Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.259.2.5
      1 /*	$NetBSD: uipc_socket.c,v 1.259.2.5 2018/11/26 01:52:50 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.259.2.5 2018/11/26 01:52:50 pgoyette Exp $");
     75 
     76 #ifdef _KERNEL_OPT
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_sock_counters.h"
     79 #include "opt_sosend_loan.h"
     80 #include "opt_mbuftrace.h"
     81 #include "opt_somaxkva.h"
     82 #include "opt_multiprocessor.h"	/* XXX */
     83 #include "opt_sctp.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/file.h>
     90 #include <sys/filedesc.h>
     91 #include <sys/kmem.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/domain.h>
     94 #include <sys/kernel.h>
     95 #include <sys/protosw.h>
     96 #include <sys/socket.h>
     97 #include <sys/socketvar.h>
     98 #include <sys/signalvar.h>
     99 #include <sys/resourcevar.h>
    100 #include <sys/uidinfo.h>
    101 #include <sys/event.h>
    102 #include <sys/poll.h>
    103 #include <sys/kauth.h>
    104 #include <sys/mutex.h>
    105 #include <sys/condvar.h>
    106 #include <sys/kthread.h>
    107 
    108 #ifdef COMPAT_50
    109 #include <compat/sys/time.h>
    110 #include <compat/sys/socket.h>
    111 #endif
    112 
    113 #include <uvm/uvm_extern.h>
    114 #include <uvm/uvm_loan.h>
    115 #include <uvm/uvm_page.h>
    116 
    117 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    118 
    119 extern const struct fileops socketops;
    120 
    121 static int	sooptions;
    122 extern int	somaxconn;			/* patchable (XXX sysctl) */
    123 int		somaxconn = SOMAXCONN;
    124 kmutex_t	*softnet_lock;
    125 
    126 #ifdef SOSEND_COUNTERS
    127 #include <sys/device.h>
    128 
    129 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    130     NULL, "sosend", "loan big");
    131 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    132     NULL, "sosend", "copy big");
    133 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    134     NULL, "sosend", "copy small");
    135 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    136     NULL, "sosend", "kva limit");
    137 
    138 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    139 
    140 EVCNT_ATTACH_STATIC(sosend_loan_big);
    141 EVCNT_ATTACH_STATIC(sosend_copy_big);
    142 EVCNT_ATTACH_STATIC(sosend_copy_small);
    143 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    144 #else
    145 
    146 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    147 
    148 #endif /* SOSEND_COUNTERS */
    149 
    150 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    151 int sock_loan_thresh = -1;
    152 #else
    153 int sock_loan_thresh = 4096;
    154 #endif
    155 
    156 static kmutex_t so_pendfree_lock;
    157 static struct mbuf *so_pendfree = NULL;
    158 
    159 #ifndef SOMAXKVA
    160 #define	SOMAXKVA (16 * 1024 * 1024)
    161 #endif
    162 int somaxkva = SOMAXKVA;
    163 static int socurkva;
    164 static kcondvar_t socurkva_cv;
    165 
    166 static kauth_listener_t socket_listener;
    167 
    168 #define	SOCK_LOAN_CHUNK		65536
    169 
    170 static void sopendfree_thread(void *);
    171 static kcondvar_t pendfree_thread_cv;
    172 static lwp_t *sopendfree_lwp;
    173 
    174 static void sysctl_kern_socket_setup(void);
    175 static struct sysctllog *socket_sysctllog;
    176 
    177 static vsize_t
    178 sokvareserve(struct socket *so, vsize_t len)
    179 {
    180 	int error;
    181 
    182 	mutex_enter(&so_pendfree_lock);
    183 	while (socurkva + len > somaxkva) {
    184 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    185 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    186 		if (error) {
    187 			len = 0;
    188 			break;
    189 		}
    190 	}
    191 	socurkva += len;
    192 	mutex_exit(&so_pendfree_lock);
    193 	return len;
    194 }
    195 
    196 static void
    197 sokvaunreserve(vsize_t len)
    198 {
    199 
    200 	mutex_enter(&so_pendfree_lock);
    201 	socurkva -= len;
    202 	cv_broadcast(&socurkva_cv);
    203 	mutex_exit(&so_pendfree_lock);
    204 }
    205 
    206 /*
    207  * sokvaalloc: allocate kva for loan.
    208  */
    209 
    210 vaddr_t
    211 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    212 {
    213 	vaddr_t lva;
    214 
    215 	/*
    216 	 * reserve kva.
    217 	 */
    218 
    219 	if (sokvareserve(so, len) == 0)
    220 		return 0;
    221 
    222 	/*
    223 	 * allocate kva.
    224 	 */
    225 
    226 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    227 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    228 	if (lva == 0) {
    229 		sokvaunreserve(len);
    230 		return (0);
    231 	}
    232 
    233 	return lva;
    234 }
    235 
    236 /*
    237  * sokvafree: free kva for loan.
    238  */
    239 
    240 void
    241 sokvafree(vaddr_t sva, vsize_t len)
    242 {
    243 
    244 	/*
    245 	 * free kva.
    246 	 */
    247 
    248 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    249 
    250 	/*
    251 	 * unreserve kva.
    252 	 */
    253 
    254 	sokvaunreserve(len);
    255 }
    256 
    257 static void
    258 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    259 {
    260 	vaddr_t sva, eva;
    261 	vsize_t len;
    262 	int npgs;
    263 
    264 	KASSERT(pgs != NULL);
    265 
    266 	eva = round_page((vaddr_t) buf + size);
    267 	sva = trunc_page((vaddr_t) buf);
    268 	len = eva - sva;
    269 	npgs = len >> PAGE_SHIFT;
    270 
    271 	pmap_kremove(sva, len);
    272 	pmap_update(pmap_kernel());
    273 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    274 	sokvafree(sva, len);
    275 }
    276 
    277 /*
    278  * sopendfree_thread: free mbufs on "pendfree" list.
    279  * unlock and relock so_pendfree_lock when freeing mbufs.
    280  */
    281 
    282 static void
    283 sopendfree_thread(void *v)
    284 {
    285 	struct mbuf *m, *next;
    286 	size_t rv;
    287 
    288 	mutex_enter(&so_pendfree_lock);
    289 
    290 	for (;;) {
    291 		rv = 0;
    292 		while (so_pendfree != NULL) {
    293 			m = so_pendfree;
    294 			so_pendfree = NULL;
    295 			mutex_exit(&so_pendfree_lock);
    296 
    297 			for (; m != NULL; m = next) {
    298 				next = m->m_next;
    299 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
    300 				    0);
    301 				KASSERT(m->m_ext.ext_refcnt == 0);
    302 
    303 				rv += m->m_ext.ext_size;
    304 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    305 				    m->m_ext.ext_size);
    306 				pool_cache_put(mb_cache, m);
    307 			}
    308 
    309 			mutex_enter(&so_pendfree_lock);
    310 		}
    311 		if (rv)
    312 			cv_broadcast(&socurkva_cv);
    313 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    314 	}
    315 	panic("sopendfree_thread");
    316 	/* NOTREACHED */
    317 }
    318 
    319 void
    320 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    321 {
    322 
    323 	KASSERT(m != NULL);
    324 
    325 	/*
    326 	 * postpone freeing mbuf.
    327 	 *
    328 	 * we can't do it in interrupt context
    329 	 * because we need to put kva back to kernel_map.
    330 	 */
    331 
    332 	mutex_enter(&so_pendfree_lock);
    333 	m->m_next = so_pendfree;
    334 	so_pendfree = m;
    335 	cv_signal(&pendfree_thread_cv);
    336 	mutex_exit(&so_pendfree_lock);
    337 }
    338 
    339 static long
    340 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    341 {
    342 	struct iovec *iov = uio->uio_iov;
    343 	vaddr_t sva, eva;
    344 	vsize_t len;
    345 	vaddr_t lva;
    346 	int npgs, error;
    347 	vaddr_t va;
    348 	int i;
    349 
    350 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    351 		return (0);
    352 
    353 	if (iov->iov_len < (size_t) space)
    354 		space = iov->iov_len;
    355 	if (space > SOCK_LOAN_CHUNK)
    356 		space = SOCK_LOAN_CHUNK;
    357 
    358 	eva = round_page((vaddr_t) iov->iov_base + space);
    359 	sva = trunc_page((vaddr_t) iov->iov_base);
    360 	len = eva - sva;
    361 	npgs = len >> PAGE_SHIFT;
    362 
    363 	KASSERT(npgs <= M_EXT_MAXPAGES);
    364 
    365 	lva = sokvaalloc(sva, len, so);
    366 	if (lva == 0)
    367 		return 0;
    368 
    369 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    370 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    371 	if (error) {
    372 		sokvafree(lva, len);
    373 		return (0);
    374 	}
    375 
    376 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    377 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    378 		    VM_PROT_READ, 0);
    379 	pmap_update(pmap_kernel());
    380 
    381 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    382 
    383 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    384 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    385 
    386 	uio->uio_resid -= space;
    387 	/* uio_offset not updated, not set/used for write(2) */
    388 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    389 	uio->uio_iov->iov_len -= space;
    390 	if (uio->uio_iov->iov_len == 0) {
    391 		uio->uio_iov++;
    392 		uio->uio_iovcnt--;
    393 	}
    394 
    395 	return (space);
    396 }
    397 
    398 struct mbuf *
    399 getsombuf(struct socket *so, int type)
    400 {
    401 	struct mbuf *m;
    402 
    403 	m = m_get(M_WAIT, type);
    404 	MCLAIM(m, so->so_mowner);
    405 	return m;
    406 }
    407 
    408 static int
    409 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    410     void *arg0, void *arg1, void *arg2, void *arg3)
    411 {
    412 	int result;
    413 	enum kauth_network_req req;
    414 
    415 	result = KAUTH_RESULT_DEFER;
    416 	req = (enum kauth_network_req)arg0;
    417 
    418 	if ((action != KAUTH_NETWORK_SOCKET) &&
    419 	    (action != KAUTH_NETWORK_BIND))
    420 		return result;
    421 
    422 	switch (req) {
    423 	case KAUTH_REQ_NETWORK_BIND_PORT:
    424 		result = KAUTH_RESULT_ALLOW;
    425 		break;
    426 
    427 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    428 		/* Normal users can only drop their own connections. */
    429 		struct socket *so = (struct socket *)arg1;
    430 
    431 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    432 			result = KAUTH_RESULT_ALLOW;
    433 
    434 		break;
    435 		}
    436 
    437 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    438 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    439 		switch ((u_long)arg1) {
    440 		case PF_ROUTE:
    441 		case PF_OROUTE:
    442 		case PF_BLUETOOTH:
    443 		case PF_CAN:
    444 			result = KAUTH_RESULT_ALLOW;
    445 			break;
    446 		default:
    447 			/* Privileged, let secmodel handle this. */
    448 			if ((u_long)arg2 == SOCK_RAW)
    449 				break;
    450 			result = KAUTH_RESULT_ALLOW;
    451 			break;
    452 		}
    453 		break;
    454 
    455 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    456 		result = KAUTH_RESULT_ALLOW;
    457 
    458 		break;
    459 
    460 	default:
    461 		break;
    462 	}
    463 
    464 	return result;
    465 }
    466 
    467 void
    468 soinit(void)
    469 {
    470 
    471 	sysctl_kern_socket_setup();
    472 
    473 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    474 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    475 	cv_init(&socurkva_cv, "sokva");
    476 	cv_init(&pendfree_thread_cv, "sopendfr");
    477 	soinit2();
    478 
    479 	/* Set the initial adjusted socket buffer size. */
    480 	if (sb_max_set(sb_max))
    481 		panic("bad initial sb_max value: %lu", sb_max);
    482 
    483 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    484 	    socket_listener_cb, NULL);
    485 }
    486 
    487 void
    488 soinit1(void)
    489 {
    490 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    491 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    492 	if (error)
    493 		panic("soinit1 %d", error);
    494 }
    495 
    496 /*
    497  * socreate: create a new socket of the specified type and the protocol.
