uipc_socket.c revision 1.259.2.5 1 /* $NetBSD: uipc_socket.c,v 1.259.2.5 2018/11/26 01:52:50 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.259.2.5 2018/11/26 01:52:50 pgoyette Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #include "opt_sctp.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/file.h>
90 #include <sys/filedesc.h>
91 #include <sys/kmem.h>
92 #include <sys/mbuf.h>
93 #include <sys/domain.h>
94 #include <sys/kernel.h>
95 #include <sys/protosw.h>
96 #include <sys/socket.h>
97 #include <sys/socketvar.h>
98 #include <sys/signalvar.h>
99 #include <sys/resourcevar.h>
100 #include <sys/uidinfo.h>
101 #include <sys/event.h>
102 #include <sys/poll.h>
103 #include <sys/kauth.h>
104 #include <sys/mutex.h>
105 #include <sys/condvar.h>
106 #include <sys/kthread.h>
107
108 #ifdef COMPAT_50
109 #include <compat/sys/time.h>
110 #include <compat/sys/socket.h>
111 #endif
112
113 #include <uvm/uvm_extern.h>
114 #include <uvm/uvm_loan.h>
115 #include <uvm/uvm_page.h>
116
117 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
118
119 extern const struct fileops socketops;
120
121 static int sooptions;
122 extern int somaxconn; /* patchable (XXX sysctl) */
123 int somaxconn = SOMAXCONN;
124 kmutex_t *softnet_lock;
125
126 #ifdef SOSEND_COUNTERS
127 #include <sys/device.h>
128
129 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "loan big");
131 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "copy big");
133 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
134 NULL, "sosend", "copy small");
135 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
136 NULL, "sosend", "kva limit");
137
138 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
139
140 EVCNT_ATTACH_STATIC(sosend_loan_big);
141 EVCNT_ATTACH_STATIC(sosend_copy_big);
142 EVCNT_ATTACH_STATIC(sosend_copy_small);
143 EVCNT_ATTACH_STATIC(sosend_kvalimit);
144 #else
145
146 #define SOSEND_COUNTER_INCR(ev) /* nothing */
147
148 #endif /* SOSEND_COUNTERS */
149
150 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
151 int sock_loan_thresh = -1;
152 #else
153 int sock_loan_thresh = 4096;
154 #endif
155
156 static kmutex_t so_pendfree_lock;
157 static struct mbuf *so_pendfree = NULL;
158
159 #ifndef SOMAXKVA
160 #define SOMAXKVA (16 * 1024 * 1024)
161 #endif
162 int somaxkva = SOMAXKVA;
163 static int socurkva;
164 static kcondvar_t socurkva_cv;
165
166 static kauth_listener_t socket_listener;
167
168 #define SOCK_LOAN_CHUNK 65536
169
170 static void sopendfree_thread(void *);
171 static kcondvar_t pendfree_thread_cv;
172 static lwp_t *sopendfree_lwp;
173
174 static void sysctl_kern_socket_setup(void);
175 static struct sysctllog *socket_sysctllog;
176
177 static vsize_t
178 sokvareserve(struct socket *so, vsize_t len)
179 {
180 int error;
181
182 mutex_enter(&so_pendfree_lock);
183 while (socurkva + len > somaxkva) {
184 SOSEND_COUNTER_INCR(&sosend_kvalimit);
185 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
186 if (error) {
187 len = 0;
188 break;
189 }
190 }
191 socurkva += len;
192 mutex_exit(&so_pendfree_lock);
193 return len;
194 }
195
196 static void
197 sokvaunreserve(vsize_t len)
198 {
199
200 mutex_enter(&so_pendfree_lock);
201 socurkva -= len;
202 cv_broadcast(&socurkva_cv);
203 mutex_exit(&so_pendfree_lock);
204 }
205
206 /*
207 * sokvaalloc: allocate kva for loan.
208 */
209
210 vaddr_t
211 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
212 {
213 vaddr_t lva;
214
215 /*
216 * reserve kva.
217 */
218
219 if (sokvareserve(so, len) == 0)
220 return 0;
221
222 /*
223 * allocate kva.
224 */
225
226 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
227 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
228 if (lva == 0) {
229 sokvaunreserve(len);
230 return (0);
231 }
232
233 return lva;
234 }
235
236 /*
237 * sokvafree: free kva for loan.
238 */
239
240 void
241 sokvafree(vaddr_t sva, vsize_t len)
242 {
243
244 /*
245 * free kva.
246 */
247
248 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
249
250 /*
251 * unreserve kva.
252 */
253
254 sokvaunreserve(len);
255 }
256
257 static void
258 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
259 {
260 vaddr_t sva, eva;
261 vsize_t len;
262 int npgs;
263
264 KASSERT(pgs != NULL);
265
266 eva = round_page((vaddr_t) buf + size);
267 sva = trunc_page((vaddr_t) buf);
268 len = eva - sva;
269 npgs = len >> PAGE_SHIFT;
270
271 pmap_kremove(sva, len);
272 pmap_update(pmap_kernel());
273 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
274 sokvafree(sva, len);
275 }
276
277 /*
278 * sopendfree_thread: free mbufs on "pendfree" list.
279 * unlock and relock so_pendfree_lock when freeing mbufs.
280 */
281
282 static void
283 sopendfree_thread(void *v)
284 {
285 struct mbuf *m, *next;
286 size_t rv;
287
288 mutex_enter(&so_pendfree_lock);
289
290 for (;;) {
291 rv = 0;
292 while (so_pendfree != NULL) {
293 m = so_pendfree;
294 so_pendfree = NULL;
295 mutex_exit(&so_pendfree_lock);
296
297 for (; m != NULL; m = next) {
298 next = m->m_next;
299 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
300 0);
301 KASSERT(m->m_ext.ext_refcnt == 0);
302
303 rv += m->m_ext.ext_size;
304 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
305 m->m_ext.ext_size);
306 pool_cache_put(mb_cache, m);
307 }
308
309 mutex_enter(&so_pendfree_lock);
310 }
311 if (rv)
312 cv_broadcast(&socurkva_cv);
313 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
314 }
315 panic("sopendfree_thread");
316 /* NOTREACHED */
317 }
318
319 void
320 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
321 {
322
323 KASSERT(m != NULL);
324
325 /*
326 * postpone freeing mbuf.
327 *
328 * we can't do it in interrupt context
329 * because we need to put kva back to kernel_map.
330 */
331
332 mutex_enter(&so_pendfree_lock);
333 m->m_next = so_pendfree;
334 so_pendfree = m;
335 cv_signal(&pendfree_thread_cv);
336 mutex_exit(&so_pendfree_lock);
337 }
338
339 static long
340 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
341 {
342 struct iovec *iov = uio->uio_iov;
343 vaddr_t sva, eva;
344 vsize_t len;
345 vaddr_t lva;
346 int npgs, error;
347 vaddr_t va;
348 int i;
349
350 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
351 return (0);
352
353 if (iov->iov_len < (size_t) space)
354 space = iov->iov_len;
355 if (space > SOCK_LOAN_CHUNK)
356 space = SOCK_LOAN_CHUNK;
357
358 eva = round_page((vaddr_t) iov->iov_base + space);
359 sva = trunc_page((vaddr_t) iov->iov_base);
360 len = eva - sva;
361 npgs = len >> PAGE_SHIFT;
362
363 KASSERT(npgs <= M_EXT_MAXPAGES);
364
365 lva = sokvaalloc(sva, len, so);
366 if (lva == 0)
367 return 0;
368
369 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
370 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
371 if (error) {
372 sokvafree(lva, len);
373 return (0);
374 }
375
376 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
377 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
378 VM_PROT_READ, 0);
379 pmap_update(pmap_kernel());
380
381 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
382
383 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
384 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
385
386 uio->uio_resid -= space;
387 /* uio_offset not updated, not set/used for write(2) */
388 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
389 uio->uio_iov->iov_len -= space;
390 if (uio->uio_iov->iov_len == 0) {
391 uio->uio_iov++;
392 uio->uio_iovcnt--;
393 }
394
395 return (space);
396 }
397
398 struct mbuf *
399 getsombuf(struct socket *so, int type)
400 {
401 struct mbuf *m;
402
403 m = m_get(M_WAIT, type);
404 MCLAIM(m, so->so_mowner);
405 return m;
406 }
407
408 static int
409 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
410 void *arg0, void *arg1, void *arg2, void *arg3)
411 {
412 int result;
413 enum kauth_network_req req;
414
415 result = KAUTH_RESULT_DEFER;
416 req = (enum kauth_network_req)arg0;
417
418 if ((action != KAUTH_NETWORK_SOCKET) &&
419 (action != KAUTH_NETWORK_BIND))
420 return result;
421
422 switch (req) {
423 case KAUTH_REQ_NETWORK_BIND_PORT:
424 result = KAUTH_RESULT_ALLOW;
425 break;
426
427 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
428 /* Normal users can only drop their own connections. */
429 struct socket *so = (struct socket *)arg1;
430
431 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
432 result = KAUTH_RESULT_ALLOW;
433
434 break;
435 }
436
437 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
438 /* We allow "raw" routing/bluetooth sockets to anyone. */
439 switch ((u_long)arg1) {
440 case PF_ROUTE:
441 case PF_OROUTE:
442 case PF_BLUETOOTH:
443 case PF_CAN:
444 result = KAUTH_RESULT_ALLOW;
445 break;
446 default:
447 /* Privileged, let secmodel handle this. */
448 if ((u_long)arg2 == SOCK_RAW)
449 break;
450 result = KAUTH_RESULT_ALLOW;
451 break;
452 }
453 break;
454
455 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
456 result = KAUTH_RESULT_ALLOW;
457
458 break;
459
460 default:
461 break;
462 }
463
464 return result;
465 }
466
467 void
468 soinit(void)
469 {
470
471 sysctl_kern_socket_setup();
472
473 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
474 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
475 cv_init(&socurkva_cv, "sokva");
476 cv_init(&pendfree_thread_cv, "sopendfr");
477 soinit2();
478
479 /* Set the initial adjusted socket buffer size. */
480 if (sb_max_set(sb_max))
481 panic("bad initial sb_max value: %lu", sb_max);
482
483 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
484 socket_listener_cb, NULL);
485 }
486
487 void
488 soinit1(void)
489 {
490 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
491 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
492 if (error)
493 panic("soinit1 %d", error);
494 }
495
496 /*
497 * socreate: create a new socket of the specified type and the protocol.
