Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.272
      1 /*	$NetBSD: uipc_socket.c,v 1.272 2019/03/31 19:54:36 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.272 2019/03/31 19:54:36 maxv Exp $");
     75 
     76 #ifdef _KERNEL_OPT
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_sock_counters.h"
     79 #include "opt_sosend_loan.h"
     80 #include "opt_mbuftrace.h"
     81 #include "opt_somaxkva.h"
     82 #include "opt_multiprocessor.h"	/* XXX */
     83 #include "opt_sctp.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/file.h>
     90 #include <sys/filedesc.h>
     91 #include <sys/kmem.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/domain.h>
     94 #include <sys/kernel.h>
     95 #include <sys/protosw.h>
     96 #include <sys/socket.h>
     97 #include <sys/socketvar.h>
     98 #include <sys/signalvar.h>
     99 #include <sys/resourcevar.h>
    100 #include <sys/uidinfo.h>
    101 #include <sys/event.h>
    102 #include <sys/poll.h>
    103 #include <sys/kauth.h>
    104 #include <sys/mutex.h>
    105 #include <sys/condvar.h>
    106 #include <sys/kthread.h>
    107 
    108 #ifdef COMPAT_50
    109 #include <compat/sys/time.h>
    110 #include <compat/sys/socket.h>
    111 #endif
    112 
    113 #include <uvm/uvm_extern.h>
    114 #include <uvm/uvm_loan.h>
    115 #include <uvm/uvm_page.h>
    116 
    117 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    118 
    119 extern const struct fileops socketops;
    120 
    121 static int	sooptions;
    122 extern int	somaxconn;			/* patchable (XXX sysctl) */
    123 int		somaxconn = SOMAXCONN;
    124 kmutex_t	*softnet_lock;
    125 
    126 #ifdef SOSEND_COUNTERS
    127 #include <sys/device.h>
    128 
    129 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    130     NULL, "sosend", "loan big");
    131 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    132     NULL, "sosend", "copy big");
    133 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    134     NULL, "sosend", "copy small");
    135 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    136     NULL, "sosend", "kva limit");
    137 
    138 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    139 
    140 EVCNT_ATTACH_STATIC(sosend_loan_big);
    141 EVCNT_ATTACH_STATIC(sosend_copy_big);
    142 EVCNT_ATTACH_STATIC(sosend_copy_small);
    143 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    144 #else
    145 
    146 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    147 
    148 #endif /* SOSEND_COUNTERS */
    149 
    150 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    151 int sock_loan_thresh = -1;
    152 #else
    153 int sock_loan_thresh = 4096;
    154 #endif
    155 
    156 static kmutex_t so_pendfree_lock;
    157 static struct mbuf *so_pendfree = NULL;
    158 
    159 #ifndef SOMAXKVA
    160 #define	SOMAXKVA (16 * 1024 * 1024)
    161 #endif
    162 int somaxkva = SOMAXKVA;
    163 static int socurkva;
    164 static kcondvar_t socurkva_cv;
    165 
    166 static kauth_listener_t socket_listener;
    167 
    168 #define	SOCK_LOAN_CHUNK		65536
    169 
    170 static void sopendfree_thread(void *);
    171 static kcondvar_t pendfree_thread_cv;
    172 static lwp_t *sopendfree_lwp;
    173 
    174 static void sysctl_kern_socket_setup(void);
    175 static struct sysctllog *socket_sysctllog;
    176 
    177 static vsize_t
    178 sokvareserve(struct socket *so, vsize_t len)
    179 {
    180 	int error;
    181 
    182 	mutex_enter(&so_pendfree_lock);
    183 	while (socurkva + len > somaxkva) {
    184 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    185 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    186 		if (error) {
    187 			len = 0;
    188 			break;
    189 		}
    190 	}
    191 	socurkva += len;
    192 	mutex_exit(&so_pendfree_lock);
    193 	return len;
    194 }
    195 
    196 static void
    197 sokvaunreserve(vsize_t len)
    198 {
    199 
    200 	mutex_enter(&so_pendfree_lock);
    201 	socurkva -= len;
    202 	cv_broadcast(&socurkva_cv);
    203 	mutex_exit(&so_pendfree_lock);
    204 }
    205 
    206 /*
    207  * sokvaalloc: allocate kva for loan.
    208  */
    209 vaddr_t
    210 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    211 {
    212 	vaddr_t lva;
    213 
    214 	if (sokvareserve(so, len) == 0)
    215 		return 0;
    216 
    217 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    218 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    219 	if (lva == 0) {
    220 		sokvaunreserve(len);
    221 		return 0;
    222 	}
    223 
    224 	return lva;
    225 }
    226 
    227 /*
    228  * sokvafree: free kva for loan.
    229  */
    230 void
    231 sokvafree(vaddr_t sva, vsize_t len)
    232 {
    233 
    234 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    235 	sokvaunreserve(len);
    236 }
    237 
    238 static void
    239 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    240 {
    241 	vaddr_t sva, eva;
    242 	vsize_t len;
    243 	int npgs;
    244 
    245 	KASSERT(pgs != NULL);
    246 
    247 	eva = round_page((vaddr_t) buf + size);
    248 	sva = trunc_page((vaddr_t) buf);
    249 	len = eva - sva;
    250 	npgs = len >> PAGE_SHIFT;
    251 
    252 	pmap_kremove(sva, len);
    253 	pmap_update(pmap_kernel());
    254 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    255 	sokvafree(sva, len);
    256 }
    257 
    258 /*
    259  * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
    260  * so_pendfree_lock when freeing mbufs.
    261  */
    262 static void
    263 sopendfree_thread(void *v)
    264 {
    265 	struct mbuf *m, *next;
    266 	size_t rv;
    267 
    268 	mutex_enter(&so_pendfree_lock);
    269 
    270 	for (;;) {
    271 		rv = 0;
    272 		while (so_pendfree != NULL) {
    273 			m = so_pendfree;
    274 			so_pendfree = NULL;
    275 			mutex_exit(&so_pendfree_lock);
    276 
    277 			for (; m != NULL; m = next) {
    278 				next = m->m_next;
    279 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
    280 				    0);
    281 				KASSERT(m->m_ext.ext_refcnt == 0);
    282 
    283 				rv += m->m_ext.ext_size;
    284 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    285 				    m->m_ext.ext_size);
    286 				pool_cache_put(mb_cache, m);
    287 			}
    288 
    289 			mutex_enter(&so_pendfree_lock);
    290 		}
    291 		if (rv)
    292 			cv_broadcast(&socurkva_cv);
    293 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    294 	}
    295 	panic("sopendfree_thread");
    296 	/* NOTREACHED */
    297 }
    298 
    299 void
    300 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    301 {
    302 
    303 	KASSERT(m != NULL);
    304 
    305 	/*
    306 	 * postpone freeing mbuf.
    307 	 *
    308 	 * we can't do it in interrupt context
    309 	 * because we need to put kva back to kernel_map.
    310 	 */
    311 
    312 	mutex_enter(&so_pendfree_lock);
    313 	m->m_next = so_pendfree;
    314 	so_pendfree = m;
    315 	cv_signal(&pendfree_thread_cv);
    316 	mutex_exit(&so_pendfree_lock);
    317 }
    318 
    319 static long
    320 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    321 {
    322 	struct iovec *iov = uio->uio_iov;
    323 	vaddr_t sva, eva;
    324 	vsize_t len;
    325 	vaddr_t lva;
    326 	int npgs, error;
    327 	vaddr_t va;
    328 	int i;
    329 
    330 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    331 		return 0;
    332 
    333 	if (iov->iov_len < (size_t) space)
    334 		space = iov->iov_len;
    335 	if (space > SOCK_LOAN_CHUNK)
    336 		space = SOCK_LOAN_CHUNK;
    337 
    338 	eva = round_page((vaddr_t) iov->iov_base + space);
    339 	sva = trunc_page((vaddr_t) iov->iov_base);
    340 	len = eva - sva;
    341 	npgs = len >> PAGE_SHIFT;
    342 
    343 	KASSERT(npgs <= M_EXT_MAXPAGES);
    344 
    345 	lva = sokvaalloc(sva, len, so);
    346 	if (lva == 0)
    347 		return 0;
    348 
    349 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    350 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    351 	if (error) {
    352 		sokvafree(lva, len);
    353 		return 0;
    354 	}
    355 
    356 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    357 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    358 		    VM_PROT_READ, 0);
    359 	pmap_update(pmap_kernel());
    360 
    361 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    362 
    363 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    364 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    365 
    366 	uio->uio_resid -= space;
    367 	/* uio_offset not updated, not set/used for write(2) */
    368 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    369 	uio->uio_iov->iov_len -= space;
    370 	if (uio->uio_iov->iov_len == 0) {
    371 		uio->uio_iov++;
    372 		uio->uio_iovcnt--;
    373 	}
    374 
    375 	return space;
    376 }
    377 
    378 static int
    379 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    380     void *arg0, void *arg1, void *arg2, void *arg3)
    381 {
    382 	int result;
    383 	enum kauth_network_req req;
    384 
    385 	result = KAUTH_RESULT_DEFER;
    386 	req = (enum kauth_network_req)arg0;
    387 
    388 	if ((action != KAUTH_NETWORK_SOCKET) &&
    389 	    (action != KAUTH_NETWORK_BIND))
    390 		return result;
    391 
    392 	switch (req) {
    393 	case KAUTH_REQ_NETWORK_BIND_PORT:
    394 		result = KAUTH_RESULT_ALLOW;
    395 		break;
    396 
    397 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    398 		/* Normal users can only drop their own connections. */
    399 		struct socket *so = (struct socket *)arg1;
    400 
    401 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    402 			result = KAUTH_RESULT_ALLOW;
    403 
    404 		break;
    405 		}
    406 
    407 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    408 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    409 		switch ((u_long)arg1) {
    410 		case PF_ROUTE:
    411 		case PF_OROUTE:
    412 		case PF_BLUETOOTH:
    413 		case PF_CAN:
    414 			result = KAUTH_RESULT_ALLOW;
    415 			break;
    416 		default:
    417 			/* Privileged, let secmodel handle this. */
    418 			if ((u_long)arg2 == SOCK_RAW)
    419 				break;
    420 			result = KAUTH_RESULT_ALLOW;
    421 			break;
    422 		}
    423 		break;
    424 
    425 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    426 		result = KAUTH_RESULT_ALLOW;
    427 
    428 		break;
    429 
    430 	default:
    431 		break;
    432 	}
    433 
    434 	return result;
    435 }
    436 
    437 void
    438 soinit(void)
    439 {
    440 
    441 	sysctl_kern_socket_setup();
    442 
    443 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    444 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    445 	cv_init(&socurkva_cv, "sokva");
    446 	cv_init(&pendfree_thread_cv, "sopendfr");
    447 	soinit2();
    448 
    449 	/* Set the initial adjusted socket buffer size. */
    450 	if (sb_max_set(sb_max))
    451 		panic("bad initial sb_max value: %lu", sb_max);
    452 
    453 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    454 	    socket_listener_cb, NULL);
    455 }
    456 
    457 void
    458 soinit1(void)
    459 {
    460 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    461 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    462 	if (error)
    463 		panic("soinit1 %d", error);
    464 }
    465 
    466 /*
    467  * socreate: create a new socket of the specified type and the protocol.
