uipc_socket.c revision 1.254 1 /* $NetBSD: uipc_socket.c,v 1.254 2017/05/25 20:42:36 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.254 2017/05/25 20:42:36 christos Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #include "opt_sctp.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/file.h>
90 #include <sys/filedesc.h>
91 #include <sys/kmem.h>
92 #include <sys/mbuf.h>
93 #include <sys/domain.h>
94 #include <sys/kernel.h>
95 #include <sys/protosw.h>
96 #include <sys/socket.h>
97 #include <sys/socketvar.h>
98 #include <sys/signalvar.h>
99 #include <sys/resourcevar.h>
100 #include <sys/uidinfo.h>
101 #include <sys/event.h>
102 #include <sys/poll.h>
103 #include <sys/kauth.h>
104 #include <sys/mutex.h>
105 #include <sys/condvar.h>
106 #include <sys/kthread.h>
107
108 #ifdef COMPAT_50
109 #include <compat/sys/time.h>
110 #include <compat/sys/socket.h>
111 #endif
112
113 #include <uvm/uvm_extern.h>
114 #include <uvm/uvm_loan.h>
115 #include <uvm/uvm_page.h>
116
117 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
118
119 extern const struct fileops socketops;
120
121 extern int somaxconn; /* patchable (XXX sysctl) */
122 int somaxconn = SOMAXCONN;
123 kmutex_t *softnet_lock;
124
125 #ifdef SOSEND_COUNTERS
126 #include <sys/device.h>
127
128 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
129 NULL, "sosend", "loan big");
130 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
131 NULL, "sosend", "copy big");
132 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
133 NULL, "sosend", "copy small");
134 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
135 NULL, "sosend", "kva limit");
136
137 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
138
139 EVCNT_ATTACH_STATIC(sosend_loan_big);
140 EVCNT_ATTACH_STATIC(sosend_copy_big);
141 EVCNT_ATTACH_STATIC(sosend_copy_small);
142 EVCNT_ATTACH_STATIC(sosend_kvalimit);
143 #else
144
145 #define SOSEND_COUNTER_INCR(ev) /* nothing */
146
147 #endif /* SOSEND_COUNTERS */
148
149 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
150 int sock_loan_thresh = -1;
151 #else
152 int sock_loan_thresh = 4096;
153 #endif
154
155 static kmutex_t so_pendfree_lock;
156 static struct mbuf *so_pendfree = NULL;
157
158 #ifndef SOMAXKVA
159 #define SOMAXKVA (16 * 1024 * 1024)
160 #endif
161 int somaxkva = SOMAXKVA;
162 static int socurkva;
163 static kcondvar_t socurkva_cv;
164
165 static kauth_listener_t socket_listener;
166
167 #define SOCK_LOAN_CHUNK 65536
168
169 static void sopendfree_thread(void *);
170 static kcondvar_t pendfree_thread_cv;
171 static lwp_t *sopendfree_lwp;
172
173 static void sysctl_kern_socket_setup(void);
174 static struct sysctllog *socket_sysctllog;
175
176 static vsize_t
177 sokvareserve(struct socket *so, vsize_t len)
178 {
179 int error;
180
181 mutex_enter(&so_pendfree_lock);
182 while (socurkva + len > somaxkva) {
183 SOSEND_COUNTER_INCR(&sosend_kvalimit);
184 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
185 if (error) {
186 len = 0;
187 break;
188 }
189 }
190 socurkva += len;
191 mutex_exit(&so_pendfree_lock);
192 return len;
193 }
194
195 static void
196 sokvaunreserve(vsize_t len)
197 {
198
199 mutex_enter(&so_pendfree_lock);
200 socurkva -= len;
201 cv_broadcast(&socurkva_cv);
202 mutex_exit(&so_pendfree_lock);
203 }
204
205 /*
206 * sokvaalloc: allocate kva for loan.
207 */
208
209 vaddr_t
210 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
211 {
212 vaddr_t lva;
213
214 /*
215 * reserve kva.
216 */
217
218 if (sokvareserve(so, len) == 0)
219 return 0;
220
221 /*
222 * allocate kva.
223 */
224
225 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
226 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
227 if (lva == 0) {
228 sokvaunreserve(len);
229 return (0);
230 }
231
232 return lva;
233 }
234
235 /*
236 * sokvafree: free kva for loan.
237 */
238
239 void
240 sokvafree(vaddr_t sva, vsize_t len)
241 {
242
243 /*
244 * free kva.
245 */
246
247 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
248
249 /*
250 * unreserve kva.
251 */
252
253 sokvaunreserve(len);
254 }
255
256 static void
257 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
258 {
259 vaddr_t sva, eva;
260 vsize_t len;
261 int npgs;
262
263 KASSERT(pgs != NULL);
264
265 eva = round_page((vaddr_t) buf + size);
266 sva = trunc_page((vaddr_t) buf);
267 len = eva - sva;
268 npgs = len >> PAGE_SHIFT;
269
270 pmap_kremove(sva, len);
271 pmap_update(pmap_kernel());
272 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
273 sokvafree(sva, len);
274 }
275
276 /*
277 * sopendfree_thread: free mbufs on "pendfree" list.
278 * unlock and relock so_pendfree_lock when freeing mbufs.
279 */
280
281 static void
282 sopendfree_thread(void *v)
283 {
284 struct mbuf *m, *next;
285 size_t rv;
286
287 mutex_enter(&so_pendfree_lock);
288
289 for (;;) {
290 rv = 0;
291 while (so_pendfree != NULL) {
292 m = so_pendfree;
293 so_pendfree = NULL;
294 mutex_exit(&so_pendfree_lock);
295
296 for (; m != NULL; m = next) {
297 next = m->m_next;
298 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
299 0);
300 KASSERT(m->m_ext.ext_refcnt == 0);
301
302 rv += m->m_ext.ext_size;
303 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
304 m->m_ext.ext_size);
305 pool_cache_put(mb_cache, m);
306 }
307
308 mutex_enter(&so_pendfree_lock);
309 }
310 if (rv)
311 cv_broadcast(&socurkva_cv);
312 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
313 }
314 panic("sopendfree_thread");
315 /* NOTREACHED */
316 }
317
318 void
319 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
320 {
321
322 KASSERT(m != NULL);
323
324 /*
325 * postpone freeing mbuf.
326 *
327 * we can't do it in interrupt context
328 * because we need to put kva back to kernel_map.
329 */
330
331 mutex_enter(&so_pendfree_lock);
332 m->m_next = so_pendfree;
333 so_pendfree = m;
334 cv_signal(&pendfree_thread_cv);
335 mutex_exit(&so_pendfree_lock);
336 }
337
338 static long
339 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
340 {
341 struct iovec *iov = uio->uio_iov;
342 vaddr_t sva, eva;
343 vsize_t len;
344 vaddr_t lva;
345 int npgs, error;
346 vaddr_t va;
347 int i;
348
349 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
350 return (0);
351
352 if (iov->iov_len < (size_t) space)
353 space = iov->iov_len;
354 if (space > SOCK_LOAN_CHUNK)
355 space = SOCK_LOAN_CHUNK;
356
357 eva = round_page((vaddr_t) iov->iov_base + space);
358 sva = trunc_page((vaddr_t) iov->iov_base);
359 len = eva - sva;
360 npgs = len >> PAGE_SHIFT;
361
362 KASSERT(npgs <= M_EXT_MAXPAGES);
363
364 lva = sokvaalloc(sva, len, so);
365 if (lva == 0)
366 return 0;
367
368 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
369 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
370 if (error) {
371 sokvafree(lva, len);
372 return (0);
373 }
374
375 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
376 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
377 VM_PROT_READ, 0);
378 pmap_update(pmap_kernel());
379
380 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
381
382 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
383 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
384
385 uio->uio_resid -= space;
386 /* uio_offset not updated, not set/used for write(2) */
387 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
388 uio->uio_iov->iov_len -= space;
389 if (uio->uio_iov->iov_len == 0) {
390 uio->uio_iov++;
391 uio->uio_iovcnt--;
392 }
393
394 return (space);
395 }
396
397 struct mbuf *
398 getsombuf(struct socket *so, int type)
399 {
400 struct mbuf *m;
401
402 m = m_get(M_WAIT, type);
403 MCLAIM(m, so->so_mowner);
404 return m;
405 }
406
407 static int
408 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
409 void *arg0, void *arg1, void *arg2, void *arg3)
410 {
411 int result;
412 enum kauth_network_req req;
413
414 result = KAUTH_RESULT_DEFER;
415 req = (enum kauth_network_req)arg0;
416
417 if ((action != KAUTH_NETWORK_SOCKET) &&
418 (action != KAUTH_NETWORK_BIND))
419 return result;
420
421 switch (req) {
422 case KAUTH_REQ_NETWORK_BIND_PORT:
423 result = KAUTH_RESULT_ALLOW;
424 break;
425
426 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
427 /* Normal users can only drop their own connections. */
428 struct socket *so = (struct socket *)arg1;
429
430 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
431 result = KAUTH_RESULT_ALLOW;
432
433 break;
434 }
435
436 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
437 /* We allow "raw" routing/bluetooth sockets to anyone. */
438 switch ((u_long)arg1) {
439 case PF_ROUTE:
440 case PF_OROUTE:
441 case PF_BLUETOOTH:
442 result = KAUTH_RESULT_ALLOW;
443 break;
444 default:
445 /* Privileged, let secmodel handle this. */
446 if ((u_long)arg2 == SOCK_RAW)
447 break;
448 result = KAUTH_RESULT_ALLOW;
449 break;
450 }
451 break;
452
453 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
454 result = KAUTH_RESULT_ALLOW;
455
456 break;
457
458 default:
459 break;
460 }
461
462 return result;
463 }
464
465 void
466 soinit(void)
467 {
468
469 sysctl_kern_socket_setup();
470
471 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
472 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
473 cv_init(&socurkva_cv, "sokva");
474 cv_init(&pendfree_thread_cv, "sopendfr");
475 soinit2();
476
477 /* Set the initial adjusted socket buffer size. */
478 if (sb_max_set(sb_max))
479 panic("bad initial sb_max value: %lu", sb_max);
480
481 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
482 socket_listener_cb, NULL);
483 }
484
485 void
486 soinit1(void)
487 {
488 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
489 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
490 if (error)
491 panic("soinit1 %d", error);
492 }
493
494 /*
495 * socreate: create a new socket of the specified type and the protocol.
