uipc_socket.c revision 1.273 1 /* $NetBSD: uipc_socket.c,v 1.273 2019/04/08 18:38:45 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.273 2019/04/08 18:38:45 maxv Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #include "opt_sctp.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/file.h>
90 #include <sys/filedesc.h>
91 #include <sys/kmem.h>
92 #include <sys/mbuf.h>
93 #include <sys/domain.h>
94 #include <sys/kernel.h>
95 #include <sys/protosw.h>
96 #include <sys/socket.h>
97 #include <sys/socketvar.h>
98 #include <sys/signalvar.h>
99 #include <sys/resourcevar.h>
100 #include <sys/uidinfo.h>
101 #include <sys/event.h>
102 #include <sys/poll.h>
103 #include <sys/kauth.h>
104 #include <sys/mutex.h>
105 #include <sys/condvar.h>
106 #include <sys/kthread.h>
107
108 #ifdef COMPAT_50
109 #include <compat/sys/time.h>
110 #include <compat/sys/socket.h>
111 #endif
112
113 #include <uvm/uvm_extern.h>
114 #include <uvm/uvm_loan.h>
115 #include <uvm/uvm_page.h>
116
117 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
118
119 extern const struct fileops socketops;
120
121 static int sooptions;
122 extern int somaxconn; /* patchable (XXX sysctl) */
123 int somaxconn = SOMAXCONN;
124 kmutex_t *softnet_lock;
125
126 #ifdef SOSEND_COUNTERS
127 #include <sys/device.h>
128
129 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "loan big");
131 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "copy big");
133 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
134 NULL, "sosend", "copy small");
135 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
136 NULL, "sosend", "kva limit");
137
138 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
139
140 EVCNT_ATTACH_STATIC(sosend_loan_big);
141 EVCNT_ATTACH_STATIC(sosend_copy_big);
142 EVCNT_ATTACH_STATIC(sosend_copy_small);
143 EVCNT_ATTACH_STATIC(sosend_kvalimit);
144 #else
145
146 #define SOSEND_COUNTER_INCR(ev) /* nothing */
147
148 #endif /* SOSEND_COUNTERS */
149
150 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
151 int sock_loan_thresh = -1;
152 #else
153 int sock_loan_thresh = 4096;
154 #endif
155
156 static kmutex_t so_pendfree_lock;
157 static struct mbuf *so_pendfree = NULL;
158
159 #ifndef SOMAXKVA
160 #define SOMAXKVA (16 * 1024 * 1024)
161 #endif
162 int somaxkva = SOMAXKVA;
163 static int socurkva;
164 static kcondvar_t socurkva_cv;
165
166 static kauth_listener_t socket_listener;
167
168 #define SOCK_LOAN_CHUNK 65536
169
170 static void sopendfree_thread(void *);
171 static kcondvar_t pendfree_thread_cv;
172 static lwp_t *sopendfree_lwp;
173
174 static void sysctl_kern_socket_setup(void);
175 static struct sysctllog *socket_sysctllog;
176
177 static vsize_t
178 sokvareserve(struct socket *so, vsize_t len)
179 {
180 int error;
181
182 mutex_enter(&so_pendfree_lock);
183 while (socurkva + len > somaxkva) {
184 SOSEND_COUNTER_INCR(&sosend_kvalimit);
185 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
186 if (error) {
187 len = 0;
188 break;
189 }
190 }
191 socurkva += len;
192 mutex_exit(&so_pendfree_lock);
193 return len;
194 }
195
196 static void
197 sokvaunreserve(vsize_t len)
198 {
199
200 mutex_enter(&so_pendfree_lock);
201 socurkva -= len;
202 cv_broadcast(&socurkva_cv);
203 mutex_exit(&so_pendfree_lock);
204 }
205
206 /*
207 * sokvaalloc: allocate kva for loan.
208 */
209 vaddr_t
210 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
211 {
212 vaddr_t lva;
213
214 if (sokvareserve(so, len) == 0)
215 return 0;
216
217 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
218 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
219 if (lva == 0) {
220 sokvaunreserve(len);
221 return 0;
222 }
223
224 return lva;
225 }
226
227 /*
228 * sokvafree: free kva for loan.
229 */
230 void
231 sokvafree(vaddr_t sva, vsize_t len)
232 {
233
234 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
235 sokvaunreserve(len);
236 }
237
238 static void
239 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
240 {
241 vaddr_t sva, eva;
242 vsize_t len;
243 int npgs;
244
245 KASSERT(pgs != NULL);
246
247 eva = round_page((vaddr_t) buf + size);
248 sva = trunc_page((vaddr_t) buf);
249 len = eva - sva;
250 npgs = len >> PAGE_SHIFT;
251
252 pmap_kremove(sva, len);
253 pmap_update(pmap_kernel());
254 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
255 sokvafree(sva, len);
256 }
257
258 /*
259 * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
260 * so_pendfree_lock when freeing mbufs.
261 */
262 static void
263 sopendfree_thread(void *v)
264 {
265 struct mbuf *m, *next;
266 size_t rv;
267
268 mutex_enter(&so_pendfree_lock);
269
270 for (;;) {
271 rv = 0;
272 while (so_pendfree != NULL) {
273 m = so_pendfree;
274 so_pendfree = NULL;
275 mutex_exit(&so_pendfree_lock);
276
277 for (; m != NULL; m = next) {
278 next = m->m_next;
279 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
280 0);
281 KASSERT(m->m_ext.ext_refcnt == 0);
282
283 rv += m->m_ext.ext_size;
284 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
285 m->m_ext.ext_size);
286 pool_cache_put(mb_cache, m);
287 }
288
289 mutex_enter(&so_pendfree_lock);
290 }
291 if (rv)
292 cv_broadcast(&socurkva_cv);
293 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
294 }
295 panic("sopendfree_thread");
296 /* NOTREACHED */
297 }
298
299 void
300 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
301 {
302
303 KASSERT(m != NULL);
304
305 /*
306 * postpone freeing mbuf.
307 *
308 * we can't do it in interrupt context
309 * because we need to put kva back to kernel_map.