498 *
499 * => Caller may specify another socket for lock sharing (must not be held).
500 * => Returns the new socket without lock held.
501 */
502 int
503 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
504 struct socket *lockso)
505 {
506 const struct protosw *prp;
507 struct socket *so;
508 uid_t uid;
509 int error;
510 kmutex_t *lock;
511
512 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
513 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
514 KAUTH_ARG(proto));
515 if (error != 0)
516 return error;
517
518 if (proto)
519 prp = pffindproto(dom, proto, type);
520 else
521 prp = pffindtype(dom, type);
522 if (prp == NULL) {
523 /* no support for domain */
524 if (pffinddomain(dom) == 0)
525 return EAFNOSUPPORT;
526 /* no support for socket type */
527 if (proto == 0 && type != 0)
528 return EPROTOTYPE;
529 return EPROTONOSUPPORT;
530 }
531 if (prp->pr_usrreqs == NULL)
532 return EPROTONOSUPPORT;
533 if (prp->pr_type != type)
534 return EPROTOTYPE;
535
536 so = soget(true);
537 so->so_type = type;
538 so->so_proto = prp;
539 so->so_send = sosend;
540 so->so_receive = soreceive;
541 so->so_options = sooptions;
542 #ifdef MBUFTRACE
543 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
544 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
545 so->so_mowner = &prp->pr_domain->dom_mowner;
546 #endif
547 uid = kauth_cred_geteuid(l->l_cred);
548 so->so_uidinfo = uid_find(uid);
549 so->so_cpid = l->l_proc->p_pid;
550
551 /*
552 * Lock assigned and taken during PCB attach, unless we share
553 * the lock with another socket, e.g. socketpair(2) case.
554 */
555 if (lockso) {
556 lock = lockso->so_lock;
557 so->so_lock = lock;
558 mutex_obj_hold(lock);
559 mutex_enter(lock);
560 }
561
562 /* Attach the PCB (returns with the socket lock held). */
563 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
564 KASSERT(solocked(so));
565
566 if (error) {
567 KASSERT(so->so_pcb == NULL);
568 so->so_state |= SS_NOFDREF;
569 sofree(so);
570 return error;
571 }
572 so->so_cred = kauth_cred_dup(l->l_cred);
573 sounlock(so);
574
575 *aso = so;
576 return 0;
577 }
578
579 /*
580 * fsocreate: create a socket and a file descriptor associated with it.
581 *
582 * => On success, write file descriptor to fdout and return zero.
583 * => On failure, return non-zero; *fdout will be undefined.
584 */
585 int
586 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
587 {
588 lwp_t *l = curlwp;
589 int error, fd, flags;
590 struct socket *so;
591 struct file *fp;
592
593 if ((error = fd_allocfile(&fp, &fd)) != 0) {
594 return error;
595 }
596 flags = type & SOCK_FLAGS_MASK;
597 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
598 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
599 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
600 fp->f_type = DTYPE_SOCKET;
601 fp->f_ops = &socketops;
602
603 type &= ~SOCK_FLAGS_MASK;
604 error = socreate(domain, &so, type, proto, l, NULL);
605 if (error) {
606 fd_abort(curproc, fp, fd);
607 return error;
608 }
609 if (flags & SOCK_NONBLOCK) {
610 so->so_state |= SS_NBIO;
611 }
612 fp->f_socket = so;
613 fd_affix(curproc, fp, fd);
614
615 if (sop != NULL) {
616 *sop = so;
617 }
618 *fdout = fd;
619 return error;
620 }
621
622 int
623 sofamily(const struct socket *so)
624 {
625 const struct protosw *pr;
626 const struct domain *dom;
627
628 if ((pr = so->so_proto) == NULL)
629 return AF_UNSPEC;
630 if ((dom = pr->pr_domain) == NULL)
631 return AF_UNSPEC;
632 return dom->dom_family;
633 }
634
635 int
636 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
637 {
638 int error;
639
640 solock(so);
641 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
642 sounlock(so);
643 return EAFNOSUPPORT;
644 }
645 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
646 sounlock(so);
647 return error;
648 }
649
650 int
651 solisten(struct socket *so, int backlog, struct lwp *l)
652 {
653 int error;
654 short oldopt, oldqlimit;
655
656 solock(so);
657 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
658 SS_ISDISCONNECTING)) != 0) {
659 sounlock(so);
660 return EINVAL;
661 }
662 oldopt = so->so_options;
663 oldqlimit = so->so_qlimit;
664 if (TAILQ_EMPTY(&so->so_q))
665 so->so_options |= SO_ACCEPTCONN;
666 if (backlog < 0)
667 backlog = 0;
668 so->so_qlimit = uimin(backlog, somaxconn);
669
670 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
671 if (error != 0) {
672 so->so_options = oldopt;
673 so->so_qlimit = oldqlimit;
674 sounlock(so);
675 return error;
676 }
677 sounlock(so);
678 return 0;
679 }
680
681 void
682 sofree(struct socket *so)
683 {
684 u_int refs;
685
686 KASSERT(solocked(so));
687
688 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
689 sounlock(so);
690 return;
691 }
692 if (so->so_head) {
693 /*
694 * We must not decommission a socket that's on the accept(2)
695 * queue. If we do, then accept(2) may hang after select(2)
696 * indicated that the listening socket was ready.
697 */
698 if (!soqremque(so, 0)) {
699 sounlock(so);
700 return;
701 }
702 }
703 if (so->so_rcv.sb_hiwat)
704 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
705 RLIM_INFINITY);
706 if (so->so_snd.sb_hiwat)
707 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
708 RLIM_INFINITY);
709 sbrelease(&so->so_snd, so);
710 KASSERT(!cv_has_waiters(&so->so_cv));
711 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
712 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
713 sorflush(so);
714 refs = so->so_aborting; /* XXX */
715 /* Remove acccept filter if one is present. */
716 if (so->so_accf != NULL)
717 (void)accept_filt_clear(so);
718 sounlock(so);
719 if (refs == 0) /* XXX */
720 soput(so);
721 }
722
723 /*
724 * soclose: close a socket on last file table reference removal.
725 * Initiate disconnect if connected. Free socket when disconnect complete.
726 */
727 int
728 soclose(struct socket *so)
729 {
730 struct socket *so2;
731 int error = 0;
732
733 solock(so);
734 if (so->so_options & SO_ACCEPTCONN) {
735 for (;;) {
736 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
737 KASSERT(solocked2(so, so2));
738 (void) soqremque(so2, 0);
739 /* soabort drops the lock. */
740 (void) soabort(so2);
741 solock(so);
742 continue;
743 }
744 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
745 KASSERT(solocked2(so, so2));
746 (void) soqremque(so2, 1);
747 /* soabort drops the lock. */
748 (void) soabort(so2);
749 solock(so);
750 continue;
751 }
752 break;
753 }
754 }
755 if (so->so_pcb == NULL)
756 goto discard;
757 if (so->so_state & SS_ISCONNECTED) {
758 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
759 error = sodisconnect(so);
760 if (error)
761 goto drop;
762 }
763 if (so->so_options & SO_LINGER) {
764 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
765 (SS_ISDISCONNECTING|SS_NBIO))
766 goto drop;
767 while (so->so_state & SS_ISCONNECTED) {
768 error = sowait(so, true, so->so_linger * hz);
769 if (error)
770 break;
771 }
772 }
773 }
774 drop:
775 if (so->so_pcb) {
776 KASSERT(solocked(so));
777 (*so->so_proto->pr_usrreqs->pr_detach)(so);
778 }
779 discard:
780 KASSERT((so->so_state & SS_NOFDREF) == 0);
781 kauth_cred_free(so->so_cred);
782 so->so_state |= SS_NOFDREF;
783 sofree(so);
784 return error;
785 }
786
787 /*
788 * Must be called with the socket locked.. Will return with it unlocked.