    468  *
    469  * => Caller may specify another socket for lock sharing (must not be held).
    470  * => Returns the new socket without lock held.
    471  */
    472 int
    473 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    474     struct socket *lockso)
    475 {
    476 	const struct protosw *prp;
    477 	struct socket *so;
    478 	uid_t uid;
    479 	int error;
    480 	kmutex_t *lock;
    481 
    482 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    483 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    484 	    KAUTH_ARG(proto));
    485 	if (error != 0)
    486 		return error;
    487 
    488 	if (proto)
    489 		prp = pffindproto(dom, proto, type);
    490 	else
    491 		prp = pffindtype(dom, type);
    492 	if (prp == NULL) {
    493 		/* no support for domain */
    494 		if (pffinddomain(dom) == 0)
    495 			return EAFNOSUPPORT;
    496 		/* no support for socket type */
    497 		if (proto == 0 && type != 0)
    498 			return EPROTOTYPE;
    499 		return EPROTONOSUPPORT;
    500 	}
    501 	if (prp->pr_usrreqs == NULL)
    502 		return EPROTONOSUPPORT;
    503 	if (prp->pr_type != type)
    504 		return EPROTOTYPE;
    505 
    506 	so = soget(true);
    507 	so->so_type = type;
    508 	so->so_proto = prp;
    509 	so->so_send = sosend;
    510 	so->so_receive = soreceive;
    511 	so->so_options = sooptions;
    512 #ifdef MBUFTRACE
    513 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    514 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    515 	so->so_mowner = &prp->pr_domain->dom_mowner;
    516 #endif
    517 	uid = kauth_cred_geteuid(l->l_cred);
    518 	so->so_uidinfo = uid_find(uid);
    519 	so->so_cpid = l->l_proc->p_pid;
    520 
    521 	/*
    522 	 * Lock assigned and taken during PCB attach, unless we share
    523 	 * the lock with another socket, e.g. socketpair(2) case.
    524 	 */
    525 	if (lockso) {
    526 		lock = lockso->so_lock;
    527 		so->so_lock = lock;
    528 		mutex_obj_hold(lock);
    529 		mutex_enter(lock);
    530 	}
    531 
    532 	/* Attach the PCB (returns with the socket lock held). */
    533 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    534 	KASSERT(solocked(so));
    535 
    536 	if (error) {
    537 		KASSERT(so->so_pcb == NULL);
    538 		so->so_state |= SS_NOFDREF;
    539 		sofree(so);
    540 		return error;
    541 	}
    542 	so->so_cred = kauth_cred_dup(l->l_cred);
    543 	sounlock(so);
    544 
    545 	*aso = so;
    546 	return 0;
    547 }
    548 
    549 /*
    550  * fsocreate: create a socket and a file descriptor associated with it.
    551  *
    552  * => On success, write file descriptor to fdout and return zero.
    553  * => On failure, return non-zero; *fdout will be undefined.
    554  */
    555 int
    556 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    557 {
    558 	lwp_t *l = curlwp;
    559 	int error, fd, flags;
    560 	struct socket *so;
    561 	struct file *fp;
    562 
    563 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    564 		return error;
    565 	}
    566 	flags = type & SOCK_FLAGS_MASK;
    567 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    568 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    569 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    570 	fp->f_type = DTYPE_SOCKET;
    571 	fp->f_ops = &socketops;
    572 
    573 	type &= ~SOCK_FLAGS_MASK;
    574 	error = socreate(domain, &so, type, proto, l, NULL);
    575 	if (error) {
    576 		fd_abort(curproc, fp, fd);
    577 		return error;
    578 	}
    579 	if (flags & SOCK_NONBLOCK) {
    580 		so->so_state |= SS_NBIO;
    581 	}
    582 	fp->f_socket = so;
    583 	fd_affix(curproc, fp, fd);
    584 
    585 	if (sop != NULL) {
    586 		*sop = so;
    587 	}
    588 	*fdout = fd;
    589 	return error;
    590 }
    591 
    592 int
    593 sofamily(const struct socket *so)
    594 {
    595 	const struct protosw *pr;
    596 	const struct domain *dom;
    597 
    598 	if ((pr = so->so_proto) == NULL)
    599 		return AF_UNSPEC;
    600 	if ((dom = pr->pr_domain) == NULL)
    601 		return AF_UNSPEC;
    602 	return dom->dom_family;
    603 }
    604 
    605 int
    606 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    607 {
    608 	int error;
    609 
    610 	solock(so);
    611 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    612 		sounlock(so);
    613 		return EAFNOSUPPORT;
    614 	}
    615 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    616 	sounlock(so);
    617 	return error;
    618 }
    619 
    620 int
    621 solisten(struct socket *so, int backlog, struct lwp *l)
    622 {
    623 	int error;
    624 	short oldopt, oldqlimit;
    625 
    626 	solock(so);
    627 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    628 	    SS_ISDISCONNECTING)) != 0) {
    629 		sounlock(so);
    630 		return EINVAL;
    631 	}
    632 	oldopt = so->so_options;
    633 	oldqlimit = so->so_qlimit;
    634 	if (TAILQ_EMPTY(&so->so_q))
    635 		so->so_options |= SO_ACCEPTCONN;
    636 	if (backlog < 0)
    637 		backlog = 0;
    638 	so->so_qlimit = uimin(backlog, somaxconn);
    639 
    640 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    641 	if (error != 0) {
    642 		so->so_options = oldopt;
    643 		so->so_qlimit = oldqlimit;
    644 		sounlock(so);
    645 		return error;
    646 	}
    647 	sounlock(so);
    648 	return 0;
    649 }
    650 
    651 void
    652 sofree(struct socket *so)
    653 {
    654 	u_int refs;
    655 
    656 	KASSERT(solocked(so));
    657 
    658 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    659 		sounlock(so);
    660 		return;
    661 	}
    662 	if (so->so_head) {
    663 		/*
    664 		 * We must not decommission a socket that's on the accept(2)
    665 		 * queue.  If we do, then accept(2) may hang after select(2)
    666 		 * indicated that the listening socket was ready.
    667 		 */
    668 		if (!soqremque(so, 0)) {
    669 			sounlock(so);
    670 			return;
    671 		}
    672 	}
    673 	if (so->so_rcv.sb_hiwat)
    674 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    675 		    RLIM_INFINITY);
    676 	if (so->so_snd.sb_hiwat)
    677 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    678 		    RLIM_INFINITY);
    679 	sbrelease(&so->so_snd, so);
    680 	KASSERT(!cv_has_waiters(&so->so_cv));
    681 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    682 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    683 	sorflush(so);
    684 	refs = so->so_aborting;	/* XXX */
    685 	/* Remove acccept filter if one is present. */
    686 	if (so->so_accf != NULL)
    687 		(void)accept_filt_clear(so);
    688 	sounlock(so);
    689 	if (refs == 0)		/* XXX */
    690 		soput(so);
    691 }
    692 
    693 /*
    694  * soclose: close a socket on last file table reference removal.
    695  * Initiate disconnect if connected.  Free socket when disconnect complete.
    696  */
    697 int
    698 soclose(struct socket *so)
    699 {
    700 	struct socket *so2;
    701 	int error = 0;
    702 
    703 	solock(so);
    704 	if (so->so_options & SO_ACCEPTCONN) {
    705 		for (;;) {
    706 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    707 				KASSERT(solocked2(so, so2));
    708 				(void) soqremque(so2, 0);
    709 				/* soabort drops the lock. */
    710 				(void) soabort(so2);
    711 				solock(so);
    712 				continue;
    713 			}
    714 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    715 				KASSERT(solocked2(so, so2));
    716 				(void) soqremque(so2, 1);
    717 				/* soabort drops the lock. */
    718 				(void) soabort(so2);
    719 				solock(so);
    720 				continue;
    721 			}
    722 			break;
    723 		}
    724 	}
    725 	if (so->so_pcb == NULL)
    726 		goto discard;
    727 	if (so->so_state & SS_ISCONNECTED) {
    728 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    729 			error = sodisconnect(so);
    730 			if (error)
    731 				goto drop;
    732 		}
    733 		if (so->so_options & SO_LINGER) {
    734 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    735 			    (SS_ISDISCONNECTING|SS_NBIO))
    736 				goto drop;
    737 			while (so->so_state & SS_ISCONNECTED) {
    738 				error = sowait(so, true, so->so_linger * hz);
    739 				if (error)
    740 					break;
    741 			}
    742 		}
    743 	}
    744  drop:
    745 	if (so->so_pcb) {
    746 		KASSERT(solocked(so));
    747 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    748 	}
    749  discard:
    750 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    751 	kauth_cred_free(so->so_cred);
    752 	so->so_state |= SS_NOFDREF;
    753 	sofree(so);
    754 	return error;
    755 }
    756 
    757 /*
    758  * Must be called with the socket locked..  Will return with it unlocked.
