Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.259.2.2
      1 /*	$NetBSD: uipc_socket.c,v 1.259.2.2 2018/05/02 07:20:22 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.259.2.2 2018/05/02 07:20:22 pgoyette Exp $");
     75 
     76 #ifdef _KERNEL_OPT
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_sock_counters.h"
     79 #include "opt_sosend_loan.h"
     80 #include "opt_mbuftrace.h"
     81 #include "opt_somaxkva.h"
     82 #include "opt_multiprocessor.h"	/* XXX */
     83 #include "opt_sctp.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/file.h>
     90 #include <sys/filedesc.h>
     91 #include <sys/kmem.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/domain.h>
     94 #include <sys/kernel.h>
     95 #include <sys/protosw.h>
     96 #include <sys/socket.h>
     97 #include <sys/socketvar.h>
     98 #include <sys/signalvar.h>
     99 #include <sys/resourcevar.h>
    100 #include <sys/uidinfo.h>
    101 #include <sys/event.h>
    102 #include <sys/poll.h>
    103 #include <sys/kauth.h>
    104 #include <sys/mutex.h>
    105 #include <sys/condvar.h>
    106 #include <sys/kthread.h>
    107 
    108 #ifdef COMPAT_50
    109 #include <compat/sys/time.h>
    110 #include <compat/sys/socket.h>
    111 #endif
    112 
    113 #include <uvm/uvm_extern.h>
    114 #include <uvm/uvm_loan.h>
    115 #include <uvm/uvm_page.h>
    116 
    117 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    118 
    119 extern const struct fileops socketops;
    120 
    121 extern int	somaxconn;			/* patchable (XXX sysctl) */
    122 int		somaxconn = SOMAXCONN;
    123 kmutex_t	*softnet_lock;
    124 
    125 #ifdef SOSEND_COUNTERS
    126 #include <sys/device.h>
    127 
    128 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    129     NULL, "sosend", "loan big");
    130 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    131     NULL, "sosend", "copy big");
    132 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    133     NULL, "sosend", "copy small");
    134 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    135     NULL, "sosend", "kva limit");
    136 
    137 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    138 
    139 EVCNT_ATTACH_STATIC(sosend_loan_big);
    140 EVCNT_ATTACH_STATIC(sosend_copy_big);
    141 EVCNT_ATTACH_STATIC(sosend_copy_small);
    142 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    143 #else
    144 
    145 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    146 
    147 #endif /* SOSEND_COUNTERS */
    148 
    149 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    150 int sock_loan_thresh = -1;
    151 #else
    152 int sock_loan_thresh = 4096;
    153 #endif
    154 
    155 static kmutex_t so_pendfree_lock;
    156 static struct mbuf *so_pendfree = NULL;
    157 
    158 #ifndef SOMAXKVA
    159 #define	SOMAXKVA (16 * 1024 * 1024)
    160 #endif
    161 int somaxkva = SOMAXKVA;
    162 static int socurkva;
    163 static kcondvar_t socurkva_cv;
    164 
    165 static kauth_listener_t socket_listener;
    166 
    167 #define	SOCK_LOAN_CHUNK		65536
    168 
    169 static void sopendfree_thread(void *);
    170 static kcondvar_t pendfree_thread_cv;
    171 static lwp_t *sopendfree_lwp;
    172 
    173 static void sysctl_kern_socket_setup(void);
    174 static struct sysctllog *socket_sysctllog;
    175 
    176 static vsize_t
    177 sokvareserve(struct socket *so, vsize_t len)
    178 {
    179 	int error;
    180 
    181 	mutex_enter(&so_pendfree_lock);
    182 	while (socurkva + len > somaxkva) {
    183 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    184 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    185 		if (error) {
    186 			len = 0;
    187 			break;
    188 		}
    189 	}
    190 	socurkva += len;
    191 	mutex_exit(&so_pendfree_lock);
    192 	return len;
    193 }
    194 
    195 static void
    196 sokvaunreserve(vsize_t len)
    197 {
    198 
    199 	mutex_enter(&so_pendfree_lock);
    200 	socurkva -= len;
    201 	cv_broadcast(&socurkva_cv);
    202 	mutex_exit(&so_pendfree_lock);
    203 }
    204 
    205 /*
    206  * sokvaalloc: allocate kva for loan.
    207  */
    208 
    209 vaddr_t
    210 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    211 {
    212 	vaddr_t lva;
    213 
    214 	/*
    215 	 * reserve kva.
    216 	 */
    217 
    218 	if (sokvareserve(so, len) == 0)
    219 		return 0;
    220 
    221 	/*
    222 	 * allocate kva.
    223 	 */
    224 
    225 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    226 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    227 	if (lva == 0) {
    228 		sokvaunreserve(len);
    229 		return (0);
    230 	}
    231 
    232 	return lva;
    233 }
    234 
    235 /*
    236  * sokvafree: free kva for loan.
    237  */
    238 
    239 void
    240 sokvafree(vaddr_t sva, vsize_t len)
    241 {
    242 
    243 	/*
    244 	 * free kva.
    245 	 */
    246 
    247 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    248 
    249 	/*
    250 	 * unreserve kva.
    251 	 */
    252 
    253 	sokvaunreserve(len);
    254 }
    255 
    256 static void
    257 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    258 {
    259 	vaddr_t sva, eva;
    260 	vsize_t len;
    261 	int npgs;
    262 
    263 	KASSERT(pgs != NULL);
    264 
    265 	eva = round_page((vaddr_t) buf + size);
    266 	sva = trunc_page((vaddr_t) buf);
    267 	len = eva - sva;
    268 	npgs = len >> PAGE_SHIFT;
    269 
    270 	pmap_kremove(sva, len);
    271 	pmap_update(pmap_kernel());
    272 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    273 	sokvafree(sva, len);
    274 }
    275 
    276 /*
    277  * sopendfree_thread: free mbufs on "pendfree" list.
    278  * unlock and relock so_pendfree_lock when freeing mbufs.
    279  */
    280 
    281 static void
    282 sopendfree_thread(void *v)
    283 {
    284 	struct mbuf *m, *next;
    285 	size_t rv;
    286 
    287 	mutex_enter(&so_pendfree_lock);
    288 
    289 	for (;;) {
    290 		rv = 0;
    291 		while (so_pendfree != NULL) {
    292 			m = so_pendfree;
    293 			so_pendfree = NULL;
    294 			mutex_exit(&so_pendfree_lock);
    295 
    296 			for (; m != NULL; m = next) {
    297 				next = m->m_next;
    298 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
    299 				    0);
    300 				KASSERT(m->m_ext.ext_refcnt == 0);
    301 
    302 				rv += m->m_ext.ext_size;
    303 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    304 				    m->m_ext.ext_size);
    305 				pool_cache_put(mb_cache, m);
    306 			}
    307 
    308 			mutex_enter(&so_pendfree_lock);
    309 		}
    310 		if (rv)
    311 			cv_broadcast(&socurkva_cv);
    312 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    313 	}
    314 	panic("sopendfree_thread");
    315 	/* NOTREACHED */
    316 }
    317 
    318 void
    319 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    320 {
    321 
    322 	KASSERT(m != NULL);
    323 
    324 	/*
    325 	 * postpone freeing mbuf.
    326 	 *
    327 	 * we can't do it in interrupt context
    328 	 * because we need to put kva back to kernel_map.
    329 	 */
    330 
    331 	mutex_enter(&so_pendfree_lock);
    332 	m->m_next = so_pendfree;
    333 	so_pendfree = m;
    334 	cv_signal(&pendfree_thread_cv);
    335 	mutex_exit(&so_pendfree_lock);
    336 }
    337 
    338 static long
    339 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    340 {
    341 	struct iovec *iov = uio->uio_iov;
    342 	vaddr_t sva, eva;
    343 	vsize_t len;
    344 	vaddr_t lva;
    345 	int npgs, error;
    346 	vaddr_t va;
    347 	int i;
    348 
    349 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    350 		return (0);
    351 
    352 	if (iov->iov_len < (size_t) space)
    353 		space = iov->iov_len;
    354 	if (space > SOCK_LOAN_CHUNK)
    355 		space = SOCK_LOAN_CHUNK;
    356 
    357 	eva = round_page((vaddr_t) iov->iov_base + space);
    358 	sva = trunc_page((vaddr_t) iov->iov_base);
    359 	len = eva - sva;
    360 	npgs = len >> PAGE_SHIFT;
    361 
    362 	KASSERT(npgs <= M_EXT_MAXPAGES);
    363 
    364 	lva = sokvaalloc(sva, len, so);
    365 	if (lva == 0)
    366 		return 0;
    367 
    368 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    369 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    370 	if (error) {
    371 		sokvafree(lva, len);
    372 		return (0);
    373 	}
    374 
    375 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    376 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    377 		    VM_PROT_READ, 0);
    378 	pmap_update(pmap_kernel());
    379 
    380 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    381 
    382 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    383 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    384 
    385 	uio->uio_resid -= space;
    386 	/* uio_offset not updated, not set/used for write(2) */
    387 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    388 	uio->uio_iov->iov_len -= space;
    389 	if (uio->uio_iov->iov_len == 0) {
    390 		uio->uio_iov++;
    391 		uio->uio_iovcnt--;
    392 	}
    393 
    394 	return (space);
    395 }
    396 
    397 struct mbuf *
    398 getsombuf(struct socket *so, int type)
    399 {
    400 	struct mbuf *m;
    401 
    402 	m = m_get(M_WAIT, type);
    403 	MCLAIM(m, so->so_mowner);
    404 	return m;
    405 }
    406 
    407 static int
    408 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    409     void *arg0, void *arg1, void *arg2, void *arg3)
    410 {
    411 	int result;
    412 	enum kauth_network_req req;
    413 
    414 	result = KAUTH_RESULT_DEFER;
    415 	req = (enum kauth_network_req)arg0;
    416 
    417 	if ((action != KAUTH_NETWORK_SOCKET) &&
    418 	    (action != KAUTH_NETWORK_BIND))
    419 		return result;
    420 
    421 	switch (req) {
    422 	case KAUTH_REQ_NETWORK_BIND_PORT:
    423 		result = KAUTH_RESULT_ALLOW;
    424 		break;
    425 
    426 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    427 		/* Normal users can only drop their own connections. */
    428 		struct socket *so = (struct socket *)arg1;
    429 
    430 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    431 			result = KAUTH_RESULT_ALLOW;
    432 
    433 		break;
    434 		}
    435 
    436 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    437 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    438 		switch ((u_long)arg1) {
    439 		case PF_ROUTE:
    440 		case PF_OROUTE:
    441 		case PF_BLUETOOTH:
    442 		case PF_CAN:
    443 			result = KAUTH_RESULT_ALLOW;
    444 			break;
    445 		default:
    446 			/* Privileged, let secmodel handle this. */
    447 			if ((u_long)arg2 == SOCK_RAW)
    448 				break;
    449 			result = KAUTH_RESULT_ALLOW;
    450 			break;
    451 		}
    452 		break;
    453 
    454 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    455 		result = KAUTH_RESULT_ALLOW;
    456 
    457 		break;
    458 
    459 	default:
    460 		break;
    461 	}
    462 
    463 	return result;
    464 }
    465 
    466 void
    467 soinit(void)
    468 {
    469 
    470 	sysctl_kern_socket_setup();
    471 
    472 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    473 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    474 	cv_init(&socurkva_cv, "sokva");
    475 	cv_init(&pendfree_thread_cv, "sopendfr");
    476 	soinit2();
    477 
    478 	/* Set the initial adjusted socket buffer size. */
    479 	if (sb_max_set(sb_max))
    480 		panic("bad initial sb_max value: %lu", sb_max);
    481 
    482 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    483 	    socket_listener_cb, NULL);
    484 }
    485 
    486 void
    487 soinit1(void)
    488 {
    489 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    490 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    491 	if (error)
    492 		panic("soinit1 %d", error);
    493 }
    494 
    495 /*
    496  * socreate: create a new socket of the specified type and the protocol.
