		otv.tv_sec = optval / hz;
   1994 		otv.tv_usec = (optval % hz) * tick;
   1995 
   1996 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1997 		break;
   1998 	}
   1999 #endif /* COMPAT_50 */
   2000 
   2001 	case SO_SNDTIMEO:
   2002 	case SO_RCVTIMEO:
   2003 		optval = (opt == SO_SNDTIMEO ?
   2004 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   2005 
   2006 		tv.tv_sec = optval / hz;
   2007 		tv.tv_usec = (optval % hz) * tick;
   2008 
   2009 		error = sockopt_set(sopt, &tv, sizeof(tv));
   2010 		break;
   2011 
   2012 	case SO_OVERFLOWED:
   2013 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   2014 		break;
   2015 
   2016 	default:
   2017 		error = ENOPROTOOPT;
   2018 		break;
   2019 	}
   2020 
   2021 	return (error);
   2022 }
   2023 
   2024 int
   2025 sogetopt(struct socket *so, struct sockopt *sopt)
   2026 {
   2027 	int		error;
   2028 
   2029 	solock(so);
   2030 	if (sopt->sopt_level != SOL_SOCKET) {
   2031 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2032 			error = ((*so->so_proto->pr_ctloutput)
   2033 			    (PRCO_GETOPT, so, sopt));
   2034 		} else
   2035 			error = (ENOPROTOOPT);
   2036 	} else {
   2037 		error = sogetopt1(so, sopt);
   2038 	}
   2039 	sounlock(so);
   2040 	return (error);
   2041 }
   2042 
   2043 /*
   2044  * alloc sockopt data buffer buffer
   2045  *	- will be released at destroy
   2046  */
   2047 static int
   2048 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2049 {
   2050 
   2051 	KASSERT(sopt->sopt_size == 0);
   2052 
   2053 	if (len > sizeof(sopt->sopt_buf)) {
   2054 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2055 		if (sopt->sopt_data == NULL)
   2056 			return ENOMEM;
   2057 	} else
   2058 		sopt->sopt_data = sopt->sopt_buf;
   2059 
   2060 	sopt->sopt_size = len;
   2061 	return 0;
   2062 }
   2063 
   2064 /*
   2065  * initialise sockopt storage
   2066  *	- MAY sleep during allocation
   2067  */
   2068 void
   2069 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2070 {
   2071 
   2072 	memset(sopt, 0, sizeof(*sopt));
   2073 
   2074 	sopt->sopt_level = level;
   2075 	sopt->sopt_name = name;
   2076 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2077 }
   2078 
   2079 /*
   2080  * destroy sockopt storage
   2081  *	- will release any held memory references
   2082  */
   2083 void
   2084 sockopt_destroy(struct sockopt *sopt)
   2085 {
   2086 
   2087 	if (sopt->sopt_data != sopt->sopt_buf)
   2088 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2089 
   2090 	memset(sopt, 0, sizeof(*sopt));
   2091 }
   2092 
   2093 /*
   2094  * set sockopt value
   2095  *	- value is copied into sockopt
   2096  *	- memory is allocated when necessary, will not sleep
   2097  */
   2098 int
   2099 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2100 {
   2101 	int error;
   2102 
   2103 	if (sopt->sopt_size == 0) {
   2104 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2105 		if (error)
   2106 			return error;
   2107 	}
   2108 
   2109 	KASSERT(sopt->sopt_size == len);
   2110 	memcpy(sopt->sopt_data, buf, len);
   2111 	return 0;
   2112 }
   2113 
   2114 /*
   2115  * common case of set sockopt integer value
   2116  */
   2117 int
   2118 sockopt_setint(struct sockopt *sopt, int val)
   2119 {
   2120 
   2121 	return sockopt_set(sopt, &val, sizeof(int));
   2122 }
   2123 
   2124 /*
   2125  * get sockopt value
   2126  *	- correct size must be given
   2127  */
   2128 int
   2129 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2130 {
   2131 
   2132 	if (sopt->sopt_size != len)
   2133 		return EINVAL;
   2134 
   2135 	memcpy(buf, sopt->sopt_data, len);
   2136 	return 0;
   2137 }
   2138 
   2139 /*
   2140  * common case of get sockopt integer value
   2141  */
   2142 int
   2143 sockopt_getint(const struct sockopt *sopt, int *valp)
   2144 {
   2145 
   2146 	return sockopt_get(sopt, valp, sizeof(int));
   2147 }
   2148 
   2149 /*
   2150  * set sockopt value from mbuf
   2151  *	- ONLY for legacy code
   2152  *	- mbuf is released by sockopt
   2153  *	- will not sleep
   2154  */
   2155 int
   2156 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2157 {
   2158 	size_t len;