    759  */
    760 int
    761 soabort(struct socket *so)
    762 {
    763 	u_int refs;
    764 	int error;
    765 
    766 	KASSERT(solocked(so));
    767 	KASSERT(so->so_head == NULL);
    768 
    769 	so->so_aborting++;		/* XXX */
    770 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    771 	refs = --so->so_aborting;	/* XXX */
    772 	if (error || (refs == 0)) {
    773 		sofree(so);
    774 	} else {
    775 		sounlock(so);
    776 	}
    777 	return error;
    778 }
    779 
    780 int
    781 soaccept(struct socket *so, struct sockaddr *nam)
    782 {
    783 	int error;
    784 
    785 	KASSERT(solocked(so));
    786 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    787 
    788 	so->so_state &= ~SS_NOFDREF;
    789 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    790 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    791 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    792 	else
    793 		error = ECONNABORTED;
    794 
    795 	return error;
    796 }
    797 
    798 int
    799 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    800 {
    801 	int error;
    802 
    803 	KASSERT(solocked(so));
    804 
    805 	if (so->so_options & SO_ACCEPTCONN)
    806 		return EOPNOTSUPP;
    807 	/*
    808 	 * If protocol is connection-based, can only connect once.
    809 	 * Otherwise, if connected, try to disconnect first.
    810 	 * This allows user to disconnect by connecting to, e.g.,
    811 	 * a null address.
    812 	 */
    813 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    814 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    815 	    (error = sodisconnect(so)))) {
    816 		error = EISCONN;
    817 	} else {
    818 		if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    819 			return EAFNOSUPPORT;
    820 		}
    821 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    822 	}
    823 
    824 	return error;
    825 }
    826 
    827 int
    828 soconnect2(struct socket *so1, struct socket *so2)
    829 {
    830 	KASSERT(solocked2(so1, so2));
    831 
    832 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    833 }
    834 
    835 int
    836 sodisconnect(struct socket *so)
    837 {
    838 	int error;
    839 
    840 	KASSERT(solocked(so));
    841 
    842 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    843 		error = ENOTCONN;
    844 	} else if (so->so_state & SS_ISDISCONNECTING) {
    845 		error = EALREADY;
    846 	} else {
    847 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    848 	}
    849 	return error;
    850 }
    851 
    852 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    853 /*
    854  * Send on a socket.
    855  * If send must go all at once and message is larger than
    856  * send buffering, then hard error.
    857  * Lock against other senders.
    858  * If must go all at once and not enough room now, then
    859  * inform user that this would block and do nothing.
    860  * Otherwise, if nonblocking, send as much as possible.
    861  * The data to be sent is described by "uio" if nonzero,
    862  * otherwise by the mbuf chain "top" (which must be null
    863  * if uio is not).  Data provided in mbuf chain must be small
    864  * enough to send all at once.
    865  *
    866  * Returns nonzero on error, timeout or signal; callers
    867  * must check for short counts if EINTR/ERESTART are returned.
    868  * Data and control buffers are freed on return.
    869  */
    870 int
    871 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
    872 	struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
    873 {
    874 	struct mbuf **mp, *m;
    875 	long space, len, resid, clen, mlen;
    876 	int error, s, dontroute, atomic;
    877 	short wakeup_state = 0;
    878 
    879 	clen = 0;
    880 
    881 	/*
    882 	 * solock() provides atomicity of access.  splsoftnet() prevents
    883 	 * protocol processing soft interrupts from interrupting us and
    884 	 * blocking (expensive).
    885 	 */
    886 	s = splsoftnet();
    887 	solock(so);
    888 	atomic = sosendallatonce(so) || top;
    889 	if (uio)
    890 		resid = uio->uio_resid;
    891 	else
    892 		resid = top->m_pkthdr.len;
    893 	/*
    894 	 * In theory resid should be unsigned.
    895 	 * However, space must be signed, as it might be less than 0
    896 	 * if we over-committed, and we must use a signed comparison
    897 	 * of space and resid.  On the other hand, a negative resid
    898 	 * causes us to loop sending 0-length segments to the protocol.
    899 	 */
    900 	if (resid < 0) {
    901 		error = EINVAL;
    902 		goto out;
    903 	}
    904 	dontroute =
    905 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    906 	    (so->so_proto->pr_flags & PR_ATOMIC);
    907 	l->l_ru.ru_msgsnd++;
    908 	if (control)
    909 		clen = control->m_len;
    910  restart:
    911 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    912 		goto out;
    913 	do {
    914 		if (so->so_state & SS_CANTSENDMORE) {
    915 			error = EPIPE;
    916 			goto release;
    917 		}
    918 		if (so->so_error) {
    919 			error = so->so_error;
    920 			so->so_error = 0;
    921 			goto release;
    922 		}
    923 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    924 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    925 				if (resid || clen == 0) {
    926 					error = ENOTCONN;
    927 					goto release;
    928 				}
    929 			} else if (addr == NULL) {
    930 				error = EDESTADDRREQ;
    931 				goto release;
    932 			}
    933 		}
    934 		space = sbspace(&so->so_snd);
    935 		if (flags & MSG_OOB)
    936 			space += 1024;
    937 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    938 		    clen > so->so_snd.sb_hiwat) {
    939 			error = EMSGSIZE;
    940 			goto release;
    941 		}
    942 		if (space < resid + clen &&
    943 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    944 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    945 				error = EWOULDBLOCK;
    946 				goto release;
    947 			}
    948 			sbunlock(&so->so_snd);
    949 			if (wakeup_state & SS_RESTARTSYS) {
    950 				error = ERESTART;
    951 				goto out;
    952 			}
    953 			error = sbwait(&so->so_snd);
    954 			if (error)
    955 				goto out;
    956 			wakeup_state = so->so_state;
    957 			goto restart;
    958 		}
    959 		wakeup_state = 0;
    960 		mp = &top;
    961 		space -= clen;
    962 		do {
    963 			if (uio == NULL) {
    964 				/*
    965 				 * Data is prepackaged in "top".
    966 				 */
    967 				resid = 0;
    968 				if (flags & MSG_EOR)
    969 					top->m_flags |= M_EOR;
    970 			} else do {
    971 				sounlock(so);
    972 				splx(s);
    973 				if (top == NULL) {
    974 					m = m_gethdr(M_WAIT, MT_DATA);
    975 					mlen = MHLEN;
    976 					m->m_pkthdr.len = 0;
    977 					m_reset_rcvif(m);
    978 				} else {
    979 					m = m_get(M_WAIT, MT_DATA);
    980 					mlen = MLEN;
    981 				}
    982 				MCLAIM(m, so->so_snd.sb_mowner);
    983 				if (sock_loan_thresh >= 0 &&
    984 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    985 				    space >= sock_loan_thresh &&
    986 				    (len = sosend_loan(so, uio, m,
    987 						       space)) != 0) {
    988 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    989 					space -= len;
    990 					goto have_data;
    991 				}
    992 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    993 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    994 					m_clget(m, M_DONTWAIT);
    995 					if ((m->m_flags & M_EXT) == 0)
    996 						goto nopages;
    997 					mlen = MCLBYTES;
    998 					if (atomic && top == 0) {
    999 						len = lmin(MCLBYTES - max_hdr,
   1000 						    resid);
   1001 						m->m_data += max_hdr;
   1002 					} else
   1003 						len = lmin(MCLBYTES, resid);
   1004 					space -= len;
   1005 				} else {
   1006  nopages:
   1007 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1008 					len = lmin(lmin(mlen, resid), space);
   1009 					space -= len;
   1010 					/*
   1011 					 * For datagram protocols, leave room
   1012 					 * for protocol headers in first mbuf.
   1013 					 */
   1014 					if (atomic && top == 0 && len < mlen)
   1015 						m_align(m, len);
   1016 				}
   1017 				error = uiomove(mtod(m, void *), (int)len, uio);
   1018  have_data:
   1019 				resid = uio->uio_resid;
   1020 				m->m_len = len;
   1021 				*mp = m;
   1022 				top->m_pkthdr.len += len;
   1023 				s = splsoftnet();
   1024 				solock(so);
   1025 				if (error != 0)
   1026 					goto release;
   1027 				mp = &m->m_next;
   1028 				if (resid <= 0) {
   1029 					if (flags & MSG_EOR)
   1030 						top->m_flags |= M_EOR;
   1031 					break;
   1032 				}
   1033 			} while (space > 0 && atomic);
   1034 
   1035 			if (so->so_state & SS_CANTSENDMORE) {
   1036 				error = EPIPE;
   1037 				goto release;
   1038 			}
   1039 			if (dontroute)
   1040 				so->so_options |= SO_DONTROUTE;
   1041 			if (resid > 0)
   1042 				so->so_state |= SS_MORETOCOME;
   1043 			if (flags & MSG_OOB) {
   1044 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
   1045 				    so, top, control);
   1046 			} else {
   1047 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1048 				    top, addr, control, l);
   1049 			}
   1050 			if (dontroute)
   1051 				so->so_options &= ~SO_DONTROUTE;
   1052 			if (resid > 0)
   1053 				so->so_state &= ~SS_MORETOCOME;
   1054 			clen = 0;
   1055 			control = NULL;
   1056 			top = NULL;
   1057 			mp = &top;
   1058 			if (error != 0)
   1059 				goto release;
   1060 		} while (resid && space > 0);
   1061 	} while (resid);
   1062 
   1063  release:
   1064 	sbunlock(&so->so_snd);
   1065  out:
   1066 	sounlock(so);
   1067 	splx(s);
   1068 	if (top)
   1069 		m_freem(top);
   1070 	if (control)
   1071 		m_freem(control);
   1072 	return error;
   1073 }
   1074 
   1075 /*
   1076  * Following replacement or removal of the first mbuf on the first
   1077  * mbuf chain of a socket buffer, push necessary state changes back
   1078  * into the socket buffer so that other consumers see the values
   1079  * consistently.  'nextrecord' is the caller's locally stored value of
   1080  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1081  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1082  */
   1083 static void
   1084 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1085 {
   1086 
   1087 	KASSERT(solocked(sb->sb_so));
   1088 
   1089 	/*
   1090 	 * First, update for the new value of nextrecord.  If necessary,
   1091 	 * make it the first record.