    497  *
    498  * => Caller may specify another socket for lock sharing (must not be held).
    499  * => Returns the new socket without lock held.
    500  */
    501 int
    502 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    503 	 struct socket *lockso)
    504 {
    505 	const struct protosw	*prp;
    506 	struct socket	*so;
    507 	uid_t		uid;
    508 	int		error;
    509 	kmutex_t	*lock;
    510 
    511 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    512 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    513 	    KAUTH_ARG(proto));
    514 	if (error != 0)
    515 		return error;
    516 
    517 	if (proto)
    518 		prp = pffindproto(dom, proto, type);
    519 	else
    520 		prp = pffindtype(dom, type);
    521 	if (prp == NULL) {
    522 		/* no support for domain */
    523 		if (pffinddomain(dom) == 0)
    524 			return EAFNOSUPPORT;
    525 		/* no support for socket type */
    526 		if (proto == 0 && type != 0)
    527 			return EPROTOTYPE;
    528 		return EPROTONOSUPPORT;
    529 	}
    530 	if (prp->pr_usrreqs == NULL)
    531 		return EPROTONOSUPPORT;
    532 	if (prp->pr_type != type)
    533 		return EPROTOTYPE;
    534 
    535 	so = soget(true);
    536 	so->so_type = type;
    537 	so->so_proto = prp;
    538 	so->so_send = sosend;
    539 	so->so_receive = soreceive;
    540 #ifdef MBUFTRACE
    541 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    542 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    543 	so->so_mowner = &prp->pr_domain->dom_mowner;
    544 #endif
    545 	uid = kauth_cred_geteuid(l->l_cred);
    546 	so->so_uidinfo = uid_find(uid);
    547 	so->so_cpid = l->l_proc->p_pid;
    548 
    549 	/*
    550 	 * Lock assigned and taken during PCB attach, unless we share
    551 	 * the lock with another socket, e.g. socketpair(2) case.
    552 	 */
    553 	if (lockso) {
    554 		lock = lockso->so_lock;
    555 		so->so_lock = lock;
    556 		mutex_obj_hold(lock);
    557 		mutex_enter(lock);
    558 	}
    559 
    560 	/* Attach the PCB (returns with the socket lock held). */
    561 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    562 	KASSERT(solocked(so));
    563 
    564 	if (error) {
    565 		KASSERT(so->so_pcb == NULL);
    566 		so->so_state |= SS_NOFDREF;
    567 		sofree(so);
    568 		return error;
    569 	}
    570 	so->so_cred = kauth_cred_dup(l->l_cred);
    571 	sounlock(so);
    572 
    573 	*aso = so;
    574 	return 0;
    575 }
    576 
    577 /*
    578  * fsocreate: create a socket and a file descriptor associated with it.
    579  *
    580  * => On success, write file descriptor to fdout and return zero.
    581  * => On failure, return non-zero; *fdout will be undefined.
    582  */
    583 int
    584 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    585 {
    586 	lwp_t *l = curlwp;
    587 	int error, fd, flags;
    588 	struct socket *so;
    589 	struct file *fp;
    590 
    591 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    592 		return error;
    593 	}
    594 	flags = type & SOCK_FLAGS_MASK;
    595 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    596 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    597 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    598 	fp->f_type = DTYPE_SOCKET;
    599 	fp->f_ops = &socketops;
    600 
    601 	type &= ~SOCK_FLAGS_MASK;
    602 	error = socreate(domain, &so, type, proto, l, NULL);
    603 	if (error) {
    604 		fd_abort(curproc, fp, fd);
    605 		return error;
    606 	}
    607 	if (flags & SOCK_NONBLOCK) {
    608 		so->so_state |= SS_NBIO;
    609 	}
    610 	fp->f_socket = so;
    611 	fd_affix(curproc, fp, fd);
    612 
    613 	if (sop != NULL) {
    614 		*sop = so;
    615 	}
    616 	*fdout = fd;
    617 	return error;
    618 }
    619 
    620 int
    621 sofamily(const struct socket *so)
    622 {
    623 	const struct protosw *pr;
    624 	const struct domain *dom;
    625 
    626 	if ((pr = so->so_proto) == NULL)
    627 		return AF_UNSPEC;
    628 	if ((dom = pr->pr_domain) == NULL)
    629 		return AF_UNSPEC;
    630 	return dom->dom_family;
    631 }
    632 
    633 int
    634 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    635 {
    636 	int	error;
    637 
    638 	solock(so);
    639 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    640 		sounlock(so);
    641 		return EAFNOSUPPORT;
    642 	}
    643 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    644 	sounlock(so);
    645 	return error;
    646 }
    647 
    648 int
    649 solisten(struct socket *so, int backlog, struct lwp *l)
    650 {
    651 	int	error;
    652 	short	oldopt, oldqlimit;
    653 
    654 	solock(so);
    655 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    656 	    SS_ISDISCONNECTING)) != 0) {
    657 		sounlock(so);
    658 		return EINVAL;
    659 	}
    660 	oldopt = so->so_options;
    661 	oldqlimit = so->so_qlimit;
    662 	if (TAILQ_EMPTY(&so->so_q))
    663 		so->so_options |= SO_ACCEPTCONN;
    664 	if (backlog < 0)
    665 		backlog = 0;
    666 	so->so_qlimit = min(backlog, somaxconn);
    667 
    668 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    669 	if (error != 0) {
    670 		so->so_options = oldopt;
    671 		so->so_qlimit = oldqlimit;
    672 		sounlock(so);
    673 		return error;
    674 	}
    675 	sounlock(so);
    676 	return 0;
    677 }
    678 
    679 void
    680 sofree(struct socket *so)
    681 {
    682 	u_int refs;
    683 
    684 	KASSERT(solocked(so));
    685 
    686 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    687 		sounlock(so);
    688 		return;
    689 	}
    690 	if (so->so_head) {
    691 		/*
    692 		 * We must not decommission a socket that's on the accept(2)
    693 		 * queue.  If we do, then accept(2) may hang after select(2)
    694 		 * indicated that the listening socket was ready.
    695 		 */
    696 		if (!soqremque(so, 0)) {
    697 			sounlock(so);
    698 			return;
    699 		}
    700 	}
    701 	if (so->so_rcv.sb_hiwat)
    702 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    703 		    RLIM_INFINITY);
    704 	if (so->so_snd.sb_hiwat)
    705 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    706 		    RLIM_INFINITY);
    707 	sbrelease(&so->so_snd, so);
    708 	KASSERT(!cv_has_waiters(&so->so_cv));
    709 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    710 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    711 	sorflush(so);
    712 	refs = so->so_aborting;	/* XXX */
    713 	/* Remove acccept filter if one is present. */
    714 	if (so->so_accf != NULL)
    715 		(void)accept_filt_clear(so);
    716 	sounlock(so);
    717 	if (refs == 0)		/* XXX */
    718 		soput(so);
    719 }
    720 
    721 /*
    722  * soclose: close a socket on last file table reference removal.
    723  * Initiate disconnect if connected.  Free socket when disconnect complete.