    498  *
    499  * => Caller may specify another socket for lock sharing (must not be held).
    500  * => Returns the new socket without lock held.
    501  */
    502 int
    503 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    504 	 struct socket *lockso)
    505 {
    506 	const struct protosw	*prp;
    507 	struct socket	*so;
    508 	uid_t		uid;
    509 	int		error;
    510 	kmutex_t	*lock;
    511 
    512 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    513 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    514 	    KAUTH_ARG(proto));
    515 	if (error != 0)
    516 		return error;
    517 
    518 	if (proto)
    519 		prp = pffindproto(dom, proto, type);
    520 	else
    521 		prp = pffindtype(dom, type);
    522 	if (prp == NULL) {
    523 		/* no support for domain */
    524 		if (pffinddomain(dom) == 0)
    525 			return EAFNOSUPPORT;
    526 		/* no support for socket type */
    527 		if (proto == 0 && type != 0)
    528 			return EPROTOTYPE;
    529 		return EPROTONOSUPPORT;
    530 	}
    531 	if (prp->pr_usrreqs == NULL)
    532 		return EPROTONOSUPPORT;
    533 	if (prp->pr_type != type)
    534 		return EPROTOTYPE;
    535 
    536 	so = soget(true);
    537 	so->so_type = type;
    538 	so->so_proto = prp;
    539 	so->so_send = sosend;
    540 	so->so_receive = soreceive;
    541 	so->so_options = sooptions;
    542 #ifdef MBUFTRACE
    543 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    544 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    545 	so->so_mowner = &prp->pr_domain->dom_mowner;
    546 #endif
    547 	uid = kauth_cred_geteuid(l->l_cred);
    548 	so->so_uidinfo = uid_find(uid);
    549 	so->so_cpid = l->l_proc->p_pid;
    550 
    551 	/*
    552 	 * Lock assigned and taken during PCB attach, unless we share
    553 	 * the lock with another socket, e.g. socketpair(2) case.
    554 	 */
    555 	if (lockso) {
    556 		lock = lockso->so_lock;
    557 		so->so_lock = lock;
    558 		mutex_obj_hold(lock);
    559 		mutex_enter(lock);
    560 	}
    561 
    562 	/* Attach the PCB (returns with the socket lock held). */
    563 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    564 	KASSERT(solocked(so));
    565 
    566 	if (error) {
    567 		KASSERT(so->so_pcb == NULL);
    568 		so->so_state |= SS_NOFDREF;
    569 		sofree(so);
    570 		return error;
    571 	}
    572 	so->so_cred = kauth_cred_dup(l->l_cred);
    573 	sounlock(so);
    574 
    575 	*aso = so;
    576 	return 0;
    577 }
    578 
    579 /*
    580  * fsocreate: create a socket and a file descriptor associated with it.
    581  *
    582  * => On success, write file descriptor to fdout and return zero.
    583  * => On failure, return non-zero; *fdout will be undefined.
    584  */
    585 int
    586 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    587 {
    588 	lwp_t *l = curlwp;
    589 	int error, fd, flags;
    590 	struct socket *so;
    591 	struct file *fp;
    592 
    593 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    594 		return error;
    595 	}
    596 	flags = type & SOCK_FLAGS_MASK;
    597 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    598 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    599 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    600 	fp->f_type = DTYPE_SOCKET;
    601 	fp->f_ops = &socketops;
    602 
    603 	type &= ~SOCK_FLAGS_MASK;
    604 	error = socreate(domain, &so, type, proto, l, NULL);
    605 	if (error) {
    606 		fd_abort(curproc, fp, fd);
    607 		return error;
    608 	}
    609 	if (flags & SOCK_NONBLOCK) {
    610 		so->so_state |= SS_NBIO;
    611 	}
    612 	fp->f_socket = so;
    613 	fd_affix(curproc, fp, fd);
    614 
    615 	if (sop != NULL) {
    616 		*sop = so;
    617 	}
    618 	*fdout = fd;
    619 	return error;
    620 }
    621 
    622 int
    623 sofamily(const struct socket *so)
    624 {
    625 	const struct protosw *pr;
    626 	const struct domain *dom;
    627 
    628 	if ((pr = so->so_proto) == NULL)
    629 		return AF_UNSPEC;
    630 	if ((dom = pr->pr_domain) == NULL)
    631 		return AF_UNSPEC;
    632 	return dom->dom_family;
    633 }
    634 
    635 int
    636 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    637 {
    638 	int	error;
    639 
    640 	solock(so);
    641 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    642 		sounlock(so);
    643 		return EAFNOSUPPORT;
    644 	}
    645 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    646 	sounlock(so);
    647 	return error;
    648 }
    649 
    650 int
    651 solisten(struct socket *so, int backlog, struct lwp *l)
    652 {
    653 	int	error;
    654 	short	oldopt, oldqlimit;
    655 
    656 	solock(so);
    657 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    658 	    SS_ISDISCONNECTING)) != 0) {
    659 		sounlock(so);
    660 		return EINVAL;
    661 	}
    662 	oldopt = so->so_options;
    663 	oldqlimit = so->so_qlimit;
    664 	if (TAILQ_EMPTY(&so->so_q))
    665 		so->so_options |= SO_ACCEPTCONN;
    666 	if (backlog < 0)
    667 		backlog = 0;
    668 	so->so_qlimit = uimin(backlog, somaxconn);
    669 
    670 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    671 	if (error != 0) {
    672 		so->so_options = oldopt;
    673 		so->so_qlimit = oldqlimit;
    674 		sounlock(so);
    675 		return error;
    676 	}
    677 	sounlock(so);
    678 	return 0;
    679 }
    680 
    681 void
    682 sofree(struct socket *so)
    683 {
    684 	u_int refs;
    685 
    686 	KASSERT(solocked(so));
    687 
    688 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    689 		sounlock(so);
    690 		return;
    691 	}
    692 	if (so->so_head) {
    693 		/*
    694 		 * We must not decommission a socket that's on the accept(2)
    695 		 * queue.  If we do, then accept(2) may hang after select(2)
    696 		 * indicated that the listening socket was ready.
    697 		 */
    698 		if (!soqremque(so, 0)) {
    699 			sounlock(so);
    700 			return;
    701 		}
    702 	}
    703 	if (so->so_rcv.sb_hiwat)
    704 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    705 		    RLIM_INFINITY);
    706 	if (so->so_snd.sb_hiwat)
    707 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    708 		    RLIM_INFINITY);
    709 	sbrelease(&so->so_snd, so);
    710 	KASSERT(!cv_has_waiters(&so->so_cv));
    711 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    712 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    713 	sorflush(so);
    714 	refs = so->so_aborting;	/* XXX */
    715 	/* Remove acccept filter if one is present. */
    716 	if (so->so_accf != NULL)
    717 		(void)accept_filt_clear(so);
    718 	sounlock(so);
    719 	if (refs == 0)		/* XXX */
    720 		soput(so);
    721 }
    722 
    723 /*
    724  * soclose: close a socket on last file table reference removal.
    725  * Initiate disconnect if connected.  Free socket when disconnect complete.