   1092 	 */
   1093 	if (sb->sb_mb != NULL)
   1094 		sb->sb_mb->m_nextpkt = nextrecord;
   1095 	else
   1096 		sb->sb_mb = nextrecord;
   1097 
   1098         /*
   1099          * Now update any dependent socket buffer fields to reflect
   1100          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1101          * the addition of a second clause that takes care of the
   1102          * case where sb_mb has been updated, but remains the last
   1103          * record.
   1104          */
   1105         if (sb->sb_mb == NULL) {
   1106                 sb->sb_mbtail = NULL;
   1107                 sb->sb_lastrecord = NULL;
   1108         } else if (sb->sb_mb->m_nextpkt == NULL)
   1109                 sb->sb_lastrecord = sb->sb_mb;
   1110 }
   1111 
   1112 /*
   1113  * Implement receive operations on a socket.
   1114  *
   1115  * We depend on the way that records are added to the sockbuf by sbappend*. In
   1116  * particular, each record (mbufs linked through m_next) must begin with an
   1117  * address if the protocol so specifies, followed by an optional mbuf or mbufs
   1118  * containing ancillary data, and then zero or more mbufs of data.
   1119  *
   1120  * In order to avoid blocking network interrupts for the entire time here, we
   1121  * splx() while doing the actual copy to user space. Although the sockbuf is
   1122  * locked, new data may still be appended, and thus we must maintain
   1123  * consistency of the sockbuf during that time.
   1124  *
   1125  * The caller may receive the data as a single mbuf chain by supplying an mbuf
   1126  * **mp0 for use in returning the chain. The uio is then used only for the
   1127  * count in uio_resid.
   1128  */
   1129 int
   1130 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1131     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1132 {
   1133 	struct lwp *l = curlwp;
   1134 	struct mbuf *m, **mp, *mt;
   1135 	size_t len, offset, moff, orig_resid;
   1136 	int atomic, flags, error, s, type;
   1137 	const struct protosw *pr;
   1138 	struct mbuf *nextrecord;
   1139 	int mbuf_removed = 0;
   1140 	const struct domain *dom;
   1141 	short wakeup_state = 0;
   1142 
   1143 	pr = so->so_proto;
   1144 	atomic = pr->pr_flags & PR_ATOMIC;
   1145 	dom = pr->pr_domain;
   1146 	mp = mp0;
   1147 	type = 0;
   1148 	orig_resid = uio->uio_resid;
   1149 
   1150 	if (paddr != NULL)
   1151 		*paddr = NULL;
   1152 	if (controlp != NULL)
   1153 		*controlp = NULL;
   1154 	if (flagsp != NULL)
   1155 		flags = *flagsp &~ MSG_EOR;
   1156 	else
   1157 		flags = 0;
   1158 
   1159 	if (flags & MSG_OOB) {
   1160 		m = m_get(M_WAIT, MT_DATA);
   1161 		solock(so);
   1162 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1163 		sounlock(so);
   1164 		if (error)
   1165 			goto bad;
   1166 		do {
   1167 			error = uiomove(mtod(m, void *),
   1168 			    MIN(uio->uio_resid, m->m_len), uio);
   1169 			m = m_free(m);
   1170 		} while (uio->uio_resid > 0 && error == 0 && m);
   1171 bad:
   1172 		if (m != NULL)
   1173 			m_freem(m);
   1174 		return error;
   1175 	}
   1176 	if (mp != NULL)
   1177 		*mp = NULL;
   1178 
   1179 	/*
   1180 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1181 	 * protocol processing soft interrupts from interrupting us and
   1182 	 * blocking (expensive).
   1183 	 */
   1184 	s = splsoftnet();
   1185 	solock(so);
   1186 restart:
   1187 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1188 		sounlock(so);
   1189 		splx(s);
   1190 		return error;
   1191 	}
   1192 	m = so->so_rcv.sb_mb;
   1193 
   1194 	/*
   1195 	 * If we have less data than requested, block awaiting more
   1196 	 * (subject to any timeout) if:
   1197 	 *   1. the current count is less than the low water mark,
   1198 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1199 	 *	receive operation at once if we block (resid <= hiwat), or
   1200 	 *   3. MSG_DONTWAIT is not set.
   1201 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1202 	 * we have to do the receive in sections, and thus risk returning
   1203 	 * a short count if a timeout or signal occurs after we start.
   1204 	 */
   1205 	if (m == NULL ||
   1206 	    ((flags & MSG_DONTWAIT) == 0 &&
   1207 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1208 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1209 	      ((flags & MSG_WAITALL) &&
   1210 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1211 	     m->m_nextpkt == NULL && !atomic)) {
   1212 #ifdef DIAGNOSTIC
   1213 		if (m == NULL && so->so_rcv.sb_cc)
   1214 			panic("receive 1");
   1215 #endif
   1216 		if (so->so_error || so->so_rerror) {
   1217 			if (m != NULL)
   1218 				goto dontblock;
   1219 			if (so->so_error) {
   1220 				error = so->so_error;
   1221 				so->so_error = 0;
   1222 			} else {
   1223 				error = so->so_rerror;
   1224 				so->so_rerror = 0;
   1225 			}
   1226 			goto release;
   1227 		}
   1228 		if (so->so_state & SS_CANTRCVMORE) {
   1229 			if (m != NULL)
   1230 				goto dontblock;
   1231 			else
   1232 				goto release;
   1233 		}
   1234 		for (; m != NULL; m = m->m_next)
   1235 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1236 				m = so->so_rcv.sb_mb;
   1237 				goto dontblock;
   1238 			}
   1239 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1240 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1241 			error = ENOTCONN;
   1242 			goto release;
   1243 		}
   1244 		if (uio->uio_resid == 0)
   1245 			goto release;
   1246 		if ((so->so_state & SS_NBIO) ||
   1247 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1248 			error = EWOULDBLOCK;
   1249 			goto release;
   1250 		}
   1251 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1252 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1253 		sbunlock(&so->so_rcv);
   1254 		if (wakeup_state & SS_RESTARTSYS)
   1255 			error = ERESTART;
   1256 		else
   1257 			error = sbwait(&so->so_rcv);
   1258 		if (error != 0) {
   1259 			sounlock(so);
   1260 			splx(s);
   1261 			return error;
   1262 		}
   1263 		wakeup_state = so->so_state;
   1264 		goto restart;
   1265 	}
   1266 
   1267 dontblock:
   1268 	/*
   1269 	 * On entry here, m points to the first record of the socket buffer.
   1270 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1271 	 * pointer to the next record in the socket buffer.  We must keep the
   1272 	 * various socket buffer pointers and local stack versions of the
   1273 	 * pointers in sync, pushing out modifications before dropping the
   1274 	 * socket lock, and re-reading them when picking it up.
   1275 	 *
   1276 	 * Otherwise, we will race with the network stack appending new data
   1277 	 * or records onto the socket buffer by using inconsistent/stale
   1278 	 * versions of the field, possibly resulting in socket buffer
   1279 	 * corruption.
   1280 	 *
   1281 	 * By holding the high-level sblock(), we prevent simultaneous
   1282 	 * readers from pulling off the front of the socket buffer.
   1283 	 */
   1284 	if (l != NULL)
   1285 		l->l_ru.ru_msgrcv++;
   1286 	KASSERT(m == so->so_rcv.sb_mb);
   1287 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1288 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1289 	nextrecord = m->m_nextpkt;
   1290 
   1291 	if (pr->pr_flags & PR_ADDR) {
   1292 		KASSERT(m->m_type == MT_SONAME);
   1293 		orig_resid = 0;
   1294 		if (flags & MSG_PEEK) {
   1295 			if (paddr)
   1296 				*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1297 			m = m->m_next;
   1298 		} else {
   1299 			sbfree(&so->so_rcv, m);
   1300 			mbuf_removed = 1;
   1301 			if (paddr != NULL) {
   1302 				*paddr = m;
   1303 				so->so_rcv.sb_mb = m->m_next;
   1304 				m->m_next = NULL;
   1305 				m = so->so_rcv.sb_mb;
   1306 			} else {
   1307 				m = so->so_rcv.sb_mb = m_free(m);
   1308 			}
   1309 			sbsync(&so->so_rcv, nextrecord);
   1310 		}
   1311 	}
   1312 
   1313 	if (pr->pr_flags & PR_ADDR_OPT) {
   1314 		/*
   1315 		 * For SCTP we may be getting a whole message OR a partial
   1316 		 * delivery.
   1317 		 */
   1318 		if (m->m_type == MT_SONAME) {
   1319 			orig_resid = 0;
   1320 			if (flags & MSG_PEEK) {
   1321 				if (paddr)
   1322 					*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1323 				m = m->m_next;
   1324 			} else {
   1325 				sbfree(&so->so_rcv, m);
   1326 				if (paddr) {
   1327 					*paddr = m;
   1328 					so->so_rcv.sb_mb = m->m_next;
   1329 					m->m_next = 0;
   1330 					m = so->so_rcv.sb_mb;
   1331 				} else {
   1332 					m = so->so_rcv.sb_mb = m_free(m);
   1333 				}
   1334 			}
   1335 		}
   1336 	}
   1337 
   1338 	/*
   1339 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1340 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1341 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1342 	 * perform externalization (or freeing if controlp == NULL).