   2159 	int error;
   2160 
   2161 	len = m_length(m);
   2162 
   2163 	if (sopt->sopt_size == 0) {
   2164 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2165 		if (error)
   2166 			return error;
   2167 	}
   2168 
   2169 	KASSERT(sopt->sopt_size == len);
   2170 	m_copydata(m, 0, len, sopt->sopt_data);
   2171 	m_freem(m);
   2172 
   2173 	return 0;
   2174 }
   2175 
   2176 /*
   2177  * get sockopt value into mbuf
   2178  *	- ONLY for legacy code
   2179  *	- mbuf to be released by the caller
   2180  *	- will not sleep
   2181  */
   2182 struct mbuf *
   2183 sockopt_getmbuf(const struct sockopt *sopt)
   2184 {
   2185 	struct mbuf *m;
   2186 
   2187 	if (sopt->sopt_size > MCLBYTES)
   2188 		return NULL;
   2189 
   2190 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2191 	if (m == NULL)
   2192 		return NULL;
   2193 
   2194 	if (sopt->sopt_size > MLEN) {
   2195 		MCLGET(m, M_DONTWAIT);
   2196 		if ((m->m_flags & M_EXT) == 0) {
   2197 			m_free(m);
   2198 			return NULL;
   2199 		}
   2200 	}
   2201 
   2202 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2203 	m->m_len = sopt->sopt_size;
   2204 
   2205 	return m;
   2206 }
   2207 
   2208 void
   2209 sohasoutofband(struct socket *so)
   2210 {
   2211 
   2212 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2213 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2214 }
   2215 
   2216 static void
   2217 filt_sordetach(struct knote *kn)
   2218 {
   2219 	struct socket	*so;
   2220 
   2221 	so = ((file_t *)kn->kn_obj)->f_socket;
   2222 	solock(so);
   2223 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2224 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2225 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2226 	sounlock(so);
   2227 }
   2228 
   2229 /*ARGSUSED*/
   2230 static int
   2231 filt_soread(struct knote *kn, long hint)
   2232 {
   2233 	struct socket	*so;
   2234 	int rv;
   2235 
   2236 	so = ((file_t *)kn->kn_obj)->f_socket;
   2237 	if (hint != NOTE_SUBMIT)
   2238 		solock(so);
   2239 	kn->kn_data = so->so_rcv.sb_cc;
   2240 	if (so->so_state & SS_CANTRCVMORE) {
   2241 		kn->kn_flags |= EV_EOF;
   2242 		kn->kn_fflags = so->so_error;
   2243 		rv = 1;
   2244 	} else if (so->so_error)	/* temporary udp error */
   2245 		rv = 1;
   2246 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2247 		rv = (kn->kn_data >= kn->kn_sdata);
   2248 	else
   2249 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2250 	if (hint != NOTE_SUBMIT)
   2251 		sounlock(so);
   2252 	return rv;
   2253 }
   2254 
   2255 static void
   2256 filt_sowdetach(struct knote *kn)
   2257 {
   2258 	struct socket	*so;
   2259 
   2260 	so = ((file_t *)kn->kn_obj)->f_socket;
   2261 	solock(so);
   2262 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2263 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2264 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2265 	sounlock(so);
   2266 }
   2267 
   2268 /*ARGSUSED*/
   2269 static int
   2270 filt_sowrite(struct knote *kn, long hint)
   2271 {
   2272 	struct socket	*so;
   2273 	int rv;
   2274 
   2275 	so = ((file_t *)kn->kn_obj)->f_socket;
   2276 	if (hint != NOTE_SUBMIT)
   2277 		solock(so);
   2278 	kn->kn_data = sbspace(&so->so_snd);
   2279 	if (so->so_state & SS_CANTSENDMORE) {
   2280 		kn->kn_flags |= EV_EOF;
   2281 		kn->kn_fflags = so->so_error;
   2282 		rv = 1;
   2283 	} else if (so->so_error)	/* temporary udp error */
   2284 		rv = 1;
   2285 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2286 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2287 		rv = 0;
   2288 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2289 		rv = (kn->kn_data >= kn->kn_sdata);
   2290 	else
   2291 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2292 	if (hint != NOTE_SUBMIT)
   2293 		sounlock(so);
   2294 	return rv;
   2295 }
   2296 
   2297 /*ARGSUSED*/
   2298 static int
   2299 filt_solisten(struct knote *kn, long hint)
   2300 {
   2301 	struct socket	*so;
   2302 	int rv;
   2303 
   2304 	so = ((file_t *)kn->kn_obj)->f_socket;
   2305 
   2306 	/*
   2307 	 * Set kn_data to number of incoming connections, not
   2308 	 * counting partial (incomplete) connections.