    724  */
    725 int
    726 soclose(struct socket *so)
    727 {
    728 	struct socket *so2;
    729 	int error = 0;
    730 
    731 	solock(so);
    732 	if (so->so_options & SO_ACCEPTCONN) {
    733 		for (;;) {
    734 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    735 				KASSERT(solocked2(so, so2));
    736 				(void) soqremque(so2, 0);
    737 				/* soabort drops the lock. */
    738 				(void) soabort(so2);
    739 				solock(so);
    740 				continue;
    741 			}
    742 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    743 				KASSERT(solocked2(so, so2));
    744 				(void) soqremque(so2, 1);
    745 				/* soabort drops the lock. */
    746 				(void) soabort(so2);
    747 				solock(so);
    748 				continue;
    749 			}
    750 			break;
    751 		}
    752 	}
    753 	if (so->so_pcb == NULL)
    754 		goto discard;
    755 	if (so->so_state & SS_ISCONNECTED) {
    756 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    757 			error = sodisconnect(so);
    758 			if (error)
    759 				goto drop;
    760 		}
    761 		if (so->so_options & SO_LINGER) {
    762 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    763 			    (SS_ISDISCONNECTING|SS_NBIO))
    764 				goto drop;
    765 			while (so->so_state & SS_ISCONNECTED) {
    766 				error = sowait(so, true, so->so_linger * hz);
    767 				if (error)
    768 					break;
    769 			}
    770 		}
    771 	}
    772  drop:
    773 	if (so->so_pcb) {
    774 		KASSERT(solocked(so));
    775 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    776 	}
    777  discard:
    778 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    779 	kauth_cred_free(so->so_cred);
    780 	so->so_state |= SS_NOFDREF;
    781 	sofree(so);
    782 	return error;
    783 }
    784 
    785 /*
    786  * Must be called with the socket locked..  Will return with it unlocked.
    787  */
    788 int
    789 soabort(struct socket *so)
    790 {
    791 	u_int refs;
    792 	int error;
    793 
    794 	KASSERT(solocked(so));
    795 	KASSERT(so->so_head == NULL);
    796 
    797 	so->so_aborting++;		/* XXX */
    798 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    799 	refs = --so->so_aborting;	/* XXX */
    800 	if (error || (refs == 0)) {
    801 		sofree(so);
    802 	} else {
    803 		sounlock(so);
    804 	}
    805 	return error;
    806 }
    807 
    808 int
    809 soaccept(struct socket *so, struct sockaddr *nam)
    810 {
    811 	int error;
    812 
    813 	KASSERT(solocked(so));
    814 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    815 
    816 	so->so_state &= ~SS_NOFDREF;
    817 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    818 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    819 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    820 	else
    821 		error = ECONNABORTED;
    822 
    823 	return error;
    824 }
    825 
    826 int
    827 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    828 {
    829 	int error;
    830 
    831 	KASSERT(solocked(so));
    832 
    833 	if (so->so_options & SO_ACCEPTCONN)
    834 		return EOPNOTSUPP;
    835 	/*
    836 	 * If protocol is connection-based, can only connect once.
    837 	 * Otherwise, if connected, try to disconnect first.
    838 	 * This allows user to disconnect by connecting to, e.g.,
    839 	 * a null address.
    840 	 */
    841 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    842 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    843 	    (error = sodisconnect(so)))) {
    844 		error = EISCONN;
    845 	} else {
    846 		if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    847 			return EAFNOSUPPORT;
    848 		}
    849 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    850 	}
    851 
    852 	return error;
    853 }
    854 
    855 int
    856 soconnect2(struct socket *so1, struct socket *so2)
    857 {
    858 	KASSERT(solocked2(so1, so2));
    859 
    860 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    861 }
    862 
    863 int
    864 sodisconnect(struct socket *so)
    865 {
    866 	int	error;
    867 
    868 	KASSERT(solocked(so));
    869 
    870 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    871 		error = ENOTCONN;
    872 	} else if (so->so_state & SS_ISDISCONNECTING) {
    873 		error = EALREADY;
    874 	} else {
    875 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    876 	}
    877 	return (error);
    878 }
    879 
    880 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    881 /*
    882  * Send on a socket.
    883  * If send must go all at once and message is larger than
    884  * send buffering, then hard error.
    885  * Lock against other senders.
    886  * If must go all at once and not enough room now, then
    887  * inform user that this would block and do nothing.
    888  * Otherwise, if nonblocking, send as much as possible.
    889  * The data to be sent is described by "uio" if nonzero,
    890  * otherwise by the mbuf chain "top" (which must be null
    891  * if uio is not).  Data provided in mbuf chain must be small
    892  * enough to send all at once.
    893  *
    894  * Returns nonzero on error, timeout or signal; callers
    895  * must check for short counts if EINTR/ERESTART are returned.
    896  * Data and control buffers are freed on return.
    897  */
    898 int
    899 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
    900 	struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
    901 {
    902 	struct mbuf	**mp, *m;
    903 	long		space, len, resid, clen, mlen;
    904 	int		error, s, dontroute, atomic;
    905 	short		wakeup_state = 0;
    906 
    907 	clen = 0;
    908 
    909 	/*
    910 	 * solock() provides atomicity of access.  splsoftnet() prevents
    911 	 * protocol processing soft interrupts from interrupting us and
    912 	 * blocking (expensive).
    913 	 */
    914 	s = splsoftnet();
    915 	solock(so);
    916 	atomic = sosendallatonce(so) || top;
    917 	if (uio)
    918 		resid = uio->uio_resid;
    919 	else
    920 		resid = top->m_pkthdr.len;
    921 	/*
    922 	 * In theory resid should be unsigned.
    923 	 * However, space must be signed, as it might be less than 0
    924 	 * if we over-committed, and we must use a signed comparison
    925 	 * of space and resid.  On the other hand, a negative resid
    926 	 * causes us to loop sending 0-length segments to the protocol.
    927 	 */
    928 	if (resid < 0) {
    929 		error = EINVAL;
    930 		goto out;
    931 	}
    932 	dontroute =
    933 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    934 	    (so->so_proto->pr_flags & PR_ATOMIC);
    935 	l->l_ru.ru_msgsnd++;
    936 	if (control)
    937 		clen = control->m_len;
    938  restart:
    939 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    940 		goto out;
    941 	do {
    942 		if (so->so_state & SS_CANTSENDMORE) {
    943 			error = EPIPE;
    944 			goto release;
    945 		}
    946 		if (so->so_error) {
    947 			error = so->so_error;
    948 			so->so_error = 0;
    949 			goto release;
    950 		}
    951 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    952 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    953 				if (resid || clen == 0) {
    954 					error = ENOTCONN;
    955 					goto release;
    956 				}
    957 			} else if (addr == NULL) {
    958 				error = EDESTADDRREQ;
    959 				goto release;
    960 			}
    961 		}
    962 		space = sbspace(&so->so_snd);
    963 		if (flags & MSG_OOB)
    964 			space += 1024;
    965 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    966 		    clen > so->so_snd.sb_hiwat) {
    967 			error = EMSGSIZE;
    968 			goto release;
    969 		}
    970 		if (space < resid + clen &&
    971 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    972 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    973 				error = EWOULDBLOCK;
    974 				goto release;
    975 			}
    976 			sbunlock(&so->so_snd);
    977 			if (wakeup_state & SS_RESTARTSYS) {
    978 				error = ERESTART;
    979 				goto out;
    980 			}
    981 			error = sbwait(&so->so_snd);
    982 			if (error)
    983 				goto out;
    984 			wakeup_state = so->so_state;
    985 			goto restart;
    986 		}
    987 		wakeup_state = 0;
    988 		mp = &top;
    989 		space -= clen;
    990 		do {
    991 			if (uio == NULL) {
    992 				/*
    993 				 * Data is prepackaged in "top".
    994 				 */
    995 				resid = 0;
    996 				if (flags & MSG_EOR)
    997 					top->m_flags |= M_EOR;
    998 			} else do {
    999 				sounlock(so);
   1000 				splx(s);
   1001 				if (top == NULL) {
   1002 					m = m_gethdr(M_WAIT, MT_DATA);
   1003 					mlen = MHLEN;
   1004 					m->m_pkthdr.len = 0;
   1005 					m_reset_rcvif(m);
   1006 				} else {
   1007 					m = m_get(M_WAIT, MT_DATA);
   1008 					mlen = MLEN;
   1009 				}
   1010 				MCLAIM(m, so->so_snd.sb_mowner);
   1011 				if (sock_loan_thresh >= 0 &&
   1012 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1013 				    space >= sock_loan_thresh &&
   1014 				    (len = sosend_loan(so, uio, m,
   1015 						       space)) != 0) {
   1016 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1017 					space -= len;
   1018 					goto have_data;
   1019 				}
   1020 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1021 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1022 					m_clget(m, M_DONTWAIT);
   1023 					if ((m->m_flags & M_EXT) == 0)
   1024 						goto nopages;
   1025 					mlen = MCLBYTES;
   1026 					if (atomic && top == 0) {
   1027 						len = lmin(MCLBYTES - max_hdr,
   1028 						    resid);
   1029 						m->m_data += max_hdr;
   1030 					} else
   1031 						len = lmin(MCLBYTES, resid);
   1032 					space -= len;
   1033 				} else {
   1034  nopages:
   1035 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1036 					len = lmin(lmin(mlen, resid), space);
   1037 					space -= len;
   1038 					/*
   1039 					 * For datagram protocols, leave room
   1040 					 * for protocol headers in first mbuf.