310 */
311
312 mutex_enter(&so_pendfree_lock);
313 m->m_next = so_pendfree;
314 so_pendfree = m;
315 cv_signal(&pendfree_thread_cv);
316 mutex_exit(&so_pendfree_lock);
317 }
318
319 static long
320 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
321 {
322 struct iovec *iov = uio->uio_iov;
323 vaddr_t sva, eva;
324 vsize_t len;
325 vaddr_t lva;
326 int npgs, error;
327 vaddr_t va;
328 int i;
329
330 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
331 return 0;
332
333 if (iov->iov_len < (size_t) space)
334 space = iov->iov_len;
335 if (space > SOCK_LOAN_CHUNK)
336 space = SOCK_LOAN_CHUNK;
337
338 eva = round_page((vaddr_t) iov->iov_base + space);
339 sva = trunc_page((vaddr_t) iov->iov_base);
340 len = eva - sva;
341 npgs = len >> PAGE_SHIFT;
342
343 KASSERT(npgs <= M_EXT_MAXPAGES);
344
345 lva = sokvaalloc(sva, len, so);
346 if (lva == 0)
347 return 0;
348
349 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
350 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
351 if (error) {
352 sokvafree(lva, len);
353 return 0;
354 }
355
356 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
357 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
358 VM_PROT_READ, 0);
359 pmap_update(pmap_kernel());
360
361 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
362
363 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
364 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
365
366 uio->uio_resid -= space;
367 /* uio_offset not updated, not set/used for write(2) */
368 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
369 uio->uio_iov->iov_len -= space;
370 if (uio->uio_iov->iov_len == 0) {
371 uio->uio_iov++;
372 uio->uio_iovcnt--;
373 }
374
375 return space;
376 }
377
378 static int
379 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
380 void *arg0, void *arg1, void *arg2, void *arg3)
381 {
382 int result;
383 enum kauth_network_req req;
384
385 result = KAUTH_RESULT_DEFER;
386 req = (enum kauth_network_req)arg0;
387
388 if ((action != KAUTH_NETWORK_SOCKET) &&
389 (action != KAUTH_NETWORK_BIND))
390 return result;
391
392 switch (req) {
393 case KAUTH_REQ_NETWORK_BIND_PORT:
394 result = KAUTH_RESULT_ALLOW;
395 break;
396
397 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
398 /* Normal users can only drop their own connections. */
399 struct socket *so = (struct socket *)arg1;
400
401 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
402 result = KAUTH_RESULT_ALLOW;
403
404 break;
405 }
406
407 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
408 /* We allow "raw" routing/bluetooth sockets to anyone. */
409 switch ((u_long)arg1) {
410 case PF_ROUTE:
411 case PF_OROUTE:
412 case PF_BLUETOOTH:
413 case PF_CAN:
414 result = KAUTH_RESULT_ALLOW;
415 break;
416 default:
417 /* Privileged, let secmodel handle this. */
418 if ((u_long)arg2 == SOCK_RAW)
419 break;
420 result = KAUTH_RESULT_ALLOW;
421 break;
422 }
423 break;
424
425 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
426 result = KAUTH_RESULT_ALLOW;
427
428 break;
429
430 default:
431 break;
432 }
433
434 return result;
435 }
436
437 void
438 soinit(void)
439 {
440
441 sysctl_kern_socket_setup();
442
443 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
444 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
445 cv_init(&socurkva_cv, "sokva");
446 cv_init(&pendfree_thread_cv, "sopendfr");
447 soinit2();
448
449 /* Set the initial adjusted socket buffer size. */
450 if (sb_max_set(sb_max))
451 panic("bad initial sb_max value: %lu", sb_max);
452
453 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
454 socket_listener_cb, NULL);
455 }
456
457 void
458 soinit1(void)
459 {
460 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
461 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
462 if (error)
463 panic("soinit1 %d", error);
464 }
465
466 /*
467 * socreate: create a new socket of the specified type and the protocol.
468 *
469 * => Caller may specify another socket for lock sharing (must not be held).
470 * => Returns the new socket without lock held.
471 */
472 int
473 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
474 struct socket *lockso)
475 {
476 const struct protosw *prp;
477 struct socket *so;
478 uid_t uid;
479 int error;
480 kmutex_t *lock;
481
482 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
483 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
484 KAUTH_ARG(proto));
485 if (error != 0)
486 return error;
487
488 if (proto)
489 prp = pffindproto(dom, proto, type);
490 else
491 prp = pffindtype(dom, type);
492 if (prp == NULL) {
493 /* no support for domain */
494 if (pffinddomain(dom) == 0)
495 return EAFNOSUPPORT;
496 /* no support for socket type */
497 if (proto == 0 && type != 0)
498 return EPROTOTYPE;
499 return EPROTONOSUPPORT;
500 }
501 if (prp->pr_usrreqs == NULL)
502 return EPROTONOSUPPORT;
503 if (prp->pr_type != type)
504 return EPROTOTYPE;
505
506 so = soget(true);
507 so->so_type = type;
508 so->so_proto = prp;
509 so->so_send = sosend;
510 so->so_receive = soreceive;
511 so->so_options = sooptions;
512 #ifdef MBUFTRACE
513 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
514 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
515 so->so_mowner = &prp->pr_domain->dom_mowner;
516 #endif
517 uid = kauth_cred_geteuid(l->l_cred);
518 so->so_uidinfo = uid_find(uid);
519 so->so_cpid = l->l_proc->p_pid;
520
521 /*
522 * Lock assigned and taken during PCB attach, unless we share
523 * the lock with another socket, e.g. socketpair(2) case.
524 */
525 if (lockso) {
526 lock = lockso->so_lock;
527 so->so_lock = lock;
528 mutex_obj_hold(lock);
529 mutex_enter(lock);
530 }
531
532 /* Attach the PCB (returns with the socket lock held). */
533 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
534 KASSERT(solocked(so));
535
536 if (error) {
537 KASSERT(so->so_pcb == NULL);
538 so->so_state |= SS_NOFDREF;
539 sofree(so);
540 return error;
541 }
542 so->so_cred = kauth_cred_dup(l->l_cred);
543 sounlock(so);
544
545 *aso = so;
546 return 0;
547 }
548
549 /*
550 * fsocreate: create a socket and a file descriptor associated with it.
551 *
552 * => On success, write file descriptor to fdout and return zero.
553 * => On failure, return non-zero; *fdout will be undefined.
554 */
555 int
556 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
557 {
558 lwp_t *l = curlwp;
559 int error, fd, flags;
560 struct socket *so;
561 struct file *fp;
562
563 if ((error = fd_allocfile(&fp, &fd)) != 0) {
564 return error;
565 }
566 flags = type & SOCK_FLAGS_MASK;
567 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
568 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
569 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
570 fp->f_type = DTYPE_SOCKET;
571 fp->f_ops = &socketops;
572
573 type &= ~SOCK_FLAGS_MASK;
574 error = socreate(domain, &so, type, proto, l, NULL);
575 if (error) {
576 fd_abort(curproc, fp, fd);
577 return error;
578 }
579 if (flags & SOCK_NONBLOCK) {
580 so->so_state |= SS_NBIO;
581 }
582 fp->f_socket = so;
583 fd_affix(curproc, fp, fd);
584
585 if (sop != NULL) {
586 *sop = so;
587 }
588 *fdout = fd;
589 return error;
590 }
591
592 int
593 sofamily(const struct socket *so)
594 {
595 const struct protosw *pr;
596 const struct domain *dom;
597
598 if ((pr = so->so_proto) == NULL)
599 return AF_UNSPEC;
600 if ((dom = pr->pr_domain) == NULL)
601 return AF_UNSPEC;
602 return dom->dom_family;
603 }
604
605 int
606 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
607 {
608 int error;
609
610 solock(so);
611 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
612 sounlock(so);
613 return EAFNOSUPPORT;
614 }
615 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
616 sounlock(so);
617 return error;
618 }
619
620 int
621 solisten(struct socket *so, int backlog, struct lwp *l)
622 {
623 int error;
624 short oldopt, oldqlimit;
625
626 solock(so);
627 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
628 SS_ISDISCONNECTING)) != 0) {
629 sounlock(so);
630 return EINVAL;
631 }
632 oldopt = so->so_options;
633 oldqlimit = so->so_qlimit;
634 if (TAILQ_EMPTY(&so->so_q))
635 so->so_options |= SO_ACCEPTCONN;
636 if (backlog < 0)
637 backlog = 0;
638 so->so_qlimit = uimin(backlog, somaxconn);
639
640 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
641 if (error != 0) {
642 so->so_options = oldopt;
643 so->so_qlimit = oldqlimit;
644 sounlock(so);
645 return error;
646 }
647 sounlock(so);
648 return 0;
649 }
650
651 void
652 sofree(struct socket *so)
653 {
654 u_int refs;
655
656 KASSERT(solocked(so));
657
658 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
659 sounlock(so);
660 return;
661 }
662 if (so->so_head) {
663 /*
664 * We must not decommission a socket that's on the accept(2)
665 * queue. If we do, then accept(2) may hang after select(2)
666 * indicated that the listening socket was ready.
667 */
668 if (!soqremque(so, 0)) {
669 sounlock(so);
670 return;
671 }
672 }
673 if (so->so_rcv.sb_hiwat)
674 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
675 RLIM_INFINITY);
676 if (so->so_snd.sb_hiwat)
677 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
678 RLIM_INFINITY);
679 sbrelease(&so->so_snd, so);
680 KASSERT(!cv_has_waiters(&so->so_cv));
681 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
682 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
683 sorflush(so);
684 refs = so->so_aborting; /* XXX */
685 /* Remove acccept filter if one is present. */
686 if (so->so_accf != NULL)
687 (void)accept_filt_clear(so);
688 sounlock(so);
689 if (refs == 0) /* XXX */
690 soput(so);
691 }
692
693 /*
694 * soclose: close a socket on last file table reference removal.