496 *
497 * => Caller may specify another socket for lock sharing (must not be held).
498 * => Returns the new socket without lock held.
499 */
500 int
501 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
502 struct socket *lockso)
503 {
504 const struct protosw *prp;
505 struct socket *so;
506 uid_t uid;
507 int error;
508 kmutex_t *lock;
509
510 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
511 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
512 KAUTH_ARG(proto));
513 if (error != 0)
514 return error;
515
516 if (proto)
517 prp = pffindproto(dom, proto, type);
518 else
519 prp = pffindtype(dom, type);
520 if (prp == NULL) {
521 /* no support for domain */
522 if (pffinddomain(dom) == 0)
523 return EAFNOSUPPORT;
524 /* no support for socket type */
525 if (proto == 0 && type != 0)
526 return EPROTOTYPE;
527 return EPROTONOSUPPORT;
528 }
529 if (prp->pr_usrreqs == NULL)
530 return EPROTONOSUPPORT;
531 if (prp->pr_type != type)
532 return EPROTOTYPE;
533
534 so = soget(true);
535 so->so_type = type;
536 so->so_proto = prp;
537 so->so_send = sosend;
538 so->so_receive = soreceive;
539 #ifdef MBUFTRACE
540 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
541 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
542 so->so_mowner = &prp->pr_domain->dom_mowner;
543 #endif
544 uid = kauth_cred_geteuid(l->l_cred);
545 so->so_uidinfo = uid_find(uid);
546 so->so_cpid = l->l_proc->p_pid;
547
548 /*
549 * Lock assigned and taken during PCB attach, unless we share
550 * the lock with another socket, e.g. socketpair(2) case.
551 */
552 if (lockso) {
553 lock = lockso->so_lock;
554 so->so_lock = lock;
555 mutex_obj_hold(lock);
556 mutex_enter(lock);
557 }
558
559 /* Attach the PCB (returns with the socket lock held). */
560 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
561 KASSERT(solocked(so));
562
563 if (error) {
564 KASSERT(so->so_pcb == NULL);
565 so->so_state |= SS_NOFDREF;
566 sofree(so);
567 return error;
568 }
569 so->so_cred = kauth_cred_dup(l->l_cred);
570 sounlock(so);
571
572 *aso = so;
573 return 0;
574 }
575
576 /*
577 * fsocreate: create a socket and a file descriptor associated with it.
578 *
579 * => On success, write file descriptor to fdout and return zero.
580 * => On failure, return non-zero; *fdout will be undefined.
581 */
582 int
583 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
584 {
585 lwp_t *l = curlwp;
586 int error, fd, flags;
587 struct socket *so;
588 struct file *fp;
589
590 if ((error = fd_allocfile(&fp, &fd)) != 0) {
591 return error;
592 }
593 flags = type & SOCK_FLAGS_MASK;
594 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
595 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
596 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
597 fp->f_type = DTYPE_SOCKET;
598 fp->f_ops = &socketops;
599
600 type &= ~SOCK_FLAGS_MASK;
601 error = socreate(domain, &so, type, proto, l, NULL);
602 if (error) {
603 fd_abort(curproc, fp, fd);
604 return error;
605 }
606 if (flags & SOCK_NONBLOCK) {
607 so->so_state |= SS_NBIO;
608 }
609 fp->f_socket = so;
610 fd_affix(curproc, fp, fd);
611
612 if (sop != NULL) {
613 *sop = so;
614 }
615 *fdout = fd;
616 return error;
617 }
618
619 int
620 sofamily(const struct socket *so)
621 {
622 const struct protosw *pr;
623 const struct domain *dom;
624
625 if ((pr = so->so_proto) == NULL)
626 return AF_UNSPEC;
627 if ((dom = pr->pr_domain) == NULL)
628 return AF_UNSPEC;
629 return dom->dom_family;
630 }
631
632 int
633 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
634 {
635 int error;
636
637 solock(so);
638 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
639 sounlock(so);
640 return EAFNOSUPPORT;
641 }
642 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
643 sounlock(so);
644 return error;
645 }
646
647 int
648 solisten(struct socket *so, int backlog, struct lwp *l)
649 {
650 int error;
651 short oldopt, oldqlimit;
652
653 solock(so);
654 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
655 SS_ISDISCONNECTING)) != 0) {
656 sounlock(so);
657 return EINVAL;
658 }
659 oldopt = so->so_options;
660 oldqlimit = so->so_qlimit;
661 if (TAILQ_EMPTY(&so->so_q))
662 so->so_options |= SO_ACCEPTCONN;
663 if (backlog < 0)
664 backlog = 0;
665 so->so_qlimit = min(backlog, somaxconn);
666
667 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
668 if (error != 0) {
669 so->so_options = oldopt;
670 so->so_qlimit = oldqlimit;
671 sounlock(so);
672 return error;
673 }
674 sounlock(so);
675 return 0;
676 }
677
678 void
679 sofree(struct socket *so)
680 {
681 u_int refs;
682
683 KASSERT(solocked(so));
684
685 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
686 sounlock(so);
687 return;
688 }
689 if (so->so_head) {
690 /*
691 * We must not decommission a socket that's on the accept(2)
692 * queue. If we do, then accept(2) may hang after select(2)
693 * indicated that the listening socket was ready.
694 */
695 if (!soqremque(so, 0)) {
696 sounlock(so);
697 return;
698 }
699 }
700 if (so->so_rcv.sb_hiwat)
701 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
702 RLIM_INFINITY);
703 if (so->so_snd.sb_hiwat)
704 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
705 RLIM_INFINITY);
706 sbrelease(&so->so_snd, so);
707 KASSERT(!cv_has_waiters(&so->so_cv));
708 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
709 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
710 sorflush(so);
711 refs = so->so_aborting; /* XXX */
712 /* Remove acccept filter if one is present. */
713 if (so->so_accf != NULL)
714 (void)accept_filt_clear(so);
715 sounlock(so);
716 if (refs == 0) /* XXX */
717 soput(so);
718 }
719
720 /*
721 * soclose: close a socket on last file table reference removal.
722 * Initiate disconnect if connected. Free socket when disconnect complete.