   1041 					 */
   1042 					if (atomic && top == 0 && len < mlen)
   1043 						MH_ALIGN(m, len);
   1044 				}
   1045 				error = uiomove(mtod(m, void *), (int)len, uio);
   1046  have_data:
   1047 				resid = uio->uio_resid;
   1048 				m->m_len = len;
   1049 				*mp = m;
   1050 				top->m_pkthdr.len += len;
   1051 				s = splsoftnet();
   1052 				solock(so);
   1053 				if (error != 0)
   1054 					goto release;
   1055 				mp = &m->m_next;
   1056 				if (resid <= 0) {
   1057 					if (flags & MSG_EOR)
   1058 						top->m_flags |= M_EOR;
   1059 					break;
   1060 				}
   1061 			} while (space > 0 && atomic);
   1062 
   1063 			if (so->so_state & SS_CANTSENDMORE) {
   1064 				error = EPIPE;
   1065 				goto release;
   1066 			}
   1067 			if (dontroute)
   1068 				so->so_options |= SO_DONTROUTE;
   1069 			if (resid > 0)
   1070 				so->so_state |= SS_MORETOCOME;
   1071 			if (flags & MSG_OOB) {
   1072 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
   1073 				    so, top, control);
   1074 			} else {
   1075 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1076 				    top, addr, control, l);
   1077 			}
   1078 			if (dontroute)
   1079 				so->so_options &= ~SO_DONTROUTE;
   1080 			if (resid > 0)
   1081 				so->so_state &= ~SS_MORETOCOME;
   1082 			clen = 0;
   1083 			control = NULL;
   1084 			top = NULL;
   1085 			mp = &top;
   1086 			if (error != 0)
   1087 				goto release;
   1088 		} while (resid && space > 0);
   1089 	} while (resid);
   1090 
   1091  release:
   1092 	sbunlock(&so->so_snd);
   1093  out:
   1094 	sounlock(so);
   1095 	splx(s);
   1096 	if (top)
   1097 		m_freem(top);
   1098 	if (control)
   1099 		m_freem(control);
   1100 	return (error);
   1101 }
   1102 
   1103 /*
   1104  * Following replacement or removal of the first mbuf on the first
   1105  * mbuf chain of a socket buffer, push necessary state changes back
   1106  * into the socket buffer so that other consumers see the values
   1107  * consistently.  'nextrecord' is the callers locally stored value of
   1108  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1109  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1110  */
   1111 static void
   1112 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1113 {
   1114 
   1115 	KASSERT(solocked(sb->sb_so));
   1116 
   1117 	/*
   1118 	 * First, update for the new value of nextrecord.  If necessary,
   1119 	 * make it the first record.
   1120 	 */
   1121 	if (sb->sb_mb != NULL)
   1122 		sb->sb_mb->m_nextpkt = nextrecord;
   1123 	else
   1124 		sb->sb_mb = nextrecord;
   1125 
   1126         /*
   1127          * Now update any dependent socket buffer fields to reflect
   1128          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1129          * the addition of a second clause that takes care of the
   1130          * case where sb_mb has been updated, but remains the last
   1131          * record.
   1132          */
   1133         if (sb->sb_mb == NULL) {
   1134                 sb->sb_mbtail = NULL;
   1135                 sb->sb_lastrecord = NULL;
   1136         } else if (sb->sb_mb->m_nextpkt == NULL)
   1137                 sb->sb_lastrecord = sb->sb_mb;
   1138 }
   1139 
   1140 /*
   1141  * Implement receive operations on a socket.
   1142  * We depend on the way that records are added to the sockbuf
   1143  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1144  * must begin with an address if the protocol so specifies,
   1145  * followed by an optional mbuf or mbufs containing ancillary data,
   1146  * and then zero or more mbufs of data.
   1147  * In order to avoid blocking network interrupts for the entire time here,
   1148  * we splx() while doing the actual copy to user space.
   1149  * Although the sockbuf is locked, new data may still be appended,
   1150  * and thus we must maintain consistency of the sockbuf during that time.
   1151  *
   1152  * The caller may receive the data as a single mbuf chain by supplying
   1153  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1154  * only for the count in uio_resid.
   1155  */
   1156 int
   1157 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1158 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1159 {
   1160 	struct lwp *l = curlwp;
   1161 	struct mbuf	*m, **mp, *mt;
   1162 	size_t len, offset, moff, orig_resid;
   1163 	int atomic, flags, error, s, type;
   1164 	const struct protosw	*pr;
   1165 	struct mbuf	*nextrecord;
   1166 	int		mbuf_removed = 0;
   1167 	const struct domain *dom;
   1168 	short		wakeup_state = 0;
   1169 
   1170 	pr = so->so_proto;
   1171 	atomic = pr->pr_flags & PR_ATOMIC;
   1172 	dom = pr->pr_domain;
   1173 	mp = mp0;
   1174 	type = 0;
   1175 	orig_resid = uio->uio_resid;
   1176 
   1177 	if (paddr != NULL)
   1178 		*paddr = NULL;
   1179 	if (controlp != NULL)
   1180 		*controlp = NULL;
   1181 	if (flagsp != NULL)
   1182 		flags = *flagsp &~ MSG_EOR;
   1183 	else
   1184 		flags = 0;
   1185 
   1186 	if (flags & MSG_OOB) {
   1187 		m = m_get(M_WAIT, MT_DATA);
   1188 		solock(so);
   1189 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1190 		sounlock(so);
   1191 		if (error)
   1192 			goto bad;
   1193 		do {
   1194 			error = uiomove(mtod(m, void *),
   1195 			    MIN(uio->uio_resid, m->m_len), uio);
   1196 			m = m_free(m);
   1197 		} while (uio->uio_resid > 0 && error == 0 && m);
   1198  bad:
   1199 		if (m != NULL)
   1200 			m_freem(m);
   1201 		return error;
   1202 	}
   1203 	if (mp != NULL)
   1204 		*mp = NULL;
   1205 
   1206 	/*
   1207 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1208 	 * protocol processing soft interrupts from interrupting us and
   1209 	 * blocking (expensive).
   1210 	 */
   1211 	s = splsoftnet();
   1212 	solock(so);
   1213  restart:
   1214 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1215 		sounlock(so);
   1216 		splx(s);
   1217 		return error;
   1218 	}
   1219 
   1220 	m = so->so_rcv.sb_mb;
   1221 	/*
   1222 	 * If we have less data than requested, block awaiting more
   1223 	 * (subject to any timeout) if:
   1224 	 *   1. the current count is less than the low water mark,
   1225 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1226 	 *	receive operation at once if we block (resid <= hiwat), or
   1227 	 *   3. MSG_DONTWAIT is not set.
   1228 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1229 	 * we have to do the receive in sections, and thus risk returning
   1230 	 * a short count if a timeout or signal occurs after we start.
   1231 	 */
   1232 	if (m == NULL ||
   1233 	    ((flags & MSG_DONTWAIT) == 0 &&
   1234 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1235 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1236 	      ((flags & MSG_WAITALL) &&
   1237 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1238 	     m->m_nextpkt == NULL && !atomic)) {
   1239 #ifdef DIAGNOSTIC
   1240 		if (m == NULL && so->so_rcv.sb_cc)
   1241 			panic("receive 1");
   1242 #endif
   1243 		if (so->so_error) {
   1244 			if (m != NULL)
   1245 				goto dontblock;
   1246 			error = so->so_error;
   1247 			so->so_error = 0;
   1248 			goto release;
   1249 		}
   1250 		if (so->so_state & SS_CANTRCVMORE) {
   1251 			if (m != NULL)
   1252 				goto dontblock;
   1253 			else
   1254 				goto release;
   1255 		}
   1256 		for (; m != NULL; m = m->m_next)
   1257 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1258 				m = so->so_rcv.sb_mb;
   1259 				goto dontblock;
   1260 			}
   1261 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1262 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1263 			error = ENOTCONN;
   1264 			goto release;
   1265 		}
   1266 		if (uio->uio_resid == 0)
   1267 			goto release;
   1268 		if ((so->so_state & SS_NBIO) ||
   1269 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1270 			error = EWOULDBLOCK;
   1271 			goto release;
   1272 		}
   1273 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1274 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1275 		sbunlock(&so->so_rcv);
   1276 		if (wakeup_state & SS_RESTARTSYS)
   1277 			error = ERESTART;
   1278 		else
   1279 			error = sbwait(&so->so_rcv);
   1280 		if (error != 0) {
   1281 			sounlock(so);
   1282 			splx(s);
   1283 			return error;
   1284 		}
   1285 		wakeup_state = so->so_state;
   1286 		goto restart;
   1287 	}
   1288  dontblock:
   1289 	/*
   1290 	 * On entry here, m points to the first record of the socket buffer.
   1291 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1292 	 * pointer to the next record in the socket buffer.  We must keep the
   1293 	 * various socket buffer pointers and local stack versions of the
   1294 	 * pointers in sync, pushing out modifications before dropping the
   1295 	 * socket lock, and re-reading them when picking it up.
   1296 	 *
   1297 	 * Otherwise, we will race with the network stack appending new data
   1298 	 * or records onto the socket buffer by using inconsistent/stale
   1299 	 * versions of the field, possibly resulting in socket buffer
   1300 	 * corruption.
   1301 	 *
   1302 	 * By holding the high-level sblock(), we prevent simultaneous
   1303 	 * readers from pulling off the front of the socket buffer.
   1304 	 */
   1305 	if (l != NULL)
   1306 		l->l_ru.ru_msgrcv++;
   1307 	KASSERT(m == so->so_rcv.sb_mb);
   1308 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1309 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1310 	nextrecord = m->m_nextpkt;
   1311 	if (pr->pr_flags & PR_ADDR) {
   1312 #ifdef DIAGNOSTIC
   1313 		if (m->m_type != MT_SONAME)
   1314 			panic("receive 1a");
   1315 #endif
   1316 		orig_resid = 0;
   1317 		if (flags & MSG_PEEK) {
   1318 			if (paddr)
   1319 				*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1320 			m = m->m_next;
   1321 		} else {
   1322 			sbfree(&so->so_rcv, m);
   1323 			mbuf_removed = 1;
   1324 			if (paddr != NULL) {
   1325 				*paddr = m;
   1326 				so->so_rcv.sb_mb = m->m_next;
   1327 				m->m_next = NULL;
   1328 				m = so->so_rcv.sb_mb;
   1329 			} else {
   1330 				m = so->so_rcv.sb_mb = m_free(m);
   1331 			}
   1332 			sbsync(&so->so_rcv, nextrecord);
   1333 		}
   1334 	}
   1335 	if (pr->pr_flags & PR_ADDR_OPT) {
   1336 		/*
   1337 		 * For SCTP we may be getting a
   1338 		 * whole message OR a partial delivery.