789 */
790 int
791 soabort(struct socket *so)
792 {
793 u_int refs;
794 int error;
795
796 KASSERT(solocked(so));
797 KASSERT(so->so_head == NULL);
798
799 so->so_aborting++; /* XXX */
800 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
801 refs = --so->so_aborting; /* XXX */
802 if (error || (refs == 0)) {
803 sofree(so);
804 } else {
805 sounlock(so);
806 }
807 return error;
808 }
809
810 int
811 soaccept(struct socket *so, struct sockaddr *nam)
812 {
813 int error;
814
815 KASSERT(solocked(so));
816 KASSERT((so->so_state & SS_NOFDREF) != 0);
817
818 so->so_state &= ~SS_NOFDREF;
819 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
820 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
821 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
822 else
823 error = ECONNABORTED;
824
825 return error;
826 }
827
828 int
829 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
830 {
831 int error;
832
833 KASSERT(solocked(so));
834
835 if (so->so_options & SO_ACCEPTCONN)
836 return EOPNOTSUPP;
837 /*
838 * If protocol is connection-based, can only connect once.
839 * Otherwise, if connected, try to disconnect first.
840 * This allows user to disconnect by connecting to, e.g.,
841 * a null address.
842 */
843 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
844 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
845 (error = sodisconnect(so)))) {
846 error = EISCONN;
847 } else {
848 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
849 return EAFNOSUPPORT;
850 }
851 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
852 }
853
854 return error;
855 }
856
857 int
858 soconnect2(struct socket *so1, struct socket *so2)
859 {
860 KASSERT(solocked2(so1, so2));
861
862 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
863 }
864
865 int
866 sodisconnect(struct socket *so)
867 {
868 int error;
869
870 KASSERT(solocked(so));
871
872 if ((so->so_state & SS_ISCONNECTED) == 0) {
873 error = ENOTCONN;
874 } else if (so->so_state & SS_ISDISCONNECTING) {
875 error = EALREADY;
876 } else {
877 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
878 }
879 return (error);
880 }
881
882 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
883 /*
884 * Send on a socket.
885 * If send must go all at once and message is larger than
886 * send buffering, then hard error.
887 * Lock against other senders.
888 * If must go all at once and not enough room now, then
889 * inform user that this would block and do nothing.
890 * Otherwise, if nonblocking, send as much as possible.
891 * The data to be sent is described by "uio" if nonzero,
892 * otherwise by the mbuf chain "top" (which must be null
893 * if uio is not). Data provided in mbuf chain must be small
894 * enough to send all at once.
895 *
896 * Returns nonzero on error, timeout or signal; callers
897 * must check for short counts if EINTR/ERESTART are returned.
898 * Data and control buffers are freed on return.
899 */
900 int
901 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
902 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
903 {
904 struct mbuf **mp, *m;
905 long space, len, resid, clen, mlen;
906 int error, s, dontroute, atomic;
907 short wakeup_state = 0;
908
909 clen = 0;
910
911 /*
912 * solock() provides atomicity of access. splsoftnet() prevents
913 * protocol processing soft interrupts from interrupting us and
914 * blocking (expensive).
915 */
916 s = splsoftnet();
917 solock(so);
918 atomic = sosendallatonce(so) || top;
919 if (uio)
920 resid = uio->uio_resid;
921 else
922 resid = top->m_pkthdr.len;
923 /*
924 * In theory resid should be unsigned.
925 * However, space must be signed, as it might be less than 0
926 * if we over-committed, and we must use a signed comparison
927 * of space and resid. On the other hand, a negative resid
928 * causes us to loop sending 0-length segments to the protocol.
929 */
930 if (resid < 0) {
931 error = EINVAL;
932 goto out;
933 }
934 dontroute =
935 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
936 (so->so_proto->pr_flags & PR_ATOMIC);
937 l->l_ru.ru_msgsnd++;
938 if (control)
939 clen = control->m_len;
940 restart:
941 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
942 goto out;
943 do {
944 if (so->so_state & SS_CANTSENDMORE) {
945 error = EPIPE;
946 goto release;
947 }
948 if (so->so_error) {
949 error = so->so_error;
950 so->so_error = 0;
951 goto release;
952 }
953 if ((so->so_state & SS_ISCONNECTED) == 0) {
954 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
955 if (resid || clen == 0) {
956 error = ENOTCONN;
957 goto release;
958 }
959 } else if (addr == NULL) {
960 error = EDESTADDRREQ;
961 goto release;
962 }
963 }
964 space = sbspace(&so->so_snd);
965 if (flags & MSG_OOB)
966 space += 1024;
967 if ((atomic && resid > so->so_snd.sb_hiwat) ||
968 clen > so->so_snd.sb_hiwat) {
969 error = EMSGSIZE;
970 goto release;
971 }
972 if (space < resid + clen &&
973 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
974 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
975 error = EWOULDBLOCK;
976 goto release;
977 }
978 sbunlock(&so->so_snd);
979 if (wakeup_state & SS_RESTARTSYS) {
980 error = ERESTART;
981 goto out;
982 }
983 error = sbwait(&so->so_snd);
984 if (error)
985 goto out;
986 wakeup_state = so->so_state;
987 goto restart;
988 }
989 wakeup_state = 0;
990 mp = ⊤
991 space -= clen;
992 do {
993 if (uio == NULL) {
994 /*
995 * Data is prepackaged in "top".
996 */
997 resid = 0;
998 if (flags & MSG_EOR)
999 top->m_flags |= M_EOR;
1000 } else do {
1001 sounlock(so);
1002 splx(s);
1003 if (top == NULL) {
1004 m = m_gethdr(M_WAIT, MT_DATA);
1005 mlen = MHLEN;
1006 m->m_pkthdr.len = 0;
1007 m_reset_rcvif(m);
1008 } else {
1009 m = m_get(M_WAIT, MT_DATA);
1010 mlen = MLEN;
1011 }
1012 MCLAIM(m, so->so_snd.sb_mowner);
1013 if (sock_loan_thresh >= 0 &&
1014 uio->uio_iov->iov_len >= sock_loan_thresh &&
1015 space >= sock_loan_thresh &&
1016 (len = sosend_loan(so, uio, m,
1017 space)) != 0) {
1018 SOSEND_COUNTER_INCR(&sosend_loan_big);
1019 space -= len;
1020 goto have_data;
1021 }
1022 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1023 SOSEND_COUNTER_INCR(&sosend_copy_big);
1024 m_clget(m, M_DONTWAIT);
1025 if ((m->m_flags & M_EXT) == 0)
1026 goto nopages;
1027 mlen = MCLBYTES;
1028 if (atomic && top == 0) {
1029 len = lmin(MCLBYTES - max_hdr,
1030 resid);
1031 m->m_data += max_hdr;
1032 } else
1033 len = lmin(MCLBYTES, resid);
1034 space -= len;
1035 } else {
1036 nopages:
1037 SOSEND_COUNTER_INCR(&sosend_copy_small);
1038 len = lmin(lmin(mlen, resid), space);
1039 space -= len;
1040 /*
1041 * For datagram protocols, leave room
1042 * for protocol headers in first mbuf.
1043 */
1044 if (atomic && top == 0 && len < mlen)
1045 MH_ALIGN(m, len);
1046 }
1047 error = uiomove(mtod(m, void *), (int)len, uio);
1048 have_data:
1049 resid = uio->uio_resid;
1050 m->m_len = len;
1051 *mp = m;
1052 top->m_pkthdr.len += len;
1053 s = splsoftnet();
1054 solock(so);
1055 if (error != 0)
1056 goto release;
1057 mp = &m->m_next;
1058 if (resid <= 0) {
1059 if (flags & MSG_EOR)
1060 top->m_flags |= M_EOR;
1061 break;
1062 }
1063 } while (space > 0 && atomic);
1064
1065 if (so->so_state & SS_CANTSENDMORE) {
1066 error = EPIPE;
1067 goto release;
1068 }
1069 if (dontroute)
1070 so->so_options |= SO_DONTROUTE;
1071 if (resid > 0)
1072 so->so_state |= SS_MORETOCOME;
1073 if (flags & MSG_OOB) {
1074 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1075 so, top, control);
1076 } else {
1077 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1078 top, addr, control, l);
1079 }
1080 if (dontroute)
1081 so->so_options &= ~SO_DONTROUTE;
1082 if (resid > 0)
1083 so->so_state &= ~SS_MORETOCOME;
1084 clen = 0;
1085 control = NULL;
1086 top = NULL;
1087 mp = ⊤
1088 if (error != 0)
1089 goto release;
1090 } while (resid && space > 0);
1091 } while (resid);
1092
1093 release:
1094 sbunlock(&so->so_snd);
1095 out:
1096 sounlock(so);
1097 splx(s);
1098 if (top)
1099 m_freem(top);
1100 if (control)
1101 m_freem(control);
1102 return (error);
1103 }
1104
1105 /*
1106 * Following replacement or removal of the first mbuf on the first
1107 * mbuf chain of a socket buffer, push necessary state changes back
1108 * into the socket buffer so that other consumers see the values
1109 * consistently. 'nextrecord' is the callers locally stored value of
1110 * the original value of sb->sb_mb->m_nextpkt which must be restored
1111 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1112 */
1113 static void
1114 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1115 {
1116
1117 KASSERT(solocked(sb->sb_so));
1118
1119 /*
1120 * First, update for the new value of nextrecord. If necessary,
1121 * make it the first record.