723 */
724 int
725 soclose(struct socket *so)
726 {
727 struct socket *so2;
728 int error = 0;
729
730 solock(so);
731 if (so->so_options & SO_ACCEPTCONN) {
732 for (;;) {
733 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
734 KASSERT(solocked2(so, so2));
735 (void) soqremque(so2, 0);
736 /* soabort drops the lock. */
737 (void) soabort(so2);
738 solock(so);
739 continue;
740 }
741 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
742 KASSERT(solocked2(so, so2));
743 (void) soqremque(so2, 1);
744 /* soabort drops the lock. */
745 (void) soabort(so2);
746 solock(so);
747 continue;
748 }
749 break;
750 }
751 }
752 if (so->so_pcb == NULL)
753 goto discard;
754 if (so->so_state & SS_ISCONNECTED) {
755 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
756 error = sodisconnect(so);
757 if (error)
758 goto drop;
759 }
760 if (so->so_options & SO_LINGER) {
761 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
762 (SS_ISDISCONNECTING|SS_NBIO))
763 goto drop;
764 while (so->so_state & SS_ISCONNECTED) {
765 error = sowait(so, true, so->so_linger * hz);
766 if (error)
767 break;
768 }
769 }
770 }
771 drop:
772 if (so->so_pcb) {
773 KASSERT(solocked(so));
774 (*so->so_proto->pr_usrreqs->pr_detach)(so);
775 }
776 discard:
777 KASSERT((so->so_state & SS_NOFDREF) == 0);
778 kauth_cred_free(so->so_cred);
779 so->so_state |= SS_NOFDREF;
780 sofree(so);
781 return error;
782 }
783
784 /*
785 * Must be called with the socket locked.. Will return with it unlocked.
786 */
787 int
788 soabort(struct socket *so)
789 {
790 u_int refs;
791 int error;
792
793 KASSERT(solocked(so));
794 KASSERT(so->so_head == NULL);
795
796 so->so_aborting++; /* XXX */
797 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
798 refs = --so->so_aborting; /* XXX */
799 if (error || (refs == 0)) {
800 sofree(so);
801 } else {
802 sounlock(so);
803 }
804 return error;
805 }
806
807 int
808 soaccept(struct socket *so, struct sockaddr *nam)
809 {
810 int error;
811
812 KASSERT(solocked(so));
813 KASSERT((so->so_state & SS_NOFDREF) != 0);
814
815 so->so_state &= ~SS_NOFDREF;
816 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
817 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
818 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
819 else
820 error = ECONNABORTED;
821
822 return error;
823 }
824
825 int
826 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
827 {
828 int error;
829
830 KASSERT(solocked(so));
831
832 if (so->so_options & SO_ACCEPTCONN)
833 return EOPNOTSUPP;
834 /*
835 * If protocol is connection-based, can only connect once.
836 * Otherwise, if connected, try to disconnect first.
837 * This allows user to disconnect by connecting to, e.g.,
838 * a null address.
839 */
840 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
841 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
842 (error = sodisconnect(so)))) {
843 error = EISCONN;
844 } else {
845 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
846 return EAFNOSUPPORT;
847 }
848 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
849 }
850
851 return error;
852 }
853
854 int
855 soconnect2(struct socket *so1, struct socket *so2)
856 {
857 KASSERT(solocked2(so1, so2));
858
859 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
860 }
861
862 int
863 sodisconnect(struct socket *so)
864 {
865 int error;
866
867 KASSERT(solocked(so));
868
869 if ((so->so_state & SS_ISCONNECTED) == 0) {
870 error = ENOTCONN;
871 } else if (so->so_state & SS_ISDISCONNECTING) {
872 error = EALREADY;
873 } else {
874 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
875 }
876 return (error);
877 }
878
879 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
880 /*
881 * Send on a socket.
882 * If send must go all at once and message is larger than
883 * send buffering, then hard error.
884 * Lock against other senders.
885 * If must go all at once and not enough room now, then
886 * inform user that this would block and do nothing.
887 * Otherwise, if nonblocking, send as much as possible.
888 * The data to be sent is described by "uio" if nonzero,
889 * otherwise by the mbuf chain "top" (which must be null
890 * if uio is not). Data provided in mbuf chain must be small
891 * enough to send all at once.
892 *
893 * Returns nonzero on error, timeout or signal; callers
894 * must check for short counts if EINTR/ERESTART are returned.
895 * Data and control buffers are freed on return.
896 */
897 int
898 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
899 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
900 {
901 struct mbuf **mp, *m;
902 long space, len, resid, clen, mlen;
903 int error, s, dontroute, atomic;
904 short wakeup_state = 0;
905
906 clen = 0;
907
908 /*
909 * solock() provides atomicity of access. splsoftnet() prevents
910 * protocol processing soft interrupts from interrupting us and
911 * blocking (expensive).
912 */
913 s = splsoftnet();
914 solock(so);
915 atomic = sosendallatonce(so) || top;
916 if (uio)
917 resid = uio->uio_resid;
918 else
919 resid = top->m_pkthdr.len;
920 /*
921 * In theory resid should be unsigned.
922 * However, space must be signed, as it might be less than 0
923 * if we over-committed, and we must use a signed comparison
924 * of space and resid. On the other hand, a negative resid
925 * causes us to loop sending 0-length segments to the protocol.
926 */
927 if (resid < 0) {
928 error = EINVAL;
929 goto out;
930 }
931 dontroute =
932 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
933 (so->so_proto->pr_flags & PR_ATOMIC);
934 l->l_ru.ru_msgsnd++;
935 if (control)
936 clen = control->m_len;
937 restart:
938 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
939 goto out;
940 do {
941 if (so->so_state & SS_CANTSENDMORE) {
942 error = EPIPE;
943 goto release;
944 }
945 if (so->so_error) {
946 error = so->so_error;
947 so->so_error = 0;
948 goto release;
949 }
950 if ((so->so_state & SS_ISCONNECTED) == 0) {
951 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
952 if (resid || clen == 0) {
953 error = ENOTCONN;
954 goto release;
955 }
956 } else if (addr == NULL) {
957 error = EDESTADDRREQ;
958 goto release;
959 }
960 }
961 space = sbspace(&so->so_snd);
962 if (flags & MSG_OOB)
963 space += 1024;
964 if ((atomic && resid > so->so_snd.sb_hiwat) ||
965 clen > so->so_snd.sb_hiwat) {
966 error = EMSGSIZE;
967 goto release;
968 }
969 if (space < resid + clen &&
970 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
971 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
972 error = EWOULDBLOCK;
973 goto release;
974 }
975 sbunlock(&so->so_snd);
976 if (wakeup_state & SS_RESTARTSYS) {
977 error = ERESTART;
978 goto out;
979 }
980 error = sbwait(&so->so_snd);
981 if (error)
982 goto out;
983 wakeup_state = so->so_state;
984 goto restart;
985 }
986 wakeup_state = 0;
987 mp = ⊤
988 space -= clen;
989 do {
990 if (uio == NULL) {
991 /*
992 * Data is prepackaged in "top".
993 */
994 resid = 0;
995 if (flags & MSG_EOR)
996 top->m_flags |= M_EOR;
997 } else do {
998 sounlock(so);
999 splx(s);
1000 if (top == NULL) {
1001 m = m_gethdr(M_WAIT, MT_DATA);
1002 mlen = MHLEN;
1003 m->m_pkthdr.len = 0;
1004 m_reset_rcvif(m);
1005 } else {
1006 m = m_get(M_WAIT, MT_DATA);
1007 mlen = MLEN;
1008 }
1009 MCLAIM(m, so->so_snd.sb_mowner);
1010 if (sock_loan_thresh >= 0 &&
1011 uio->uio_iov->iov_len >= sock_loan_thresh &&
1012 space >= sock_loan_thresh &&
1013 (len = sosend_loan(so, uio, m,
1014 space)) != 0) {
1015 SOSEND_COUNTER_INCR(&sosend_loan_big);
1016 space -= len;
1017 goto have_data;
1018 }
1019 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1020 SOSEND_COUNTER_INCR(&sosend_copy_big);
1021 m_clget(m, M_DONTWAIT);
1022 if ((m->m_flags & M_EXT) == 0)
1023 goto nopages;
1024 mlen = MCLBYTES;
1025 if (atomic && top == 0) {
1026 len = lmin(MCLBYTES - max_hdr,
1027 resid);
1028 m->m_data += max_hdr;
1029 } else
1030 len = lmin(MCLBYTES, resid);
1031 space -= len;
1032 } else {
1033 nopages:
1034 SOSEND_COUNTER_INCR(&sosend_copy_small);
1035 len = lmin(lmin(mlen, resid), space);
1036 space -= len;
1037 /*
1038 * For datagram protocols, leave room
1039 * for protocol headers in first mbuf.