    726  */
    727 int
    728 soclose(struct socket *so)
    729 {
    730 	struct socket *so2;
    731 	int error = 0;
    732 
    733 	solock(so);
    734 	if (so->so_options & SO_ACCEPTCONN) {
    735 		for (;;) {
    736 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    737 				KASSERT(solocked2(so, so2));
    738 				(void) soqremque(so2, 0);
    739 				/* soabort drops the lock. */
    740 				(void) soabort(so2);
    741 				solock(so);
    742 				continue;
    743 			}
    744 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    745 				KASSERT(solocked2(so, so2));
    746 				(void) soqremque(so2, 1);
    747 				/* soabort drops the lock. */
    748 				(void) soabort(so2);
    749 				solock(so);
    750 				continue;
    751 			}
    752 			break;
    753 		}
    754 	}
    755 	if (so->so_pcb == NULL)
    756 		goto discard;
    757 	if (so->so_state & SS_ISCONNECTED) {
    758 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    759 			error = sodisconnect(so);
    760 			if (error)
    761 				goto drop;
    762 		}
    763 		if (so->so_options & SO_LINGER) {
    764 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    765 			    (SS_ISDISCONNECTING|SS_NBIO))
    766 				goto drop;
    767 			while (so->so_state & SS_ISCONNECTED) {
    768 				error = sowait(so, true, so->so_linger * hz);
    769 				if (error)
    770 					break;
    771 			}
    772 		}
    773 	}
    774  drop:
    775 	if (so->so_pcb) {
    776 		KASSERT(solocked(so));
    777 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    778 	}
    779  discard:
    780 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    781 	kauth_cred_free(so->so_cred);
    782 	so->so_state |= SS_NOFDREF;
    783 	sofree(so);
    784 	return error;
    785 }
    786 
    787 /*
    788  * Must be called with the socket locked..  Will return with it unlocked.
    789  */
    790 int
    791 soabort(struct socket *so)
    792 {
    793 	u_int refs;
    794 	int error;
    795 
    796 	KASSERT(solocked(so));
    797 	KASSERT(so->so_head == NULL);
    798 
    799 	so->so_aborting++;		/* XXX */
    800 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    801 	refs = --so->so_aborting;	/* XXX */
    802 	if (error || (refs == 0)) {
    803 		sofree(so);
    804 	} else {
    805 		sounlock(so);
    806 	}
    807 	return error;
    808 }
    809 
    810 int
    811 soaccept(struct socket *so, struct sockaddr *nam)
    812 {
    813 	int error;
    814 
    815 	KASSERT(solocked(so));
    816 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    817 
    818 	so->so_state &= ~SS_NOFDREF;
    819 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    820 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    821 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    822 	else
    823 		error = ECONNABORTED;
    824 
    825 	return error;
    826 }
    827 
    828 int
    829 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    830 {
    831 	int error;
    832 
    833 	KASSERT(solocked(so));
    834 
    835 	if (so->so_options & SO_ACCEPTCONN)
    836 		return EOPNOTSUPP;
    837 	/*
    838 	 * If protocol is connection-based, can only connect once.
    839 	 * Otherwise, if connected, try to disconnect first.
    840 	 * This allows user to disconnect by connecting to, e.g.,
    841 	 * a null address.
    842 	 */
    843 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    844 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    845 	    (error = sodisconnect(so)))) {
    846 		error = EISCONN;
    847 	} else {
    848 		if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    849 			return EAFNOSUPPORT;
    850 		}
    851 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    852 	}
    853 
    854 	return error;
    855 }
    856 
    857 int
    858 soconnect2(struct socket *so1, struct socket *so2)
    859 {
    860 	KASSERT(solocked2(so1, so2));
    861 
    862 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    863 }
    864 
    865 int
    866 sodisconnect(struct socket *so)
    867 {
    868 	int	error;
    869 
    870 	KASSERT(solocked(so));
    871 
    872 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    873 		error = ENOTCONN;
    874 	} else if (so->so_state & SS_ISDISCONNECTING) {
    875 		error = EALREADY;
    876 	} else {
    877 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    878 	}
    879 	return (error);
    880 }
    881 
    882 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    883 /*
    884  * Send on a socket.
    885  * If send must go all at once and message is larger than
    886  * send buffering, then hard error.
    887  * Lock against other senders.
    888  * If must go all at once and not enough room now, then
    889  * inform user that this would block and do nothing.
    890  * Otherwise, if nonblocking, send as much as possible.
    891  * The data to be sent is described by "uio" if nonzero,
    892  * otherwise by the mbuf chain "top" (which must be null
    893  * if uio is not).  Data provided in mbuf chain must be small
    894  * enough to send all at once.
    895  *
    896  * Returns nonzero on error, timeout or signal; callers
    897  * must check for short counts if EINTR/ERESTART are returned.
    898  * Data and control buffers are freed on return.
    899  */
    900 int
    901 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
    902 	struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
    903 {
    904 	struct mbuf	**mp, *m;
    905 	long		space, len, resid, clen, mlen;
    906 	int		error, s, dontroute, atomic;
    907 	short		wakeup_state = 0;
    908 
    909 	clen = 0;
    910 
    911 	/*
    912 	 * solock() provides atomicity of access.  splsoftnet() prevents
    913 	 * protocol processing soft interrupts from interrupting us and
    914 	 * blocking (expensive).
    915 	 */
    916 	s = splsoftnet();
    917 	solock(so);
    918 	atomic = sosendallatonce(so) || top;
    919 	if (uio)
    920 		resid = uio->uio_resid;
    921 	else
    922 		resid = top->m_pkthdr.len;
    923 	/*
    924 	 * In theory resid should be unsigned.
    925 	 * However, space must be signed, as it might be less than 0
    926 	 * if we over-committed, and we must use a signed comparison
    927 	 * of space and resid.  On the other hand, a negative resid
    928 	 * causes us to loop sending 0-length segments to the protocol.
    929 	 */
    930 	if (resid < 0) {
    931 		error = EINVAL;
    932 		goto out;
    933 	}
    934 	dontroute =
    935 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    936 	    (so->so_proto->pr_flags & PR_ATOMIC);
    937 	l->l_ru.ru_msgsnd++;
    938 	if (control)
    939 		clen = control->m_len;
    940  restart:
    941 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    942 		goto out;
    943 	do {
    944 		if (so->so_state & SS_CANTSENDMORE) {
    945 			error = EPIPE;
    946 			goto release;
    947 		}
    948 		if (so->so_error) {
    949 			error = so->so_error;
    950 			so->so_error = 0;
    951 			goto release;
    952 		}
    953 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    954 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    955 				if (resid || clen == 0) {
    956 					error = ENOTCONN;
    957 					goto release;
    958 				}
    959 			} else if (addr == NULL) {
    960 				error = EDESTADDRREQ;
    961 				goto release;
    962 			}
    963 		}
    964 		space = sbspace(&so->so_snd);
    965 		if (flags & MSG_OOB)
    966 			space += 1024;
    967 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    968 		    clen > so->so_snd.sb_hiwat) {
    969 			error = EMSGSIZE;
    970 			goto release;
    971 		}
    972 		if (space < resid + clen &&
    973 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    974 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    975 				error = EWOULDBLOCK;
    976 				goto release;
    977 			}
    978 			sbunlock(&so->so_snd);
    979 			if (wakeup_state & SS_RESTARTSYS) {
    980 				error = ERESTART;
    981 				goto out;
    982 			}
    983 			error = sbwait(&so->so_snd);
    984 			if (error)
    985 				goto out;
    986 			wakeup_state = so->so_state;
    987 			goto restart;
    988 		}
    989 		wakeup_state = 0;
    990 		mp = &top;
    991 		space -= clen;
    992 		do {
    993 			if (uio == NULL) {
    994 				/*
    995 				 * Data is prepackaged in "top".
    996 				 */
    997 				resid = 0;
    998 				if (flags & MSG_EOR)
    999 					top->m_flags |= M_EOR;
   1000 			} else do {
   1001 				sounlock(so);
   1002 				splx(s);
   1003 				if (top == NULL) {
   1004 					m = m_gethdr(M_WAIT, MT_DATA);
   1005 					mlen = MHLEN;
   1006 					m->m_pkthdr.len = 0;
   1007 					m_reset_rcvif(m);
   1008 				} else {
   1009 					m = m_get(M_WAIT, MT_DATA);
   1010 					mlen = MLEN;
   1011 				}
   1012 				MCLAIM(m, so->so_snd.sb_mowner);
   1013 				if (sock_loan_thresh >= 0 &&
   1014 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1015 				    space >= sock_loan_thresh &&
   1016 				    (len = sosend_loan(so, uio, m,
   1017 						       space)) != 0) {
   1018 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1019 					space -= len;
   1020 					goto have_data;
   1021 				}
   1022 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1023 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1024 					m_clget(m, M_DONTWAIT);
   1025 					if ((m->m_flags & M_EXT) == 0)
   1026 						goto nopages;
   1027 					mlen = MCLBYTES;
   1028 					if (atomic && top == 0) {
   1029 						len = lmin(MCLBYTES - max_hdr,
   1030 						    resid);
   1031 						m->m_data += max_hdr;
   1032 					} else
   1033 						len = lmin(MCLBYTES, resid);
   1034 					space -= len;
   1035 				} else {
   1036  nopages:
   1037 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1038 					len = lmin(lmin(mlen, resid), space);
   1039 					space -= len;
   1040 					/*
   1041 					 * For datagram protocols, leave room
   1042 					 * for protocol headers in first mbuf.