   1343 	 */
   1344 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1345 		struct mbuf *cm = NULL, *cmn;
   1346 		struct mbuf **cme = &cm;
   1347 
   1348 		do {
   1349 			if (flags & MSG_PEEK) {
   1350 				if (controlp != NULL) {
   1351 					*controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1352 					controlp = &(*controlp)->m_next;
   1353 				}
   1354 				m = m->m_next;
   1355 			} else {
   1356 				sbfree(&so->so_rcv, m);
   1357 				so->so_rcv.sb_mb = m->m_next;
   1358 				m->m_next = NULL;
   1359 				*cme = m;
   1360 				cme = &(*cme)->m_next;
   1361 				m = so->so_rcv.sb_mb;
   1362 			}
   1363 		} while (m != NULL && m->m_type == MT_CONTROL);
   1364 		if ((flags & MSG_PEEK) == 0)
   1365 			sbsync(&so->so_rcv, nextrecord);
   1366 
   1367 		for (; cm != NULL; cm = cmn) {
   1368 			cmn = cm->m_next;
   1369 			cm->m_next = NULL;
   1370 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1371 			if (controlp != NULL) {
   1372 				if (dom->dom_externalize != NULL &&
   1373 				    type == SCM_RIGHTS) {
   1374 					sounlock(so);
   1375 					splx(s);
   1376 					error = (*dom->dom_externalize)(cm, l,
   1377 					    (flags & MSG_CMSG_CLOEXEC) ?
   1378 					    O_CLOEXEC : 0);
   1379 					s = splsoftnet();
   1380 					solock(so);
   1381 				}
   1382 				*controlp = cm;
   1383 				while (*controlp != NULL)
   1384 					controlp = &(*controlp)->m_next;
   1385 			} else {
   1386 				/*
   1387 				 * Dispose of any SCM_RIGHTS message that went
   1388 				 * through the read path rather than recv.
   1389 				 */
   1390 				if (dom->dom_dispose != NULL &&
   1391 				    type == SCM_RIGHTS) {
   1392 					sounlock(so);
   1393 					(*dom->dom_dispose)(cm);
   1394 					solock(so);
   1395 				}
   1396 				m_freem(cm);
   1397 			}
   1398 		}
   1399 		if (m != NULL)
   1400 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1401 		else
   1402 			nextrecord = so->so_rcv.sb_mb;
   1403 		orig_resid = 0;
   1404 	}
   1405 
   1406 	/* If m is non-NULL, we have some data to read. */
   1407 	if (__predict_true(m != NULL)) {
   1408 		type = m->m_type;
   1409 		if (type == MT_OOBDATA)
   1410 			flags |= MSG_OOB;
   1411 	}
   1412 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1413 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1414 
   1415 	moff = 0;
   1416 	offset = 0;
   1417 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1418 		/*
   1419 		 * If the type of mbuf has changed, end the receive
   1420 		 * operation and do a short read.
   1421 		 */
   1422 		if (m->m_type == MT_OOBDATA) {
   1423 			if (type != MT_OOBDATA)
   1424 				break;
   1425 		} else if (type == MT_OOBDATA) {
   1426 			break;
   1427 		} else if (m->m_type == MT_CONTROL) {
   1428 			break;
   1429 		}
   1430 #ifdef DIAGNOSTIC
   1431 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
   1432 			panic("%s: m_type=%d", __func__, m->m_type);
   1433 		}
   1434 #endif
   1435 
   1436 		so->so_state &= ~SS_RCVATMARK;
   1437 		wakeup_state = 0;
   1438 		len = uio->uio_resid;
   1439 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1440 			len = so->so_oobmark - offset;
   1441 		if (len > m->m_len - moff)
   1442 			len = m->m_len - moff;
   1443 
   1444 		/*
   1445 		 * If mp is set, just pass back the mbufs.
   1446 		 * Otherwise copy them out via the uio, then free.
   1447 		 * Sockbuf must be consistent here (points to current mbuf,
   1448 		 * it points to next record) when we drop priority;
   1449 		 * we must note any additions to the sockbuf when we
   1450 		 * block interrupts again.
   1451 		 */
   1452 		if (mp == NULL) {
   1453 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1454 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1455 			sounlock(so);
   1456 			splx(s);
   1457 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1458 			s = splsoftnet();
   1459 			solock(so);
   1460 			if (error != 0) {
   1461 				/*
   1462 				 * If any part of the record has been removed
   1463 				 * (such as the MT_SONAME mbuf, which will
   1464 				 * happen when PR_ADDR, and thus also
   1465 				 * PR_ATOMIC, is set), then drop the entire
   1466 				 * record to maintain the atomicity of the
   1467 				 * receive operation.
   1468 				 *
   1469 				 * This avoids a later panic("receive 1a")
   1470 				 * when compiled with DIAGNOSTIC.
   1471 				 */
   1472 				if (m && mbuf_removed && atomic)
   1473 					(void) sbdroprecord(&so->so_rcv);
   1474 
   1475 				goto release;
   1476 			}
   1477 		} else {
   1478 			uio->uio_resid -= len;
   1479 		}
   1480 
   1481 		if (len == m->m_len - moff) {
   1482 			if (m->m_flags & M_EOR)
   1483 				flags |= MSG_EOR;
   1484 #ifdef SCTP
   1485 			if (m->m_flags & M_NOTIFICATION)
   1486 				flags |= MSG_NOTIFICATION;
   1487 #endif
   1488 			if (flags & MSG_PEEK) {
   1489 				m = m->m_next;
   1490 				moff = 0;
   1491 			} else {
   1492 				nextrecord = m->m_nextpkt;
   1493 				sbfree(&so->so_rcv, m);
   1494 				if (mp) {
   1495 					*mp = m;
   1496 					mp = &m->m_next;
   1497 					so->so_rcv.sb_mb = m = m->m_next;
   1498 					*mp = NULL;
   1499 				} else {
   1500 					m = so->so_rcv.sb_mb = m_free(m);
   1501 				}
   1502 				/*
   1503 				 * If m != NULL, we also know that
   1504 				 * so->so_rcv.sb_mb != NULL.
   1505 				 */
   1506 				KASSERT(so->so_rcv.sb_mb == m);
   1507 				if (m) {
   1508 					m->m_nextpkt = nextrecord;
   1509 					if (nextrecord == NULL)
   1510 						so->so_rcv.sb_lastrecord = m;
   1511 				} else {
   1512 					so->so_rcv.sb_mb = nextrecord;
   1513 					SB_EMPTY_FIXUP(&so->so_rcv);
   1514 				}
   1515 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1516 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1517 			}
   1518 		} else if (flags & MSG_PEEK) {
   1519 			moff += len;
   1520 		} else {
   1521 			if (mp != NULL) {
   1522 				mt = m_copym(m, 0, len, M_NOWAIT);
   1523 				if (__predict_false(mt == NULL)) {
   1524 					sounlock(so);
   1525 					mt = m_copym(m, 0, len, M_WAIT);
   1526 					solock(so);
   1527 				}
   1528 				*mp = mt;
   1529 			}
   1530 			m->m_data += len;
   1531 			m->m_len -= len;
   1532 			so->so_rcv.sb_cc -= len;
   1533 		}
   1534 
   1535 		if (so->so_oobmark) {
   1536 			if ((flags & MSG_PEEK) == 0) {
   1537 				so->so_oobmark -= len;
   1538 				if (so->so_oobmark == 0) {
   1539 					so->so_state |= SS_RCVATMARK;
   1540 					break;
   1541 				}
   1542 			} else {
   1543 				offset += len;
   1544 				if (offset == so->so_oobmark)
   1545 					break;
   1546 			}
   1547 		}
   1548 		if (flags & MSG_EOR)
   1549 			break;
   1550 
   1551 		/*
   1552 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1553 		 * we must not quit until "uio->uio_resid == 0" or an error
   1554 		 * termination.  If a signal/timeout occurs, return
   1555 		 * with a short count but without error.
   1556 		 * Keep sockbuf locked against other readers.
   1557 		 */
   1558 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1559 		    !sosendallatonce(so) && !nextrecord) {
   1560 			if (so->so_error || so->so_rerror ||
   1561 			    so->so_state & SS_CANTRCVMORE)
   1562 				break;
   1563 			/*
   1564 			 * If we are peeking and the socket receive buffer is
   1565 			 * full, stop since we can't get more data to peek at.
   1566 			 */
   1567 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1568 				break;
   1569 			/*
   1570 			 * If we've drained the socket buffer, tell the
   1571 			 * protocol in case it needs to do something to
   1572 			 * get it filled again.
   1573 			 */
   1574 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1575 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1576 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1577 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1578 			if (wakeup_state & SS_RESTARTSYS)
   1579 				error = ERESTART;
   1580 			else
   1581 				error = sbwait(&so->so_rcv);
   1582 			if (error != 0) {
   1583 				sbunlock(&so->so_rcv);
   1584 				sounlock(so);
   1585 				splx(s);
   1586 				return 0;
   1587 			}
   1588 			if ((m = so->so_rcv.sb_mb) != NULL)
   1589 				nextrecord = m->m_nextpkt;
   1590 			wakeup_state = so->so_state;
   1591 		}
   1592 	}
   1593 
   1594 	if (m && atomic) {
   1595 		flags |= MSG_TRUNC;
   1596 		if ((flags & MSG_PEEK) == 0)
   1597 			(void) sbdroprecord(&so->so_rcv);
   1598 	}
   1599 	if ((flags & MSG_PEEK) == 0) {
   1600 		if (m == NULL) {
   1601 			/*
   1602 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1603 			 * part makes sure sb_lastrecord is up-to-date if
   1604 			 * there is still data in the socket buffer.