695 * Initiate disconnect if connected. Free socket when disconnect complete.
696 */
697 int
698 soclose(struct socket *so)
699 {
700 struct socket *so2;
701 int error = 0;
702
703 solock(so);
704 if (so->so_options & SO_ACCEPTCONN) {
705 for (;;) {
706 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
707 KASSERT(solocked2(so, so2));
708 (void) soqremque(so2, 0);
709 /* soabort drops the lock. */
710 (void) soabort(so2);
711 solock(so);
712 continue;
713 }
714 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
715 KASSERT(solocked2(so, so2));
716 (void) soqremque(so2, 1);
717 /* soabort drops the lock. */
718 (void) soabort(so2);
719 solock(so);
720 continue;
721 }
722 break;
723 }
724 }
725 if (so->so_pcb == NULL)
726 goto discard;
727 if (so->so_state & SS_ISCONNECTED) {
728 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
729 error = sodisconnect(so);
730 if (error)
731 goto drop;
732 }
733 if (so->so_options & SO_LINGER) {
734 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
735 (SS_ISDISCONNECTING|SS_NBIO))
736 goto drop;
737 while (so->so_state & SS_ISCONNECTED) {
738 error = sowait(so, true, so->so_linger * hz);
739 if (error)
740 break;
741 }
742 }
743 }
744 drop:
745 if (so->so_pcb) {
746 KASSERT(solocked(so));
747 (*so->so_proto->pr_usrreqs->pr_detach)(so);
748 }
749 discard:
750 KASSERT((so->so_state & SS_NOFDREF) == 0);
751 kauth_cred_free(so->so_cred);
752 so->so_cred = NULL;
753 so->so_state |= SS_NOFDREF;
754 sofree(so);
755 return error;
756 }
757
758 /*
759 * Must be called with the socket locked.. Will return with it unlocked.
760 */
761 int
762 soabort(struct socket *so)
763 {
764 u_int refs;
765 int error;
766
767 KASSERT(solocked(so));
768 KASSERT(so->so_head == NULL);
769
770 so->so_aborting++; /* XXX */
771 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
772 refs = --so->so_aborting; /* XXX */
773 if (error || (refs == 0)) {
774 sofree(so);
775 } else {
776 sounlock(so);
777 }
778 return error;
779 }
780
781 int
782 soaccept(struct socket *so, struct sockaddr *nam)
783 {
784 int error;
785
786 KASSERT(solocked(so));
787 KASSERT((so->so_state & SS_NOFDREF) != 0);
788
789 so->so_state &= ~SS_NOFDREF;
790 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
791 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
792 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
793 else
794 error = ECONNABORTED;
795
796 return error;
797 }
798
799 int
800 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
801 {
802 int error;
803
804 KASSERT(solocked(so));
805
806 if (so->so_options & SO_ACCEPTCONN)
807 return EOPNOTSUPP;
808 /*
809 * If protocol is connection-based, can only connect once.
810 * Otherwise, if connected, try to disconnect first.
811 * This allows user to disconnect by connecting to, e.g.,
812 * a null address.
813 */
814 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
815 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
816 (error = sodisconnect(so)))) {
817 error = EISCONN;
818 } else {
819 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
820 return EAFNOSUPPORT;
821 }
822 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
823 }
824
825 return error;
826 }
827
828 int
829 soconnect2(struct socket *so1, struct socket *so2)
830 {
831 KASSERT(solocked2(so1, so2));
832
833 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
834 }
835
836 int
837 sodisconnect(struct socket *so)
838 {
839 int error;
840
841 KASSERT(solocked(so));
842
843 if ((so->so_state & SS_ISCONNECTED) == 0) {
844 error = ENOTCONN;
845 } else if (so->so_state & SS_ISDISCONNECTING) {
846 error = EALREADY;
847 } else {
848 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
849 }
850 return error;
851 }
852
853 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
854 /*
855 * Send on a socket.
856 * If send must go all at once and message is larger than
857 * send buffering, then hard error.
858 * Lock against other senders.
859 * If must go all at once and not enough room now, then
860 * inform user that this would block and do nothing.
861 * Otherwise, if nonblocking, send as much as possible.
862 * The data to be sent is described by "uio" if nonzero,
863 * otherwise by the mbuf chain "top" (which must be null
864 * if uio is not). Data provided in mbuf chain must be small
865 * enough to send all at once.
866 *
867 * Returns nonzero on error, timeout or signal; callers
868 * must check for short counts if EINTR/ERESTART are returned.
869 * Data and control buffers are freed on return.
870 */
871 int
872 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
873 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
874 {
875 struct mbuf **mp, *m;
876 long space, len, resid, clen, mlen;
877 int error, s, dontroute, atomic;
878 short wakeup_state = 0;
879
880 clen = 0;
881
882 /*
883 * solock() provides atomicity of access. splsoftnet() prevents
884 * protocol processing soft interrupts from interrupting us and
885 * blocking (expensive).
886 */
887 s = splsoftnet();
888 solock(so);
889 atomic = sosendallatonce(so) || top;
890 if (uio)
891 resid = uio->uio_resid;
892 else
893 resid = top->m_pkthdr.len;
894 /*
895 * In theory resid should be unsigned.
896 * However, space must be signed, as it might be less than 0
897 * if we over-committed, and we must use a signed comparison
898 * of space and resid. On the other hand, a negative resid
899 * causes us to loop sending 0-length segments to the protocol.
900 */
901 if (resid < 0) {
902 error = EINVAL;
903 goto out;
904 }
905 dontroute =
906 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
907 (so->so_proto->pr_flags & PR_ATOMIC);
908 l->l_ru.ru_msgsnd++;
909 if (control)
910 clen = control->m_len;
911 restart:
912 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
913 goto out;
914 do {
915 if (so->so_state & SS_CANTSENDMORE) {
916 error = EPIPE;
917 goto release;
918 }
919 if (so->so_error) {
920 error = so->so_error;
921 so->so_error = 0;
922 goto release;
923 }
924 if ((so->so_state & SS_ISCONNECTED) == 0) {
925 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
926 if (resid || clen == 0) {
927 error = ENOTCONN;
928 goto release;
929 }
930 } else if (addr == NULL) {
931 error = EDESTADDRREQ;
932 goto release;
933 }
934 }
935 space = sbspace(&so->so_snd);
936 if (flags & MSG_OOB)
937 space += 1024;
938 if ((atomic && resid > so->so_snd.sb_hiwat) ||
939 clen > so->so_snd.sb_hiwat) {
940 error = EMSGSIZE;
941 goto release;
942 }
943 if (space < resid + clen &&
944 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
945 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
946 error = EWOULDBLOCK;
947 goto release;
948 }
949 sbunlock(&so->so_snd);
950 if (wakeup_state & SS_RESTARTSYS) {
951 error = ERESTART;
952 goto out;
953 }
954 error = sbwait(&so->so_snd);
955 if (error)
956 goto out;
957 wakeup_state = so->so_state;
958 goto restart;
959 }
960 wakeup_state = 0;
961 mp = ⊤
962 space -= clen;
963 do {
964 if (uio == NULL) {
965 /*
966 * Data is prepackaged in "top".