1122 */
1123 if (sb->sb_mb != NULL)
1124 sb->sb_mb->m_nextpkt = nextrecord;
1125 else
1126 sb->sb_mb = nextrecord;
1127
1128 /*
1129 * Now update any dependent socket buffer fields to reflect
1130 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1131 * the addition of a second clause that takes care of the
1132 * case where sb_mb has been updated, but remains the last
1133 * record.
1134 */
1135 if (sb->sb_mb == NULL) {
1136 sb->sb_mbtail = NULL;
1137 sb->sb_lastrecord = NULL;
1138 } else if (sb->sb_mb->m_nextpkt == NULL)
1139 sb->sb_lastrecord = sb->sb_mb;
1140 }
1141
1142 /*
1143 * Implement receive operations on a socket.
1144 * We depend on the way that records are added to the sockbuf
1145 * by sbappend*. In particular, each record (mbufs linked through m_next)
1146 * must begin with an address if the protocol so specifies,
1147 * followed by an optional mbuf or mbufs containing ancillary data,
1148 * and then zero or more mbufs of data.
1149 * In order to avoid blocking network interrupts for the entire time here,
1150 * we splx() while doing the actual copy to user space.
1151 * Although the sockbuf is locked, new data may still be appended,
1152 * and thus we must maintain consistency of the sockbuf during that time.
1153 *
1154 * The caller may receive the data as a single mbuf chain by supplying
1155 * an mbuf **mp0 for use in returning the chain. The uio is then used
1156 * only for the count in uio_resid.
1157 */
1158 int
1159 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1160 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1161 {
1162 struct lwp *l = curlwp;
1163 struct mbuf *m, **mp, *mt;
1164 size_t len, offset, moff, orig_resid;
1165 int atomic, flags, error, s, type;
1166 const struct protosw *pr;
1167 struct mbuf *nextrecord;
1168 int mbuf_removed = 0;
1169 const struct domain *dom;
1170 short wakeup_state = 0;
1171
1172 pr = so->so_proto;
1173 atomic = pr->pr_flags & PR_ATOMIC;
1174 dom = pr->pr_domain;
1175 mp = mp0;
1176 type = 0;
1177 orig_resid = uio->uio_resid;
1178
1179 if (paddr != NULL)
1180 *paddr = NULL;
1181 if (controlp != NULL)
1182 *controlp = NULL;
1183 if (flagsp != NULL)
1184 flags = *flagsp &~ MSG_EOR;
1185 else
1186 flags = 0;
1187
1188 if (flags & MSG_OOB) {
1189 m = m_get(M_WAIT, MT_DATA);
1190 solock(so);
1191 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1192 sounlock(so);
1193 if (error)
1194 goto bad;
1195 do {
1196 error = uiomove(mtod(m, void *),
1197 MIN(uio->uio_resid, m->m_len), uio);
1198 m = m_free(m);
1199 } while (uio->uio_resid > 0 && error == 0 && m);
1200 bad:
1201 if (m != NULL)
1202 m_freem(m);
1203 return error;
1204 }
1205 if (mp != NULL)
1206 *mp = NULL;
1207
1208 /*
1209 * solock() provides atomicity of access. splsoftnet() prevents
1210 * protocol processing soft interrupts from interrupting us and
1211 * blocking (expensive).
1212 */
1213 s = splsoftnet();
1214 solock(so);
1215 restart:
1216 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1217 sounlock(so);
1218 splx(s);
1219 return error;
1220 }
1221
1222 m = so->so_rcv.sb_mb;
1223 /*
1224 * If we have less data than requested, block awaiting more
1225 * (subject to any timeout) if:
1226 * 1. the current count is less than the low water mark,
1227 * 2. MSG_WAITALL is set, and it is possible to do the entire
1228 * receive operation at once if we block (resid <= hiwat), or
1229 * 3. MSG_DONTWAIT is not set.
1230 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1231 * we have to do the receive in sections, and thus risk returning
1232 * a short count if a timeout or signal occurs after we start.
1233 */
1234 if (m == NULL ||
1235 ((flags & MSG_DONTWAIT) == 0 &&
1236 so->so_rcv.sb_cc < uio->uio_resid &&
1237 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1238 ((flags & MSG_WAITALL) &&
1239 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1240 m->m_nextpkt == NULL && !atomic)) {
1241 #ifdef DIAGNOSTIC
1242 if (m == NULL && so->so_rcv.sb_cc)
1243 panic("receive 1");
1244 #endif
1245 if (so->so_error || so->so_rerror) {
1246 if (m != NULL)
1247 goto dontblock;
1248 if (so->so_error) {
1249 error = so->so_error;
1250 so->so_error = 0;
1251 } else {
1252 error = so->so_rerror;
1253 so->so_rerror = 0;
1254 }
1255 goto release;
1256 }
1257 if (so->so_state & SS_CANTRCVMORE) {
1258 if (m != NULL)
1259 goto dontblock;
1260 else
1261 goto release;
1262 }
1263 for (; m != NULL; m = m->m_next)
1264 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1265 m = so->so_rcv.sb_mb;
1266 goto dontblock;
1267 }
1268 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1269 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1270 error = ENOTCONN;
1271 goto release;
1272 }
1273 if (uio->uio_resid == 0)
1274 goto release;
1275 if ((so->so_state & SS_NBIO) ||
1276 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1277 error = EWOULDBLOCK;
1278 goto release;
1279 }
1280 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1281 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1282 sbunlock(&so->so_rcv);
1283 if (wakeup_state & SS_RESTARTSYS)
1284 error = ERESTART;
1285 else
1286 error = sbwait(&so->so_rcv);
1287 if (error != 0) {
1288 sounlock(so);
1289 splx(s);
1290 return error;
1291 }
1292 wakeup_state = so->so_state;
1293 goto restart;
1294 }
1295 dontblock:
1296 /*
1297 * On entry here, m points to the first record of the socket buffer.
1298 * From this point onward, we maintain 'nextrecord' as a cache of the
1299 * pointer to the next record in the socket buffer. We must keep the
1300 * various socket buffer pointers and local stack versions of the
1301 * pointers in sync, pushing out modifications before dropping the
1302 * socket lock, and re-reading them when picking it up.
1303 *
1304 * Otherwise, we will race with the network stack appending new data
1305 * or records onto the socket buffer by using inconsistent/stale
1306 * versions of the field, possibly resulting in socket buffer
1307 * corruption.
1308 *
1309 * By holding the high-level sblock(), we prevent simultaneous
1310 * readers from pulling off the front of the socket buffer.
1311 */
1312 if (l != NULL)
1313 l->l_ru.ru_msgrcv++;
1314 KASSERT(m == so->so_rcv.sb_mb);
1315 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1316 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1317 nextrecord = m->m_nextpkt;
1318 if (pr->pr_flags & PR_ADDR) {
1319 #ifdef DIAGNOSTIC
1320 if (m->m_type != MT_SONAME)
1321 panic("receive 1a");
1322 #endif
1323 orig_resid = 0;
1324 if (flags & MSG_PEEK) {
1325 if (paddr)
1326 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1327 m = m->m_next;
1328 } else {
1329 sbfree(&so->so_rcv, m);
1330 mbuf_removed = 1;
1331 if (paddr != NULL) {
1332 *paddr = m;
1333 so->so_rcv.sb_mb = m->m_next;
1334 m->m_next = NULL;
1335 m = so->so_rcv.sb_mb;
1336 } else {
1337 m = so->so_rcv.sb_mb = m_free(m);
1338 }
1339 sbsync(&so->so_rcv, nextrecord);
1340 }
1341 }
1342 if (pr->pr_flags & PR_ADDR_OPT) {
1343 /*
1344 * For SCTP we may be getting a
1345 * whole message OR a partial delivery.
1346 */
1347 if (m->m_type == MT_SONAME) {
1348 orig_resid = 0;
1349 if (flags & MSG_PEEK) {
1350 if (paddr)
1351 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1352 m = m->m_next;
1353 } else {
1354 sbfree(&so->so_rcv, m);
1355 if (paddr) {
1356 *paddr = m;
1357 so->so_rcv.sb_mb = m->m_next;
1358 m->m_next = 0;
1359 m = so->so_rcv.sb_mb;
1360 } else {
1361 m = so->so_rcv.sb_mb = m_free(m);
1362 }
1363 }
1364 }
1365 }
1366
1367 /*
1368 * Process one or more MT_CONTROL mbufs present before any data mbufs
1369 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1370 * just copy the data; if !MSG_PEEK, we call into the protocol to
1371 * perform externalization (or freeing if controlp == NULL).