1040 */
1041 if (atomic && top == 0 && len < mlen)
1042 MH_ALIGN(m, len);
1043 }
1044 error = uiomove(mtod(m, void *), (int)len, uio);
1045 have_data:
1046 resid = uio->uio_resid;
1047 m->m_len = len;
1048 *mp = m;
1049 top->m_pkthdr.len += len;
1050 s = splsoftnet();
1051 solock(so);
1052 if (error != 0)
1053 goto release;
1054 mp = &m->m_next;
1055 if (resid <= 0) {
1056 if (flags & MSG_EOR)
1057 top->m_flags |= M_EOR;
1058 break;
1059 }
1060 } while (space > 0 && atomic);
1061
1062 if (so->so_state & SS_CANTSENDMORE) {
1063 error = EPIPE;
1064 goto release;
1065 }
1066 if (dontroute)
1067 so->so_options |= SO_DONTROUTE;
1068 if (resid > 0)
1069 so->so_state |= SS_MORETOCOME;
1070 if (flags & MSG_OOB) {
1071 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1072 so, top, control);
1073 } else {
1074 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1075 top, addr, control, l);
1076 }
1077 if (dontroute)
1078 so->so_options &= ~SO_DONTROUTE;
1079 if (resid > 0)
1080 so->so_state &= ~SS_MORETOCOME;
1081 clen = 0;
1082 control = NULL;
1083 top = NULL;
1084 mp = ⊤
1085 if (error != 0)
1086 goto release;
1087 } while (resid && space > 0);
1088 } while (resid);
1089
1090 release:
1091 sbunlock(&so->so_snd);
1092 out:
1093 sounlock(so);
1094 splx(s);
1095 if (top)
1096 m_freem(top);
1097 if (control)
1098 m_freem(control);
1099 return (error);
1100 }
1101
1102 /*
1103 * Following replacement or removal of the first mbuf on the first
1104 * mbuf chain of a socket buffer, push necessary state changes back
1105 * into the socket buffer so that other consumers see the values
1106 * consistently. 'nextrecord' is the callers locally stored value of
1107 * the original value of sb->sb_mb->m_nextpkt which must be restored
1108 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1109 */
1110 static void
1111 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1112 {
1113
1114 KASSERT(solocked(sb->sb_so));
1115
1116 /*
1117 * First, update for the new value of nextrecord. If necessary,
1118 * make it the first record.
1119 */
1120 if (sb->sb_mb != NULL)
1121 sb->sb_mb->m_nextpkt = nextrecord;
1122 else
1123 sb->sb_mb = nextrecord;
1124
1125 /*
1126 * Now update any dependent socket buffer fields to reflect
1127 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1128 * the addition of a second clause that takes care of the
1129 * case where sb_mb has been updated, but remains the last
1130 * record.
1131 */
1132 if (sb->sb_mb == NULL) {
1133 sb->sb_mbtail = NULL;
1134 sb->sb_lastrecord = NULL;
1135 } else if (sb->sb_mb->m_nextpkt == NULL)
1136 sb->sb_lastrecord = sb->sb_mb;
1137 }
1138
1139 /*
1140 * Implement receive operations on a socket.
1141 * We depend on the way that records are added to the sockbuf
1142 * by sbappend*. In particular, each record (mbufs linked through m_next)
1143 * must begin with an address if the protocol so specifies,
1144 * followed by an optional mbuf or mbufs containing ancillary data,
1145 * and then zero or more mbufs of data.
1146 * In order to avoid blocking network interrupts for the entire time here,
1147 * we splx() while doing the actual copy to user space.
1148 * Although the sockbuf is locked, new data may still be appended,
1149 * and thus we must maintain consistency of the sockbuf during that time.
1150 *
1151 * The caller may receive the data as a single mbuf chain by supplying
1152 * an mbuf **mp0 for use in returning the chain. The uio is then used
1153 * only for the count in uio_resid.
1154 */
1155 int
1156 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1157 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1158 {
1159 struct lwp *l = curlwp;
1160 struct mbuf *m, **mp, *mt;
1161 size_t len, offset, moff, orig_resid;
1162 int atomic, flags, error, s, type;
1163 const struct protosw *pr;
1164 struct mbuf *nextrecord;
1165 int mbuf_removed = 0;
1166 const struct domain *dom;
1167 short wakeup_state = 0;
1168
1169 pr = so->so_proto;
1170 atomic = pr->pr_flags & PR_ATOMIC;
1171 dom = pr->pr_domain;
1172 mp = mp0;
1173 type = 0;
1174 orig_resid = uio->uio_resid;
1175
1176 if (paddr != NULL)
1177 *paddr = NULL;
1178 if (controlp != NULL)
1179 *controlp = NULL;
1180 if (flagsp != NULL)
1181 flags = *flagsp &~ MSG_EOR;
1182 else
1183 flags = 0;
1184
1185 if (flags & MSG_OOB) {
1186 m = m_get(M_WAIT, MT_DATA);
1187 solock(so);
1188 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1189 sounlock(so);
1190 if (error)
1191 goto bad;
1192 do {
1193 error = uiomove(mtod(m, void *),
1194 MIN(uio->uio_resid, m->m_len), uio);
1195 m = m_free(m);
1196 } while (uio->uio_resid > 0 && error == 0 && m);
1197 bad:
1198 if (m != NULL)
1199 m_freem(m);
1200 return error;
1201 }
1202 if (mp != NULL)
1203 *mp = NULL;
1204
1205 /*
1206 * solock() provides atomicity of access. splsoftnet() prevents
1207 * protocol processing soft interrupts from interrupting us and
1208 * blocking (expensive).
1209 */
1210 s = splsoftnet();
1211 solock(so);
1212 restart:
1213 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1214 sounlock(so);
1215 splx(s);
1216 return error;
1217 }
1218
1219 m = so->so_rcv.sb_mb;
1220 /*
1221 * If we have less data than requested, block awaiting more
1222 * (subject to any timeout) if:
1223 * 1. the current count is less than the low water mark,
1224 * 2. MSG_WAITALL is set, and it is possible to do the entire
1225 * receive operation at once if we block (resid <= hiwat), or
1226 * 3. MSG_DONTWAIT is not set.
1227 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1228 * we have to do the receive in sections, and thus risk returning
1229 * a short count if a timeout or signal occurs after we start.
1230 */
1231 if (m == NULL ||
1232 ((flags & MSG_DONTWAIT) == 0 &&
1233 so->so_rcv.sb_cc < uio->uio_resid &&
1234 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1235 ((flags & MSG_WAITALL) &&
1236 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1237 m->m_nextpkt == NULL && !atomic)) {
1238 #ifdef DIAGNOSTIC
1239 if (m == NULL && so->so_rcv.sb_cc)
1240 panic("receive 1");
1241 #endif
1242 if (so->so_error) {
1243 if (m != NULL)
1244 goto dontblock;
1245 error = so->so_error;
1246 if ((flags & MSG_PEEK) == 0)
1247 so->so_error = 0;
1248 goto release;
1249 }
1250 if (so->so_state & SS_CANTRCVMORE) {
1251 if (m != NULL)
1252 goto dontblock;
1253 else
1254 goto release;
1255 }
1256 for (; m != NULL; m = m->m_next)
1257 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1258 m = so->so_rcv.sb_mb;
1259 goto dontblock;
1260 }
1261 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1262 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1263 error = ENOTCONN;
1264 goto release;
1265 }
1266 if (uio->uio_resid == 0)
1267 goto release;
1268 if ((so->so_state & SS_NBIO) ||
1269 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1270 error = EWOULDBLOCK;
1271 goto release;
1272 }
1273 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1274 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1275 sbunlock(&so->so_rcv);
1276 if (wakeup_state & SS_RESTARTSYS)
1277 error = ERESTART;
1278 else
1279 error = sbwait(&so->so_rcv);
1280 if (error != 0) {
1281 sounlock(so);
1282 splx(s);
1283 return error;
1284 }
1285 wakeup_state = so->so_state;
1286 goto restart;
1287 }
1288 dontblock:
1289 /*
1290 * On entry here, m points to the first record of the socket buffer.
1291 * From this point onward, we maintain 'nextrecord' as a cache of the
1292 * pointer to the next record in the socket buffer. We must keep the
1293 * various socket buffer pointers and local stack versions of the
1294 * pointers in sync, pushing out modifications before dropping the
1295 * socket lock, and re-reading them when picking it up.
1296 *
1297 * Otherwise, we will race with the network stack appending new data
1298 * or records onto the socket buffer by using inconsistent/stale
1299 * versions of the field, possibly resulting in socket buffer
1300 * corruption.
1301 *
1302 * By holding the high-level sblock(), we prevent simultaneous
1303 * readers from pulling off the front of the socket buffer.