967 */
968 resid = 0;
969 if (flags & MSG_EOR)
970 top->m_flags |= M_EOR;
971 } else do {
972 sounlock(so);
973 splx(s);
974 if (top == NULL) {
975 m = m_gethdr(M_WAIT, MT_DATA);
976 mlen = MHLEN;
977 m->m_pkthdr.len = 0;
978 m_reset_rcvif(m);
979 } else {
980 m = m_get(M_WAIT, MT_DATA);
981 mlen = MLEN;
982 }
983 MCLAIM(m, so->so_snd.sb_mowner);
984 if (sock_loan_thresh >= 0 &&
985 uio->uio_iov->iov_len >= sock_loan_thresh &&
986 space >= sock_loan_thresh &&
987 (len = sosend_loan(so, uio, m,
988 space)) != 0) {
989 SOSEND_COUNTER_INCR(&sosend_loan_big);
990 space -= len;
991 goto have_data;
992 }
993 if (resid >= MINCLSIZE && space >= MCLBYTES) {
994 SOSEND_COUNTER_INCR(&sosend_copy_big);
995 m_clget(m, M_DONTWAIT);
996 if ((m->m_flags & M_EXT) == 0)
997 goto nopages;
998 mlen = MCLBYTES;
999 if (atomic && top == 0) {
1000 len = lmin(MCLBYTES - max_hdr,
1001 resid);
1002 m->m_data += max_hdr;
1003 } else
1004 len = lmin(MCLBYTES, resid);
1005 space -= len;
1006 } else {
1007 nopages:
1008 SOSEND_COUNTER_INCR(&sosend_copy_small);
1009 len = lmin(lmin(mlen, resid), space);
1010 space -= len;
1011 /*
1012 * For datagram protocols, leave room
1013 * for protocol headers in first mbuf.
1014 */
1015 if (atomic && top == 0 && len < mlen)
1016 m_align(m, len);
1017 }
1018 error = uiomove(mtod(m, void *), (int)len, uio);
1019 have_data:
1020 resid = uio->uio_resid;
1021 m->m_len = len;
1022 *mp = m;
1023 top->m_pkthdr.len += len;
1024 s = splsoftnet();
1025 solock(so);
1026 if (error != 0)
1027 goto release;
1028 mp = &m->m_next;
1029 if (resid <= 0) {
1030 if (flags & MSG_EOR)
1031 top->m_flags |= M_EOR;
1032 break;
1033 }
1034 } while (space > 0 && atomic);
1035
1036 if (so->so_state & SS_CANTSENDMORE) {
1037 error = EPIPE;
1038 goto release;
1039 }
1040 if (dontroute)
1041 so->so_options |= SO_DONTROUTE;
1042 if (resid > 0)
1043 so->so_state |= SS_MORETOCOME;
1044 if (flags & MSG_OOB) {
1045 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1046 so, top, control);
1047 } else {
1048 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1049 top, addr, control, l);
1050 }
1051 if (dontroute)
1052 so->so_options &= ~SO_DONTROUTE;
1053 if (resid > 0)
1054 so->so_state &= ~SS_MORETOCOME;
1055 clen = 0;
1056 control = NULL;
1057 top = NULL;
1058 mp = ⊤
1059 if (error != 0)
1060 goto release;
1061 } while (resid && space > 0);
1062 } while (resid);
1063
1064 release:
1065 sbunlock(&so->so_snd);
1066 out:
1067 sounlock(so);
1068 splx(s);
1069 if (top)
1070 m_freem(top);
1071 if (control)
1072 m_freem(control);
1073 return error;
1074 }
1075
1076 /*
1077 * Following replacement or removal of the first mbuf on the first
1078 * mbuf chain of a socket buffer, push necessary state changes back
1079 * into the socket buffer so that other consumers see the values
1080 * consistently. 'nextrecord' is the caller's locally stored value of
1081 * the original value of sb->sb_mb->m_nextpkt which must be restored
1082 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1083 */
1084 static void
1085 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1086 {
1087
1088 KASSERT(solocked(sb->sb_so));
1089
1090 /*
1091 * First, update for the new value of nextrecord. If necessary,
1092 * make it the first record.
1093 */
1094 if (sb->sb_mb != NULL)
1095 sb->sb_mb->m_nextpkt = nextrecord;
1096 else
1097 sb->sb_mb = nextrecord;
1098
1099 /*
1100 * Now update any dependent socket buffer fields to reflect
1101 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1102 * the addition of a second clause that takes care of the
1103 * case where sb_mb has been updated, but remains the last
1104 * record.
1105 */
1106 if (sb->sb_mb == NULL) {
1107 sb->sb_mbtail = NULL;
1108 sb->sb_lastrecord = NULL;
1109 } else if (sb->sb_mb->m_nextpkt == NULL)
1110 sb->sb_lastrecord = sb->sb_mb;
1111 }
1112
1113 /*
1114 * Implement receive operations on a socket.
1115 *
1116 * We depend on the way that records are added to the sockbuf by sbappend*. In
1117 * particular, each record (mbufs linked through m_next) must begin with an
1118 * address if the protocol so specifies, followed by an optional mbuf or mbufs
1119 * containing ancillary data, and then zero or more mbufs of data.
1120 *
1121 * In order to avoid blocking network interrupts for the entire time here, we
1122 * splx() while doing the actual copy to user space. Although the sockbuf is
1123 * locked, new data may still be appended, and thus we must maintain
1124 * consistency of the sockbuf during that time.
1125 *
1126 * The caller may receive the data as a single mbuf chain by supplying an mbuf
1127 * **mp0 for use in returning the chain. The uio is then used only for the
1128 * count in uio_resid.
1129 */
1130 int
1131 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1132 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1133 {
1134 struct lwp *l = curlwp;
1135 struct mbuf *m, **mp, *mt;
1136 size_t len, offset, moff, orig_resid;
1137 int atomic, flags, error, s, type;
1138 const struct protosw *pr;
1139 struct mbuf *nextrecord;
1140 int mbuf_removed = 0;
1141 const struct domain *dom;
1142 short wakeup_state = 0;
1143
1144 pr = so->so_proto;
1145 atomic = pr->pr_flags & PR_ATOMIC;
1146 dom = pr->pr_domain;
1147 mp = mp0;
1148 type = 0;
1149 orig_resid = uio->uio_resid;
1150
1151 if (paddr != NULL)
1152 *paddr = NULL;
1153 if (controlp != NULL)
1154 *controlp = NULL;
1155 if (flagsp != NULL)
1156 flags = *flagsp &~ MSG_EOR;
1157 else
1158 flags = 0;
1159
1160 if (flags & MSG_OOB) {
1161 m = m_get(M_WAIT, MT_DATA);
1162 solock(so);
1163 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1164 sounlock(so);
1165 if (error)
1166 goto bad;
1167 do {
1168 error = uiomove(mtod(m, void *),
1169 MIN(uio->uio_resid, m->m_len), uio);
1170 m = m_free(m);
1171 } while (uio->uio_resid > 0 && error == 0 && m);
1172 bad:
1173 if (m != NULL)
1174 m_freem(m);
1175 return error;
1176 }
1177 if (mp != NULL)
1178 *mp = NULL;
1179
1180 /*
1181 * solock() provides atomicity of access. splsoftnet() prevents
1182 * protocol processing soft interrupts from interrupting us and
1183 * blocking (expensive).
1184 */
1185 s = splsoftnet();
1186 solock(so);
1187 restart:
1188 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1189 sounlock(so);
1190 splx(s);
1191 return error;
1192 }
1193 m = so->so_rcv.sb_mb;
1194
1195 /*
1196 * If we have less data than requested, block awaiting more
1197 * (subject to any timeout) if:
1198 * 1. the current count is less than the low water mark,
1199 * 2. MSG_WAITALL is set, and it is possible to do the entire
1200 * receive operation at once if we block (resid <= hiwat), or
1201 * 3. MSG_DONTWAIT is not set.
1202 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1203 * we have to do the receive in sections, and thus risk returning
1204 * a short count if a timeout or signal occurs after we start.