   1339 		 */
   1340 		if (m->m_type == MT_SONAME) {
   1341 			orig_resid = 0;
   1342 			if (flags & MSG_PEEK) {
   1343 				if (paddr)
   1344 					*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1345 				m = m->m_next;
   1346 			} else {
   1347 				sbfree(&so->so_rcv, m);
   1348 				if (paddr) {
   1349 					*paddr = m;
   1350 					so->so_rcv.sb_mb = m->m_next;
   1351 					m->m_next = 0;
   1352 					m = so->so_rcv.sb_mb;
   1353 				} else {
   1354 					m = so->so_rcv.sb_mb = m_free(m);
   1355 				}
   1356 			}
   1357 		}
   1358 	}
   1359 
   1360 	/*
   1361 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1362 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1363 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1364 	 * perform externalization (or freeing if controlp == NULL).
   1365 	 */
   1366 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1367 		struct mbuf *cm = NULL, *cmn;
   1368 		struct mbuf **cme = &cm;
   1369 
   1370 		do {
   1371 			if (flags & MSG_PEEK) {
   1372 				if (controlp != NULL) {
   1373 					*controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1374 					controlp = &(*controlp)->m_next;
   1375 				}
   1376 				m = m->m_next;
   1377 			} else {
   1378 				sbfree(&so->so_rcv, m);
   1379 				so->so_rcv.sb_mb = m->m_next;
   1380 				m->m_next = NULL;
   1381 				*cme = m;
   1382 				cme = &(*cme)->m_next;
   1383 				m = so->so_rcv.sb_mb;
   1384 			}
   1385 		} while (m != NULL && m->m_type == MT_CONTROL);
   1386 		if ((flags & MSG_PEEK) == 0)
   1387 			sbsync(&so->so_rcv, nextrecord);
   1388 		for (; cm != NULL; cm = cmn) {
   1389 			cmn = cm->m_next;
   1390 			cm->m_next = NULL;
   1391 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1392 			if (controlp != NULL) {
   1393 				if (dom->dom_externalize != NULL &&
   1394 				    type == SCM_RIGHTS) {
   1395 					sounlock(so);
   1396 					splx(s);
   1397 					error = (*dom->dom_externalize)(cm, l,
   1398 					    (flags & MSG_CMSG_CLOEXEC) ?
   1399 					    O_CLOEXEC : 0);
   1400 					s = splsoftnet();
   1401 					solock(so);
   1402 				}
   1403 				*controlp = cm;
   1404 				while (*controlp != NULL)
   1405 					controlp = &(*controlp)->m_next;
   1406 			} else {
   1407 				/*
   1408 				 * Dispose of any SCM_RIGHTS message that went
   1409 				 * through the read path rather than recv.
   1410 				 */
   1411 				if (dom->dom_dispose != NULL &&
   1412 				    type == SCM_RIGHTS) {
   1413 					sounlock(so);
   1414 					(*dom->dom_dispose)(cm);
   1415 					solock(so);
   1416 				}
   1417 				m_freem(cm);
   1418 			}
   1419 		}
   1420 		if (m != NULL)
   1421 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1422 		else
   1423 			nextrecord = so->so_rcv.sb_mb;
   1424 		orig_resid = 0;
   1425 	}
   1426 
   1427 	/* If m is non-NULL, we have some data to read. */
   1428 	if (__predict_true(m != NULL)) {
   1429 		type = m->m_type;
   1430 		if (type == MT_OOBDATA)
   1431 			flags |= MSG_OOB;
   1432 	}
   1433 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1434 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1435 
   1436 	moff = 0;
   1437 	offset = 0;
   1438 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1439 		if (m->m_type == MT_OOBDATA) {
   1440 			if (type != MT_OOBDATA)
   1441 				break;
   1442 		} else if (type == MT_OOBDATA)
   1443 			break;
   1444 #ifdef DIAGNOSTIC
   1445 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1446 			panic("receive 3");
   1447 #endif
   1448 		so->so_state &= ~SS_RCVATMARK;
   1449 		wakeup_state = 0;
   1450 		len = uio->uio_resid;
   1451 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1452 			len = so->so_oobmark - offset;
   1453 		if (len > m->m_len - moff)
   1454 			len = m->m_len - moff;
   1455 		/*
   1456 		 * If mp is set, just pass back the mbufs.
   1457 		 * Otherwise copy them out via the uio, then free.
   1458 		 * Sockbuf must be consistent here (points to current mbuf,
   1459 		 * it points to next record) when we drop priority;
   1460 		 * we must note any additions to the sockbuf when we
   1461 		 * block interrupts again.
   1462 		 */
   1463 		if (mp == NULL) {
   1464 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1465 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1466 			sounlock(so);
   1467 			splx(s);
   1468 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1469 			s = splsoftnet();
   1470 			solock(so);
   1471 			if (error != 0) {
   1472 				/*
   1473 				 * If any part of the record has been removed
   1474 				 * (such as the MT_SONAME mbuf, which will
   1475 				 * happen when PR_ADDR, and thus also
   1476 				 * PR_ATOMIC, is set), then drop the entire
   1477 				 * record to maintain the atomicity of the
   1478 				 * receive operation.
   1479 				 *
   1480 				 * This avoids a later panic("receive 1a")
   1481 				 * when compiled with DIAGNOSTIC.
   1482 				 */
   1483 				if (m && mbuf_removed && atomic)
   1484 					(void) sbdroprecord(&so->so_rcv);
   1485 
   1486 				goto release;
   1487 			}
   1488 		} else
   1489 			uio->uio_resid -= len;
   1490 		if (len == m->m_len - moff) {
   1491 			if (m->m_flags & M_EOR)
   1492 				flags |= MSG_EOR;
   1493 #ifdef SCTP
   1494 			if (m->m_flags & M_NOTIFICATION)
   1495 				flags |= MSG_NOTIFICATION;
   1496 #endif /* SCTP */
   1497 			if (flags & MSG_PEEK) {
   1498 				m = m->m_next;
   1499 				moff = 0;
   1500 			} else {
   1501 				nextrecord = m->m_nextpkt;
   1502 				sbfree(&so->so_rcv, m);
   1503 				if (mp) {
   1504 					*mp = m;
   1505 					mp = &m->m_next;
   1506 					so->so_rcv.sb_mb = m = m->m_next;
   1507 					*mp = NULL;
   1508 				} else {
   1509 					m = so->so_rcv.sb_mb = m_free(m);
   1510 				}
   1511 				/*
   1512 				 * If m != NULL, we also know that
   1513 				 * so->so_rcv.sb_mb != NULL.
   1514 				 */
   1515 				KASSERT(so->so_rcv.sb_mb == m);
   1516 				if (m) {
   1517 					m->m_nextpkt = nextrecord;
   1518 					if (nextrecord == NULL)
   1519 						so->so_rcv.sb_lastrecord = m;
   1520 				} else {
   1521 					so->so_rcv.sb_mb = nextrecord;
   1522 					SB_EMPTY_FIXUP(&so->so_rcv);
   1523 				}
   1524 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1525 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1526 			}
   1527 		} else if (flags & MSG_PEEK)
   1528 			moff += len;
   1529 		else {
   1530 			if (mp != NULL) {
   1531 				mt = m_copym(m, 0, len, M_NOWAIT);
   1532 				if (__predict_false(mt == NULL)) {
   1533 					sounlock(so);
   1534 					mt = m_copym(m, 0, len, M_WAIT);
   1535 					solock(so);
   1536 				}
   1537 				*mp = mt;
   1538 			}
   1539 			m->m_data += len;
   1540 			m->m_len -= len;
   1541 			so->so_rcv.sb_cc -= len;
   1542 		}
   1543 		if (so->so_oobmark) {
   1544 			if ((flags & MSG_PEEK) == 0) {
   1545 				so->so_oobmark -= len;
   1546 				if (so->so_oobmark == 0) {
   1547 					so->so_state |= SS_RCVATMARK;
   1548 					break;
   1549 				}
   1550 			} else {
   1551 				offset += len;
   1552 				if (offset == so->so_oobmark)
   1553 					break;
   1554 			}
   1555 		}
   1556 		if (flags & MSG_EOR)
   1557 			break;
   1558 		/*
   1559 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1560 		 * we must not quit until "uio->uio_resid == 0" or an error
   1561 		 * termination.  If a signal/timeout occurs, return
   1562 		 * with a short count but without error.
   1563 		 * Keep sockbuf locked against other readers.
   1564 		 */
   1565 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1566 		    !sosendallatonce(so) && !nextrecord) {
   1567 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1568 				break;
   1569 			/*
   1570 			 * If we are peeking and the socket receive buffer is
   1571 			 * full, stop since we can't get more data to peek at.
   1572 			 */
   1573 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1574 				break;
   1575 			/*
   1576 			 * If we've drained the socket buffer, tell the
   1577 			 * protocol in case it needs to do something to
   1578 			 * get it filled again.