1304 */
1305 if (l != NULL)
1306 l->l_ru.ru_msgrcv++;
1307 KASSERT(m == so->so_rcv.sb_mb);
1308 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1309 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1310 nextrecord = m->m_nextpkt;
1311 if (pr->pr_flags & PR_ADDR) {
1312 #ifdef DIAGNOSTIC
1313 if (m->m_type != MT_SONAME)
1314 panic("receive 1a");
1315 #endif
1316 orig_resid = 0;
1317 if (flags & MSG_PEEK) {
1318 if (paddr)
1319 *paddr = m_copy(m, 0, m->m_len);
1320 m = m->m_next;
1321 } else {
1322 sbfree(&so->so_rcv, m);
1323 mbuf_removed = 1;
1324 if (paddr != NULL) {
1325 *paddr = m;
1326 so->so_rcv.sb_mb = m->m_next;
1327 m->m_next = NULL;
1328 m = so->so_rcv.sb_mb;
1329 } else {
1330 m = so->so_rcv.sb_mb = m_free(m);
1331 }
1332 sbsync(&so->so_rcv, nextrecord);
1333 }
1334 }
1335 if (pr->pr_flags & PR_ADDR_OPT) {
1336 /*
1337 * For SCTP we may be getting a
1338 * whole message OR a partial delivery.
1339 */
1340 if (m->m_type == MT_SONAME) {
1341 orig_resid = 0;
1342 if (flags & MSG_PEEK) {
1343 if (paddr)
1344 *paddr = m_copy(m, 0, m->m_len);
1345 m = m->m_next;
1346 } else {
1347 sbfree(&so->so_rcv, m);
1348 if (paddr) {
1349 *paddr = m;
1350 so->so_rcv.sb_mb = m->m_next;
1351 m->m_next = 0;
1352 m = so->so_rcv.sb_mb;
1353 } else {
1354 m = so->so_rcv.sb_mb = m_free(m);
1355 }
1356 }
1357 }
1358 }
1359
1360 /*
1361 * Process one or more MT_CONTROL mbufs present before any data mbufs
1362 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1363 * just copy the data; if !MSG_PEEK, we call into the protocol to
1364 * perform externalization (or freeing if controlp == NULL).
1365 */
1366 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1367 struct mbuf *cm = NULL, *cmn;
1368 struct mbuf **cme = &cm;
1369
1370 do {
1371 if (flags & MSG_PEEK) {
1372 if (controlp != NULL) {
1373 *controlp = m_copy(m, 0, m->m_len);
1374 controlp = &(*controlp)->m_next;
1375 }
1376 m = m->m_next;
1377 } else {
1378 sbfree(&so->so_rcv, m);
1379 so->so_rcv.sb_mb = m->m_next;
1380 m->m_next = NULL;
1381 *cme = m;
1382 cme = &(*cme)->m_next;
1383 m = so->so_rcv.sb_mb;
1384 }
1385 } while (m != NULL && m->m_type == MT_CONTROL);
1386 if ((flags & MSG_PEEK) == 0)
1387 sbsync(&so->so_rcv, nextrecord);
1388 for (; cm != NULL; cm = cmn) {
1389 cmn = cm->m_next;
1390 cm->m_next = NULL;
1391 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1392 if (controlp != NULL) {
1393 if (dom->dom_externalize != NULL &&
1394 type == SCM_RIGHTS) {
1395 sounlock(so);
1396 splx(s);
1397 error = (*dom->dom_externalize)(cm, l,
1398 (flags & MSG_CMSG_CLOEXEC) ?
1399 O_CLOEXEC : 0);
1400 s = splsoftnet();
1401 solock(so);
1402 }
1403 *controlp = cm;
1404 while (*controlp != NULL)
1405 controlp = &(*controlp)->m_next;
1406 } else {
1407 /*
1408 * Dispose of any SCM_RIGHTS message that went
1409 * through the read path rather than recv.
1410 */
1411 if (dom->dom_dispose != NULL &&
1412 type == SCM_RIGHTS) {
1413 sounlock(so);
1414 (*dom->dom_dispose)(cm);
1415 solock(so);
1416 }
1417 m_freem(cm);
1418 }
1419 }
1420 if (m != NULL)
1421 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1422 else
1423 nextrecord = so->so_rcv.sb_mb;
1424 orig_resid = 0;
1425 }
1426
1427 /* If m is non-NULL, we have some data to read. */
1428 if (__predict_true(m != NULL)) {
1429 type = m->m_type;
1430 if (type == MT_OOBDATA)
1431 flags |= MSG_OOB;
1432 }
1433 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1434 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1435
1436 moff = 0;
1437 offset = 0;
1438 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1439 if (m->m_type == MT_OOBDATA) {
1440 if (type != MT_OOBDATA)
1441 break;
1442 } else if (type == MT_OOBDATA)
1443 break;
1444 #ifdef DIAGNOSTIC
1445 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1446 panic("receive 3");
1447 #endif
1448 so->so_state &= ~SS_RCVATMARK;
1449 wakeup_state = 0;
1450 len = uio->uio_resid;
1451 if (so->so_oobmark && len > so->so_oobmark - offset)
1452 len = so->so_oobmark - offset;
1453 if (len > m->m_len - moff)
1454 len = m->m_len - moff;
1455 /*
1456 * If mp is set, just pass back the mbufs.
1457 * Otherwise copy them out via the uio, then free.
1458 * Sockbuf must be consistent here (points to current mbuf,
1459 * it points to next record) when we drop priority;
1460 * we must note any additions to the sockbuf when we
1461 * block interrupts again.
1462 */
1463 if (mp == NULL) {
1464 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1465 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1466 sounlock(so);
1467 splx(s);
1468 error = uiomove(mtod(m, char *) + moff, len, uio);
1469 s = splsoftnet();
1470 solock(so);
1471 if (error != 0) {
1472 /*
1473 * If any part of the record has been removed
1474 * (such as the MT_SONAME mbuf, which will
1475 * happen when PR_ADDR, and thus also
1476 * PR_ATOMIC, is set), then drop the entire
1477 * record to maintain the atomicity of the
1478 * receive operation.
1479 *
1480 * This avoids a later panic("receive 1a")
1481 * when compiled with DIAGNOSTIC.
1482 */
1483 if (m && mbuf_removed && atomic)
1484 (void) sbdroprecord(&so->so_rcv);
1485
1486 goto release;
1487 }
1488 } else
1489 uio->uio_resid -= len;
1490 if (len == m->m_len - moff) {
1491 if (m->m_flags & M_EOR)
1492 flags |= MSG_EOR;
1493 #ifdef SCTP
1494 if (m->m_flags & M_NOTIFICATION)
1495 flags |= MSG_NOTIFICATION;
1496 #endif /* SCTP */
1497 if (flags & MSG_PEEK) {
1498 m = m->m_next;
1499 moff = 0;
1500 } else {
1501 nextrecord = m->m_nextpkt;
1502 sbfree(&so->so_rcv, m);
1503 if (mp) {
1504 *mp = m;
1505 mp = &m->m_next;
1506 so->so_rcv.sb_mb = m = m->m_next;
1507 *mp = NULL;
1508 } else {
1509 m = so->so_rcv.sb_mb = m_free(m);
1510 }
1511 /*
1512 * If m != NULL, we also know that
1513 * so->so_rcv.sb_mb != NULL.
1514 */
1515 KASSERT(so->so_rcv.sb_mb == m);
1516 if (m) {
1517 m->m_nextpkt = nextrecord;
1518 if (nextrecord == NULL)
1519 so->so_rcv.sb_lastrecord = m;
1520 } else {
1521 so->so_rcv.sb_mb = nextrecord;
1522 SB_EMPTY_FIXUP(&so->so_rcv);
1523 }
1524 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1525 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1526 }
1527 } else if (flags & MSG_PEEK)
1528 moff += len;
1529 else {
1530 if (mp != NULL) {
1531 mt = m_copym(m, 0, len, M_NOWAIT);
1532 if (__predict_false(mt == NULL)) {
1533 sounlock(so);
1534 mt = m_copym(m, 0, len, M_WAIT);
1535 solock(so);
1536 }
1537 *mp = mt;
1538 }
1539 m->m_data += len;
1540 m->m_len -= len;
1541 so->so_rcv.sb_cc -= len;
1542 }
1543 if (so->so_oobmark) {
1544 if ((flags & MSG_PEEK) == 0) {
1545 so->so_oobmark -= len;
1546 if (so->so_oobmark == 0) {
1547 so->so_state |= SS_RCVATMARK;
1548 break;
1549 }
1550 } else {
1551 offset += len;
1552 if (offset == so->so_oobmark)
1553 break;
1554 }
1555 }
1556 if (flags & MSG_EOR)
1557 break;
1558 /*
1559 * If the MSG_WAITALL flag is set (for non-atomic socket),
1560 * we must not quit until "uio->uio_resid == 0" or an error
1561 * termination. If a signal/timeout occurs, return
1562 * with a short count but without error.
1563 * Keep sockbuf locked against other readers.
1564 */
1565 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1566 !sosendallatonce(so) && !nextrecord) {
1567 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1568 break;
1569 /*
1570 * If we are peeking and the socket receive buffer is
1571 * full, stop since we can't get more data to peek at.