1205 */
1206 if (m == NULL ||
1207 ((flags & MSG_DONTWAIT) == 0 &&
1208 so->so_rcv.sb_cc < uio->uio_resid &&
1209 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1210 ((flags & MSG_WAITALL) &&
1211 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1212 m->m_nextpkt == NULL && !atomic)) {
1213 #ifdef DIAGNOSTIC
1214 if (m == NULL && so->so_rcv.sb_cc)
1215 panic("receive 1");
1216 #endif
1217 if (so->so_error || so->so_rerror) {
1218 if (m != NULL)
1219 goto dontblock;
1220 if (so->so_error) {
1221 error = so->so_error;
1222 so->so_error = 0;
1223 } else {
1224 error = so->so_rerror;
1225 so->so_rerror = 0;
1226 }
1227 goto release;
1228 }
1229 if (so->so_state & SS_CANTRCVMORE) {
1230 if (m != NULL)
1231 goto dontblock;
1232 else
1233 goto release;
1234 }
1235 for (; m != NULL; m = m->m_next)
1236 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1237 m = so->so_rcv.sb_mb;
1238 goto dontblock;
1239 }
1240 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1241 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1242 error = ENOTCONN;
1243 goto release;
1244 }
1245 if (uio->uio_resid == 0)
1246 goto release;
1247 if ((so->so_state & SS_NBIO) ||
1248 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1249 error = EWOULDBLOCK;
1250 goto release;
1251 }
1252 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1253 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1254 sbunlock(&so->so_rcv);
1255 if (wakeup_state & SS_RESTARTSYS)
1256 error = ERESTART;
1257 else
1258 error = sbwait(&so->so_rcv);
1259 if (error != 0) {
1260 sounlock(so);
1261 splx(s);
1262 return error;
1263 }
1264 wakeup_state = so->so_state;
1265 goto restart;
1266 }
1267
1268 dontblock:
1269 /*
1270 * On entry here, m points to the first record of the socket buffer.
1271 * From this point onward, we maintain 'nextrecord' as a cache of the
1272 * pointer to the next record in the socket buffer. We must keep the
1273 * various socket buffer pointers and local stack versions of the
1274 * pointers in sync, pushing out modifications before dropping the
1275 * socket lock, and re-reading them when picking it up.
1276 *
1277 * Otherwise, we will race with the network stack appending new data
1278 * or records onto the socket buffer by using inconsistent/stale
1279 * versions of the field, possibly resulting in socket buffer
1280 * corruption.
1281 *
1282 * By holding the high-level sblock(), we prevent simultaneous
1283 * readers from pulling off the front of the socket buffer.
1284 */
1285 if (l != NULL)
1286 l->l_ru.ru_msgrcv++;
1287 KASSERT(m == so->so_rcv.sb_mb);
1288 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1289 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1290 nextrecord = m->m_nextpkt;
1291
1292 if (pr->pr_flags & PR_ADDR) {
1293 KASSERT(m->m_type == MT_SONAME);
1294 orig_resid = 0;
1295 if (flags & MSG_PEEK) {
1296 if (paddr)
1297 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1298 m = m->m_next;
1299 } else {
1300 sbfree(&so->so_rcv, m);
1301 mbuf_removed = 1;
1302 if (paddr != NULL) {
1303 *paddr = m;
1304 so->so_rcv.sb_mb = m->m_next;
1305 m->m_next = NULL;
1306 m = so->so_rcv.sb_mb;
1307 } else {
1308 m = so->so_rcv.sb_mb = m_free(m);
1309 }
1310 sbsync(&so->so_rcv, nextrecord);
1311 }
1312 }
1313
1314 if (pr->pr_flags & PR_ADDR_OPT) {
1315 /*
1316 * For SCTP we may be getting a whole message OR a partial
1317 * delivery.
1318 */
1319 if (m->m_type == MT_SONAME) {
1320 orig_resid = 0;
1321 if (flags & MSG_PEEK) {
1322 if (paddr)
1323 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1324 m = m->m_next;
1325 } else {
1326 sbfree(&so->so_rcv, m);
1327 if (paddr) {
1328 *paddr = m;
1329 so->so_rcv.sb_mb = m->m_next;
1330 m->m_next = 0;
1331 m = so->so_rcv.sb_mb;
1332 } else {
1333 m = so->so_rcv.sb_mb = m_free(m);
1334 }
1335 }
1336 }
1337 }
1338
1339 /*
1340 * Process one or more MT_CONTROL mbufs present before any data mbufs
1341 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1342 * just copy the data; if !MSG_PEEK, we call into the protocol to
1343 * perform externalization (or freeing if controlp == NULL).
1344 */
1345 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1346 struct mbuf *cm = NULL, *cmn;
1347 struct mbuf **cme = &cm;
1348
1349 do {
1350 if (flags & MSG_PEEK) {
1351 if (controlp != NULL) {
1352 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1353 controlp = &(*controlp)->m_next;
1354 }
1355 m = m->m_next;
1356 } else {
1357 sbfree(&so->so_rcv, m);
1358 so->so_rcv.sb_mb = m->m_next;
1359 m->m_next = NULL;
1360 *cme = m;
1361 cme = &(*cme)->m_next;
1362 m = so->so_rcv.sb_mb;
1363 }
1364 } while (m != NULL && m->m_type == MT_CONTROL);
1365 if ((flags & MSG_PEEK) == 0)
1366 sbsync(&so->so_rcv, nextrecord);
1367
1368 for (; cm != NULL; cm = cmn) {
1369 cmn = cm->m_next;
1370 cm->m_next = NULL;
1371 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1372 if (controlp != NULL) {
1373 if (dom->dom_externalize != NULL &&
1374 type == SCM_RIGHTS) {
1375 sounlock(so);
1376 splx(s);
1377 error = (*dom->dom_externalize)(cm, l,
1378 (flags & MSG_CMSG_CLOEXEC) ?
1379 O_CLOEXEC : 0);
1380 s = splsoftnet();
1381 solock(so);
1382 }
1383 *controlp = cm;
1384 while (*controlp != NULL)
1385 controlp = &(*controlp)->m_next;
1386 } else {
1387 /*
1388 * Dispose of any SCM_RIGHTS message that went
1389 * through the read path rather than recv.
1390 */
1391 if (dom->dom_dispose != NULL &&
1392 type == SCM_RIGHTS) {
1393 sounlock(so);
1394 (*dom->dom_dispose)(cm);
1395 solock(so);
1396 }
1397 m_freem(cm);
1398 }
1399 }
1400 if (m != NULL)
1401 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1402 else
1403 nextrecord = so->so_rcv.sb_mb;
1404 orig_resid = 0;
1405 }
1406
1407 /* If m is non-NULL, we have some data to read. */
1408 if (__predict_true(m != NULL)) {
1409 type = m->m_type;
1410 if (type == MT_OOBDATA)
1411 flags |= MSG_OOB;
1412 }
1413 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1414 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1415
1416 moff = 0;
1417 offset = 0;
1418 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1419 /*
1420 * If the type of mbuf has changed, end the receive
1421 * operation and do a short read.
1422 */
1423 if (m->m_type == MT_OOBDATA) {
1424 if (type != MT_OOBDATA)
1425 break;
1426 } else if (type == MT_OOBDATA) {
1427 break;
1428 } else if (m->m_type == MT_CONTROL) {
1429 break;
1430 }
1431 #ifdef DIAGNOSTIC
1432 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1433 panic("%s: m_type=%d", __func__, m->m_type);
1434 }
1435 #endif
1436
1437 so->so_state &= ~SS_RCVATMARK;
1438 wakeup_state = 0;
1439 len = uio->uio_resid;
1440 if (so->so_oobmark && len > so->so_oobmark - offset)
1441 len = so->so_oobmark - offset;
1442 if (len > m->m_len - moff)
1443 len = m->m_len - moff;
1444
1445 /*
1446 * If mp is set, just pass back the mbufs.
1447 * Otherwise copy them out via the uio, then free.