   1043 					 */
   1044 					if (atomic && top == 0 && len < mlen)
   1045 						MH_ALIGN(m, len);
   1046 				}
   1047 				error = uiomove(mtod(m, void *), (int)len, uio);
   1048  have_data:
   1049 				resid = uio->uio_resid;
   1050 				m->m_len = len;
   1051 				*mp = m;
   1052 				top->m_pkthdr.len += len;
   1053 				s = splsoftnet();
   1054 				solock(so);
   1055 				if (error != 0)
   1056 					goto release;
   1057 				mp = &m->m_next;
   1058 				if (resid <= 0) {
   1059 					if (flags & MSG_EOR)
   1060 						top->m_flags |= M_EOR;
   1061 					break;
   1062 				}
   1063 			} while (space > 0 && atomic);
   1064 
   1065 			if (so->so_state & SS_CANTSENDMORE) {
   1066 				error = EPIPE;
   1067 				goto release;
   1068 			}
   1069 			if (dontroute)
   1070 				so->so_options |= SO_DONTROUTE;
   1071 			if (resid > 0)
   1072 				so->so_state |= SS_MORETOCOME;
   1073 			if (flags & MSG_OOB) {
   1074 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
   1075 				    so, top, control);
   1076 			} else {
   1077 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1078 				    top, addr, control, l);
   1079 			}
   1080 			if (dontroute)
   1081 				so->so_options &= ~SO_DONTROUTE;
   1082 			if (resid > 0)
   1083 				so->so_state &= ~SS_MORETOCOME;
   1084 			clen = 0;
   1085 			control = NULL;
   1086 			top = NULL;
   1087 			mp = &top;
   1088 			if (error != 0)
   1089 				goto release;
   1090 		} while (resid && space > 0);
   1091 	} while (resid);
   1092 
   1093  release:
   1094 	sbunlock(&so->so_snd);
   1095  out:
   1096 	sounlock(so);
   1097 	splx(s);
   1098 	if (top)
   1099 		m_freem(top);
   1100 	if (control)
   1101 		m_freem(control);
   1102 	return (error);
   1103 }
   1104 
   1105 /*
   1106  * Following replacement or removal of the first mbuf on the first
   1107  * mbuf chain of a socket buffer, push necessary state changes back
   1108  * into the socket buffer so that other consumers see the values
   1109  * consistently.  'nextrecord' is the callers locally stored value of
   1110  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1111  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1112  */
   1113 static void
   1114 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1115 {
   1116 
   1117 	KASSERT(solocked(sb->sb_so));
   1118 
   1119 	/*
   1120 	 * First, update for the new value of nextrecord.  If necessary,
   1121 	 * make it the first record.
   1122 	 */
   1123 	if (sb->sb_mb != NULL)
   1124 		sb->sb_mb->m_nextpkt = nextrecord;
   1125 	else
   1126 		sb->sb_mb = nextrecord;
   1127 
   1128         /*
   1129          * Now update any dependent socket buffer fields to reflect
   1130          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1131          * the addition of a second clause that takes care of the
   1132          * case where sb_mb has been updated, but remains the last
   1133          * record.
   1134          */
   1135         if (sb->sb_mb == NULL) {
   1136                 sb->sb_mbtail = NULL;
   1137                 sb->sb_lastrecord = NULL;
   1138         } else if (sb->sb_mb->m_nextpkt == NULL)
   1139                 sb->sb_lastrecord = sb->sb_mb;
   1140 }
   1141 
   1142 /*
   1143  * Implement receive operations on a socket.
   1144  * We depend on the way that records are added to the sockbuf
   1145  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1146  * must begin with an address if the protocol so specifies,
   1147  * followed by an optional mbuf or mbufs containing ancillary data,
   1148  * and then zero or more mbufs of data.
   1149  * In order to avoid blocking network interrupts for the entire time here,
   1150  * we splx() while doing the actual copy to user space.
   1151  * Although the sockbuf is locked, new data may still be appended,
   1152  * and thus we must maintain consistency of the sockbuf during that time.
   1153  *
   1154  * The caller may receive the data as a single mbuf chain by supplying
   1155  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1156  * only for the count in uio_resid.
   1157  */
   1158 int
   1159 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1160 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1161 {
   1162 	struct lwp *l = curlwp;
   1163 	struct mbuf	*m, **mp, *mt;
   1164 	size_t len, offset, moff, orig_resid;
   1165 	int atomic, flags, error, s, type;
   1166 	const struct protosw	*pr;
   1167 	struct mbuf	*nextrecord;
   1168 	int		mbuf_removed = 0;
   1169 	const struct domain *dom;
   1170 	short		wakeup_state = 0;
   1171 
   1172 	pr = so->so_proto;
   1173 	atomic = pr->pr_flags & PR_ATOMIC;
   1174 	dom = pr->pr_domain;
   1175 	mp = mp0;
   1176 	type = 0;
   1177 	orig_resid = uio->uio_resid;
   1178 
   1179 	if (paddr != NULL)
   1180 		*paddr = NULL;
   1181 	if (controlp != NULL)
   1182 		*controlp = NULL;
   1183 	if (flagsp != NULL)
   1184 		flags = *flagsp &~ MSG_EOR;
   1185 	else
   1186 		flags = 0;
   1187 
   1188 	if (flags & MSG_OOB) {
   1189 		m = m_get(M_WAIT, MT_DATA);
   1190 		solock(so);
   1191 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1192 		sounlock(so);
   1193 		if (error)
   1194 			goto bad;
   1195 		do {
   1196 			error = uiomove(mtod(m, void *),
   1197 			    MIN(uio->uio_resid, m->m_len), uio);
   1198 			m = m_free(m);
   1199 		} while (uio->uio_resid > 0 && error == 0 && m);
   1200  bad:
   1201 		if (m != NULL)
   1202 			m_freem(m);
   1203 		return error;
   1204 	}
   1205 	if (mp != NULL)
   1206 		*mp = NULL;
   1207 
   1208 	/*
   1209 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1210 	 * protocol processing soft interrupts from interrupting us and
   1211 	 * blocking (expensive).
   1212 	 */
   1213 	s = splsoftnet();
   1214 	solock(so);
   1215  restart:
   1216 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1217 		sounlock(so);
   1218 		splx(s);
   1219 		return error;
   1220 	}
   1221 
   1222 	m = so->so_rcv.sb_mb;
   1223 	/*
   1224 	 * If we have less data than requested, block awaiting more
   1225 	 * (subject to any timeout) if:
   1226 	 *   1. the current count is less than the low water mark,
   1227 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1228 	 *	receive operation at once if we block (resid <= hiwat), or
   1229 	 *   3. MSG_DONTWAIT is not set.
   1230 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1231 	 * we have to do the receive in sections, and thus risk returning
   1232 	 * a short count if a timeout or signal occurs after we start.
   1233 	 */
   1234 	if (m == NULL ||
   1235 	    ((flags & MSG_DONTWAIT) == 0 &&
   1236 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1237 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1238 	      ((flags & MSG_WAITALL) &&
   1239 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1240 	     m->m_nextpkt == NULL && !atomic)) {
   1241 #ifdef DIAGNOSTIC
   1242 		if (m == NULL && so->so_rcv.sb_cc)
   1243 			panic("receive 1");
   1244 #endif
   1245 		if (so->so_error || so->so_rerror) {
   1246 			if (m != NULL)
   1247 				goto dontblock;
   1248 			if (so->so_error) {
   1249 				error = so->so_error;
   1250 				so->so_error = 0;
   1251 			} else {
   1252 				error = so->so_rerror;
   1253 				so->so_rerror = 0;
   1254 			}
   1255 			goto release;
   1256 		}
   1257 		if (so->so_state & SS_CANTRCVMORE) {
   1258 			if (m != NULL)
   1259 				goto dontblock;
   1260 			else
   1261 				goto release;
   1262 		}
   1263 		for (; m != NULL; m = m->m_next)
   1264 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1265 				m = so->so_rcv.sb_mb;
   1266 				goto dontblock;
   1267 			}
   1268 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1269 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1270 			error = ENOTCONN;
   1271 			goto release;
   1272 		}
   1273 		if (uio->uio_resid == 0)
   1274 			goto release;
   1275 		if ((so->so_state & SS_NBIO) ||
   1276 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1277 			error = EWOULDBLOCK;
   1278 			goto release;
   1279 		}
   1280 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1281 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1282 		sbunlock(&so->so_rcv);
   1283 		if (wakeup_state & SS_RESTARTSYS)
   1284 			error = ERESTART;
   1285 		else
   1286 			error = sbwait(&so->so_rcv);
   1287 		if (error != 0) {
   1288 			sounlock(so);
   1289 			splx(s);
   1290 			return error;
   1291 		}
   1292 		wakeup_state = so->so_state;
   1293 		goto restart;
   1294 	}
   1295  dontblock:
   1296 	/*
   1297 	 * On entry here, m points to the first record of the socket buffer.
   1298 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1299 	 * pointer to the next record in the socket buffer.  We must keep the
   1300 	 * various socket buffer pointers and local stack versions of the
   1301 	 * pointers in sync, pushing out modifications before dropping the
   1302 	 * socket lock, and re-reading them when picking it up.
   1303 	 *
   1304 	 * Otherwise, we will race with the network stack appending new data
   1305 	 * or records onto the socket buffer by using inconsistent/stale
   1306 	 * versions of the field, possibly resulting in socket buffer
   1307 	 * corruption.
   1308 	 *
   1309 	 * By holding the high-level sblock(), we prevent simultaneous
   1310 	 * readers from pulling off the front of the socket buffer.
   1311 	 */
   1312 	if (l != NULL)
   1313 		l->l_ru.ru_msgrcv++;
   1314 	KASSERT(m == so->so_rcv.sb_mb);
   1315 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1316 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1317 	nextrecord = m->m_nextpkt;
   1318 	if (pr->pr_flags & PR_ADDR) {
   1319 #ifdef DIAGNOSTIC
   1320 		if (m->m_type != MT_SONAME)
   1321 			panic("receive 1a");
   1322 #endif
   1323 		orig_resid = 0;
   1324 		if (flags & MSG_PEEK) {
   1325 			if (paddr)
   1326 				*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1327 			m = m->m_next;
   1328 		} else {
   1329 			sbfree(&so->so_rcv, m);
   1330 			mbuf_removed = 1;
   1331 			if (paddr != NULL) {
   1332 				*paddr = m;
   1333 				so->so_rcv.sb_mb = m->m_next;
   1334 				m->m_next = NULL;
   1335 				m = so->so_rcv.sb_mb;
   1336 			} else {
   1337 				m = so->so_rcv.sb_mb = m_free(m);
   1338 			}
   1339 			sbsync(&so->so_rcv, nextrecord);
   1340 		}
   1341 	}
   1342 	if (pr->pr_flags & PR_ADDR_OPT) {
   1343 		/*
   1344 		 * For SCTP we may be getting a
   1345 		 * whole message OR a partial delivery.