   1605 			 */
   1606 			so->so_rcv.sb_mb = nextrecord;
   1607 			if (so->so_rcv.sb_mb == NULL) {
   1608 				so->so_rcv.sb_mbtail = NULL;
   1609 				so->so_rcv.sb_lastrecord = NULL;
   1610 			} else if (nextrecord->m_nextpkt == NULL)
   1611 				so->so_rcv.sb_lastrecord = nextrecord;
   1612 		}
   1613 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1614 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1615 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1616 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1617 	}
   1618 	if (orig_resid == uio->uio_resid && orig_resid &&
   1619 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1620 		sbunlock(&so->so_rcv);
   1621 		goto restart;
   1622 	}
   1623 
   1624 	if (flagsp != NULL)
   1625 		*flagsp |= flags;
   1626 release:
   1627 	sbunlock(&so->so_rcv);
   1628 	sounlock(so);
   1629 	splx(s);
   1630 	return error;
   1631 }
   1632 
   1633 int
   1634 soshutdown(struct socket *so, int how)
   1635 {
   1636 	const struct protosw *pr;
   1637 	int error;
   1638 
   1639 	KASSERT(solocked(so));
   1640 
   1641 	pr = so->so_proto;
   1642 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1643 		return EINVAL;
   1644 
   1645 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1646 		sorflush(so);
   1647 		error = 0;
   1648 	}
   1649 	if (how == SHUT_WR || how == SHUT_RDWR)
   1650 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1651 
   1652 	return error;
   1653 }
   1654 
   1655 void
   1656 sorestart(struct socket *so)
   1657 {
   1658 	/*
   1659 	 * An application has called close() on an fd on which another
   1660 	 * of its threads has called a socket system call.
   1661 	 * Mark this and wake everyone up, and code that would block again
   1662 	 * instead returns ERESTART.
   1663 	 * On system call re-entry the fd is validated and EBADF returned.
   1664 	 * Any other fd will block again on the 2nd syscall.
   1665 	 */
   1666 	solock(so);
   1667 	so->so_state |= SS_RESTARTSYS;
   1668 	cv_broadcast(&so->so_cv);
   1669 	cv_broadcast(&so->so_snd.sb_cv);
   1670 	cv_broadcast(&so->so_rcv.sb_cv);
   1671 	sounlock(so);
   1672 }
   1673 
   1674 void
   1675 sorflush(struct socket *so)
   1676 {
   1677 	struct sockbuf *sb, asb;
   1678 	const struct protosw *pr;
   1679 
   1680 	KASSERT(solocked(so));
   1681 
   1682 	sb = &so->so_rcv;
   1683 	pr = so->so_proto;
   1684 	socantrcvmore(so);
   1685 	sb->sb_flags |= SB_NOINTR;
   1686 	(void )sblock(sb, M_WAITOK);
   1687 	sbunlock(sb);
   1688 	asb = *sb;
   1689 	/*
   1690 	 * Clear most of the sockbuf structure, but leave some of the
   1691 	 * fields valid.
   1692 	 */
   1693 	memset(&sb->sb_startzero, 0,
   1694 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1695 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1696 		sounlock(so);
   1697 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1698 		solock(so);
   1699 	}
   1700 	sbrelease(&asb, so);
   1701 }
   1702 
   1703 /*
   1704  * internal set SOL_SOCKET options
   1705  */
   1706 static int
   1707 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1708 {
   1709 	int error = EINVAL, opt;
   1710 	int optval = 0; /* XXX: gcc */
   1711 	struct linger l;
   1712 	struct timeval tv;
   1713 
   1714 	switch ((opt = sopt->sopt_name)) {
   1715 
   1716 	case SO_ACCEPTFILTER:
   1717 		error = accept_filt_setopt(so, sopt);
   1718 		KASSERT(solocked(so));
   1719 		break;
   1720 
   1721 	case SO_LINGER:
   1722 		error = sockopt_get(sopt, &l, sizeof(l));
   1723 		solock(so);
   1724 		if (error)
   1725 			break;
   1726 		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1727 		    l.l_linger > (INT_MAX / hz)) {
   1728 			error = EDOM;
   1729 			break;
   1730 		}
   1731 		so->so_linger = l.l_linger;
   1732 		if (l.l_onoff)
   1733 			so->so_options |= SO_LINGER;
   1734 		else
   1735 			so->so_options &= ~SO_LINGER;
   1736 		break;
   1737 
   1738 	case SO_DEBUG:
   1739 	case SO_KEEPALIVE:
   1740 	case SO_DONTROUTE:
   1741 	case SO_USELOOPBACK:
   1742 	case SO_BROADCAST:
   1743 	case SO_REUSEADDR:
   1744 	case SO_REUSEPORT:
   1745 	case SO_OOBINLINE:
   1746 	case SO_TIMESTAMP:
   1747 	case SO_NOSIGPIPE:
   1748 	case SO_RERROR:
   1749 #ifdef SO_OTIMESTAMP
   1750 	case SO_OTIMESTAMP:
   1751 #endif
   1752 		error = sockopt_getint(sopt, &optval);
   1753 		solock(so);
   1754 		if (error)
   1755 			break;
   1756 		if (optval)
   1757 			so->so_options |= opt;
   1758 		else
   1759 			so->so_options &= ~opt;
   1760 		break;
   1761 
   1762 	case SO_SNDBUF:
   1763 	case SO_RCVBUF:
   1764 	case SO_SNDLOWAT:
   1765 	case SO_RCVLOWAT:
   1766 		error = sockopt_getint(sopt, &optval);
   1767 		solock(so);
   1768 		if (error)
   1769 			break;
   1770 
   1771 		/*
   1772 		 * Values < 1 make no sense for any of these
   1773 		 * options, so disallow them.
   1774 		 */
   1775 		if (optval < 1) {
   1776 			error = EINVAL;
   1777 			break;
   1778 		}
   1779 
   1780 		switch (opt) {
   1781 		case SO_SNDBUF:
   1782 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1783 				error = ENOBUFS;
   1784 				break;
   1785 			}
   1786 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1787 			break;
   1788 
   1789 		case SO_RCVBUF:
   1790 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1791 				error = ENOBUFS;
   1792 				break;
   1793 			}
   1794 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1795 			break;
   1796 
   1797 		/*
   1798 		 * Make sure the low-water is never greater than
   1799 		 * the high-water.
   1800 		 */
   1801 		case SO_SNDLOWAT:
   1802 			if (optval > so->so_snd.sb_hiwat)
   1803 				optval = so->so_snd.sb_hiwat;
   1804 
   1805 			so->so_snd.sb_lowat = optval;
   1806 			break;
   1807 
   1808 		case SO_RCVLOWAT:
   1809 			if (optval > so->so_rcv.sb_hiwat)
   1810 				optval = so->so_rcv.sb_hiwat;
   1811 
   1812 			so->so_rcv.sb_lowat = optval;
   1813 			break;
   1814 		}
   1815 		break;
   1816 
   1817 #ifdef COMPAT_50
   1818 	case SO_OSNDTIMEO:
   1819 	case SO_ORCVTIMEO: {
   1820 		struct timeval50 otv;
   1821 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1822 		if (error) {
   1823 			solock(so);
   1824 			break;
   1825 		}
   1826 		timeval50_to_timeval(&otv, &tv);
   1827 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1828 		error = 0;
   1829 		/*FALLTHROUGH*/
   1830 	}
   1831 #endif /* COMPAT_50 */
   1832 
   1833 		/*FALLTHROUGH*/
   1834 	case SO_SNDTIMEO:
   1835 		/*FALLTHROUGH*/
   1836 	case SO_RCVTIMEO:
   1837 		if (error)
   1838 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1839 		solock(so);
   1840 		if (error)
   1841 			break;
   1842 
   1843 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1844 			error = EDOM;
   1845 			break;
   1846 		}
   1847 
   1848 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1849 		if (optval == 0 && tv.tv_usec != 0)
   1850 			optval = 1;
   1851 
   1852 		switch (opt) {
   1853 		case SO_SNDTIMEO:
   1854 			so->so_snd.sb_timeo = optval;
   1855 			break;
   1856 		case SO_RCVTIMEO:
   1857 			so->so_rcv.sb_timeo = optval;
   1858 			break;
   1859 		}
   1860 		break;
   1861 
   1862 	default:
   1863 		solock(so);
   1864 		error = ENOPROTOOPT;
   1865 		break;
   1866 	}
   1867 	KASSERT(solocked(so));
   1868 	return error;
   1869 }
   1870 
   1871 int
   1872 sosetopt(struct socket *so, struct sockopt *sopt)
   1873 {
   1874 	int error, prerr;
   1875 
   1876 	if (sopt->sopt_level == SOL_SOCKET) {
   1877 		error = sosetopt1(so, sopt);
   1878 		KASSERT(solocked(so));
   1879 	} else {
   1880 		error = ENOPROTOOPT;
   1881 		solock(so);
   1882 	}
   1883 
   1884 	if ((error == 0 || error == ENOPROTOOPT) &&
   1885 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1886 		/* give the protocol stack a shot */
   1887 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1888 		if (prerr == 0)
   1889 			error = 0;
   1890 		else if (prerr != ENOPROTOOPT)
   1891 			error = prerr;
   1892 	}
   1893 	sounlock(so);
   1894 	return error;
   1895 }
   1896 
   1897 /*
   1898  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1899  */
   1900 int
   1901 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1902     const void *val, size_t valsize)
   1903 {
   1904 	struct sockopt sopt;
   1905 	int error;
   1906 
   1907 	KASSERT(valsize == 0 || val != NULL);
   1908 
   1909 	sockopt_init(&sopt, level, name, valsize);
   1910 	sockopt_set(&sopt, val, valsize);
   1911 
   1912 	error = sosetopt(so, &sopt);
   1913 
   1914 	sockopt_destroy(&sopt);
   1915 
   1916 	return error;
   1917 }
   1918 
   1919 /*
   1920  * internal get SOL_SOCKET options
   1921  */
   1922 static int
   1923 sogetopt1(struct socket *so, struct sockopt *sopt)
   1924 {
   1925 	int error, optval, opt;
   1926 	struct linger l;
   1927 	struct timeval tv;
   1928 
   1929 	switch ((opt = sopt->sopt_name)) {
   1930 
   1931 	case SO_ACCEPTFILTER:
   1932 		error = accept_filt_getopt(so, sopt);
   1933 		break;
   1934 
   1935 	case SO_LINGER:
   1936 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1937 		l.l_linger = so->so_linger;
   1938 
   1939 		error = sockopt_set(sopt, &l, sizeof(l));
   1940 		break;
   1941 
   1942 	case SO_USELOOPBACK:
   1943 	case SO_DONTROUTE:
   1944 	case SO_DEBUG:
   1945 	case SO_KEEPALIVE:
   1946 	case SO_REUSEADDR:
   1947 	case SO_REUSEPORT:
   1948 	case SO_BROADCAST:
   1949 	case SO_OOBINLINE:
   1950 	case SO_TIMESTAMP:
   1951 	case SO_NOSIGPIPE:
   1952 	case SO_RERROR:
   1953 #ifdef SO_OTIMESTAMP
   1954 	case SO_OTIMESTAMP:
   1955 #endif
   1956 	case SO_ACCEPTCONN:
   1957 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1958 		break;
   1959 
   1960 	case SO_TYPE:
   1961 		error = sockopt_setint(sopt, so->so_type);
   1962 		break;
   1963 
   1964 	case SO_ERROR:
   1965 		if (so->so_error == 0) {
   1966 			so->so_error = so->so_rerror;
   1967 			so->so_rerror = 0;
   1968 		}
   1969 		error = sockopt_setint(sopt, so->so_error);
   1970 		so->so_error = 0;
   1971 		break;
   1972 
   1973 	case SO_SNDBUF:
   1974 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1975 		break;
   1976 
   1977 	case SO_RCVBUF:
   1978 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1979 		break;
   1980 
   1981 	case SO_SNDLOWAT:
   1982 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1983 		break;
   1984 
   1985 	case SO_RCVLOWAT:
   1986 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1987 		break;
   1988 
   1989 #ifdef COMPAT_50
   1990 	case SO_OSNDTIMEO:
   1991 	case SO_ORCVTIMEO: {
   1992 		struct timeval50 otv;
   1993 
   1994 		optval = (opt == SO_OSNDTIMEO ?