   2309 	 */
   2310 	if (hint != NOTE_SUBMIT)
   2311 		solock(so);
   2312 	kn->kn_data = so->so_qlen;
   2313 	rv = (kn->kn_data > 0);
   2314 	if (hint != NOTE_SUBMIT)
   2315 		sounlock(so);
   2316 	return rv;
   2317 }
   2318 
   2319 static const struct filterops solisten_filtops =
   2320 	{ 1, NULL, filt_sordetach, filt_solisten };
   2321 static const struct filterops soread_filtops =
   2322 	{ 1, NULL, filt_sordetach, filt_soread };
   2323 static const struct filterops sowrite_filtops =
   2324 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2325 
   2326 int
   2327 soo_kqfilter(struct file *fp, struct knote *kn)
   2328 {
   2329 	struct socket	*so;
   2330 	struct sockbuf	*sb;
   2331 
   2332 	so = ((file_t *)kn->kn_obj)->f_socket;
   2333 	solock(so);
   2334 	switch (kn->kn_filter) {
   2335 	case EVFILT_READ:
   2336 		if (so->so_options & SO_ACCEPTCONN)
   2337 			kn->kn_fop = &solisten_filtops;
   2338 		else
   2339 			kn->kn_fop = &soread_filtops;
   2340 		sb = &so->so_rcv;
   2341 		break;
   2342 	case EVFILT_WRITE:
   2343 		kn->kn_fop = &sowrite_filtops;
   2344 		sb = &so->so_snd;
   2345 		break;
   2346 	default:
   2347 		sounlock(so);
   2348 		return (EINVAL);
   2349 	}
   2350 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2351 	sb->sb_flags |= SB_KNOTE;
   2352 	sounlock(so);
   2353 	return (0);
   2354 }
   2355 
   2356 static int
   2357 sodopoll(struct socket *so, int events)
   2358 {
   2359 	int revents;
   2360 
   2361 	revents = 0;
   2362 
   2363 	if (events & (POLLIN | POLLRDNORM))
   2364 		if (soreadable(so))
   2365 			revents |= events & (POLLIN | POLLRDNORM);
   2366 
   2367 	if (events & (POLLOUT | POLLWRNORM))
   2368 		if (sowritable(so))
   2369 			revents |= events & (POLLOUT | POLLWRNORM);
   2370 
   2371 	if (events & (POLLPRI | POLLRDBAND))
   2372 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2373 			revents |= events & (POLLPRI | POLLRDBAND);
   2374 
   2375 	return revents;
   2376 }
   2377 
   2378 int
   2379 sopoll(struct socket *so, int events)
   2380 {
   2381 	int revents = 0;
   2382 
   2383 #ifndef DIAGNOSTIC
   2384 	/*
   2385 	 * Do a quick, unlocked check in expectation that the socket
   2386 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2387 	 * as the solocked() assertions will fail.
   2388 	 */
   2389 	if ((revents = sodopoll(so, events)) != 0)
   2390 		return revents;
   2391 #endif
   2392 
   2393 	solock(so);
   2394 	if ((revents = sodopoll(so, events)) == 0) {
   2395 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2396 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2397 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2398 		}
   2399 
   2400 		if (events & (POLLOUT | POLLWRNORM)) {
   2401 			selrecord(curlwp, &so->so_snd.sb_sel);
   2402 			so->so_snd.sb_flags |= SB_NOTIFY;
   2403 		}
   2404 	}
   2405 	sounlock(so);
   2406 
   2407 	return revents;
   2408 }
   2409 
   2410 
   2411 #include <sys/sysctl.h>
   2412 
   2413 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2414 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2415 
   2416 /*
   2417  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2418  * value is not too small.
   2419  * (XXX should we maybe make sure it's not too large as well?)
   2420  */
   2421 static int
   2422 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2423 {
   2424 	int error, new_somaxkva;
   2425 	struct sysctlnode node;
   2426 
   2427 	new_somaxkva = somaxkva;
   2428 	node = *rnode;
   2429 	node.sysctl_data = &new_somaxkva;
   2430 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2431 	if (error || newp == NULL)
   2432 		return (error);
   2433 
   2434 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2435 		return (EINVAL);
   2436 
   2437 	mutex_enter(&so_pendfree_lock);
   2438 	somaxkva = new_somaxkva;
   2439 	cv_broadcast(&socurkva_cv);
   2440 	mutex_exit(&so_pendfree_lock);
   2441 
   2442 	return (error);
   2443 }
   2444 
   2445 /*
   2446  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2447  * any new value is not too small.
   2448  */
   2449 static int
   2450 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2451 {
   2452 	int error, new_sbmax;
   2453 	struct sysctlnode node;
   2454 
   2455 	new_sbmax = sb_max;
   2456 	node = *rnode;
   2457 	node.sysctl_data = &new_sbmax;
   2458 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2459 	if (error || newp == NULL)
   2460 		return (error);
   2461 
   2462 	KERNEL_LOCK(1, NULL);
   2463 	error = sb_max_set(new_sbmax);
   2464 	KERNEL_UNLOCK_ONE(NULL);
   2465 
   2466 	return (error);
   2467 }
   2468 
   2469 static void
   2470 sysctl_kern_socket_setup(void)
   2471 {
   2472 
   2473 	KASSERT(socket_sysctllog == NULL);
   2474 
   2475 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2476 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2477 		       CTLTYPE_INT, "somaxkva",
   2478 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2479 				    "used for socket buffers"),
   2480 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2481 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2482 
   2483 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2484 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2485 		       CTLTYPE_INT, "sbmax",
   2486 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2487 		       sysctl_kern_sbmax, 0, NULL, 0,
   2488 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2489 }
   2490