   1346 		 */
   1347 		if (m->m_type == MT_SONAME) {
   1348 			orig_resid = 0;
   1349 			if (flags & MSG_PEEK) {
   1350 				if (paddr)
   1351 					*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1352 				m = m->m_next;
   1353 			} else {
   1354 				sbfree(&so->so_rcv, m);
   1355 				if (paddr) {
   1356 					*paddr = m;
   1357 					so->so_rcv.sb_mb = m->m_next;
   1358 					m->m_next = 0;
   1359 					m = so->so_rcv.sb_mb;
   1360 				} else {
   1361 					m = so->so_rcv.sb_mb = m_free(m);
   1362 				}
   1363 			}
   1364 		}
   1365 	}
   1366 
   1367 	/*
   1368 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1369 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1370 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1371 	 * perform externalization (or freeing if controlp == NULL).
   1372 	 */
   1373 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1374 		struct mbuf *cm = NULL, *cmn;
   1375 		struct mbuf **cme = &cm;
   1376 
   1377 		do {
   1378 			if (flags & MSG_PEEK) {
   1379 				if (controlp != NULL) {
   1380 					*controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1381 					controlp = &(*controlp)->m_next;
   1382 				}
   1383 				m = m->m_next;
   1384 			} else {
   1385 				sbfree(&so->so_rcv, m);
   1386 				so->so_rcv.sb_mb = m->m_next;
   1387 				m->m_next = NULL;
   1388 				*cme = m;
   1389 				cme = &(*cme)->m_next;
   1390 				m = so->so_rcv.sb_mb;
   1391 			}
   1392 		} while (m != NULL && m->m_type == MT_CONTROL);
   1393 		if ((flags & MSG_PEEK) == 0)
   1394 			sbsync(&so->so_rcv, nextrecord);
   1395 		for (; cm != NULL; cm = cmn) {
   1396 			cmn = cm->m_next;
   1397 			cm->m_next = NULL;
   1398 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1399 			if (controlp != NULL) {
   1400 				if (dom->dom_externalize != NULL &&
   1401 				    type == SCM_RIGHTS) {
   1402 					sounlock(so);
   1403 					splx(s);
   1404 					error = (*dom->dom_externalize)(cm, l,
   1405 					    (flags & MSG_CMSG_CLOEXEC) ?
   1406 					    O_CLOEXEC : 0);
   1407 					s = splsoftnet();
   1408 					solock(so);
   1409 				}
   1410 				*controlp = cm;
   1411 				while (*controlp != NULL)
   1412 					controlp = &(*controlp)->m_next;
   1413 			} else {
   1414 				/*
   1415 				 * Dispose of any SCM_RIGHTS message that went
   1416 				 * through the read path rather than recv.
   1417 				 */
   1418 				if (dom->dom_dispose != NULL &&
   1419 				    type == SCM_RIGHTS) {
   1420 					sounlock(so);
   1421 					(*dom->dom_dispose)(cm);
   1422 					solock(so);
   1423 				}
   1424 				m_freem(cm);
   1425 			}
   1426 		}
   1427 		if (m != NULL)
   1428 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1429 		else
   1430 			nextrecord = so->so_rcv.sb_mb;
   1431 		orig_resid = 0;
   1432 	}
   1433 
   1434 	/* If m is non-NULL, we have some data to read. */
   1435 	if (__predict_true(m != NULL)) {
   1436 		type = m->m_type;
   1437 		if (type == MT_OOBDATA)
   1438 			flags |= MSG_OOB;
   1439 	}
   1440 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1441 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1442 
   1443 	moff = 0;
   1444 	offset = 0;
   1445 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1446 		if (m->m_type == MT_OOBDATA) {
   1447 			if (type != MT_OOBDATA)
   1448 				break;
   1449 		} else if (type == MT_OOBDATA)
   1450 			break;
   1451 #ifdef DIAGNOSTIC
   1452 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1453 			panic("receive 3");
   1454 #endif
   1455 		so->so_state &= ~SS_RCVATMARK;
   1456 		wakeup_state = 0;
   1457 		len = uio->uio_resid;
   1458 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1459 			len = so->so_oobmark - offset;
   1460 		if (len > m->m_len - moff)
   1461 			len = m->m_len - moff;
   1462 		/*
   1463 		 * If mp is set, just pass back the mbufs.
   1464 		 * Otherwise copy them out via the uio, then free.
   1465 		 * Sockbuf must be consistent here (points to current mbuf,
   1466 		 * it points to next record) when we drop priority;
   1467 		 * we must note any additions to the sockbuf when we
   1468 		 * block interrupts again.
   1469 		 */
   1470 		if (mp == NULL) {
   1471 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1472 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1473 			sounlock(so);
   1474 			splx(s);
   1475 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1476 			s = splsoftnet();
   1477 			solock(so);
   1478 			if (error != 0) {
   1479 				/*
   1480 				 * If any part of the record has been removed
   1481 				 * (such as the MT_SONAME mbuf, which will
   1482 				 * happen when PR_ADDR, and thus also
   1483 				 * PR_ATOMIC, is set), then drop the entire
   1484 				 * record to maintain the atomicity of the
   1485 				 * receive operation.
   1486 				 *
   1487 				 * This avoids a later panic("receive 1a")
   1488 				 * when compiled with DIAGNOSTIC.
   1489 				 */
   1490 				if (m && mbuf_removed && atomic)
   1491 					(void) sbdroprecord(&so->so_rcv);
   1492 
   1493 				goto release;
   1494 			}
   1495 		} else
   1496 			uio->uio_resid -= len;
   1497 		if (len == m->m_len - moff) {
   1498 			if (m->m_flags & M_EOR)
   1499 				flags |= MSG_EOR;
   1500 #ifdef SCTP
   1501 			if (m->m_flags & M_NOTIFICATION)
   1502 				flags |= MSG_NOTIFICATION;
   1503 #endif /* SCTP */
   1504 			if (flags & MSG_PEEK) {
   1505 				m = m->m_next;
   1506 				moff = 0;
   1507 			} else {
   1508 				nextrecord = m->m_nextpkt;
   1509 				sbfree(&so->so_rcv, m);
   1510 				if (mp) {
   1511 					*mp = m;
   1512 					mp = &m->m_next;
   1513 					so->so_rcv.sb_mb = m = m->m_next;
   1514 					*mp = NULL;
   1515 				} else {
   1516 					m = so->so_rcv.sb_mb = m_free(m);
   1517 				}
   1518 				/*
   1519 				 * If m != NULL, we also know that
   1520 				 * so->so_rcv.sb_mb != NULL.
   1521 				 */
   1522 				KASSERT(so->so_rcv.sb_mb == m);
   1523 				if (m) {
   1524 					m->m_nextpkt = nextrecord;
   1525 					if (nextrecord == NULL)
   1526 						so->so_rcv.sb_lastrecord = m;
   1527 				} else {
   1528 					so->so_rcv.sb_mb = nextrecord;
   1529 					SB_EMPTY_FIXUP(&so->so_rcv);
   1530 				}
   1531 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1532 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1533 			}
   1534 		} else if (flags & MSG_PEEK)
   1535 			moff += len;
   1536 		else {
   1537 			if (mp != NULL) {
   1538 				mt = m_copym(m, 0, len, M_NOWAIT);
   1539 				if (__predict_false(mt == NULL)) {
   1540 					sounlock(so);
   1541 					mt = m_copym(m, 0, len, M_WAIT);
   1542 					solock(so);
   1543 				}
   1544 				*mp = mt;
   1545 			}
   1546 			m->m_data += len;
   1547 			m->m_len -= len;
   1548 			so->so_rcv.sb_cc -= len;
   1549 		}
   1550 		if (so->so_oobmark) {
   1551 			if ((flags & MSG_PEEK) == 0) {
   1552 				so->so_oobmark -= len;
   1553 				if (so->so_oobmark == 0) {
   1554 					so->so_state |= SS_RCVATMARK;
   1555 					break;
   1556 				}
   1557 			} else {
   1558 				offset += len;
   1559 				if (offset == so->so_oobmark)
   1560 					break;
   1561 			}
   1562 		}
   1563 		if (flags & MSG_EOR)
   1564 			break;
   1565 		/*
   1566 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1567 		 * we must not quit until "uio->uio_resid == 0" or an error
   1568 		 * termination.  If a signal/timeout occurs, return
   1569 		 * with a short count but without error.
   1570 		 * Keep sockbuf locked against other readers.
   1571 		 */
   1572 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1573 		    !sosendallatonce(so) && !nextrecord) {
   1574 			if (so->so_error || so->so_rerror ||
   1575 			    so->so_state & SS_CANTRCVMORE)
   1576 				break;
   1577 			/*
   1578 			 * If we are peeking and the socket receive buffer is
   1579 			 * full, stop since we can't get more data to peek at.
   1580 			 */
   1581 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1582 				break;
   1583 			/*
   1584 			 * If we've drained the socket buffer, tell the
   1585 			 * protocol in case it needs to do something to
   1586 			 * get it filled again.
   1587 			 */
   1588 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1589 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1590 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1591 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1592 			if (wakeup_state & SS_RESTARTSYS)
   1593 				error = ERESTART;
   1594 			else
   1595 				error = sbwait(&so->so_rcv);
   1596 			if (error != 0) {
   1597 				sbunlock(&so->so_rcv);
   1598 				sounlock(so);
   1599 				splx(s);
   1600 				return 0;
   1601 			}
   1602 			if ((m = so->so_rcv.sb_mb) != NULL)
   1603 				nextrecord = m->m_nextpkt;
   1604 			wakeup_state = so->so_state;
   1605 		}
   1606 	}
   1607 
   1608 	if (m && atomic) {
   1609 		flags |= MSG_TRUNC;
   1610 		if ((flags & MSG_PEEK) == 0)
   1611 			(void) sbdroprecord(&so->so_rcv);
   1612 	}
   1613 	if ((flags & MSG_PEEK) == 0) {
   1614 		if (m == NULL) {
   1615 			/*
   1616 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1617 			 * part makes sure sb_lastrecord is up-to-date if
   1618 			 * there is still data in the socket buffer.