   1995 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1996 
   1997 		otv.tv_sec = optval / hz;
   1998 		otv.tv_usec = (optval % hz) * tick;
   1999 
   2000 		error = sockopt_set(sopt, &otv, sizeof(otv));
   2001 		break;
   2002 	}
   2003 #endif /* COMPAT_50 */
   2004 
   2005 	case SO_SNDTIMEO:
   2006 	case SO_RCVTIMEO:
   2007 		optval = (opt == SO_SNDTIMEO ?
   2008 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   2009 
   2010 		tv.tv_sec = optval / hz;
   2011 		tv.tv_usec = (optval % hz) * tick;
   2012 
   2013 		error = sockopt_set(sopt, &tv, sizeof(tv));
   2014 		break;
   2015 
   2016 	case SO_OVERFLOWED:
   2017 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   2018 		break;
   2019 
   2020 	default:
   2021 		error = ENOPROTOOPT;
   2022 		break;
   2023 	}
   2024 
   2025 	return error;
   2026 }
   2027 
   2028 int
   2029 sogetopt(struct socket *so, struct sockopt *sopt)
   2030 {
   2031 	int error;
   2032 
   2033 	solock(so);
   2034 	if (sopt->sopt_level != SOL_SOCKET) {
   2035 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2036 			error = ((*so->so_proto->pr_ctloutput)
   2037 			    (PRCO_GETOPT, so, sopt));
   2038 		} else
   2039 			error = (ENOPROTOOPT);
   2040 	} else {
   2041 		error = sogetopt1(so, sopt);
   2042 	}
   2043 	sounlock(so);
   2044 	return error;
   2045 }
   2046 
   2047 /*
   2048  * alloc sockopt data buffer buffer
   2049  *	- will be released at destroy
   2050  */
   2051 static int
   2052 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2053 {
   2054 
   2055 	KASSERT(sopt->sopt_size == 0);
   2056 
   2057 	if (len > sizeof(sopt->sopt_buf)) {
   2058 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2059 		if (sopt->sopt_data == NULL)
   2060 			return ENOMEM;
   2061 	} else
   2062 		sopt->sopt_data = sopt->sopt_buf;
   2063 
   2064 	sopt->sopt_size = len;
   2065 	return 0;
   2066 }
   2067 
   2068 /*
   2069  * initialise sockopt storage
   2070  *	- MAY sleep during allocation
   2071  */
   2072 void
   2073 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2074 {
   2075 
   2076 	memset(sopt, 0, sizeof(*sopt));
   2077 
   2078 	sopt->sopt_level = level;
   2079 	sopt->sopt_name = name;
   2080 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2081 }
   2082 
   2083 /*
   2084  * destroy sockopt storage
   2085  *	- will release any held memory references
   2086  */
   2087 void
   2088 sockopt_destroy(struct sockopt *sopt)
   2089 {
   2090 
   2091 	if (sopt->sopt_data != sopt->sopt_buf)
   2092 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2093 
   2094 	memset(sopt, 0, sizeof(*sopt));
   2095 }
   2096 
   2097 /*
   2098  * set sockopt value
   2099  *	- value is copied into sockopt
   2100  *	- memory is allocated when necessary, will not sleep
   2101  */
   2102 int
   2103 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2104 {
   2105 	int error;
   2106 
   2107 	if (sopt->sopt_size == 0) {
   2108 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2109 		if (error)
   2110 			return error;
   2111 	}
   2112 
   2113 	if (sopt->sopt_size < len)
   2114 		return EINVAL;
   2115 
   2116 	memcpy(sopt->sopt_data, buf, len);
   2117 	sopt->sopt_retsize = len;
   2118 
   2119 	return 0;
   2120 }
   2121 
   2122 /*
   2123  * common case of set sockopt integer value
   2124  */
   2125 int
   2126 sockopt_setint(struct sockopt *sopt, int val)
   2127 {
   2128 
   2129 	return sockopt_set(sopt, &val, sizeof(int));
   2130 }
   2131 
   2132 /*
   2133  * get sockopt value
   2134  *	- correct size must be given
   2135  */
   2136 int
   2137 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2138 {
   2139 
   2140 	if (sopt->sopt_size != len)
   2141 		return EINVAL;
   2142 
   2143 	memcpy(buf, sopt->sopt_data, len);
   2144 	return 0;
   2145 }
   2146 
   2147 /*
   2148  * common case of get sockopt integer value
   2149  */
   2150 int
   2151 sockopt_getint(const struct sockopt *sopt, int *valp)
   2152 {
   2153 
   2154 	return sockopt_get(sopt, valp, sizeof(int));
   2155 }
   2156 
   2157 /*
   2158  * set sockopt value from mbuf
   2159  *	- ONLY for legacy code
   2160  *	- mbuf is released by sockopt
   2161  *	- will not sleep
   2162  */
   2163 int
   2164 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2165 {
   2166 	size_t len;
   2167 	int error;
   2168 
   2169 	len = m_length(m);
   2170 
   2171 	if (sopt->sopt_size == 0) {
   2172 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2173 		if (error)
   2174 			return error;
   2175 	}
   2176 
   2177 	if (sopt->sopt_size < len)
   2178 		return EINVAL;
   2179 
   2180 	m_copydata(m, 0, len, sopt->sopt_data);
   2181 	m_freem(m);
   2182 	sopt->sopt_retsize = len;
   2183 
   2184 	return 0;
   2185 }
   2186 
   2187 /*
   2188  * get sockopt value into mbuf
   2189  *	- ONLY for legacy code
   2190  *	- mbuf to be released by the caller
   2191  *	- will not sleep
   2192  */
   2193 struct mbuf *
   2194 sockopt_getmbuf(const struct sockopt *sopt)
   2195 {
   2196 	struct mbuf *m;
   2197 
   2198 	if (sopt->sopt_size > MCLBYTES)
   2199 		return NULL;
   2200 
   2201 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2202 	if (m == NULL)
   2203 		return NULL;
   2204 
   2205 	if (sopt->sopt_size > MLEN) {
   2206 		MCLGET(m, M_DONTWAIT);
   2207 		if ((m->m_flags & M_EXT) == 0) {
   2208 			m_free(m);
   2209 			return NULL;
   2210 		}
   2211 	}
   2212 
   2213 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2214 	m->m_len = sopt->sopt_size;
   2215 
   2216 	return m;
   2217 }
   2218 
   2219 void
   2220 sohasoutofband(struct socket *so)
   2221 {
   2222 
   2223 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2224 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2225 }
   2226 
   2227 static void
   2228 filt_sordetach(struct knote *kn)
   2229 {
   2230 	struct socket *so;
   2231 
   2232 	so = ((file_t *)kn->kn_obj)->f_socket;
   2233 	solock(so);
   2234 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2235 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2236 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2237 	sounlock(so);
   2238 }
   2239 
   2240 /*ARGSUSED*/
   2241 static int
   2242 filt_soread(struct knote *kn, long hint)
   2243 {
   2244 	struct socket *so;
   2245 	int rv;
   2246 
   2247 	so = ((file_t *)kn->kn_obj)->f_socket;
   2248 	if (hint != NOTE_SUBMIT)
   2249 		solock(so);
   2250 	kn->kn_data = so->so_rcv.sb_cc;
   2251 	if (so->so_state & SS_CANTRCVMORE) {
   2252 		kn->kn_flags |= EV_EOF;
   2253 		kn->kn_fflags = so->so_error;
   2254 		rv = 1;
   2255 	} else if (so->so_error || so->so_rerror)
   2256 		rv = 1;
   2257 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2258 		rv = (kn->kn_data >= kn->kn_sdata);
   2259 	else
   2260 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2261 	if (hint != NOTE_SUBMIT)
   2262 		sounlock(so);
   2263 	return rv;
   2264 }
   2265 
   2266 static void
   2267 filt_sowdetach(struct knote *kn)
   2268 {
   2269 	struct socket *so;
   2270 
   2271 	so = ((file_t *)kn->kn_obj)->f_socket;
   2272 	solock(so);
   2273 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2274 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2275 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2276 	sounlock(so);
   2277 }
   2278 
   2279 /*ARGSUSED*/
   2280 static int
   2281 filt_sowrite(struct knote *kn, long hint)
   2282 {
   2283 	struct socket *so;
   2284 	int rv;
   2285 
   2286 	so = ((file_t *)kn->kn_obj)->f_socket;
   2287 	if (hint != NOTE_SUBMIT)
   2288 		solock(so);
   2289 	kn->kn_data = sbspace(&so->so_snd);
   2290 	if (so->so_state & SS_CANTSENDMORE) {
   2291 		kn->kn_flags |= EV_EOF;
   2292 		kn->kn_fflags = so->so_error;
   2293 		rv = 1;
   2294 	} else if (so->so_error)
   2295 		rv = 1;
   2296 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2297 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2298 		rv = 0;
   2299 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2300 		rv = (kn->kn_data >= kn->kn_sdata);
   2301 	else
   2302 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2303 	if (hint != NOTE_SUBMIT)
   2304 		sounlock(so);
   2305 	return rv;
   2306 }
   2307 
   2308 /*ARGSUSED*/
   2309 static int
   2310 filt_solisten(struct knote *kn, long hint)
   2311 {
   2312 	struct socket *so;
   2313 	int rv;
   2314 
   2315 	so = ((file_t *)kn->kn_obj)->f_socket;
   2316 
   2317 	/*
   2318 	 * Set kn_data to number of incoming connections, not
   2319 	 * counting partial (incomplete) connections.