1372 */
1373 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1374 struct mbuf *cm = NULL, *cmn;
1375 struct mbuf **cme = &cm;
1376
1377 do {
1378 if (flags & MSG_PEEK) {
1379 if (controlp != NULL) {
1380 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1381 controlp = &(*controlp)->m_next;
1382 }
1383 m = m->m_next;
1384 } else {
1385 sbfree(&so->so_rcv, m);
1386 so->so_rcv.sb_mb = m->m_next;
1387 m->m_next = NULL;
1388 *cme = m;
1389 cme = &(*cme)->m_next;
1390 m = so->so_rcv.sb_mb;
1391 }
1392 } while (m != NULL && m->m_type == MT_CONTROL);
1393 if ((flags & MSG_PEEK) == 0)
1394 sbsync(&so->so_rcv, nextrecord);
1395 for (; cm != NULL; cm = cmn) {
1396 cmn = cm->m_next;
1397 cm->m_next = NULL;
1398 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1399 if (controlp != NULL) {
1400 if (dom->dom_externalize != NULL &&
1401 type == SCM_RIGHTS) {
1402 sounlock(so);
1403 splx(s);
1404 error = (*dom->dom_externalize)(cm, l,
1405 (flags & MSG_CMSG_CLOEXEC) ?
1406 O_CLOEXEC : 0);
1407 s = splsoftnet();
1408 solock(so);
1409 }
1410 *controlp = cm;
1411 while (*controlp != NULL)
1412 controlp = &(*controlp)->m_next;
1413 } else {
1414 /*
1415 * Dispose of any SCM_RIGHTS message that went
1416 * through the read path rather than recv.
1417 */
1418 if (dom->dom_dispose != NULL &&
1419 type == SCM_RIGHTS) {
1420 sounlock(so);
1421 (*dom->dom_dispose)(cm);
1422 solock(so);
1423 }
1424 m_freem(cm);
1425 }
1426 }
1427 if (m != NULL)
1428 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1429 else
1430 nextrecord = so->so_rcv.sb_mb;
1431 orig_resid = 0;
1432 }
1433
1434 /* If m is non-NULL, we have some data to read. */
1435 if (__predict_true(m != NULL)) {
1436 type = m->m_type;
1437 if (type == MT_OOBDATA)
1438 flags |= MSG_OOB;
1439 }
1440 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1441 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1442
1443 moff = 0;
1444 offset = 0;
1445 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1446 if (m->m_type == MT_OOBDATA) {
1447 if (type != MT_OOBDATA)
1448 break;
1449 } else if (type == MT_OOBDATA)
1450 break;
1451 #ifdef DIAGNOSTIC
1452 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1453 panic("receive 3");
1454 #endif
1455 so->so_state &= ~SS_RCVATMARK;
1456 wakeup_state = 0;
1457 len = uio->uio_resid;
1458 if (so->so_oobmark && len > so->so_oobmark - offset)
1459 len = so->so_oobmark - offset;
1460 if (len > m->m_len - moff)
1461 len = m->m_len - moff;
1462 /*
1463 * If mp is set, just pass back the mbufs.
1464 * Otherwise copy them out via the uio, then free.
1465 * Sockbuf must be consistent here (points to current mbuf,
1466 * it points to next record) when we drop priority;
1467 * we must note any additions to the sockbuf when we
1468 * block interrupts again.
1469 */
1470 if (mp == NULL) {
1471 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1472 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1473 sounlock(so);
1474 splx(s);
1475 error = uiomove(mtod(m, char *) + moff, len, uio);
1476 s = splsoftnet();
1477 solock(so);
1478 if (error != 0) {
1479 /*
1480 * If any part of the record has been removed
1481 * (such as the MT_SONAME mbuf, which will
1482 * happen when PR_ADDR, and thus also
1483 * PR_ATOMIC, is set), then drop the entire
1484 * record to maintain the atomicity of the
1485 * receive operation.
1486 *
1487 * This avoids a later panic("receive 1a")
1488 * when compiled with DIAGNOSTIC.
1489 */
1490 if (m && mbuf_removed && atomic)
1491 (void) sbdroprecord(&so->so_rcv);
1492
1493 goto release;
1494 }
1495 } else
1496 uio->uio_resid -= len;
1497 if (len == m->m_len - moff) {
1498 if (m->m_flags & M_EOR)
1499 flags |= MSG_EOR;
1500 #ifdef SCTP
1501 if (m->m_flags & M_NOTIFICATION)
1502 flags |= MSG_NOTIFICATION;
1503 #endif /* SCTP */
1504 if (flags & MSG_PEEK) {
1505 m = m->m_next;
1506 moff = 0;
1507 } else {
1508 nextrecord = m->m_nextpkt;
1509 sbfree(&so->so_rcv, m);
1510 if (mp) {
1511 *mp = m;
1512 mp = &m->m_next;
1513 so->so_rcv.sb_mb = m = m->m_next;
1514 *mp = NULL;
1515 } else {
1516 m = so->so_rcv.sb_mb = m_free(m);
1517 }
1518 /*
1519 * If m != NULL, we also know that
1520 * so->so_rcv.sb_mb != NULL.
1521 */
1522 KASSERT(so->so_rcv.sb_mb == m);
1523 if (m) {
1524 m->m_nextpkt = nextrecord;
1525 if (nextrecord == NULL)
1526 so->so_rcv.sb_lastrecord = m;
1527 } else {
1528 so->so_rcv.sb_mb = nextrecord;
1529 SB_EMPTY_FIXUP(&so->so_rcv);
1530 }
1531 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1532 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1533 }
1534 } else if (flags & MSG_PEEK)
1535 moff += len;
1536 else {
1537 if (mp != NULL) {
1538 mt = m_copym(m, 0, len, M_NOWAIT);
1539 if (__predict_false(mt == NULL)) {
1540 sounlock(so);
1541 mt = m_copym(m, 0, len, M_WAIT);
1542 solock(so);
1543 }
1544 *mp = mt;
1545 }
1546 m->m_data += len;
1547 m->m_len -= len;
1548 so->so_rcv.sb_cc -= len;
1549 }
1550 if (so->so_oobmark) {
1551 if ((flags & MSG_PEEK) == 0) {
1552 so->so_oobmark -= len;
1553 if (so->so_oobmark == 0) {
1554 so->so_state |= SS_RCVATMARK;
1555 break;
1556 }
1557 } else {
1558 offset += len;
1559 if (offset == so->so_oobmark)
1560 break;
1561 }
1562 }
1563 if (flags & MSG_EOR)
1564 break;
1565 /*
1566 * If the MSG_WAITALL flag is set (for non-atomic socket),
1567 * we must not quit until "uio->uio_resid == 0" or an error
1568 * termination. If a signal/timeout occurs, return
1569 * with a short count but without error.
1570 * Keep sockbuf locked against other readers.
1571 */
1572 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1573 !sosendallatonce(so) && !nextrecord) {
1574 if (so->so_error || so->so_rerror ||
1575 so->so_state & SS_CANTRCVMORE)
1576 break;
1577 /*
1578 * If we are peeking and the socket receive buffer is
1579 * full, stop since we can't get more data to peek at.
1580 */
1581 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1582 break;
1583 /*
1584 * If we've drained the socket buffer, tell the
1585 * protocol in case it needs to do something to
1586 * get it filled again.
1587 */
1588 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1589 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1590 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1591 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1592 if (wakeup_state & SS_RESTARTSYS)
1593 error = ERESTART;
1594 else
1595 error = sbwait(&so->so_rcv);
1596 if (error != 0) {
1597 sbunlock(&so->so_rcv);
1598 sounlock(so);
1599 splx(s);
1600 return 0;
1601 }
1602 if ((m = so->so_rcv.sb_mb) != NULL)
1603 nextrecord = m->m_nextpkt;
1604 wakeup_state = so->so_state;
1605 }
1606 }
1607
1608 if (m && atomic) {
1609 flags |= MSG_TRUNC;
1610 if ((flags & MSG_PEEK) == 0)
1611 (void) sbdroprecord(&so->so_rcv);
1612 }
1613 if ((flags & MSG_PEEK) == 0) {
1614 if (m == NULL) {
1615 /*
1616 * First part is an inline SB_EMPTY_FIXUP(). Second
1617 * part makes sure sb_lastrecord is up-to-date if
1618 * there is still data in the socket buffer.