1448 * Sockbuf must be consistent here (points to current mbuf,
1449 * it points to next record) when we drop priority;
1450 * we must note any additions to the sockbuf when we
1451 * block interrupts again.
1452 */
1453 if (mp == NULL) {
1454 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1455 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1456 sounlock(so);
1457 splx(s);
1458 error = uiomove(mtod(m, char *) + moff, len, uio);
1459 s = splsoftnet();
1460 solock(so);
1461 if (error != 0) {
1462 /*
1463 * If any part of the record has been removed
1464 * (such as the MT_SONAME mbuf, which will
1465 * happen when PR_ADDR, and thus also
1466 * PR_ATOMIC, is set), then drop the entire
1467 * record to maintain the atomicity of the
1468 * receive operation.
1469 *
1470 * This avoids a later panic("receive 1a")
1471 * when compiled with DIAGNOSTIC.
1472 */
1473 if (m && mbuf_removed && atomic)
1474 (void) sbdroprecord(&so->so_rcv);
1475
1476 goto release;
1477 }
1478 } else {
1479 uio->uio_resid -= len;
1480 }
1481
1482 if (len == m->m_len - moff) {
1483 if (m->m_flags & M_EOR)
1484 flags |= MSG_EOR;
1485 #ifdef SCTP
1486 if (m->m_flags & M_NOTIFICATION)
1487 flags |= MSG_NOTIFICATION;
1488 #endif
1489 if (flags & MSG_PEEK) {
1490 m = m->m_next;
1491 moff = 0;
1492 } else {
1493 nextrecord = m->m_nextpkt;
1494 sbfree(&so->so_rcv, m);
1495 if (mp) {
1496 *mp = m;
1497 mp = &m->m_next;
1498 so->so_rcv.sb_mb = m = m->m_next;
1499 *mp = NULL;
1500 } else {
1501 m = so->so_rcv.sb_mb = m_free(m);
1502 }
1503 /*
1504 * If m != NULL, we also know that
1505 * so->so_rcv.sb_mb != NULL.
1506 */
1507 KASSERT(so->so_rcv.sb_mb == m);
1508 if (m) {
1509 m->m_nextpkt = nextrecord;
1510 if (nextrecord == NULL)
1511 so->so_rcv.sb_lastrecord = m;
1512 } else {
1513 so->so_rcv.sb_mb = nextrecord;
1514 SB_EMPTY_FIXUP(&so->so_rcv);
1515 }
1516 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1517 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1518 }
1519 } else if (flags & MSG_PEEK) {
1520 moff += len;
1521 } else {
1522 if (mp != NULL) {
1523 mt = m_copym(m, 0, len, M_NOWAIT);
1524 if (__predict_false(mt == NULL)) {
1525 sounlock(so);
1526 mt = m_copym(m, 0, len, M_WAIT);
1527 solock(so);
1528 }
1529 *mp = mt;
1530 }
1531 m->m_data += len;
1532 m->m_len -= len;
1533 so->so_rcv.sb_cc -= len;
1534 }
1535
1536 if (so->so_oobmark) {
1537 if ((flags & MSG_PEEK) == 0) {
1538 so->so_oobmark -= len;
1539 if (so->so_oobmark == 0) {
1540 so->so_state |= SS_RCVATMARK;
1541 break;
1542 }
1543 } else {
1544 offset += len;
1545 if (offset == so->so_oobmark)
1546 break;
1547 }
1548 }
1549 if (flags & MSG_EOR)
1550 break;
1551
1552 /*
1553 * If the MSG_WAITALL flag is set (for non-atomic socket),
1554 * we must not quit until "uio->uio_resid == 0" or an error
1555 * termination. If a signal/timeout occurs, return
1556 * with a short count but without error.
1557 * Keep sockbuf locked against other readers.
1558 */
1559 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1560 !sosendallatonce(so) && !nextrecord) {
1561 if (so->so_error || so->so_rerror ||
1562 so->so_state & SS_CANTRCVMORE)
1563 break;
1564 /*
1565 * If we are peeking and the socket receive buffer is
1566 * full, stop since we can't get more data to peek at.
1567 */
1568 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1569 break;
1570 /*
1571 * If we've drained the socket buffer, tell the
1572 * protocol in case it needs to do something to
1573 * get it filled again.
1574 */
1575 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1576 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1577 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1578 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1579 if (wakeup_state & SS_RESTARTSYS)
1580 error = ERESTART;
1581 else
1582 error = sbwait(&so->so_rcv);
1583 if (error != 0) {
1584 sbunlock(&so->so_rcv);
1585 sounlock(so);
1586 splx(s);
1587 return 0;
1588 }
1589 if ((m = so->so_rcv.sb_mb) != NULL)
1590 nextrecord = m->m_nextpkt;
1591 wakeup_state = so->so_state;
1592 }
1593 }
1594
1595 if (m && atomic) {
1596 flags |= MSG_TRUNC;
1597 if ((flags & MSG_PEEK) == 0)
1598 (void) sbdroprecord(&so->so_rcv);
1599 }
1600 if ((flags & MSG_PEEK) == 0) {
1601 if (m == NULL) {
1602 /*
1603 * First part is an inline SB_EMPTY_FIXUP(). Second
1604 * part makes sure sb_lastrecord is up-to-date if
1605 * there is still data in the socket buffer.
1606 */
1607 so->so_rcv.sb_mb = nextrecord;
1608 if (so->so_rcv.sb_mb == NULL) {
1609 so->so_rcv.sb_mbtail = NULL;
1610 so->so_rcv.sb_lastrecord = NULL;
1611 } else if (nextrecord->m_nextpkt == NULL)
1612 so->so_rcv.sb_lastrecord = nextrecord;
1613 }
1614 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1615 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1616 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1617 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1618 }
1619 if (orig_resid == uio->uio_resid && orig_resid &&
1620 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1621 sbunlock(&so->so_rcv);
1622 goto restart;
1623 }
1624
1625 if (flagsp != NULL)
1626 *flagsp |= flags;
1627 release:
1628 sbunlock(&so->so_rcv);
1629 sounlock(so);
1630 splx(s);
1631 return error;
1632 }
1633
1634 int
1635 soshutdown(struct socket *so, int how)
1636 {
1637 const struct protosw *pr;
1638 int error;
1639
1640 KASSERT(solocked(so));
1641
1642 pr = so->so_proto;
1643 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1644 return EINVAL;
1645
1646 if (how == SHUT_RD || how == SHUT_RDWR) {
1647 sorflush(so);
1648 error = 0;
1649 }
1650 if (how == SHUT_WR || how == SHUT_RDWR)
1651 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1652
1653 return error;
1654 }
1655
1656 void
1657 sorestart(struct socket *so)
1658 {
1659 /*
1660 * An application has called close() on an fd on which another
1661 * of its threads has called a socket system call.
1662 * Mark this and wake everyone up, and code that would block again
1663 * instead returns ERESTART.
1664 * On system call re-entry the fd is validated and EBADF returned.
1665 * Any other fd will block again on the 2nd syscall.
1666 */
1667 solock(so);
1668 so->so_state |= SS_RESTARTSYS;
1669 cv_broadcast(&so->so_cv);
1670 cv_broadcast(&so->so_snd.sb_cv);
1671 cv_broadcast(&so->so_rcv.sb_cv);
1672 sounlock(so);
1673 }
1674
1675 void
1676 sorflush(struct socket *so)
1677 {
1678 struct sockbuf *sb, asb;
1679 const struct protosw *pr;
1680
1681 KASSERT(solocked(so));
1682
1683 sb = &so->so_rcv;
1684 pr = so->so_proto;
1685 socantrcvmore(so);
1686 sb->sb_flags |= SB_NOINTR;
1687 (void )sblock(sb, M_WAITOK);
1688 sbunlock(sb);
1689 asb = *sb;
1690 /*
1691 * Clear most of the sockbuf structure, but leave some of the
1692 * fields valid.