1572 */
1573 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1574 break;
1575 /*
1576 * If we've drained the socket buffer, tell the
1577 * protocol in case it needs to do something to
1578 * get it filled again.
1579 */
1580 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1581 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1582 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1583 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1584 if (wakeup_state & SS_RESTARTSYS)
1585 error = ERESTART;
1586 else
1587 error = sbwait(&so->so_rcv);
1588 if (error != 0) {
1589 sbunlock(&so->so_rcv);
1590 sounlock(so);
1591 splx(s);
1592 return 0;
1593 }
1594 if ((m = so->so_rcv.sb_mb) != NULL)
1595 nextrecord = m->m_nextpkt;
1596 wakeup_state = so->so_state;
1597 }
1598 }
1599
1600 if (m && atomic) {
1601 flags |= MSG_TRUNC;
1602 if ((flags & MSG_PEEK) == 0)
1603 (void) sbdroprecord(&so->so_rcv);
1604 }
1605 if ((flags & MSG_PEEK) == 0) {
1606 if (m == NULL) {
1607 /*
1608 * First part is an inline SB_EMPTY_FIXUP(). Second
1609 * part makes sure sb_lastrecord is up-to-date if
1610 * there is still data in the socket buffer.
1611 */
1612 so->so_rcv.sb_mb = nextrecord;
1613 if (so->so_rcv.sb_mb == NULL) {
1614 so->so_rcv.sb_mbtail = NULL;
1615 so->so_rcv.sb_lastrecord = NULL;
1616 } else if (nextrecord->m_nextpkt == NULL)
1617 so->so_rcv.sb_lastrecord = nextrecord;
1618 }
1619 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1620 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1621 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1622 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1623 }
1624 if (orig_resid == uio->uio_resid && orig_resid &&
1625 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1626 sbunlock(&so->so_rcv);
1627 goto restart;
1628 }
1629
1630 if (flagsp != NULL)
1631 *flagsp |= flags;
1632 release:
1633 sbunlock(&so->so_rcv);
1634 sounlock(so);
1635 splx(s);
1636 return error;
1637 }
1638
1639 int
1640 soshutdown(struct socket *so, int how)
1641 {
1642 const struct protosw *pr;
1643 int error;
1644
1645 KASSERT(solocked(so));
1646
1647 pr = so->so_proto;
1648 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1649 return (EINVAL);
1650
1651 if (how == SHUT_RD || how == SHUT_RDWR) {
1652 sorflush(so);
1653 error = 0;
1654 }
1655 if (how == SHUT_WR || how == SHUT_RDWR)
1656 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1657
1658 return error;
1659 }
1660
1661 void
1662 sorestart(struct socket *so)
1663 {
1664 /*
1665 * An application has called close() on an fd on which another
1666 * of its threads has called a socket system call.
1667 * Mark this and wake everyone up, and code that would block again
1668 * instead returns ERESTART.
1669 * On system call re-entry the fd is validated and EBADF returned.
1670 * Any other fd will block again on the 2nd syscall.
1671 */
1672 solock(so);
1673 so->so_state |= SS_RESTARTSYS;
1674 cv_broadcast(&so->so_cv);
1675 cv_broadcast(&so->so_snd.sb_cv);
1676 cv_broadcast(&so->so_rcv.sb_cv);
1677 sounlock(so);
1678 }
1679
1680 void
1681 sorflush(struct socket *so)
1682 {
1683 struct sockbuf *sb, asb;
1684 const struct protosw *pr;
1685
1686 KASSERT(solocked(so));
1687
1688 sb = &so->so_rcv;
1689 pr = so->so_proto;
1690 socantrcvmore(so);
1691 sb->sb_flags |= SB_NOINTR;
1692 (void )sblock(sb, M_WAITOK);
1693 sbunlock(sb);
1694 asb = *sb;
1695 /*
1696 * Clear most of the sockbuf structure, but leave some of the
1697 * fields valid.
1698 */
1699 memset(&sb->sb_startzero, 0,
1700 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1701 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1702 sounlock(so);
1703 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1704 solock(so);
1705 }
1706 sbrelease(&asb, so);
1707 }
1708
1709 /*
1710 * internal set SOL_SOCKET options
1711 */
1712 static int
1713 sosetopt1(struct socket *so, const struct sockopt *sopt)
1714 {
1715 int error = EINVAL, opt;
1716 int optval = 0; /* XXX: gcc */
1717 struct linger l;
1718 struct timeval tv;
1719
1720 switch ((opt = sopt->sopt_name)) {
1721
1722 case SO_ACCEPTFILTER:
1723 error = accept_filt_setopt(so, sopt);
1724 KASSERT(solocked(so));
1725 break;
1726
1727 case SO_LINGER:
1728 error = sockopt_get(sopt, &l, sizeof(l));
1729 solock(so);
1730 if (error)
1731 break;
1732 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1733 l.l_linger > (INT_MAX / hz)) {
1734 error = EDOM;
1735 break;
1736 }
1737 so->so_linger = l.l_linger;
1738 if (l.l_onoff)
1739 so->so_options |= SO_LINGER;
1740 else
1741 so->so_options &= ~SO_LINGER;
1742 break;
1743
1744 case SO_DEBUG:
1745 case SO_KEEPALIVE:
1746 case SO_DONTROUTE:
1747 case SO_USELOOPBACK:
1748 case SO_BROADCAST:
1749 case SO_REUSEADDR:
1750 case SO_REUSEPORT:
1751 case SO_OOBINLINE:
1752 case SO_TIMESTAMP:
1753 case SO_NOSIGPIPE:
1754 #ifdef SO_OTIMESTAMP
1755 case SO_OTIMESTAMP:
1756 #endif
1757 error = sockopt_getint(sopt, &optval);
1758 solock(so);
1759 if (error)
1760 break;
1761 if (optval)
1762 so->so_options |= opt;
1763 else
1764 so->so_options &= ~opt;
1765 break;
1766
1767 case SO_SNDBUF:
1768 case SO_RCVBUF:
1769 case SO_SNDLOWAT:
1770 case SO_RCVLOWAT:
1771 error = sockopt_getint(sopt, &optval);
1772 solock(so);
1773 if (error)
1774 break;
1775
1776 /*
1777 * Values < 1 make no sense for any of these
1778 * options, so disallow them.
1779 */
1780 if (optval < 1) {
1781 error = EINVAL;
1782 break;
1783 }
1784
1785 switch (opt) {
1786 case SO_SNDBUF:
1787 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1788 error = ENOBUFS;
1789 break;
1790 }
1791 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1792 break;
1793
1794 case SO_RCVBUF:
1795 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1796 error = ENOBUFS;
1797 break;
1798 }
1799 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1800 break;
1801
1802 /*
1803 * Make sure the low-water is never greater than
1804 * the high-water.