   1579 			 */
   1580 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1581 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1582 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1583 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1584 			if (wakeup_state & SS_RESTARTSYS)
   1585 				error = ERESTART;
   1586 			else
   1587 				error = sbwait(&so->so_rcv);
   1588 			if (error != 0) {
   1589 				sbunlock(&so->so_rcv);
   1590 				sounlock(so);
   1591 				splx(s);
   1592 				return 0;
   1593 			}
   1594 			if ((m = so->so_rcv.sb_mb) != NULL)
   1595 				nextrecord = m->m_nextpkt;
   1596 			wakeup_state = so->so_state;
   1597 		}
   1598 	}
   1599 
   1600 	if (m && atomic) {
   1601 		flags |= MSG_TRUNC;
   1602 		if ((flags & MSG_PEEK) == 0)
   1603 			(void) sbdroprecord(&so->so_rcv);
   1604 	}
   1605 	if ((flags & MSG_PEEK) == 0) {
   1606 		if (m == NULL) {
   1607 			/*
   1608 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1609 			 * part makes sure sb_lastrecord is up-to-date if
   1610 			 * there is still data in the socket buffer.
   1611 			 */
   1612 			so->so_rcv.sb_mb = nextrecord;
   1613 			if (so->so_rcv.sb_mb == NULL) {
   1614 				so->so_rcv.sb_mbtail = NULL;
   1615 				so->so_rcv.sb_lastrecord = NULL;
   1616 			} else if (nextrecord->m_nextpkt == NULL)
   1617 				so->so_rcv.sb_lastrecord = nextrecord;
   1618 		}
   1619 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1620 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1621 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1622 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1623 	}
   1624 	if (orig_resid == uio->uio_resid && orig_resid &&
   1625 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1626 		sbunlock(&so->so_rcv);
   1627 		goto restart;
   1628 	}
   1629 
   1630 	if (flagsp != NULL)
   1631 		*flagsp |= flags;
   1632  release:
   1633 	sbunlock(&so->so_rcv);
   1634 	sounlock(so);
   1635 	splx(s);
   1636 	return error;
   1637 }
   1638 
   1639 int
   1640 soshutdown(struct socket *so, int how)
   1641 {
   1642 	const struct protosw	*pr;
   1643 	int	error;
   1644 
   1645 	KASSERT(solocked(so));
   1646 
   1647 	pr = so->so_proto;
   1648 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1649 		return (EINVAL);
   1650 
   1651 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1652 		sorflush(so);
   1653 		error = 0;
   1654 	}
   1655 	if (how == SHUT_WR || how == SHUT_RDWR)
   1656 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1657 
   1658 	return error;
   1659 }
   1660 
   1661 void
   1662 sorestart(struct socket *so)
   1663 {
   1664 	/*
   1665 	 * An application has called close() on an fd on which another
   1666 	 * of its threads has called a socket system call.
   1667 	 * Mark this and wake everyone up, and code that would block again
   1668 	 * instead returns ERESTART.
   1669 	 * On system call re-entry the fd is validated and EBADF returned.
   1670 	 * Any other fd will block again on the 2nd syscall.
   1671 	 */
   1672 	solock(so);
   1673 	so->so_state |= SS_RESTARTSYS;
   1674 	cv_broadcast(&so->so_cv);
   1675 	cv_broadcast(&so->so_snd.sb_cv);
   1676 	cv_broadcast(&so->so_rcv.sb_cv);
   1677 	sounlock(so);
   1678 }
   1679 
   1680 void
   1681 sorflush(struct socket *so)
   1682 {
   1683 	struct sockbuf	*sb, asb;
   1684 	const struct protosw	*pr;
   1685 
   1686 	KASSERT(solocked(so));
   1687 
   1688 	sb = &so->so_rcv;
   1689 	pr = so->so_proto;
   1690 	socantrcvmore(so);
   1691 	sb->sb_flags |= SB_NOINTR;
   1692 	(void )sblock(sb, M_WAITOK);
   1693 	sbunlock(sb);
   1694 	asb = *sb;
   1695 	/*
   1696 	 * Clear most of the sockbuf structure, but leave some of the
   1697 	 * fields valid.
   1698 	 */
   1699 	memset(&sb->sb_startzero, 0,
   1700 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1701 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1702 		sounlock(so);
   1703 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1704 		solock(so);
   1705 	}
   1706 	sbrelease(&asb, so);
   1707 }
   1708 
   1709 /*
   1710  * internal set SOL_SOCKET options
   1711  */
   1712 static int
   1713 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1714 {
   1715 	int error = EINVAL, opt;
   1716 	int optval = 0; /* XXX: gcc */
   1717 	struct linger l;
   1718 	struct timeval tv;
   1719 
   1720 	switch ((opt = sopt->sopt_name)) {
   1721 
   1722 	case SO_ACCEPTFILTER:
   1723 		error = accept_filt_setopt(so, sopt);
   1724 		KASSERT(solocked(so));
   1725 		break;
   1726 
   1727 	case SO_LINGER:
   1728 		error = sockopt_get(sopt, &l, sizeof(l));
   1729 		solock(so);
   1730 		if (error)
   1731 			break;
   1732 		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1733 		    l.l_linger > (INT_MAX / hz)) {
   1734 			error = EDOM;
   1735 			break;
   1736 		}
   1737 		so->so_linger = l.l_linger;
   1738 		if (l.l_onoff)
   1739 			so->so_options |= SO_LINGER;
   1740 		else
   1741 			so->so_options &= ~SO_LINGER;
   1742 		break;
   1743 
   1744 	case SO_DEBUG:
   1745 	case SO_KEEPALIVE:
   1746 	case SO_DONTROUTE:
   1747 	case SO_USELOOPBACK:
   1748 	case SO_BROADCAST:
   1749 	case SO_REUSEADDR:
   1750 	case SO_REUSEPORT:
   1751 	case SO_OOBINLINE:
   1752 	case SO_TIMESTAMP:
   1753 	case SO_NOSIGPIPE:
   1754 #ifdef SO_OTIMESTAMP
   1755 	case SO_OTIMESTAMP:
   1756 #endif
   1757 		error = sockopt_getint(sopt, &optval);
   1758 		solock(so);
   1759 		if (error)
   1760 			break;
   1761 		if (optval)
   1762 			so->so_options |= opt;
   1763 		else
   1764 			so->so_options &= ~opt;
   1765 		break;
   1766 
   1767 	case SO_SNDBUF:
   1768 	case SO_RCVBUF:
   1769 	case SO_SNDLOWAT:
   1770 	case SO_RCVLOWAT:
   1771 		error = sockopt_getint(sopt, &optval);
   1772 		solock(so);
   1773 		if (error)
   1774 			break;
   1775 
   1776 		/*
   1777 		 * Values < 1 make no sense for any of these
   1778 		 * options, so disallow them.
   1779 		 */
   1780 		if (optval < 1) {
   1781 			error = EINVAL;
   1782 			break;
   1783 		}
   1784 
   1785 		switch (opt) {
   1786 		case SO_SNDBUF:
   1787 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1788 				error = ENOBUFS;
   1789 				break;
   1790 			}
   1791 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1792 			break;
   1793 
   1794 		case SO_RCVBUF:
   1795 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1796 				error = ENOBUFS;
   1797 				break;
   1798 			}
   1799 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1800 			break;
   1801 
   1802 		/*
   1803 		 * Make sure the low-water is never greater than
   1804 		 * the high-water.