1693 */
1694 memset(&sb->sb_startzero, 0,
1695 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1696 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1697 sounlock(so);
1698 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1699 solock(so);
1700 }
1701 sbrelease(&asb, so);
1702 }
1703
1704 /*
1705 * internal set SOL_SOCKET options
1706 */
1707 static int
1708 sosetopt1(struct socket *so, const struct sockopt *sopt)
1709 {
1710 int error = EINVAL, opt;
1711 int optval = 0; /* XXX: gcc */
1712 struct linger l;
1713 struct timeval tv;
1714
1715 switch ((opt = sopt->sopt_name)) {
1716
1717 case SO_ACCEPTFILTER:
1718 error = accept_filt_setopt(so, sopt);
1719 KASSERT(solocked(so));
1720 break;
1721
1722 case SO_LINGER:
1723 error = sockopt_get(sopt, &l, sizeof(l));
1724 solock(so);
1725 if (error)
1726 break;
1727 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1728 l.l_linger > (INT_MAX / hz)) {
1729 error = EDOM;
1730 break;
1731 }
1732 so->so_linger = l.l_linger;
1733 if (l.l_onoff)
1734 so->so_options |= SO_LINGER;
1735 else
1736 so->so_options &= ~SO_LINGER;
1737 break;
1738
1739 case SO_DEBUG:
1740 case SO_KEEPALIVE:
1741 case SO_DONTROUTE:
1742 case SO_USELOOPBACK:
1743 case SO_BROADCAST:
1744 case SO_REUSEADDR:
1745 case SO_REUSEPORT:
1746 case SO_OOBINLINE:
1747 case SO_TIMESTAMP:
1748 case SO_NOSIGPIPE:
1749 case SO_RERROR:
1750 #ifdef SO_OTIMESTAMP
1751 case SO_OTIMESTAMP:
1752 #endif
1753 error = sockopt_getint(sopt, &optval);
1754 solock(so);
1755 if (error)
1756 break;
1757 if (optval)
1758 so->so_options |= opt;
1759 else
1760 so->so_options &= ~opt;
1761 break;
1762
1763 case SO_SNDBUF:
1764 case SO_RCVBUF:
1765 case SO_SNDLOWAT:
1766 case SO_RCVLOWAT:
1767 error = sockopt_getint(sopt, &optval);
1768 solock(so);
1769 if (error)
1770 break;
1771
1772 /*
1773 * Values < 1 make no sense for any of these
1774 * options, so disallow them.
1775 */
1776 if (optval < 1) {
1777 error = EINVAL;
1778 break;
1779 }
1780
1781 switch (opt) {
1782 case SO_SNDBUF:
1783 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1784 error = ENOBUFS;
1785 break;
1786 }
1787 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1788 break;
1789
1790 case SO_RCVBUF:
1791 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1792 error = ENOBUFS;
1793 break;
1794 }
1795 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1796 break;
1797
1798 /*
1799 * Make sure the low-water is never greater than
1800 * the high-water.
1801 */
1802 case SO_SNDLOWAT:
1803 if (optval > so->so_snd.sb_hiwat)
1804 optval = so->so_snd.sb_hiwat;
1805
1806 so->so_snd.sb_lowat = optval;
1807 break;
1808
1809 case SO_RCVLOWAT:
1810 if (optval > so->so_rcv.sb_hiwat)
1811 optval = so->so_rcv.sb_hiwat;
1812
1813 so->so_rcv.sb_lowat = optval;
1814 break;
1815 }
1816 break;
1817
1818 #ifdef COMPAT_50
1819 case SO_OSNDTIMEO:
1820 case SO_ORCVTIMEO: {
1821 struct timeval50 otv;
1822 error = sockopt_get(sopt, &otv, sizeof(otv));
1823 if (error) {
1824 solock(so);
1825 break;
1826 }
1827 timeval50_to_timeval(&otv, &tv);
1828 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1829 error = 0;
1830 /*FALLTHROUGH*/
1831 }
1832 #endif /* COMPAT_50 */
1833
1834 /*FALLTHROUGH*/
1835 case SO_SNDTIMEO:
1836 /*FALLTHROUGH*/
1837 case SO_RCVTIMEO:
1838 if (error)
1839 error = sockopt_get(sopt, &tv, sizeof(tv));
1840 solock(so);
1841 if (error)
1842 break;
1843
1844 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1845 error = EDOM;
1846 break;
1847 }
1848
1849 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1850 if (optval == 0 && tv.tv_usec != 0)
1851 optval = 1;
1852
1853 switch (opt) {
1854 case SO_SNDTIMEO:
1855 so->so_snd.sb_timeo = optval;
1856 break;
1857 case SO_RCVTIMEO:
1858 so->so_rcv.sb_timeo = optval;
1859 break;
1860 }
1861 break;
1862
1863 default:
1864 solock(so);
1865 error = ENOPROTOOPT;
1866 break;
1867 }
1868 KASSERT(solocked(so));
1869 return error;
1870 }
1871
1872 int
1873 sosetopt(struct socket *so, struct sockopt *sopt)
1874 {
1875 int error, prerr;
1876
1877 if (sopt->sopt_level == SOL_SOCKET) {
1878 error = sosetopt1(so, sopt);
1879 KASSERT(solocked(so));
1880 } else {
1881 error = ENOPROTOOPT;
1882 solock(so);
1883 }
1884
1885 if ((error == 0 || error == ENOPROTOOPT) &&
1886 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1887 /* give the protocol stack a shot */
1888 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1889 if (prerr == 0)
1890 error = 0;
1891 else if (prerr != ENOPROTOOPT)
1892 error = prerr;
1893 }
1894 sounlock(so);
1895 return error;
1896 }
1897
1898 /*
1899 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1900 */
1901 int
1902 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1903 const void *val, size_t valsize)
1904 {
1905 struct sockopt sopt;
1906 int error;
1907
1908 KASSERT(valsize == 0 || val != NULL);
1909
1910 sockopt_init(&sopt, level, name, valsize);
1911 sockopt_set(&sopt, val, valsize);
1912
1913 error = sosetopt(so, &sopt);
1914
1915 sockopt_destroy(&sopt);
1916
1917 return error;
1918 }
1919
1920 /*
1921 * internal get SOL_SOCKET options
1922 */
1923 static int
1924 sogetopt1(struct socket *so, struct sockopt *sopt)
1925 {
1926 int error, optval, opt;
1927 struct linger l;
1928 struct timeval tv;
1929
1930 switch ((opt = sopt->sopt_name)) {
1931
1932 case SO_ACCEPTFILTER:
1933 error = accept_filt_getopt(so, sopt);
1934 break;
1935
1936 case SO_LINGER:
1937 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1938 l.l_linger = so->so_linger;
1939
1940 error = sockopt_set(sopt, &l, sizeof(l));
1941 break;
1942
1943 case SO_USELOOPBACK:
1944 case SO_DONTROUTE:
1945 case SO_DEBUG:
1946 case SO_KEEPALIVE:
1947 case SO_REUSEADDR:
1948 case SO_REUSEPORT:
1949 case SO_BROADCAST:
1950 case SO_OOBINLINE:
1951 case SO_TIMESTAMP:
1952 case SO_NOSIGPIPE:
1953 case SO_RERROR:
1954 #ifdef SO_OTIMESTAMP
1955 case SO_OTIMESTAMP:
1956 #endif
1957 case SO_ACCEPTCONN:
1958 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1959 break;
1960
1961 case SO_TYPE:
1962 error = sockopt_setint(sopt, so->so_type);
1963 break;
1964
1965 case SO_ERROR:
1966 if (so->so_error == 0) {
1967 so->so_error = so->so_rerror;
1968 so->so_rerror = 0;
1969 }
1970 error = sockopt_setint(sopt, so->so_error);
1971 so->so_error = 0;
1972 break;
1973
1974 case SO_SNDBUF:
1975 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1976 break;
1977
1978 case SO_RCVBUF:
1979 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1980 break;
1981
1982 case SO_SNDLOWAT:
1983 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1984 break;
1985
1986 case SO_RCVLOWAT:
1987 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1988 break;
1989
1990 #ifdef COMPAT_50
1991 case SO_OSNDTIMEO:
1992 case SO_ORCVTIMEO: {
1993 struct timeval50 otv;
1994
1995 optval = (opt == SO_OSNDTIMEO ?