1805 */
1806 case SO_SNDLOWAT:
1807 if (optval > so->so_snd.sb_hiwat)
1808 optval = so->so_snd.sb_hiwat;
1809
1810 so->so_snd.sb_lowat = optval;
1811 break;
1812
1813 case SO_RCVLOWAT:
1814 if (optval > so->so_rcv.sb_hiwat)
1815 optval = so->so_rcv.sb_hiwat;
1816
1817 so->so_rcv.sb_lowat = optval;
1818 break;
1819 }
1820 break;
1821
1822 #ifdef COMPAT_50
1823 case SO_OSNDTIMEO:
1824 case SO_ORCVTIMEO: {
1825 struct timeval50 otv;
1826 error = sockopt_get(sopt, &otv, sizeof(otv));
1827 if (error) {
1828 solock(so);
1829 break;
1830 }
1831 timeval50_to_timeval(&otv, &tv);
1832 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1833 error = 0;
1834 /*FALLTHROUGH*/
1835 }
1836 #endif /* COMPAT_50 */
1837
1838 case SO_SNDTIMEO:
1839 case SO_RCVTIMEO:
1840 if (error)
1841 error = sockopt_get(sopt, &tv, sizeof(tv));
1842 solock(so);
1843 if (error)
1844 break;
1845
1846 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1847 error = EDOM;
1848 break;
1849 }
1850
1851 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1852 if (optval == 0 && tv.tv_usec != 0)
1853 optval = 1;
1854
1855 switch (opt) {
1856 case SO_SNDTIMEO:
1857 so->so_snd.sb_timeo = optval;
1858 break;
1859 case SO_RCVTIMEO:
1860 so->so_rcv.sb_timeo = optval;
1861 break;
1862 }
1863 break;
1864
1865 default:
1866 solock(so);
1867 error = ENOPROTOOPT;
1868 break;
1869 }
1870 KASSERT(solocked(so));
1871 return error;
1872 }
1873
1874 int
1875 sosetopt(struct socket *so, struct sockopt *sopt)
1876 {
1877 int error, prerr;
1878
1879 if (sopt->sopt_level == SOL_SOCKET) {
1880 error = sosetopt1(so, sopt);
1881 KASSERT(solocked(so));
1882 } else {
1883 error = ENOPROTOOPT;
1884 solock(so);
1885 }
1886
1887 if ((error == 0 || error == ENOPROTOOPT) &&
1888 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1889 /* give the protocol stack a shot */
1890 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1891 if (prerr == 0)
1892 error = 0;
1893 else if (prerr != ENOPROTOOPT)
1894 error = prerr;
1895 }
1896 sounlock(so);
1897 return error;
1898 }
1899
1900 /*
1901 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1902 */
1903 int
1904 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1905 const void *val, size_t valsize)
1906 {
1907 struct sockopt sopt;
1908 int error;
1909
1910 KASSERT(valsize == 0 || val != NULL);
1911
1912 sockopt_init(&sopt, level, name, valsize);
1913 sockopt_set(&sopt, val, valsize);
1914
1915 error = sosetopt(so, &sopt);
1916
1917 sockopt_destroy(&sopt);
1918
1919 return error;
1920 }
1921
1922 /*
1923 * internal get SOL_SOCKET options
1924 */
1925 static int
1926 sogetopt1(struct socket *so, struct sockopt *sopt)
1927 {
1928 int error, optval, opt;
1929 struct linger l;
1930 struct timeval tv;
1931
1932 switch ((opt = sopt->sopt_name)) {
1933
1934 case SO_ACCEPTFILTER:
1935 error = accept_filt_getopt(so, sopt);
1936 break;
1937
1938 case SO_LINGER:
1939 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1940 l.l_linger = so->so_linger;
1941
1942 error = sockopt_set(sopt, &l, sizeof(l));
1943 break;
1944
1945 case SO_USELOOPBACK:
1946 case SO_DONTROUTE:
1947 case SO_DEBUG:
1948 case SO_KEEPALIVE:
1949 case SO_REUSEADDR:
1950 case SO_REUSEPORT:
1951 case SO_BROADCAST:
1952 case SO_OOBINLINE:
1953 case SO_TIMESTAMP:
1954 case SO_NOSIGPIPE:
1955 #ifdef SO_OTIMESTAMP
1956 case SO_OTIMESTAMP:
1957 #endif
1958 case SO_ACCEPTCONN:
1959 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1960 break;
1961
1962 case SO_TYPE:
1963 error = sockopt_setint(sopt, so->so_type);
1964 break;
1965
1966 case SO_ERROR:
1967 error = sockopt_setint(sopt, so->so_error);
1968 so->so_error = 0;
1969 break;
1970
1971 case SO_SNDBUF:
1972 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1973 break;
1974
1975 case SO_RCVBUF:
1976 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1977 break;
1978
1979 case SO_SNDLOWAT:
1980 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1981 break;
1982
1983 case SO_RCVLOWAT:
1984 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1985 break;
1986
1987 #ifdef COMPAT_50
1988 case SO_OSNDTIMEO:
1989 case SO_ORCVTIMEO: {
1990 struct timeval50 otv;
1991
1992 optval = (opt == SO_OSNDTIMEO ?
1993 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1994
1995 otv.tv_sec = optval / hz;
1996 otv.tv_usec = (optval % hz) * tick;
1997
1998 error = sockopt_set(sopt, &otv, sizeof(otv));
1999 break;
2000 }
2001 #endif /* COMPAT_50 */
2002
2003 case SO_SNDTIMEO:
2004 case SO_RCVTIMEO:
2005 optval = (opt == SO_SNDTIMEO ?
2006 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2007
2008 tv.tv_sec = optval / hz;
2009 tv.tv_usec = (optval % hz) * tick;
2010
2011 error = sockopt_set(sopt, &tv, sizeof(tv));
2012 break;
2013
2014 case SO_OVERFLOWED:
2015 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2016 break;
2017
2018 default:
2019 error = ENOPROTOOPT;
2020 break;
2021 }
2022
2023 return (error);
2024 }
2025
2026 int
2027 sogetopt(struct socket *so, struct sockopt *sopt)
2028 {
2029 int error;
2030
2031 solock(so);
2032 if (sopt->sopt_level != SOL_SOCKET) {
2033 if (so->so_proto && so->so_proto->pr_ctloutput) {
2034 error = ((*so->so_proto->pr_ctloutput)
2035 (PRCO_GETOPT, so, sopt));
2036 } else
2037 error = (ENOPROTOOPT);
2038 } else {
2039 error = sogetopt1(so, sopt);
2040 }
2041 sounlock(so);
2042 return (error);
2043 }
2044
2045 /*
2046 * alloc sockopt data buffer buffer
2047 * - will be released at destroy
2048 */
2049 static int
2050 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2051 {
2052
2053 KASSERT(sopt->sopt_size == 0);
2054
2055 if (len > sizeof(sopt->sopt_buf)) {
2056 sopt->sopt_data = kmem_zalloc(len, kmflag);
2057 if (sopt->sopt_data == NULL)
2058 return ENOMEM;
2059 } else
2060 sopt->sopt_data = sopt->sopt_buf;
2061
2062 sopt->sopt_size = len;
2063 return 0;
2064 }
2065
2066 /*
2067 * initialise sockopt storage
2068 * - MAY sleep during allocation
2069 */
2070 void
2071 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2072 {
2073
2074 memset(sopt, 0, sizeof(*sopt));
2075
2076 sopt->sopt_level = level;
2077 sopt->sopt_name = name;
2078 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2079 }
2080
2081 /*
2082 * destroy sockopt storage
2083 * - will release any held memory references
2084 */
2085 void
2086 sockopt_destroy(struct sockopt *sopt)
2087 {
2088
2089 if (sopt->sopt_data != sopt->sopt_buf)
2090 kmem_free(sopt->sopt_data, sopt->sopt_size);
2091
2092 memset(sopt, 0, sizeof(*sopt));
2093 }
2094
2095 /*
2096 * set sockopt value
2097 * - value is copied into sockopt
2098 * - memory is allocated when necessary, will not sleep
2099 */
2100 int
2101 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2102 {
2103 int error;
2104
2105 if (sopt->sopt_size == 0) {
2106 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2107 if (error)
2108 return error;
2109 }
2110
2111 KASSERT(sopt->sopt_size == len);
2112 memcpy(sopt->sopt_data, buf, len);
2113 return 0;
2114 }
2115
2116 /*
2117 * common case of set sockopt integer value
2118 */
2119 int
2120 sockopt_setint(struct sockopt *sopt, int val)
2121 {
2122
2123 return sockopt_set(sopt, &val, sizeof(int));
2124 }
2125
2126 /*
2127 * get sockopt value
2128 * - correct size must be given
2129 */
2130 int
2131 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2132 {
2133
2134 if (sopt->sopt_size != len)
2135 return EINVAL;
2136
2137 memcpy(buf, sopt->sopt_data, len);
2138 return 0;
2139 }
2140
2141 /*
2142 * common case of get sockopt integer value
2143 */
2144 int
2145 sockopt_getint(const struct sockopt *sopt, int *valp)
2146 {
2147
2148 return sockopt_get(sopt, valp, sizeof(int));
2149 }
2150
2151 /*
2152 * set sockopt value from mbuf
2153 * - ONLY for legacy code
2154 * - mbuf is released by sockopt
2155 * - will not sleep
2156 */
2157 int
2158 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2159 {
2160 size_t len;
2161 int error;
2162
2163 len = m_length(m);
2164
2165 if (sopt->sopt_size == 0) {
2166 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2167 if (error)
2168 return error;
2169 }
2170
2171 KASSERT(sopt->sopt_size == len);
2172 m_copydata(m, 0, len, sopt->sopt_data);
2173 m_freem(m);
2174