   1619 			 */
   1620 			so->so_rcv.sb_mb = nextrecord;
   1621 			if (so->so_rcv.sb_mb == NULL) {
   1622 				so->so_rcv.sb_mbtail = NULL;
   1623 				so->so_rcv.sb_lastrecord = NULL;
   1624 			} else if (nextrecord->m_nextpkt == NULL)
   1625 				so->so_rcv.sb_lastrecord = nextrecord;
   1626 		}
   1627 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1628 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1629 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1630 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1631 	}
   1632 	if (orig_resid == uio->uio_resid && orig_resid &&
   1633 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1634 		sbunlock(&so->so_rcv);
   1635 		goto restart;
   1636 	}
   1637 
   1638 	if (flagsp != NULL)
   1639 		*flagsp |= flags;
   1640  release:
   1641 	sbunlock(&so->so_rcv);
   1642 	sounlock(so);
   1643 	splx(s);
   1644 	return error;
   1645 }
   1646 
   1647 int
   1648 soshutdown(struct socket *so, int how)
   1649 {
   1650 	const struct protosw	*pr;
   1651 	int	error;
   1652 
   1653 	KASSERT(solocked(so));
   1654 
   1655 	pr = so->so_proto;
   1656 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1657 		return (EINVAL);
   1658 
   1659 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1660 		sorflush(so);
   1661 		error = 0;
   1662 	}
   1663 	if (how == SHUT_WR || how == SHUT_RDWR)
   1664 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1665 
   1666 	return error;
   1667 }
   1668 
   1669 void
   1670 sorestart(struct socket *so)
   1671 {
   1672 	/*
   1673 	 * An application has called close() on an fd on which another
   1674 	 * of its threads has called a socket system call.
   1675 	 * Mark this and wake everyone up, and code that would block again
   1676 	 * instead returns ERESTART.
   1677 	 * On system call re-entry the fd is validated and EBADF returned.
   1678 	 * Any other fd will block again on the 2nd syscall.
   1679 	 */
   1680 	solock(so);
   1681 	so->so_state |= SS_RESTARTSYS;
   1682 	cv_broadcast(&so->so_cv);
   1683 	cv_broadcast(&so->so_snd.sb_cv);
   1684 	cv_broadcast(&so->so_rcv.sb_cv);
   1685 	sounlock(so);
   1686 }
   1687 
   1688 void
   1689 sorflush(struct socket *so)
   1690 {
   1691 	struct sockbuf	*sb, asb;
   1692 	const struct protosw	*pr;
   1693 
   1694 	KASSERT(solocked(so));
   1695 
   1696 	sb = &so->so_rcv;
   1697 	pr = so->so_proto;
   1698 	socantrcvmore(so);
   1699 	sb->sb_flags |= SB_NOINTR;
   1700 	(void )sblock(sb, M_WAITOK);
   1701 	sbunlock(sb);
   1702 	asb = *sb;
   1703 	/*
   1704 	 * Clear most of the sockbuf structure, but leave some of the
   1705 	 * fields valid.
   1706 	 */
   1707 	memset(&sb->sb_startzero, 0,
   1708 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1709 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1710 		sounlock(so);
   1711 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1712 		solock(so);
   1713 	}
   1714 	sbrelease(&asb, so);
   1715 }
   1716 
   1717 /*
   1718  * internal set SOL_SOCKET options
   1719  */
   1720 static int
   1721 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1722 {
   1723 	int error = EINVAL, opt;
   1724 	int optval = 0; /* XXX: gcc */
   1725 	struct linger l;
   1726 	struct timeval tv;
   1727 
   1728 	switch ((opt = sopt->sopt_name)) {
   1729 
   1730 	case SO_ACCEPTFILTER:
   1731 		error = accept_filt_setopt(so, sopt);
   1732 		KASSERT(solocked(so));
   1733 		break;
   1734 
   1735 	case SO_LINGER:
   1736 		error = sockopt_get(sopt, &l, sizeof(l));
   1737 		solock(so);
   1738 		if (error)
   1739 			break;
   1740 		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1741 		    l.l_linger > (INT_MAX / hz)) {
   1742 			error = EDOM;
   1743 			break;
   1744 		}
   1745 		so->so_linger = l.l_linger;
   1746 		if (l.l_onoff)
   1747 			so->so_options |= SO_LINGER;
   1748 		else
   1749 			so->so_options &= ~SO_LINGER;
   1750 		break;
   1751 
   1752 	case SO_DEBUG:
   1753 	case SO_KEEPALIVE:
   1754 	case SO_DONTROUTE:
   1755 	case SO_USELOOPBACK:
   1756 	case SO_BROADCAST:
   1757 	case SO_REUSEADDR:
   1758 	case SO_REUSEPORT:
   1759 	case SO_OOBINLINE:
   1760 	case SO_TIMESTAMP:
   1761 	case SO_NOSIGPIPE:
   1762 	case SO_RERROR:
   1763 #ifdef SO_OTIMESTAMP
   1764 	case SO_OTIMESTAMP:
   1765 #endif
   1766 		error = sockopt_getint(sopt, &optval);
   1767 		solock(so);
   1768 		if (error)
   1769 			break;
   1770 		if (optval)
   1771 			so->so_options |= opt;
   1772 		else
   1773 			so->so_options &= ~opt;
   1774 		break;
   1775 
   1776 	case SO_SNDBUF:
   1777 	case SO_RCVBUF:
   1778 	case SO_SNDLOWAT:
   1779 	case SO_RCVLOWAT:
   1780 		error = sockopt_getint(sopt, &optval);
   1781 		solock(so);
   1782 		if (error)
   1783 			break;
   1784 
   1785 		/*
   1786 		 * Values < 1 make no sense for any of these
   1787 		 * options, so disallow them.
   1788 		 */
   1789 		if (optval < 1) {
   1790 			error = EINVAL;
   1791 			break;
   1792 		}
   1793 
   1794 		switch (opt) {
   1795 		case SO_SNDBUF:
   1796 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1797 				error = ENOBUFS;
   1798 				break;
   1799 			}
   1800 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1801 			break;
   1802 
   1803 		case SO_RCVBUF:
   1804 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1805 				error = ENOBUFS;
   1806 				break;
   1807 			}
   1808 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1809 			break;
   1810 
   1811 		/*
   1812 		 * Make sure the low-water is never greater than
   1813 		 * the high-water.
   1814 		 */
   1815 		case SO_SNDLOWAT:
   1816 			if (optval > so->so_snd.sb_hiwat)
   1817 				optval = so->so_snd.sb_hiwat;
   1818 
   1819 			so->so_snd.sb_lowat = optval;
   1820 			break;
   1821 
   1822 		case SO_RCVLOWAT:
   1823 			if (optval > so->so_rcv.sb_hiwat)
   1824 				optval = so->so_rcv.sb_hiwat;
   1825 
   1826 			so->so_rcv.sb_lowat = optval;
   1827 			break;
   1828 		}
   1829 		break;
   1830 
   1831 #ifdef COMPAT_50
   1832 	case SO_OSNDTIMEO:
   1833 	case SO_ORCVTIMEO: {
   1834 		struct timeval50 otv;
   1835 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1836 		if (error) {
   1837 			solock(so);
   1838 			break;
   1839 		}
   1840 		timeval50_to_timeval(&otv, &tv);
   1841 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1842 		error = 0;
   1843 		/*FALLTHROUGH*/
   1844 	}
   1845 #endif /* COMPAT_50 */
   1846 
   1847 	case SO_SNDTIMEO:
   1848 	case SO_RCVTIMEO:
   1849 		if (error)
   1850 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1851 		solock(so);
   1852 		if (error)
   1853 			break;
   1854 
   1855 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1856 			error = EDOM;
   1857 			break;
   1858 		}
   1859 
   1860 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1861 		if (optval == 0 && tv.tv_usec != 0)
   1862 			optval = 1;
   1863 
   1864 		switch (opt) {
   1865 		case SO_SNDTIMEO:
   1866 			so->so_snd.sb_timeo = optval;
   1867 			break;
   1868 		case SO_RCVTIMEO:
   1869 			so->so_rcv.sb_timeo = optval;
   1870 			break;
   1871 		}
   1872 		break;
   1873 
   1874 	default:
   1875 		solock(so);
   1876 		error = ENOPROTOOPT;
   1877 		break;
   1878 	}
   1879 	KASSERT(solocked(so));
   1880 	return error;
   1881 }
   1882 
   1883 int
   1884 sosetopt(struct socket *so, struct sockopt *sopt)
   1885 {
   1886 	int error, prerr;
   1887 
   1888 	if (sopt->sopt_level == SOL_SOCKET) {
   1889 		error = sosetopt1(so, sopt);
   1890 		KASSERT(solocked(so));
   1891 	} else {
   1892 		error = ENOPROTOOPT;
   1893 		solock(so);
   1894 	}
   1895 
   1896 	if ((error == 0 || error == ENOPROTOOPT) &&
   1897 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1898 		/* give the protocol stack a shot */
   1899 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1900 		if (prerr == 0)
   1901 			error = 0;
   1902 		else if (prerr != ENOPROTOOPT)
   1903 			error = prerr;
   1904 	}
   1905 	sounlock(so);
   1906 	return error;
   1907 }
   1908 
   1909 /*
   1910  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1911  */
   1912 int
   1913 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1914     const void *val, size_t valsize)
   1915 {
   1916 	struct sockopt sopt;
   1917 	int error;
   1918 
   1919 	KASSERT(valsize == 0 || val != NULL);
   1920 
   1921 	sockopt_init(&sopt, level, name, valsize);
   1922 	sockopt_set(&sopt, val, valsize);
   1923 
   1924 	error = sosetopt(so, &sopt);
   1925 
   1926 	sockopt_destroy(&sopt);
   1927 
   1928 	return error;
   1929 }
   1930 
   1931 /*
   1932  * internal get SOL_SOCKET options
   1933  */
   1934 static int
   1935 sogetopt1(struct socket *so, struct sockopt *sopt)
   1936 {
   1937 	int error, optval, opt;
   1938 	struct linger l;
   1939 	struct timeval tv;
   1940 
   1941 	switch ((opt = sopt->sopt_name)) {
   1942 
   1943 	case SO_ACCEPTFILTER:
   1944 		error = accept_filt_getopt(so, sopt);
   1945 		break;
   1946 
   1947 	case SO_LINGER:
   1948 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1949 		l.l_linger = so->so_linger;
   1950 
   1951 		error = sockopt_set(sopt, &l, sizeof(l));
   1952 		break;
   1953 
   1954 	case SO_USELOOPBACK:
   1955 	case SO_DONTROUTE:
   1956 	case SO_DEBUG:
   1957 	case SO_KEEPALIVE:
   1958 	case SO_REUSEADDR:
   1959 	case SO_REUSEPORT:
   1960 	case SO_BROADCAST:
   1961 	case SO_OOBINLINE:
   1962 	case SO_TIMESTAMP:
   1963 	case SO_NOSIGPIPE:
   1964 	case SO_RERROR:
   1965 #ifdef SO_OTIMESTAMP
   1966 	case SO_OTIMESTAMP:
   1967 #endif
   1968 	case SO_ACCEPTCONN:
   1969 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1970 		break;
   1971 
   1972 	case SO_TYPE:
   1973 		error = sockopt_setint(sopt, so->so_type);
   1974 		break;
   1975 
   1976 	case SO_ERROR:
   1977 		if (so->so_error == 0) {
   1978 			so->so_error = so->so_rerror;
   1979 			so->so_rerror = 0;
   1980 		}
   1981 		error = sockopt_setint(sopt, so->so_error);
   1982 		so->so_error = 0;
   1983 		break;
   1984 
   1985 	case SO_SNDBUF:
   1986 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1987 		break;
   1988 
   1989 	case SO_RCVBUF:
   1990 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1991 		break;
   1992 
   1993 	case SO_SNDLOWAT:
   1994 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1995 		break;
   1996 
   1997 	case SO_RCVLOWAT:
   1998 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1999 		break;
   2000 
   2001 #ifdef COMPAT_50
   2002 	case SO_OSNDTIMEO:
   2003 	case SO_ORCVTIMEO: {
   2004 		struct timeval50 otv;
   2005 
   2006 		optval = (opt == SO_OSNDTIMEO ?