   1805 		 */
   1806 		case SO_SNDLOWAT:
   1807 			if (optval > so->so_snd.sb_hiwat)
   1808 				optval = so->so_snd.sb_hiwat;
   1809 
   1810 			so->so_snd.sb_lowat = optval;
   1811 			break;
   1812 
   1813 		case SO_RCVLOWAT:
   1814 			if (optval > so->so_rcv.sb_hiwat)
   1815 				optval = so->so_rcv.sb_hiwat;
   1816 
   1817 			so->so_rcv.sb_lowat = optval;
   1818 			break;
   1819 		}
   1820 		break;
   1821 
   1822 #ifdef COMPAT_50
   1823 	case SO_OSNDTIMEO:
   1824 	case SO_ORCVTIMEO: {
   1825 		struct timeval50 otv;
   1826 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1827 		if (error) {
   1828 			solock(so);
   1829 			break;
   1830 		}
   1831 		timeval50_to_timeval(&otv, &tv);
   1832 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1833 		error = 0;
   1834 		/*FALLTHROUGH*/
   1835 	}
   1836 #endif /* COMPAT_50 */
   1837 
   1838 	case SO_SNDTIMEO:
   1839 	case SO_RCVTIMEO:
   1840 		if (error)
   1841 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1842 		solock(so);
   1843 		if (error)
   1844 			break;
   1845 
   1846 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1847 			error = EDOM;
   1848 			break;
   1849 		}
   1850 
   1851 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1852 		if (optval == 0 && tv.tv_usec != 0)
   1853 			optval = 1;
   1854 
   1855 		switch (opt) {
   1856 		case SO_SNDTIMEO:
   1857 			so->so_snd.sb_timeo = optval;
   1858 			break;
   1859 		case SO_RCVTIMEO:
   1860 			so->so_rcv.sb_timeo = optval;
   1861 			break;
   1862 		}
   1863 		break;
   1864 
   1865 	default:
   1866 		solock(so);
   1867 		error = ENOPROTOOPT;
   1868 		break;
   1869 	}
   1870 	KASSERT(solocked(so));
   1871 	return error;
   1872 }
   1873 
   1874 int
   1875 sosetopt(struct socket *so, struct sockopt *sopt)
   1876 {
   1877 	int error, prerr;
   1878 
   1879 	if (sopt->sopt_level == SOL_SOCKET) {
   1880 		error = sosetopt1(so, sopt);
   1881 		KASSERT(solocked(so));
   1882 	} else {
   1883 		error = ENOPROTOOPT;
   1884 		solock(so);
   1885 	}
   1886 
   1887 	if ((error == 0 || error == ENOPROTOOPT) &&
   1888 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1889 		/* give the protocol stack a shot */
   1890 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1891 		if (prerr == 0)
   1892 			error = 0;
   1893 		else if (prerr != ENOPROTOOPT)
   1894 			error = prerr;
   1895 	}
   1896 	sounlock(so);
   1897 	return error;
   1898 }
   1899 
   1900 /*
   1901  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1902  */
   1903 int
   1904 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1905     const void *val, size_t valsize)
   1906 {
   1907 	struct sockopt sopt;
   1908 	int error;
   1909 
   1910 	KASSERT(valsize == 0 || val != NULL);
   1911 
   1912 	sockopt_init(&sopt, level, name, valsize);
   1913 	sockopt_set(&sopt, val, valsize);
   1914 
   1915 	error = sosetopt(so, &sopt);
   1916 
   1917 	sockopt_destroy(&sopt);
   1918 
   1919 	return error;
   1920 }
   1921 
   1922 /*
   1923  * internal get SOL_SOCKET options
   1924  */
   1925 static int
   1926 sogetopt1(struct socket *so, struct sockopt *sopt)
   1927 {
   1928 	int error, optval, opt;
   1929 	struct linger l;
   1930 	struct timeval tv;
   1931 
   1932 	switch ((opt = sopt->sopt_name)) {
   1933 
   1934 	case SO_ACCEPTFILTER:
   1935 		error = accept_filt_getopt(so, sopt);
   1936 		break;
   1937 
   1938 	case SO_LINGER:
   1939 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1940 		l.l_linger = so->so_linger;
   1941 
   1942 		error = sockopt_set(sopt, &l, sizeof(l));
   1943 		break;
   1944 
   1945 	case SO_USELOOPBACK:
   1946 	case SO_DONTROUTE:
   1947 	case SO_DEBUG:
   1948 	case SO_KEEPALIVE:
   1949 	case SO_REUSEADDR:
   1950 	case SO_REUSEPORT:
   1951 	case SO_BROADCAST:
   1952 	case SO_OOBINLINE:
   1953 	case SO_TIMESTAMP:
   1954 	case SO_NOSIGPIPE:
   1955 #ifdef SO_OTIMESTAMP
   1956 	case SO_OTIMESTAMP:
   1957 #endif
   1958 	case SO_ACCEPTCONN:
   1959 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1960 		break;
   1961 
   1962 	case SO_TYPE:
   1963 		error = sockopt_setint(sopt, so->so_type);
   1964 		break;
   1965 
   1966 	case SO_ERROR:
   1967 		error = sockopt_setint(sopt, so->so_error);
   1968 		so->so_error = 0;
   1969 		break;
   1970 
   1971 	case SO_SNDBUF:
   1972 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1973 		break;
   1974 
   1975 	case SO_RCVBUF:
   1976 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1977 		break;
   1978 
   1979 	case SO_SNDLOWAT:
   1980 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1981 		break;
   1982 
   1983 	case SO_RCVLOWAT:
   1984 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1985 		break;
   1986 
   1987 #ifdef COMPAT_50
   1988 	case SO_OSNDTIMEO:
   1989 	case SO_ORCVTIMEO: {
   1990 		struct timeval50 otv;
   1991 
   1992 		optval = (opt == SO_OSNDTIMEO ?
   1993 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1994 
   1995 		otv.tv_sec = optval / hz;
   1996 		otv.tv_usec = (optval % hz) * tick;
   1997 
   1998 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1999 		break;
   2000 	}
   2001 #endif /* COMPAT_50 */
   2002 
   2003 	case SO_SNDTIMEO:
   2004 	case SO_RCVTIMEO:
   2005 		optval = (opt == SO_SNDTIMEO ?
   2006 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   2007 
   2008 		tv.tv_sec = optval / hz;
   2009 		tv.tv_usec = (optval % hz) * tick;
   2010 
   2011 		error = sockopt_set(sopt, &tv, sizeof(tv));
   2012 		break;
   2013 
   2014 	case SO_OVERFLOWED:
   2015 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   2016 		break;
   2017 
   2018 	default:
   2019 		error = ENOPROTOOPT;
   2020 		break;
   2021 	}
   2022 
   2023 	return (error);
   2024 }
   2025 
   2026 int
   2027 sogetopt(struct socket *so, struct sockopt *sopt)
   2028 {
   2029 	int		error;
   2030 
   2031 	solock(so);
   2032 	if (sopt->sopt_level != SOL_SOCKET) {
   2033 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2034 			error = ((*so->so_proto->pr_ctloutput)
   2035 			    (PRCO_GETOPT, so, sopt));
   2036 		} else
   2037 			error = (ENOPROTOOPT);
   2038 	} else {
   2039 		error = sogetopt1(so, sopt);
   2040 	}
   2041 	sounlock(so);
   2042 	return (error);
   2043 }
   2044 
   2045 /*
   2046  * alloc sockopt data buffer buffer
   2047  *	- will be released at destroy
   2048  */
   2049 static int
   2050 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2051 {
   2052 
   2053 	KASSERT(sopt->sopt_size == 0);
   2054 
   2055 	if (len > sizeof(sopt->sopt_buf)) {
   2056 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2057 		if (sopt->sopt_data == NULL)
   2058 			return ENOMEM;
   2059 	} else
   2060 		sopt->sopt_data = sopt->sopt_buf;
   2061 
   2062 	sopt->sopt_size = len;
   2063 	return 0;
   2064 }
   2065 
   2066 /*
   2067  * initialise sockopt storage
   2068  *	- MAY sleep during allocation
   2069  */
   2070 void
   2071 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2072 {
   2073 
   2074 	memset(sopt, 0, sizeof(*sopt));
   2075 
   2076 	sopt->sopt_level = level;
   2077 	sopt->sopt_name = name;
   2078 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2079 }
   2080 
   2081 /*
   2082  * destroy sockopt storage
   2083  *	- will release any held memory references
   2084  */
   2085 void
   2086 sockopt_destroy(struct sockopt *sopt)
   2087 {
   2088 
   2089 	if (sopt->sopt_data != sopt->sopt_buf)
   2090 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2091 
   2092 	memset(sopt, 0, sizeof(*sopt));
   2093 }
   2094 
   2095 /*
   2096  * set sockopt value
   2097  *	- value is copied into sockopt
   2098  *	- memory is allocated when necessary, will not sleep
   2099  */
   2100 int
   2101 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2102 {
   2103 	int error;
   2104 
   2105 	if (sopt->sopt_size == 0) {
   2106 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2107 		if (error)
   2108 			return error;
   2109 	}
   2110 
   2111 	if (sopt->sopt_size < len)
   2112 		return EINVAL;
   2113 
   2114 	memcpy(sopt->sopt_data, buf, len);
   2115 	sopt->sopt_retsize = len;
   2116 
   2117 	return 0;
   2118 }
   2119 
   2120 /*
   2121  * common case of set sockopt integer value
   2122  */
   2123 int
   2124 sockopt_setint(struct sockopt *sopt, int val)
   2125 {
   2126 
   2127 	return sockopt_set(sopt, &val, sizeof(int));
   2128 }
   2129 
   2130 /*
   2131  * get sockopt value
   2132  *	- correct size must be given
   2133  */
   2134 int
   2135 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2136 {
   2137 
   2138 	if (sopt->sopt_size != len)
   2139 		return EINVAL;
   2140 
   2141 	memcpy(buf, sopt->sopt_data, len);
   2142 	return 0;
   2143 }
   2144 
   2145 /*
   2146  * common case of get sockopt integer value
   2147  */
   2148 int
   2149 sockopt_getint(const struct sockopt *sopt, int *valp)
   2150 {
   2151 
   2152 	return sockopt_get(sopt, valp, sizeof(int));
   2153 }
   2154 
   2155 /*
   2156  * set sockopt value from mbuf
   2157  *	- ONLY for legacy code
   2158  *	- mbuf is released by sockopt
   2159  *	- will not sleep
   2160  */
   2161 int
   2162 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2163 {
   2164 	size_t len;
   2165 	int error;
   2166 
   2167 	len = m_length(m);
   2168 
   2169 	if (sopt->sopt_size == 0) {
   2170 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2171 		if (error)
   2172 			return error;
   2173 	}
   2174 
   2175 	if (sopt->sopt_size < len)
   2176 		return EINVAL;
   2177 
   2178 	m_copydata(m, 0, len, sopt->sopt_data);
   2179 	m_freem(m);
   2180 	sopt->sopt_retsize = len;
   2181 
   2182 	return 0;
   2183 }
   2184 
   2185 /*
   2186  * get sockopt value into mbuf
   2187  *	- ONLY for legacy code
   2188  *	- mbuf to be released by the caller
   2189  *	- will not sleep
   2190  */
   2191 struct mbuf *
   2192 sockopt_getmbuf(const struct sockopt *sopt)
   2193 {
   2194 	struct mbuf *m;
   2195 
   2196 	if (sopt->sopt_size > MCLBYTES)
   2197 		return NULL;
   2198 
   2199 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2200 	if (m == NULL)
   2201 		return NULL;
   2202 
   2203 	if (sopt->sopt_size > MLEN) {
   2204 		MCLGET(m, M_DONTWAIT);
   2205 		if ((m->m_flags & M_EXT) == 0) {
   2206 			m_free(m);
   2207 			return NULL;
   2208 		}
   2209 	}
   2210 
   2211 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2212 	m->m_len = sopt->sopt_size;
   2213 
   2214 	return m;
   2215 }
   2216 
   2217 void
   2218 sohasoutofband(struct socket *so)
   2219 {
   2220 
   2221 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2222 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2223 }
   2224 
   2225 static void
   2226 filt_sordetach(struct knote *kn)
   2227 {
   2228 	struct socket	*so;
   2229 
   2230 	so = ((file_t *)kn->kn_obj)->f_socket;
   2231 	solock(so);
   2232 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2233 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2234 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2235 	sounlock(so);
   2236 }
   2237 
   2238 /*ARGSUSED*/
   2239 static int
   2240 filt_soread(struct knote *kn, long hint)
   2241 {
   2242 	struct socket	*so;
   2243 	int rv;
   2244 
   2245 	so = ((file_t *)kn->kn_obj)->f_socket;
   2246 	if (hint != NOTE_SUBMIT)
   2247 		solock(so);
   2248 	kn->kn_data = so->so_rcv.sb_cc;
   2249 	if (so->so_state & SS_CANTRCVMORE) {
   2250 		kn->kn_flags |= EV_EOF;
   2251 		kn->kn_fflags = so->so_error;
   2252 		rv = 1;
   2253 	} else if (so->so_error)
   2254 		rv = 1;
   2255 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2256 		rv = (kn->kn_data >= kn->kn_sdata);
   2257 	else
   2258 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2259 	if (hint != NOTE_SUBMIT)
   2260 		sounlock(so);
   2261 	return rv;
   2262 }
   2263 
   2264 static void
   2265 filt_sowdetach(struct knote *kn)
   2266 {
   2267 	struct socket	*so;
   2268 
   2269 	so = ((file_t *)kn->kn_obj)->f_socket;
   2270 	solock(so);
   2271 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2272 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2273 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2274 	sounlock(so);
   2275 }
   2276 
   2277 /*ARGSUSED*/
   2278 static int
   2279 filt_sowrite(struct knote *kn, long hint)
   2280 {
   2281 	struct socket	*so;
   2282 	int rv;
   2283 
   2284 	so = ((file_t *)kn->kn_obj)->f_socket;
   2285 	if (hint != NOTE_SUBMIT)
   2286 		solock(so);
   2287 	kn->kn_data = sbspace(&so->so_snd);
   2288 	if (so->so_state & SS_CANTSENDMORE) {
   2289 		kn->kn_flags |= EV_EOF;
   2290 		kn->kn_fflags = so->so_error;
   2291 		rv = 1;
   2292 	} else if (so->so_error)
   2293 		rv = 1;
   2294 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2295 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2296 		rv = 0;
   2297 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2298 		rv = (kn->kn_data >= kn->kn_sdata);
   2299 	else
   2300 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2301 	if (hint != NOTE_SUBMIT)
   2302 		sounlock(so);
   2303 	return rv;
   2304 }
   2305 
   2306 /*ARGSUSED*/
   2307 static int
   2308 filt_solisten(struct knote *kn, long hint)
   2309 {
   2310 	struct socket	*so;
   2311 	int rv;
   2312 
   2313 	so = ((file_t *)kn->kn_obj)->f_socket;
   2314 
   2315 	/*
   2316 	 * Set kn_data to number of incoming connections, not
   2317 	 * counting partial (incomplete) connections.