   2320 	 */
   2321 	if (hint != NOTE_SUBMIT)
   2322 		solock(so);
   2323 	kn->kn_data = so->so_qlen;
   2324 	rv = (kn->kn_data > 0);
   2325 	if (hint != NOTE_SUBMIT)
   2326 		sounlock(so);
   2327 	return rv;
   2328 }
   2329 
   2330 static const struct filterops solisten_filtops = {
   2331 	.f_isfd = 1,
   2332 	.f_attach = NULL,
   2333 	.f_detach = filt_sordetach,
   2334 	.f_event = filt_solisten,
   2335 };
   2336 
   2337 static const struct filterops soread_filtops = {
   2338 	.f_isfd = 1,
   2339 	.f_attach = NULL,
   2340 	.f_detach = filt_sordetach,
   2341 	.f_event = filt_soread,
   2342 };
   2343 
   2344 static const struct filterops sowrite_filtops = {
   2345 	.f_isfd = 1,
   2346 	.f_attach = NULL,
   2347 	.f_detach = filt_sowdetach,
   2348 	.f_event = filt_sowrite,
   2349 };
   2350 
   2351 int
   2352 soo_kqfilter(struct file *fp, struct knote *kn)
   2353 {
   2354 	struct socket *so;
   2355 	struct sockbuf *sb;
   2356 
   2357 	so = ((file_t *)kn->kn_obj)->f_socket;
   2358 	solock(so);
   2359 	switch (kn->kn_filter) {
   2360 	case EVFILT_READ:
   2361 		if (so->so_options & SO_ACCEPTCONN)
   2362 			kn->kn_fop = &solisten_filtops;
   2363 		else
   2364 			kn->kn_fop = &soread_filtops;
   2365 		sb = &so->so_rcv;
   2366 		break;
   2367 	case EVFILT_WRITE:
   2368 		kn->kn_fop = &sowrite_filtops;
   2369 		sb = &so->so_snd;
   2370 		break;
   2371 	default:
   2372 		sounlock(so);
   2373 		return EINVAL;
   2374 	}
   2375 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2376 	sb->sb_flags |= SB_KNOTE;
   2377 	sounlock(so);
   2378 	return 0;
   2379 }
   2380 
   2381 static int
   2382 sodopoll(struct socket *so, int events)
   2383 {
   2384 	int revents;
   2385 
   2386 	revents = 0;
   2387 
   2388 	if (events & (POLLIN | POLLRDNORM))
   2389 		if (soreadable(so))
   2390 			revents |= events & (POLLIN | POLLRDNORM);
   2391 
   2392 	if (events & (POLLOUT | POLLWRNORM))
   2393 		if (sowritable(so))
   2394 			revents |= events & (POLLOUT | POLLWRNORM);
   2395 
   2396 	if (events & (POLLPRI | POLLRDBAND))
   2397 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2398 			revents |= events & (POLLPRI | POLLRDBAND);
   2399 
   2400 	return revents;
   2401 }
   2402 
   2403 int
   2404 sopoll(struct socket *so, int events)
   2405 {
   2406 	int revents = 0;
   2407 
   2408 #ifndef DIAGNOSTIC
   2409 	/*
   2410 	 * Do a quick, unlocked check in expectation that the socket
   2411 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2412 	 * as the solocked() assertions will fail.
   2413 	 */
   2414 	if ((revents = sodopoll(so, events)) != 0)
   2415 		return revents;
   2416 #endif
   2417 
   2418 	solock(so);
   2419 	if ((revents = sodopoll(so, events)) == 0) {
   2420 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2421 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2422 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2423 		}
   2424 
   2425 		if (events & (POLLOUT | POLLWRNORM)) {
   2426 			selrecord(curlwp, &so->so_snd.sb_sel);
   2427 			so->so_snd.sb_flags |= SB_NOTIFY;
   2428 		}
   2429 	}
   2430 	sounlock(so);
   2431 
   2432 	return revents;
   2433 }
   2434 
   2435 struct mbuf **
   2436 sbsavetimestamp(int opt, struct mbuf **mp)
   2437 {
   2438 	struct timeval tv;
   2439 	microtime(&tv);
   2440 
   2441 #ifdef SO_OTIMESTAMP
   2442 	if (opt & SO_OTIMESTAMP) {
   2443 		struct timeval50 tv50;
   2444 
   2445 		timeval_to_timeval50(&tv, &tv50);
   2446 		*mp = sbcreatecontrol(&tv50, sizeof(tv50),
   2447 		    SCM_OTIMESTAMP, SOL_SOCKET);
   2448 		if (*mp)
   2449 			mp = &(*mp)->m_next;
   2450 	} else
   2451 #endif
   2452 
   2453 	if (opt & SO_TIMESTAMP) {
   2454 		*mp = sbcreatecontrol(&tv, sizeof(tv),
   2455 		    SCM_TIMESTAMP, SOL_SOCKET);
   2456 		if (*mp)
   2457 			mp = &(*mp)->m_next;
   2458 	}
   2459 	return mp;
   2460 }
   2461 
   2462 
   2463 #include <sys/sysctl.h>
   2464 
   2465 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2466 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2467 
   2468 /*
   2469  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2470  * value is not too small.
   2471  * (XXX should we maybe make sure it's not too large as well?)
   2472  */
   2473 static int
   2474 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2475 {
   2476 	int error, new_somaxkva;
   2477 	struct sysctlnode node;
   2478 
   2479 	new_somaxkva = somaxkva;
   2480 	node = *rnode;
   2481 	node.sysctl_data = &new_somaxkva;
   2482 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2483 	if (error || newp == NULL)
   2484 		return error;
   2485 
   2486 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2487 		return EINVAL;
   2488 
   2489 	mutex_enter(&so_pendfree_lock);
   2490 	somaxkva = new_somaxkva;
   2491 	cv_broadcast(&socurkva_cv);
   2492 	mutex_exit(&so_pendfree_lock);
   2493 
   2494 	return error;
   2495 }
   2496 
   2497 /*
   2498  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2499  * any new value is not too small.
   2500  */
   2501 static int
   2502 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2503 {
   2504 	int error, new_sbmax;
   2505 	struct sysctlnode node;
   2506 
   2507 	new_sbmax = sb_max;
   2508 	node = *rnode;
   2509 	node.sysctl_data = &new_sbmax;
   2510 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2511 	if (error || newp == NULL)
   2512 		return error;
   2513 
   2514 	KERNEL_LOCK(1, NULL);
   2515 	error = sb_max_set(new_sbmax);
   2516 	KERNEL_UNLOCK_ONE(NULL);
   2517 
   2518 	return error;
   2519 }
   2520 
   2521 /*
   2522  * sysctl helper routine for kern.sooptions. Ensures that only allowed
   2523  * options can be set.
   2524  */
   2525 static int
   2526 sysctl_kern_sooptions(SYSCTLFN_ARGS)
   2527 {
   2528 	int error, new_options;
   2529 	struct sysctlnode node;
   2530 
   2531 	new_options = sooptions;
   2532 	node = *rnode;
   2533 	node.sysctl_data = &new_options;
   2534 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2535 	if (error || newp == NULL)
   2536 		return error;
   2537 
   2538 	if (new_options & ~SO_DEFOPTS)
   2539 		return EINVAL;
   2540 
   2541 	sooptions = new_options;
   2542 
   2543 	return 0;
   2544 }
   2545 
   2546 static void
   2547 sysctl_kern_socket_setup(void)
   2548 {
   2549 
   2550 	KASSERT(socket_sysctllog == NULL);
   2551 
   2552 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2553 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2554 		       CTLTYPE_INT, "somaxkva",
   2555 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2556 		                    "used for socket buffers"),
   2557 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2558 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2559 
   2560 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2561 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2562 		       CTLTYPE_INT, "sbmax",
   2563 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2564 		       sysctl_kern_sbmax, 0, NULL, 0,
   2565 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2566 
   2567 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2568 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2569 		       CTLTYPE_INT, "sooptions",
   2570 		       SYSCTL_DESCR("Default socket options"),
   2571 		       sysctl_kern_sooptions, 0, NULL, 0,
   2572 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   2573 }
   2574