   2007 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   2008 
   2009 		otv.tv_sec = optval / hz;
   2010 		otv.tv_usec = (optval % hz) * tick;
   2011 
   2012 		error = sockopt_set(sopt, &otv, sizeof(otv));
   2013 		break;
   2014 	}
   2015 #endif /* COMPAT_50 */
   2016 
   2017 	case SO_SNDTIMEO:
   2018 	case SO_RCVTIMEO:
   2019 		optval = (opt == SO_SNDTIMEO ?
   2020 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   2021 
   2022 		tv.tv_sec = optval / hz;
   2023 		tv.tv_usec = (optval % hz) * tick;
   2024 
   2025 		error = sockopt_set(sopt, &tv, sizeof(tv));
   2026 		break;
   2027 
   2028 	case SO_OVERFLOWED:
   2029 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   2030 		break;
   2031 
   2032 	default:
   2033 		error = ENOPROTOOPT;
   2034 		break;
   2035 	}
   2036 
   2037 	return (error);
   2038 }
   2039 
   2040 int
   2041 sogetopt(struct socket *so, struct sockopt *sopt)
   2042 {
   2043 	int		error;
   2044 
   2045 	solock(so);
   2046 	if (sopt->sopt_level != SOL_SOCKET) {
   2047 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2048 			error = ((*so->so_proto->pr_ctloutput)
   2049 			    (PRCO_GETOPT, so, sopt));
   2050 		} else
   2051 			error = (ENOPROTOOPT);
   2052 	} else {
   2053 		error = sogetopt1(so, sopt);
   2054 	}
   2055 	sounlock(so);
   2056 	return (error);
   2057 }
   2058 
   2059 /*
   2060  * alloc sockopt data buffer buffer
   2061  *	- will be released at destroy
   2062  */
   2063 static int
   2064 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2065 {
   2066 
   2067 	KASSERT(sopt->sopt_size == 0);
   2068 
   2069 	if (len > sizeof(sopt->sopt_buf)) {
   2070 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2071 		if (sopt->sopt_data == NULL)
   2072 			return ENOMEM;
   2073 	} else
   2074 		sopt->sopt_data = sopt->sopt_buf;
   2075 
   2076 	sopt->sopt_size = len;
   2077 	return 0;
   2078 }
   2079 
   2080 /*
   2081  * initialise sockopt storage
   2082  *	- MAY sleep during allocation
   2083  */
   2084 void
   2085 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2086 {
   2087 
   2088 	memset(sopt, 0, sizeof(*sopt));
   2089 
   2090 	sopt->sopt_level = level;
   2091 	sopt->sopt_name = name;
   2092 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2093 }
   2094 
   2095 /*
   2096  * destroy sockopt storage
   2097  *	- will release any held memory references
   2098  */
   2099 void
   2100 sockopt_destroy(struct sockopt *sopt)
   2101 {
   2102 
   2103 	if (sopt->sopt_data != sopt->sopt_buf)
   2104 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2105 
   2106 	memset(sopt, 0, sizeof(*sopt));
   2107 }
   2108 
   2109 /*
   2110  * set sockopt value
   2111  *	- value is copied into sockopt
   2112  *	- memory is allocated when necessary, will not sleep
   2113  */
   2114 int
   2115 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2116 {
   2117 	int error;
   2118 
   2119 	if (sopt->sopt_size == 0) {
   2120 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2121 		if (error)
   2122 			return error;
   2123 	}
   2124 
   2125 	if (sopt->sopt_size < len)
   2126 		return EINVAL;
   2127 
   2128 	memcpy(sopt->sopt_data, buf, len);
   2129 	sopt->sopt_retsize = len;
   2130 
   2131 	return 0;
   2132 }
   2133 
   2134 /*
   2135  * common case of set sockopt integer value
   2136  */
   2137 int
   2138 sockopt_setint(struct sockopt *sopt, int val)
   2139 {
   2140 
   2141 	return sockopt_set(sopt, &val, sizeof(int));
   2142 }
   2143 
   2144 /*
   2145  * get sockopt value
   2146  *	- correct size must be given
   2147  */
   2148 int
   2149 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2150 {
   2151 
   2152 	if (sopt->sopt_size != len)
   2153 		return EINVAL;
   2154 
   2155 	memcpy(buf, sopt->sopt_data, len);
   2156 	return 0;
   2157 }
   2158 
   2159 /*
   2160  * common case of get sockopt integer value
   2161  */
   2162 int
   2163 sockopt_getint(const struct sockopt *sopt, int *valp)
   2164 {
   2165 
   2166 	return sockopt_get(sopt, valp, sizeof(int));
   2167 }
   2168 
   2169 /*
   2170  * set sockopt value from mbuf
   2171  *	- ONLY for legacy code
   2172  *	- mbuf is released by sockopt
   2173  *	- will not sleep
   2174  */
   2175 int
   2176 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2177 {
   2178 	size_t len;
   2179 	int error;
   2180 
   2181 	len = m_length(m);
   2182 
   2183 	if (sopt->sopt_size == 0) {
   2184 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2185 		if (error)
   2186 			return error;
   2187 	}
   2188 
   2189 	if (sopt->sopt_size < len)
   2190 		return EINVAL;
   2191 
   2192 	m_copydata(m, 0, len, sopt->sopt_data);
   2193 	m_freem(m);
   2194 	sopt->sopt_retsize = len;
   2195 
   2196 	return 0;
   2197 }
   2198 
   2199 /*
   2200  * get sockopt value into mbuf
   2201  *	- ONLY for legacy code
   2202  *	- mbuf to be released by the caller
   2203  *	- will not sleep
   2204  */
   2205 struct mbuf *
   2206 sockopt_getmbuf(const struct sockopt *sopt)
   2207 {
   2208 	struct mbuf *m;
   2209 
   2210 	if (sopt->sopt_size > MCLBYTES)
   2211 		return NULL;
   2212 
   2213 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2214 	if (m == NULL)
   2215 		return NULL;
   2216 
   2217 	if (sopt->sopt_size > MLEN) {
   2218 		MCLGET(m, M_DONTWAIT);
   2219 		if ((m->m_flags & M_EXT) == 0) {
   2220 			m_free(m);
   2221 			return NULL;
   2222 		}
   2223 	}
   2224 
   2225 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2226 	m->m_len = sopt->sopt_size;
   2227 
   2228 	return m;
   2229 }
   2230 
   2231 void
   2232 sohasoutofband(struct socket *so)
   2233 {
   2234 
   2235 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2236 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2237 }
   2238 
   2239 static void
   2240 filt_sordetach(struct knote *kn)
   2241 {
   2242 	struct socket	*so;
   2243 
   2244 	so = ((file_t *)kn->kn_obj)->f_socket;
   2245 	solock(so);
   2246 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2247 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2248 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2249 	sounlock(so);
   2250 }
   2251 
   2252 /*ARGSUSED*/
   2253 static int
   2254 filt_soread(struct knote *kn, long hint)
   2255 {
   2256 	struct socket	*so;
   2257 	int rv;
   2258 
   2259 	so = ((file_t *)kn->kn_obj)->f_socket;
   2260 	if (hint != NOTE_SUBMIT)
   2261 		solock(so);
   2262 	kn->kn_data = so->so_rcv.sb_cc;
   2263 	if (so->so_state & SS_CANTRCVMORE) {
   2264 		kn->kn_flags |= EV_EOF;
   2265 		kn->kn_fflags = so->so_error;
   2266 		rv = 1;
   2267 	} else if (so->so_error || so->so_rerror)
   2268 		rv = 1;
   2269 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2270 		rv = (kn->kn_data >= kn->kn_sdata);
   2271 	else
   2272 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2273 	if (hint != NOTE_SUBMIT)
   2274 		sounlock(so);
   2275 	return rv;
   2276 }
   2277 
   2278 static void
   2279 filt_sowdetach(struct knote *kn)
   2280 {
   2281 	struct socket	*so;
   2282 
   2283 	so = ((file_t *)kn->kn_obj)->f_socket;
   2284 	solock(so);
   2285 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2286 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2287 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2288 	sounlock(so);
   2289 }
   2290 
   2291 /*ARGSUSED*/
   2292 static int
   2293 filt_sowrite(struct knote *kn, long hint)
   2294 {
   2295 	struct socket	*so;
   2296 	int rv;
   2297 
   2298 	so = ((file_t *)kn->kn_obj)->f_socket;
   2299 	if (hint != NOTE_SUBMIT)
   2300 		solock(so);
   2301 	kn->kn_data = sbspace(&so->so_snd);
   2302 	if (so->so_state & SS_CANTSENDMORE) {
   2303 		kn->kn_flags |= EV_EOF;
   2304 		kn->kn_fflags = so->so_error;
   2305 		rv = 1;
   2306 	} else if (so->so_error)
   2307 		rv = 1;
   2308 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2309 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2310 		rv = 0;
   2311 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2312 		rv = (kn->kn_data >= kn->kn_sdata);
   2313 	else
   2314 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2315 	if (hint != NOTE_SUBMIT)
   2316 		sounlock(so);
   2317 	return rv;
   2318 }
   2319 
   2320 /*ARGSUSED*/
   2321 static int
   2322 filt_solisten(struct knote *kn, long hint)
   2323 {
   2324 	struct socket	*so;
   2325 	int rv;
   2326 
   2327 	so = ((file_t *)kn->kn_obj)->f_socket;
   2328 
   2329 	/*
   2330 	 * Set kn_data to number of incoming connections, not
   2331 	 * counting partial (incomplete) connections.