   2318 	 */
   2319 	if (hint != NOTE_SUBMIT)
   2320 		solock(so);
   2321 	kn->kn_data = so->so_qlen;
   2322 	rv = (kn->kn_data > 0);
   2323 	if (hint != NOTE_SUBMIT)
   2324 		sounlock(so);
   2325 	return rv;
   2326 }
   2327 
   2328 static const struct filterops solisten_filtops = {
   2329 	.f_isfd = 1,
   2330 	.f_attach = NULL,
   2331 	.f_detach = filt_sordetach,
   2332 	.f_event = filt_solisten,
   2333 };
   2334 
   2335 static const struct filterops soread_filtops = {
   2336 	.f_isfd = 1,
   2337 	.f_attach = NULL,
   2338 	.f_detach = filt_sordetach,
   2339 	.f_event = filt_soread,
   2340 };
   2341 
   2342 static const struct filterops sowrite_filtops = {
   2343 	.f_isfd = 1,
   2344 	.f_attach = NULL,
   2345 	.f_detach = filt_sowdetach,
   2346 	.f_event = filt_sowrite,
   2347 };
   2348 
   2349 int
   2350 soo_kqfilter(struct file *fp, struct knote *kn)
   2351 {
   2352 	struct socket	*so;
   2353 	struct sockbuf	*sb;
   2354 
   2355 	so = ((file_t *)kn->kn_obj)->f_socket;
   2356 	solock(so);
   2357 	switch (kn->kn_filter) {
   2358 	case EVFILT_READ:
   2359 		if (so->so_options & SO_ACCEPTCONN)
   2360 			kn->kn_fop = &solisten_filtops;
   2361 		else
   2362 			kn->kn_fop = &soread_filtops;
   2363 		sb = &so->so_rcv;
   2364 		break;
   2365 	case EVFILT_WRITE:
   2366 		kn->kn_fop = &sowrite_filtops;
   2367 		sb = &so->so_snd;
   2368 		break;
   2369 	default:
   2370 		sounlock(so);
   2371 		return (EINVAL);
   2372 	}
   2373 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2374 	sb->sb_flags |= SB_KNOTE;
   2375 	sounlock(so);
   2376 	return (0);
   2377 }
   2378 
   2379 static int
   2380 sodopoll(struct socket *so, int events)
   2381 {
   2382 	int revents;
   2383 
   2384 	revents = 0;
   2385 
   2386 	if (events & (POLLIN | POLLRDNORM))
   2387 		if (soreadable(so))
   2388 			revents |= events & (POLLIN | POLLRDNORM);
   2389 
   2390 	if (events & (POLLOUT | POLLWRNORM))
   2391 		if (sowritable(so))
   2392 			revents |= events & (POLLOUT | POLLWRNORM);
   2393 
   2394 	if (events & (POLLPRI | POLLRDBAND))
   2395 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2396 			revents |= events & (POLLPRI | POLLRDBAND);
   2397 
   2398 	return revents;
   2399 }
   2400 
   2401 int
   2402 sopoll(struct socket *so, int events)
   2403 {
   2404 	int revents = 0;
   2405 
   2406 #ifndef DIAGNOSTIC
   2407 	/*
   2408 	 * Do a quick, unlocked check in expectation that the socket
   2409 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2410 	 * as the solocked() assertions will fail.
   2411 	 */
   2412 	if ((revents = sodopoll(so, events)) != 0)
   2413 		return revents;
   2414 #endif
   2415 
   2416 	solock(so);
   2417 	if ((revents = sodopoll(so, events)) == 0) {
   2418 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2419 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2420 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2421 		}
   2422 
   2423 		if (events & (POLLOUT | POLLWRNORM)) {
   2424 			selrecord(curlwp, &so->so_snd.sb_sel);
   2425 			so->so_snd.sb_flags |= SB_NOTIFY;
   2426 		}
   2427 	}
   2428 	sounlock(so);
   2429 
   2430 	return revents;
   2431 }
   2432 
   2433 struct mbuf **
   2434 sbsavetimestamp(int opt, struct mbuf **mp)
   2435 {
   2436 	struct timeval tv;
   2437 	microtime(&tv);
   2438 
   2439 #ifdef SO_OTIMESTAMP
   2440 	if (opt & SO_OTIMESTAMP) {
   2441 		struct timeval50 tv50;
   2442 
   2443 		timeval_to_timeval50(&tv, &tv50);
   2444 		*mp = sbcreatecontrol(&tv50, sizeof(tv50),
   2445 		    SCM_OTIMESTAMP, SOL_SOCKET);
   2446 		if (*mp)
   2447 			mp = &(*mp)->m_next;
   2448 	} else
   2449 #endif
   2450 
   2451 	if (opt & SO_TIMESTAMP) {
   2452 		*mp = sbcreatecontrol(&tv, sizeof(tv),
   2453 		    SCM_TIMESTAMP, SOL_SOCKET);
   2454 		if (*mp)
   2455 			mp = &(*mp)->m_next;
   2456 	}
   2457 	return mp;
   2458 }
   2459 
   2460 
   2461 #include <sys/sysctl.h>
   2462 
   2463 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2464 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2465 
   2466 /*
   2467  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2468  * value is not too small.
   2469  * (XXX should we maybe make sure it's not too large as well?)
   2470  */
   2471 static int
   2472 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2473 {
   2474 	int error, new_somaxkva;
   2475 	struct sysctlnode node;
   2476 
   2477 	new_somaxkva = somaxkva;
   2478 	node = *rnode;
   2479 	node.sysctl_data = &new_somaxkva;
   2480 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2481 	if (error || newp == NULL)
   2482 		return (error);
   2483 
   2484 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2485 		return (EINVAL);
   2486 
   2487 	mutex_enter(&so_pendfree_lock);
   2488 	somaxkva = new_somaxkva;
   2489 	cv_broadcast(&socurkva_cv);
   2490 	mutex_exit(&so_pendfree_lock);
   2491 
   2492 	return (error);
   2493 }
   2494 
   2495 /*
   2496  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2497  * any new value is not too small.
   2498  */
   2499 static int
   2500 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2501 {
   2502 	int error, new_sbmax;
   2503 	struct sysctlnode node;
   2504 
   2505 	new_sbmax = sb_max;
   2506 	node = *rnode;
   2507 	node.sysctl_data = &new_sbmax;
   2508 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2509 	if (error || newp == NULL)
   2510 		return (error);
   2511 
   2512 	KERNEL_LOCK(1, NULL);
   2513 	error = sb_max_set(new_sbmax);
   2514 	KERNEL_UNLOCK_ONE(NULL);
   2515 
   2516 	return (error);
   2517 }
   2518 
   2519 static void
   2520 sysctl_kern_socket_setup(void)
   2521 {
   2522 
   2523 	KASSERT(socket_sysctllog == NULL);
   2524 
   2525 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2526 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2527 		       CTLTYPE_INT, "somaxkva",
   2528 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2529 				    "used for socket buffers"),
   2530 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2531 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2532 
   2533 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2534 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2535 		       CTLTYPE_INT, "sbmax",
   2536 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2537 		       sysctl_kern_sbmax, 0, NULL, 0,
   2538 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2539 }
   2540