1619 */
1620 so->so_rcv.sb_mb = nextrecord;
1621 if (so->so_rcv.sb_mb == NULL) {
1622 so->so_rcv.sb_mbtail = NULL;
1623 so->so_rcv.sb_lastrecord = NULL;
1624 } else if (nextrecord->m_nextpkt == NULL)
1625 so->so_rcv.sb_lastrecord = nextrecord;
1626 }
1627 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1628 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1629 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1630 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1631 }
1632 if (orig_resid == uio->uio_resid && orig_resid &&
1633 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1634 sbunlock(&so->so_rcv);
1635 goto restart;
1636 }
1637
1638 if (flagsp != NULL)
1639 *flagsp |= flags;
1640 release:
1641 sbunlock(&so->so_rcv);
1642 sounlock(so);
1643 splx(s);
1644 return error;
1645 }
1646
1647 int
1648 soshutdown(struct socket *so, int how)
1649 {
1650 const struct protosw *pr;
1651 int error;
1652
1653 KASSERT(solocked(so));
1654
1655 pr = so->so_proto;
1656 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1657 return (EINVAL);
1658
1659 if (how == SHUT_RD || how == SHUT_RDWR) {
1660 sorflush(so);
1661 error = 0;
1662 }
1663 if (how == SHUT_WR || how == SHUT_RDWR)
1664 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1665
1666 return error;
1667 }
1668
1669 void
1670 sorestart(struct socket *so)
1671 {
1672 /*
1673 * An application has called close() on an fd on which another
1674 * of its threads has called a socket system call.
1675 * Mark this and wake everyone up, and code that would block again
1676 * instead returns ERESTART.
1677 * On system call re-entry the fd is validated and EBADF returned.
1678 * Any other fd will block again on the 2nd syscall.
1679 */
1680 solock(so);
1681 so->so_state |= SS_RESTARTSYS;
1682 cv_broadcast(&so->so_cv);
1683 cv_broadcast(&so->so_snd.sb_cv);
1684 cv_broadcast(&so->so_rcv.sb_cv);
1685 sounlock(so);
1686 }
1687
1688 void
1689 sorflush(struct socket *so)
1690 {
1691 struct sockbuf *sb, asb;
1692 const struct protosw *pr;
1693
1694 KASSERT(solocked(so));
1695
1696 sb = &so->so_rcv;
1697 pr = so->so_proto;
1698 socantrcvmore(so);
1699 sb->sb_flags |= SB_NOINTR;
1700 (void )sblock(sb, M_WAITOK);
1701 sbunlock(sb);
1702 asb = *sb;
1703 /*
1704 * Clear most of the sockbuf structure, but leave some of the
1705 * fields valid.
1706 */
1707 memset(&sb->sb_startzero, 0,
1708 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1709 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1710 sounlock(so);
1711 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1712 solock(so);
1713 }
1714 sbrelease(&asb, so);
1715 }
1716
1717 /*
1718 * internal set SOL_SOCKET options
1719 */
1720 static int
1721 sosetopt1(struct socket *so, const struct sockopt *sopt)
1722 {
1723 int error = EINVAL, opt;
1724 int optval = 0; /* XXX: gcc */
1725 struct linger l;
1726 struct timeval tv;
1727
1728 switch ((opt = sopt->sopt_name)) {
1729
1730 case SO_ACCEPTFILTER:
1731 error = accept_filt_setopt(so, sopt);
1732 KASSERT(solocked(so));
1733 break;
1734
1735 case SO_LINGER:
1736 error = sockopt_get(sopt, &l, sizeof(l));
1737 solock(so);
1738 if (error)
1739 break;
1740 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1741 l.l_linger > (INT_MAX / hz)) {
1742 error = EDOM;
1743 break;
1744 }
1745 so->so_linger = l.l_linger;
1746 if (l.l_onoff)
1747 so->so_options |= SO_LINGER;
1748 else
1749 so->so_options &= ~SO_LINGER;
1750 break;
1751
1752 case SO_DEBUG:
1753 case SO_KEEPALIVE:
1754 case SO_DONTROUTE:
1755 case SO_USELOOPBACK:
1756 case SO_BROADCAST:
1757 case SO_REUSEADDR:
1758 case SO_REUSEPORT:
1759 case SO_OOBINLINE:
1760 case SO_TIMESTAMP:
1761 case SO_NOSIGPIPE:
1762 case SO_RERROR:
1763 #ifdef SO_OTIMESTAMP
1764 case SO_OTIMESTAMP:
1765 #endif
1766 error = sockopt_getint(sopt, &optval);
1767 solock(so);
1768 if (error)
1769 break;
1770 if (optval)
1771 so->so_options |= opt;
1772 else
1773 so->so_options &= ~opt;
1774 break;
1775
1776 case SO_SNDBUF:
1777 case SO_RCVBUF:
1778 case SO_SNDLOWAT:
1779 case SO_RCVLOWAT:
1780 error = sockopt_getint(sopt, &optval);
1781 solock(so);
1782 if (error)
1783 break;
1784
1785 /*
1786 * Values < 1 make no sense for any of these
1787 * options, so disallow them.
1788 */
1789 if (optval < 1) {
1790 error = EINVAL;
1791 break;
1792 }
1793
1794 switch (opt) {
1795 case SO_SNDBUF:
1796 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1797 error = ENOBUFS;
1798 break;
1799 }
1800 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1801 break;
1802
1803 case SO_RCVBUF:
1804 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1805 error = ENOBUFS;
1806 break;
1807 }
1808 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1809 break;
1810
1811 /*
1812 * Make sure the low-water is never greater than
1813 * the high-water.
1814 */
1815 case SO_SNDLOWAT:
1816 if (optval > so->so_snd.sb_hiwat)
1817 optval = so->so_snd.sb_hiwat;
1818
1819 so->so_snd.sb_lowat = optval;
1820 break;
1821
1822 case SO_RCVLOWAT:
1823 if (optval > so->so_rcv.sb_hiwat)
1824 optval = so->so_rcv.sb_hiwat;
1825
1826 so->so_rcv.sb_lowat = optval;
1827 break;
1828 }
1829 break;
1830
1831 #ifdef COMPAT_50
1832 case SO_OSNDTIMEO:
1833 case SO_ORCVTIMEO: {
1834 struct timeval50 otv;
1835 error = sockopt_get(sopt, &otv, sizeof(otv));
1836 if (error) {
1837 solock(so);
1838 break;
1839 }
1840 timeval50_to_timeval(&otv, &tv);
1841 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1842 error = 0;
1843 /*FALLTHROUGH*/
1844 }
1845 #endif /* COMPAT_50 */
1846
1847 case SO_SNDTIMEO:
1848 case SO_RCVTIMEO:
1849 if (error)
1850 error = sockopt_get(sopt, &tv, sizeof(tv));
1851 solock(so);
1852 if (error)
1853 break;
1854
1855 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1856 error = EDOM;
1857 break;
1858 }
1859
1860 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1861 if (optval == 0 && tv.tv_usec != 0)
1862 optval = 1;
1863
1864 switch (opt) {
1865 case SO_SNDTIMEO:
1866 so->so_snd.sb_timeo = optval;
1867 break;
1868 case SO_RCVTIMEO:
1869 so->so_rcv.sb_timeo = optval;
1870 break;
1871 }
1872 break;
1873
1874 default:
1875 solock(so);
1876 error = ENOPROTOOPT;
1877 break;
1878 }
1879 KASSERT(solocked(so));
1880 return error;
1881 }
1882
1883 int
1884 sosetopt(struct socket *so, struct sockopt *sopt)
1885 {
1886 int error, prerr;
1887
1888 if (sopt->sopt_level == SOL_SOCKET) {
1889 error = sosetopt1(so, sopt);
1890 KASSERT(solocked(so));
1891 } else {
1892 error = ENOPROTOOPT;
1893 solock(so);
1894 }
1895
1896 if ((error == 0 || error == ENOPROTOOPT) &&
1897 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1898 /* give the protocol stack a shot */
1899 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1900 if (prerr == 0)
1901 error = 0;
1902 else if (prerr != ENOPROTOOPT)
1903 error = prerr;
1904 }
1905 sounlock(so);
1906 return error;
1907 }
1908
1909 /*
1910 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1911 */
1912 int
1913 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1914 const void *val, size_t valsize)
1915 {
1916 struct sockopt sopt;
1917 int error;
1918
1919 KASSERT(valsize == 0 || val != NULL);
1920
1921 sockopt_init(&sopt, level, name, valsize);
1922 sockopt_set(&sopt, val, valsize);
1923
1924 error = sosetopt(so, &sopt);
1925
1926 sockopt_destroy(&sopt);
1927
1928 return error;
1929 }
1930
1931 /*
1932 * internal get SOL_SOCKET options
1933 */
1934 static int
1935 sogetopt1(struct socket *so, struct sockopt *sopt)
1936 {
1937 int error, optval, opt;
1938 struct linger l;
1939 struct timeval tv;
1940
1941 switch ((opt = sopt->sopt_name)) {
1942
1943 case SO_ACCEPTFILTER:
1944 error = accept_filt_getopt(so, sopt);
1945 break;
1946
1947 case SO_LINGER:
1948 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1949 l.l_linger = so->so_linger;
1950
1951 error = sockopt_set(sopt, &l, sizeof(l));
1952 break;
1953
1954 case SO_USELOOPBACK:
1955 case SO_DONTROUTE:
1956 case SO_DEBUG:
1957 case SO_KEEPALIVE:
1958 case SO_REUSEADDR:
1959 case SO_REUSEPORT:
1960 case SO_BROADCAST:
1961 case SO_OOBINLINE:
1962 case SO_TIMESTAMP:
1963 case SO_NOSIGPIPE:
1964 case SO_RERROR:
1965 #ifdef SO_OTIMESTAMP
1966 case SO_OTIMESTAMP:
1967 #endif
1968 case SO_ACCEPTCONN:
1969 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1970 break;
1971
1972 case SO_TYPE:
1973 error = sockopt_setint(sopt, so->so_type);
1974 break;
1975
1976 case SO_ERROR:
1977 if (so->so_error == 0) {
1978 so->so_error = so->so_rerror;
1979 so->so_rerror = 0;
1980 }
1981 error = sockopt_setint(sopt, so->so_error);
1982 so->so_error = 0;
1983 break;
1984
1985 case SO_SNDBUF:
1986 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1987 break;
1988
1989 case SO_RCVBUF:
1990 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1991 break;
1992
1993 case SO_SNDLOWAT:
1994 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1995 break;
1996
1997 case SO_RCVLOWAT:
1998 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1999 break;
2000
2001 #ifdef COMPAT_50
2002 case SO_OSNDTIMEO:
2003 case SO_ORCVTIMEO: {
2004 struct timeval50 otv;
2005
2006 optval = (opt == SO_OSNDTIMEO ?