   2332 	 */
   2333 	if (hint != NOTE_SUBMIT)
   2334 		solock(so);
   2335 	kn->kn_data = so->so_qlen;
   2336 	rv = (kn->kn_data > 0);
   2337 	if (hint != NOTE_SUBMIT)
   2338 		sounlock(so);
   2339 	return rv;
   2340 }
   2341 
   2342 static const struct filterops solisten_filtops = {
   2343 	.f_isfd = 1,
   2344 	.f_attach = NULL,
   2345 	.f_detach = filt_sordetach,
   2346 	.f_event = filt_solisten,
   2347 };
   2348 
   2349 static const struct filterops soread_filtops = {
   2350 	.f_isfd = 1,
   2351 	.f_attach = NULL,
   2352 	.f_detach = filt_sordetach,
   2353 	.f_event = filt_soread,
   2354 };
   2355 
   2356 static const struct filterops sowrite_filtops = {
   2357 	.f_isfd = 1,
   2358 	.f_attach = NULL,
   2359 	.f_detach = filt_sowdetach,
   2360 	.f_event = filt_sowrite,
   2361 };
   2362 
   2363 int
   2364 soo_kqfilter(struct file *fp, struct knote *kn)
   2365 {
   2366 	struct socket	*so;
   2367 	struct sockbuf	*sb;
   2368 
   2369 	so = ((file_t *)kn->kn_obj)->f_socket;
   2370 	solock(so);
   2371 	switch (kn->kn_filter) {
   2372 	case EVFILT_READ:
   2373 		if (so->so_options & SO_ACCEPTCONN)
   2374 			kn->kn_fop = &solisten_filtops;
   2375 		else
   2376 			kn->kn_fop = &soread_filtops;
   2377 		sb = &so->so_rcv;
   2378 		break;
   2379 	case EVFILT_WRITE:
   2380 		kn->kn_fop = &sowrite_filtops;
   2381 		sb = &so->so_snd;
   2382 		break;
   2383 	default:
   2384 		sounlock(so);
   2385 		return (EINVAL);
   2386 	}
   2387 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2388 	sb->sb_flags |= SB_KNOTE;
   2389 	sounlock(so);
   2390 	return (0);
   2391 }
   2392 
   2393 static int
   2394 sodopoll(struct socket *so, int events)
   2395 {
   2396 	int revents;
   2397 
   2398 	revents = 0;
   2399 
   2400 	if (events & (POLLIN | POLLRDNORM))
   2401 		if (soreadable(so))
   2402 			revents |= events & (POLLIN | POLLRDNORM);
   2403 
   2404 	if (events & (POLLOUT | POLLWRNORM))
   2405 		if (sowritable(so))
   2406 			revents |= events & (POLLOUT | POLLWRNORM);
   2407 
   2408 	if (events & (POLLPRI | POLLRDBAND))
   2409 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2410 			revents |= events & (POLLPRI | POLLRDBAND);
   2411 
   2412 	return revents;
   2413 }
   2414 
   2415 int
   2416 sopoll(struct socket *so, int events)
   2417 {
   2418 	int revents = 0;
   2419 
   2420 #ifndef DIAGNOSTIC
   2421 	/*
   2422 	 * Do a quick, unlocked check in expectation that the socket
   2423 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2424 	 * as the solocked() assertions will fail.
   2425 	 */
   2426 	if ((revents = sodopoll(so, events)) != 0)
   2427 		return revents;
   2428 #endif
   2429 
   2430 	solock(so);
   2431 	if ((revents = sodopoll(so, events)) == 0) {
   2432 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2433 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2434 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2435 		}
   2436 
   2437 		if (events & (POLLOUT | POLLWRNORM)) {
   2438 			selrecord(curlwp, &so->so_snd.sb_sel);
   2439 			so->so_snd.sb_flags |= SB_NOTIFY;
   2440 		}
   2441 	}
   2442 	sounlock(so);
   2443 
   2444 	return revents;
   2445 }
   2446 
   2447 struct mbuf **
   2448 sbsavetimestamp(int opt, struct mbuf **mp)
   2449 {
   2450 	struct timeval tv;
   2451 	microtime(&tv);
   2452 
   2453 #ifdef SO_OTIMESTAMP
   2454 	if (opt & SO_OTIMESTAMP) {
   2455 		struct timeval50 tv50;
   2456 
   2457 		timeval_to_timeval50(&tv, &tv50);
   2458 		*mp = sbcreatecontrol(&tv50, sizeof(tv50),
   2459 		    SCM_OTIMESTAMP, SOL_SOCKET);
   2460 		if (*mp)
   2461 			mp = &(*mp)->m_next;
   2462 	} else
   2463 #endif
   2464 
   2465 	if (opt & SO_TIMESTAMP) {
   2466 		*mp = sbcreatecontrol(&tv, sizeof(tv),
   2467 		    SCM_TIMESTAMP, SOL_SOCKET);
   2468 		if (*mp)
   2469 			mp = &(*mp)->m_next;
   2470 	}
   2471 	return mp;
   2472 }
   2473 
   2474 
   2475 #include <sys/sysctl.h>
   2476 
   2477 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2478 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2479 
   2480 /*
   2481  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2482  * value is not too small.
   2483  * (XXX should we maybe make sure it's not too large as well?)
   2484  */
   2485 static int
   2486 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2487 {
   2488 	int error, new_somaxkva;
   2489 	struct sysctlnode node;
   2490 
   2491 	new_somaxkva = somaxkva;
   2492 	node = *rnode;
   2493 	node.sysctl_data = &new_somaxkva;
   2494 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2495 	if (error || newp == NULL)
   2496 		return (error);
   2497 
   2498 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2499 		return (EINVAL);
   2500 
   2501 	mutex_enter(&so_pendfree_lock);
   2502 	somaxkva = new_somaxkva;
   2503 	cv_broadcast(&socurkva_cv);
   2504 	mutex_exit(&so_pendfree_lock);
   2505 
   2506 	return (error);
   2507 }
   2508 
   2509 /*
   2510  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2511  * any new value is not too small.
   2512  */
   2513 static int
   2514 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2515 {
   2516 	int error, new_sbmax;
   2517 	struct sysctlnode node;
   2518 
   2519 	new_sbmax = sb_max;
   2520 	node = *rnode;
   2521 	node.sysctl_data = &new_sbmax;
   2522 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2523 	if (error || newp == NULL)
   2524 		return (error);
   2525 
   2526 	KERNEL_LOCK(1, NULL);
   2527 	error = sb_max_set(new_sbmax);
   2528 	KERNEL_UNLOCK_ONE(NULL);
   2529 
   2530 	return (error);
   2531 }
   2532 
   2533 /*
   2534  * sysctl helper routine for kern.sooptions. Ensures that only allowed
   2535  * options can be set.
   2536  */
   2537 static int
   2538 sysctl_kern_sooptions(SYSCTLFN_ARGS)
   2539 {
   2540 	int error, new_options;
   2541 	struct sysctlnode node;
   2542 
   2543 	new_options = sooptions;
   2544 	node = *rnode;
   2545 	node.sysctl_data = &new_options;
   2546 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2547 	if (error || newp == NULL)
   2548 		return error;
   2549 
   2550 	if (new_options & ~SO_DEFOPTS)
   2551 		return EINVAL;
   2552 
   2553 	sooptions = new_options;
   2554 
   2555 	return 0;
   2556 }
   2557 
   2558 static void
   2559 sysctl_kern_socket_setup(void)
   2560 {
   2561 
   2562 	KASSERT(socket_sysctllog == NULL);
   2563 
   2564 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2565 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2566 		       CTLTYPE_INT, "somaxkva",
   2567 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2568 				    "used for socket buffers"),
   2569 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2570 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2571 
   2572 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2573 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2574 		       CTLTYPE_INT, "sbmax",
   2575 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2576 		       sysctl_kern_sbmax, 0, NULL, 0,
   2577 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2578 
   2579 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2580 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2581 		       CTLTYPE_INT, "sooptions",
   2582 		       SYSCTL_DESCR("Default socket options"),
   2583 		       sysctl_kern_sooptions, 0, NULL, 0,
   2584 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   2585 }
   2586