2175 return 0;
2176 }
2177
2178 /*
2179 * get sockopt value into mbuf
2180 * - ONLY for legacy code
2181 * - mbuf to be released by the caller
2182 * - will not sleep
2183 */
2184 struct mbuf *
2185 sockopt_getmbuf(const struct sockopt *sopt)
2186 {
2187 struct mbuf *m;
2188
2189 if (sopt->sopt_size > MCLBYTES)
2190 return NULL;
2191
2192 m = m_get(M_DONTWAIT, MT_SOOPTS);
2193 if (m == NULL)
2194 return NULL;
2195
2196 if (sopt->sopt_size > MLEN) {
2197 MCLGET(m, M_DONTWAIT);
2198 if ((m->m_flags & M_EXT) == 0) {
2199 m_free(m);
2200 return NULL;
2201 }
2202 }
2203
2204 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2205 m->m_len = sopt->sopt_size;
2206
2207 return m;
2208 }
2209
2210 void
2211 sohasoutofband(struct socket *so)
2212 {
2213
2214 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2215 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2216 }
2217
2218 static void
2219 filt_sordetach(struct knote *kn)
2220 {
2221 struct socket *so;
2222
2223 so = ((file_t *)kn->kn_obj)->f_socket;
2224 solock(so);
2225 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2226 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2227 so->so_rcv.sb_flags &= ~SB_KNOTE;
2228 sounlock(so);
2229 }
2230
2231 /*ARGSUSED*/
2232 static int
2233 filt_soread(struct knote *kn, long hint)
2234 {
2235 struct socket *so;
2236 int rv;
2237
2238 so = ((file_t *)kn->kn_obj)->f_socket;
2239 if (hint != NOTE_SUBMIT)
2240 solock(so);
2241 kn->kn_data = so->so_rcv.sb_cc;
2242 if (so->so_state & SS_CANTRCVMORE) {
2243 kn->kn_flags |= EV_EOF;
2244 kn->kn_fflags = so->so_error;
2245 rv = 1;
2246 } else if (so->so_error) /* temporary udp error */
2247 rv = 1;
2248 else if (kn->kn_sfflags & NOTE_LOWAT)
2249 rv = (kn->kn_data >= kn->kn_sdata);
2250 else
2251 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2252 if (hint != NOTE_SUBMIT)
2253 sounlock(so);
2254 return rv;
2255 }
2256
2257 static void
2258 filt_sowdetach(struct knote *kn)
2259 {
2260 struct socket *so;
2261
2262 so = ((file_t *)kn->kn_obj)->f_socket;
2263 solock(so);
2264 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2265 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2266 so->so_snd.sb_flags &= ~SB_KNOTE;
2267 sounlock(so);
2268 }
2269
2270 /*ARGSUSED*/
2271 static int
2272 filt_sowrite(struct knote *kn, long hint)
2273 {
2274 struct socket *so;
2275 int rv;
2276
2277 so = ((file_t *)kn->kn_obj)->f_socket;
2278 if (hint != NOTE_SUBMIT)
2279 solock(so);
2280 kn->kn_data = sbspace(&so->so_snd);
2281 if (so->so_state & SS_CANTSENDMORE) {
2282 kn->kn_flags |= EV_EOF;
2283 kn->kn_fflags = so->so_error;
2284 rv = 1;
2285 } else if (so->so_error) /* temporary udp error */
2286 rv = 1;
2287 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2288 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2289 rv = 0;
2290 else if (kn->kn_sfflags & NOTE_LOWAT)
2291 rv = (kn->kn_data >= kn->kn_sdata);
2292 else
2293 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2294 if (hint != NOTE_SUBMIT)
2295 sounlock(so);
2296 return rv;
2297 }
2298
2299 /*ARGSUSED*/
2300 static int
2301 filt_solisten(struct knote *kn, long hint)
2302 {
2303 struct socket *so;
2304 int rv;
2305
2306 so = ((file_t *)kn->kn_obj)->f_socket;
2307
2308 /*
2309 * Set kn_data to number of incoming connections, not
2310 * counting partial (incomplete) connections.
2311 */
2312 if (hint != NOTE_SUBMIT)
2313 solock(so);
2314 kn->kn_data = so->so_qlen;
2315 rv = (kn->kn_data > 0);
2316 if (hint != NOTE_SUBMIT)
2317 sounlock(so);
2318 return rv;
2319 }
2320
2321 static const struct filterops solisten_filtops =
2322 { 1, NULL, filt_sordetach, filt_solisten };
2323 static const struct filterops soread_filtops =
2324 { 1, NULL, filt_sordetach, filt_soread };
2325 static const struct filterops sowrite_filtops =
2326 { 1, NULL, filt_sowdetach, filt_sowrite };
2327
2328 int
2329 soo_kqfilter(struct file *fp, struct knote *kn)
2330 {
2331 struct socket *so;
2332 struct sockbuf *sb;
2333
2334 so = ((file_t *)kn->kn_obj)->f_socket;
2335 solock(so);
2336 switch (kn->kn_filter) {
2337 case EVFILT_READ:
2338 if (so->so_options & SO_ACCEPTCONN)
2339 kn->kn_fop = &solisten_filtops;
2340 else
2341 kn->kn_fop = &soread_filtops;
2342 sb = &so->so_rcv;
2343 break;
2344 case EVFILT_WRITE:
2345 kn->kn_fop = &sowrite_filtops;
2346 sb = &so->so_snd;
2347 break;
2348 default:
2349 sounlock(so);
2350 return (EINVAL);
2351 }
2352 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2353 sb->sb_flags |= SB_KNOTE;
2354 sounlock(so);
2355 return (0);
2356 }
2357
2358 static int
2359 sodopoll(struct socket *so, int events)
2360 {
2361 int revents;
2362
2363 revents = 0;
2364
2365 if (events & (POLLIN | POLLRDNORM))
2366 if (soreadable(so))
2367 revents |= events & (POLLIN | POLLRDNORM);
2368
2369 if (events & (POLLOUT | POLLWRNORM))
2370 if (sowritable(so))
2371 revents |= events & (POLLOUT | POLLWRNORM);
2372
2373 if (events & (POLLPRI | POLLRDBAND))
2374 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2375 revents |= events & (POLLPRI | POLLRDBAND);
2376
2377 return revents;
2378 }
2379
2380 int
2381 sopoll(struct socket *so, int events)
2382 {
2383 int revents = 0;
2384
2385 #ifndef DIAGNOSTIC
2386 /*
2387 * Do a quick, unlocked check in expectation that the socket
2388 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2389 * as the solocked() assertions will fail.
2390 */
2391 if ((revents = sodopoll(so, events)) != 0)
2392 return revents;
2393 #endif
2394
2395 solock(so);
2396 if ((revents = sodopoll(so, events)) == 0) {
2397 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2398 selrecord(curlwp, &so->so_rcv.sb_sel);
2399 so->so_rcv.sb_flags |= SB_NOTIFY;
2400 }
2401
2402 if (events & (POLLOUT | POLLWRNORM)) {
2403 selrecord(curlwp, &so->so_snd.sb_sel);
2404 so->so_snd.sb_flags |= SB_NOTIFY;
2405 }
2406 }
2407 sounlock(so);
2408
2409 return revents;
2410 }
2411
2412
2413 #include <sys/sysctl.h>
2414
2415 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2416 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2417
2418 /*
2419 * sysctl helper routine for kern.somaxkva. ensures that the given
2420 * value is not too small.
2421 * (XXX should we maybe make sure it's not too large as well?)
2422 */
2423 static int
2424 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2425 {
2426 int error, new_somaxkva;
2427 struct sysctlnode node;
2428
2429 new_somaxkva = somaxkva;
2430 node = *rnode;
2431 node.sysctl_data = &new_somaxkva;
2432 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2433 if (error || newp == NULL)
2434 return (error);
2435
2436 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2437 return (EINVAL);
2438
2439 mutex_enter(&so_pendfree_lock);
2440 somaxkva = new_somaxkva;
2441 cv_broadcast(&socurkva_cv);
2442 mutex_exit(&so_pendfree_lock);
2443
2444 return (error);
2445 }
2446
2447 /*
2448 * sysctl helper routine for kern.sbmax. Basically just ensures that
2449 * any new value is not too small.
2450 */
2451 static int
2452 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2453 {
2454 int error, new_sbmax;
2455 struct sysctlnode node;
2456
2457 new_sbmax = sb_max;
2458 node = *rnode;
2459 node.sysctl_data = &new_sbmax;
2460 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2461 if (error || newp == NULL)
2462 return (error);
2463
2464 KERNEL_LOCK(1, NULL);
2465 error = sb_max_set(new_sbmax);
2466 KERNEL_UNLOCK_ONE(NULL);
2467
2468 return (error);
2469 }
2470
2471 static void
2472 sysctl_kern_socket_setup(void)
2473 {
2474
2475 KASSERT(socket_sysctllog == NULL);
2476
2477 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2478 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2479 CTLTYPE_INT, "somaxkva",
2480 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2481 "used for socket buffers"),
2482 sysctl_kern_somaxkva, 0, NULL, 0,
2483 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2484
2485 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2486 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2487 CTLTYPE_INT, "sbmax",
2488 SYSCTL_DESCR("Maximum socket buffer size"),
2489 sysctl_kern_sbmax, 0, NULL, 0,
2490 CTL_KERN, KERN_SBMAX, CTL_EOL);
2491 }
2492