2007 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2008
2009 otv.tv_sec = optval / hz;
2010 otv.tv_usec = (optval % hz) * tick;
2011
2012 error = sockopt_set(sopt, &otv, sizeof(otv));
2013 break;
2014 }
2015 #endif /* COMPAT_50 */
2016
2017 case SO_SNDTIMEO:
2018 case SO_RCVTIMEO:
2019 optval = (opt == SO_SNDTIMEO ?
2020 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2021
2022 tv.tv_sec = optval / hz;
2023 tv.tv_usec = (optval % hz) * tick;
2024
2025 error = sockopt_set(sopt, &tv, sizeof(tv));
2026 break;
2027
2028 case SO_OVERFLOWED:
2029 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2030 break;
2031
2032 default:
2033 error = ENOPROTOOPT;
2034 break;
2035 }
2036
2037 return (error);
2038 }
2039
2040 int
2041 sogetopt(struct socket *so, struct sockopt *sopt)
2042 {
2043 int error;
2044
2045 solock(so);
2046 if (sopt->sopt_level != SOL_SOCKET) {
2047 if (so->so_proto && so->so_proto->pr_ctloutput) {
2048 error = ((*so->so_proto->pr_ctloutput)
2049 (PRCO_GETOPT, so, sopt));
2050 } else
2051 error = (ENOPROTOOPT);
2052 } else {
2053 error = sogetopt1(so, sopt);
2054 }
2055 sounlock(so);
2056 return (error);
2057 }
2058
2059 /*
2060 * alloc sockopt data buffer buffer
2061 * - will be released at destroy
2062 */
2063 static int
2064 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2065 {
2066
2067 KASSERT(sopt->sopt_size == 0);
2068
2069 if (len > sizeof(sopt->sopt_buf)) {
2070 sopt->sopt_data = kmem_zalloc(len, kmflag);
2071 if (sopt->sopt_data == NULL)
2072 return ENOMEM;
2073 } else
2074 sopt->sopt_data = sopt->sopt_buf;
2075
2076 sopt->sopt_size = len;
2077 return 0;
2078 }
2079
2080 /*
2081 * initialise sockopt storage
2082 * - MAY sleep during allocation
2083 */
2084 void
2085 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2086 {
2087
2088 memset(sopt, 0, sizeof(*sopt));
2089
2090 sopt->sopt_level = level;
2091 sopt->sopt_name = name;
2092 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2093 }
2094
2095 /*
2096 * destroy sockopt storage
2097 * - will release any held memory references
2098 */
2099 void
2100 sockopt_destroy(struct sockopt *sopt)
2101 {
2102
2103 if (sopt->sopt_data != sopt->sopt_buf)
2104 kmem_free(sopt->sopt_data, sopt->sopt_size);
2105
2106 memset(sopt, 0, sizeof(*sopt));
2107 }
2108
2109 /*
2110 * set sockopt value
2111 * - value is copied into sockopt
2112 * - memory is allocated when necessary, will not sleep
2113 */
2114 int
2115 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2116 {
2117 int error;
2118
2119 if (sopt->sopt_size == 0) {
2120 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2121 if (error)
2122 return error;
2123 }
2124
2125 if (sopt->sopt_size < len)
2126 return EINVAL;
2127
2128 memcpy(sopt->sopt_data, buf, len);
2129 sopt->sopt_retsize = len;
2130
2131 return 0;
2132 }
2133
2134 /*
2135 * common case of set sockopt integer value
2136 */
2137 int
2138 sockopt_setint(struct sockopt *sopt, int val)
2139 {
2140
2141 return sockopt_set(sopt, &val, sizeof(int));
2142 }
2143
2144 /*
2145 * get sockopt value
2146 * - correct size must be given
2147 */
2148 int
2149 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2150 {
2151
2152 if (sopt->sopt_size != len)
2153 return EINVAL;
2154
2155 memcpy(buf, sopt->sopt_data, len);
2156 return 0;
2157 }
2158
2159 /*
2160 * common case of get sockopt integer value
2161 */
2162 int
2163 sockopt_getint(const struct sockopt *sopt, int *valp)
2164 {
2165
2166 return sockopt_get(sopt, valp, sizeof(int));
2167 }
2168
2169 /*
2170 * set sockopt value from mbuf
2171 * - ONLY for legacy code
2172 * - mbuf is released by sockopt
2173 * - will not sleep
2174 */
2175 int
2176 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2177 {
2178 size_t len;
2179 int error;
2180
2181 len = m_length(m);
2182
2183 if (sopt->sopt_size == 0) {
2184 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2185 if (error)
2186 return error;
2187 }
2188
2189 if (sopt->sopt_size < len)
2190 return EINVAL;
2191
2192 m_copydata(m, 0, len, sopt->sopt_data);
2193 m_freem(m);
2194 sopt->sopt_retsize = len;
2195
2196 return 0;
2197 }
2198
2199 /*
2200 * get sockopt value into mbuf
2201 * - ONLY for legacy code
2202 * - mbuf to be released by the caller
2203 * - will not sleep
2204 */
2205 struct mbuf *
2206 sockopt_getmbuf(const struct sockopt *sopt)
2207 {
2208 struct mbuf *m;
2209
2210 if (sopt->sopt_size > MCLBYTES)
2211 return NULL;
2212
2213 m = m_get(M_DONTWAIT, MT_SOOPTS);
2214 if (m == NULL)
2215 return NULL;
2216
2217 if (sopt->sopt_size > MLEN) {
2218 MCLGET(m, M_DONTWAIT);
2219 if ((m->m_flags & M_EXT) == 0) {
2220 m_free(m);
2221 return NULL;
2222 }
2223 }
2224
2225 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2226 m->m_len = sopt->sopt_size;
2227
2228 return m;
2229 }
2230
2231 void
2232 sohasoutofband(struct socket *so)
2233 {
2234
2235 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2236 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2237 }
2238
2239 static void
2240 filt_sordetach(struct knote *kn)
2241 {
2242 struct socket *so;
2243
2244 so = ((file_t *)kn->kn_obj)->f_socket;
2245 solock(so);
2246 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2247 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2248 so->so_rcv.sb_flags &= ~SB_KNOTE;
2249 sounlock(so);
2250 }
2251
2252 /*ARGSUSED*/
2253 static int
2254 filt_soread(struct knote *kn, long hint)
2255 {
2256 struct socket *so;
2257 int rv;
2258
2259 so = ((file_t *)kn->kn_obj)->f_socket;
2260 if (hint != NOTE_SUBMIT)
2261 solock(so);
2262 kn->kn_data = so->so_rcv.sb_cc;
2263 if (so->so_state & SS_CANTRCVMORE) {
2264 kn->kn_flags |= EV_EOF;
2265 kn->kn_fflags = so->so_error;
2266 rv = 1;
2267 } else if (so->so_error || so->so_rerror)
2268 rv = 1;
2269 else if (kn->kn_sfflags & NOTE_LOWAT)
2270 rv = (kn->kn_data >= kn->kn_sdata);
2271 else
2272 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2273 if (hint != NOTE_SUBMIT)
2274 sounlock(so);
2275 return rv;
2276 }
2277
2278 static void
2279 filt_sowdetach(struct knote *kn)
2280 {
2281 struct socket *so;
2282
2283 so = ((file_t *)kn->kn_obj)->f_socket;
2284 solock(so);
2285 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2286 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2287 so->so_snd.sb_flags &= ~SB_KNOTE;
2288 sounlock(so);
2289 }
2290
2291 /*ARGSUSED*/
2292 static int
2293 filt_sowrite(struct knote *kn, long hint)
2294 {
2295 struct socket *so;
2296 int rv;
2297
2298 so = ((file_t *)kn->kn_obj)->f_socket;
2299 if (hint != NOTE_SUBMIT)
2300 solock(so);
2301 kn->kn_data = sbspace(&so->so_snd);
2302 if (so->so_state & SS_CANTSENDMORE) {
2303 kn->kn_flags |= EV_EOF;
2304 kn->kn_fflags = so->so_error;
2305 rv = 1;
2306 } else if (so->so_error)
2307 rv = 1;
2308 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2309 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2310 rv = 0;
2311 else if (kn->kn_sfflags & NOTE_LOWAT)
2312 rv = (kn->kn_data >= kn->kn_sdata);
2313 else
2314 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2315 if (hint != NOTE_SUBMIT)
2316 sounlock(so);
2317 return rv;
2318 }
2319
2320 /*ARGSUSED*/
2321 static int
2322 filt_solisten(struct knote *kn, long hint)
2323 {
2324 struct socket *so;
2325 int rv;
2326
2327 so = ((file_t *)kn->kn_obj)->f_socket;
2328
2329 /*
2330 * Set kn_data to number of incoming connections, not
2331 * counting partial (incomplete) connections.
2332 */
2333 if (hint != NOTE_SUBMIT)
2334 solock(so);
2335 kn->kn_data = so->so_qlen;
2336 rv = (kn->kn_data > 0);
2337 if (hint != NOTE_SUBMIT)
2338 sounlock(so);
2339 return rv;
2340 }
2341
2342 static const struct filterops solisten_filtops = {
2343 .f_isfd = 1,
2344 .f_attach = NULL,
2345 .f_detach = filt_sordetach,
2346 .f_event = filt_solisten,
2347 };
2348
2349 static const struct filterops soread_filtops = {
2350 .f_isfd = 1,
2351 .f_attach = NULL,
2352 .f_detach = filt_sordetach,
2353 .f_event = filt_soread,
2354 };
2355
2356 static const struct filterops sowrite_filtops = {
2357 .f_isfd = 1,
2358 .f_attach = NULL,
2359 .f_detach = filt_sowdetach,
2360 .f_event = filt_sowrite,
2361 };
2362
2363 int
2364 soo_kqfilter(struct file *fp, struct knote *kn)
2365 {
2366 struct socket *so;
2367 struct sockbuf *sb;
2368
2369 so = ((file_t *)kn->kn_obj)->f_socket;
2370 solock(so);
2371 switch (kn->kn_filter) {
2372 case EVFILT_READ:
2373 if (so->so_options & SO_ACCEPTCONN)
2374 kn->kn_fop = &solisten_filtops;
2375 else
2376 kn->kn_fop = &soread_filtops;
2377 sb = &so->so_rcv;
2378 break;
2379 case EVFILT_WRITE:
2380 kn->kn_fop = &sowrite_filtops;
2381 sb = &so->so_snd;
2382 break;
2383 default:
2384 sounlock(so);
2385 return (EINVAL);
2386 }
2387 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2388 sb->sb_flags |= SB_KNOTE;
2389 sounlock(so);
2390 return (0);
2391 }
2392
2393 static int
2394 sodopoll(struct socket *so, int events)
2395 {
2396 int revents;
2397
2398 revents = 0;
2399
2400 if (events & (POLLIN | POLLRDNORM))
2401 if (soreadable(so))
2402 revents |= events & (POLLIN | POLLRDNORM);
2403
2404 if (events & (POLLOUT | POLLWRNORM))
2405 if (sowritable(so))
2406 revents |= events & (POLLOUT | POLLWRNORM);
2407
2408 if (events & (POLLPRI | POLLRDBAND))
2409 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2410 revents |= events & (POLLPRI | POLLRDBAND);
2411
2412 return revents;
2413 }
2414
2415 int
2416 sopoll(struct socket *so, int events)
2417 {
2418 int revents = 0;
2419
2420 #ifndef DIAGNOSTIC
2421 /*
2422 * Do a quick, unlocked check in expectation that the socket
2423 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2424 * as the solocked() assertions will fail.
2425 */
2426 if ((revents = sodopoll(so, events)) != 0)
2427 return revents;
2428 #endif
2429
2430 solock(so);
2431 if ((revents = sodopoll(so, events)) == 0) {
2432 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2433 selrecord(curlwp, &so->so_rcv.sb_sel);
2434 so->so_rcv.sb_flags |= SB_NOTIFY;
2435 }
2436
2437 if (events & (POLLOUT | POLLWRNORM)) {
2438 selrecord(curlwp, &so->so_snd.sb_sel);
2439 so->so_snd.sb_flags |= SB_NOTIFY;
2440 }
2441 }
2442 sounlock(so);
2443
2444 return revents;
2445 }
2446
2447 struct mbuf **
2448 sbsavetimestamp(int opt, struct mbuf **mp)
2449 {
2450 struct timeval tv;
2451 microtime(&tv);
2452
2453 #ifdef SO_OTIMESTAMP
2454 if (opt & SO_OTIMESTAMP) {
2455 struct timeval50 tv50;
2456
2457 timeval_to_timeval50(&tv, &tv50);
2458 *mp = sbcreatecontrol(&tv50, sizeof(tv50),
2459 SCM_OTIMESTAMP, SOL_SOCKET);
2460 if (*mp)
2461 mp = &(*mp)->m_next;
2462 } else
2463 #endif
2464
2465 if (opt & SO_TIMESTAMP) {
2466 *mp = sbcreatecontrol(&tv, sizeof(tv),
2467 SCM_TIMESTAMP, SOL_SOCKET);
2468 if (*mp)
2469 mp = &(*mp)->m_next;
2470 }
2471 return mp;
2472 }
2473
2474
2475 #include <sys/sysctl.h>
2476
2477 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2478 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2479
2480 /*
2481 * sysctl helper routine for kern.somaxkva. ensures that the given
2482 * value is not too small.
2483 * (XXX should we maybe make sure it's not too large as well?)
2484 */
2485 static int
2486 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2487 {
2488 int error, new_somaxkva;
2489 struct sysctlnode node;
2490
2491 new_somaxkva = somaxkva;
2492 node = *rnode;
2493 node.sysctl_data = &new_somaxkva;
2494 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2495 if (error || newp == NULL)
2496 return (error);
2497
2498 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2499 return (EINVAL);
2500
2501 mutex_enter(&so_pendfree_lock);
2502 somaxkva = new_somaxkva;
2503 cv_broadcast(&socurkva_cv);
2504 mutex_exit(&so_pendfree_lock);
2505
2506 return (error);
2507 }
2508
2509 /*
2510 * sysctl helper routine for kern.sbmax. Basically just ensures that
2511 * any new value is not too small.
2512 */
2513 static int
2514 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2515 {
2516 int error, new_sbmax;
2517 struct sysctlnode node;
2518
2519 new_sbmax = sb_max;
2520 node = *rnode;
2521 node.sysctl_data = &new_sbmax;
2522 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2523 if (error || newp == NULL)
2524 return (error);
2525
2526 KERNEL_LOCK(1, NULL);
2527 error = sb_max_set(new_sbmax);
2528 KERNEL_UNLOCK_ONE(NULL);
2529
2530 return (error);
2531 }
2532
2533 /*
2534 * sysctl helper routine for kern.sooptions. Ensures that only allowed
2535 * options can be set.
2536 */
2537 static int
2538 sysctl_kern_sooptions(SYSCTLFN_ARGS)
2539 {
2540 int error, new_options;
2541 struct sysctlnode node;
2542
2543 new_options = sooptions;
2544 node = *rnode;
2545 node.sysctl_data = &new_options;
2546 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2547 if (error || newp == NULL)
2548 return error;
2549
2550 if (new_options & ~SO_DEFOPTS)
2551 return EINVAL;
2552
2553 sooptions = new_options;
2554
2555 return 0;
2556 }
2557
2558 static void
2559 sysctl_kern_socket_setup(void)
2560 {
2561
2562 KASSERT(socket_sysctllog == NULL);
2563
2564 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2565 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2566 CTLTYPE_INT, "somaxkva",
2567 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2568 "used for socket buffers"),
2569 sysctl_kern_somaxkva, 0, NULL, 0,
2570 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2571
2572 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2573 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2574 CTLTYPE_INT, "sbmax",
2575 SYSCTL_DESCR("Maximum socket buffer size"),
2576 sysctl_kern_sbmax, 0, NULL, 0,
2577 CTL_KERN, KERN_SBMAX, CTL_EOL);
2578
2579 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2580 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2581 CTLTYPE_INT, "sooptions",
2582 SYSCTL_DESCR("Default socket options"),
2583 sysctl_kern_sooptions, 0, NULL, 0,
2584 CTL_KERN, CTL_CREATE, CTL_EOL);
2585 }
2586