1996 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1997
1998 otv.tv_sec = optval / hz;
1999 otv.tv_usec = (optval % hz) * tick;
2000
2001 error = sockopt_set(sopt, &otv, sizeof(otv));
2002 break;
2003 }
2004 #endif /* COMPAT_50 */
2005
2006 case SO_SNDTIMEO:
2007 case SO_RCVTIMEO:
2008 optval = (opt == SO_SNDTIMEO ?
2009 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2010
2011 tv.tv_sec = optval / hz;
2012 tv.tv_usec = (optval % hz) * tick;
2013
2014 error = sockopt_set(sopt, &tv, sizeof(tv));
2015 break;
2016
2017 case SO_OVERFLOWED:
2018 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2019 break;
2020
2021 default:
2022 error = ENOPROTOOPT;
2023 break;
2024 }
2025
2026 return error;
2027 }
2028
2029 int
2030 sogetopt(struct socket *so, struct sockopt *sopt)
2031 {
2032 int error;
2033
2034 solock(so);
2035 if (sopt->sopt_level != SOL_SOCKET) {
2036 if (so->so_proto && so->so_proto->pr_ctloutput) {
2037 error = ((*so->so_proto->pr_ctloutput)
2038 (PRCO_GETOPT, so, sopt));
2039 } else
2040 error = (ENOPROTOOPT);
2041 } else {
2042 error = sogetopt1(so, sopt);
2043 }
2044 sounlock(so);
2045 return error;
2046 }
2047
2048 /*
2049 * alloc sockopt data buffer buffer
2050 * - will be released at destroy
2051 */
2052 static int
2053 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2054 {
2055
2056 KASSERT(sopt->sopt_size == 0);
2057
2058 if (len > sizeof(sopt->sopt_buf)) {
2059 sopt->sopt_data = kmem_zalloc(len, kmflag);
2060 if (sopt->sopt_data == NULL)
2061 return ENOMEM;
2062 } else
2063 sopt->sopt_data = sopt->sopt_buf;
2064
2065 sopt->sopt_size = len;
2066 return 0;
2067 }
2068
2069 /*
2070 * initialise sockopt storage
2071 * - MAY sleep during allocation
2072 */
2073 void
2074 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2075 {
2076
2077 memset(sopt, 0, sizeof(*sopt));
2078
2079 sopt->sopt_level = level;
2080 sopt->sopt_name = name;
2081 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2082 }
2083
2084 /*
2085 * destroy sockopt storage
2086 * - will release any held memory references
2087 */
2088 void
2089 sockopt_destroy(struct sockopt *sopt)
2090 {
2091
2092 if (sopt->sopt_data != sopt->sopt_buf)
2093 kmem_free(sopt->sopt_data, sopt->sopt_size);
2094
2095 memset(sopt, 0, sizeof(*sopt));
2096 }
2097
2098 /*
2099 * set sockopt value
2100 * - value is copied into sockopt
2101 * - memory is allocated when necessary, will not sleep
2102 */
2103 int
2104 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2105 {
2106 int error;
2107
2108 if (sopt->sopt_size == 0) {
2109 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2110 if (error)
2111 return error;
2112 }
2113
2114 if (sopt->sopt_size < len)
2115 return EINVAL;
2116
2117 memcpy(sopt->sopt_data, buf, len);
2118 sopt->sopt_retsize = len;
2119
2120 return 0;
2121 }
2122
2123 /*
2124 * common case of set sockopt integer value
2125 */
2126 int
2127 sockopt_setint(struct sockopt *sopt, int val)
2128 {
2129
2130 return sockopt_set(sopt, &val, sizeof(int));
2131 }
2132
2133 /*
2134 * get sockopt value
2135 * - correct size must be given
2136 */
2137 int
2138 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2139 {
2140
2141 if (sopt->sopt_size != len)
2142 return EINVAL;
2143
2144 memcpy(buf, sopt->sopt_data, len);
2145 return 0;
2146 }
2147
2148 /*
2149 * common case of get sockopt integer value
2150 */
2151 int
2152 sockopt_getint(const struct sockopt *sopt, int *valp)
2153 {
2154
2155 return sockopt_get(sopt, valp, sizeof(int));
2156 }
2157
2158 /*
2159 * set sockopt value from mbuf
2160 * - ONLY for legacy code
2161 * - mbuf is released by sockopt
2162 * - will not sleep
2163 */
2164 int
2165 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2166 {
2167 size_t len;
2168 int error;
2169
2170 len = m_length(m);
2171
2172 if (sopt->sopt_size == 0) {
2173 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2174 if (error)
2175 return error;
2176 }
2177
2178 if (sopt->sopt_size < len)
2179 return EINVAL;
2180
2181 m_copydata(m, 0, len, sopt->sopt_data);
2182 m_freem(m);
2183 sopt->sopt_retsize = len;
2184
2185 return 0;
2186 }
2187
2188 /*
2189 * get sockopt value into mbuf
2190 * - ONLY for legacy code
2191 * - mbuf to be released by the caller
2192 * - will not sleep
2193 */
2194 struct mbuf *
2195 sockopt_getmbuf(const struct sockopt *sopt)
2196 {
2197 struct mbuf *m;
2198
2199 if (sopt->sopt_size > MCLBYTES)
2200 return NULL;
2201
2202 m = m_get(M_DONTWAIT, MT_SOOPTS);
2203 if (m == NULL)
2204 return NULL;
2205
2206 if (sopt->sopt_size > MLEN) {
2207 MCLGET(m, M_DONTWAIT);
2208 if ((m->m_flags & M_EXT) == 0) {
2209 m_free(m);
2210 return NULL;
2211 }
2212 }
2213
2214 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2215 m->m_len = sopt->sopt_size;
2216
2217 return m;
2218 }
2219
2220 void
2221 sohasoutofband(struct socket *so)
2222 {
2223
2224 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2225 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2226 }
2227
2228 static void
2229 filt_sordetach(struct knote *kn)
2230 {
2231 struct socket *so;
2232
2233 so = ((file_t *)kn->kn_obj)->f_socket;
2234 solock(so);
2235 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2236 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2237 so->so_rcv.sb_flags &= ~SB_KNOTE;
2238 sounlock(so);
2239 }
2240
2241 /*ARGSUSED*/
2242 static int
2243 filt_soread(struct knote *kn, long hint)
2244 {
2245 struct socket *so;
2246 int rv;
2247
2248 so = ((file_t *)kn->kn_obj)->f_socket;
2249 if (hint != NOTE_SUBMIT)
2250 solock(so);
2251 kn->kn_data = so->so_rcv.sb_cc;
2252 if (so->so_state & SS_CANTRCVMORE) {
2253 kn->kn_flags |= EV_EOF;
2254 kn->kn_fflags = so->so_error;
2255 rv = 1;
2256 } else if (so->so_error || so->so_rerror)
2257 rv = 1;
2258 else if (kn->kn_sfflags & NOTE_LOWAT)
2259 rv = (kn->kn_data >= kn->kn_sdata);
2260 else
2261 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2262 if (hint != NOTE_SUBMIT)
2263 sounlock(so);
2264 return rv;
2265 }
2266
2267 static void
2268 filt_sowdetach(struct knote *kn)
2269 {
2270 struct socket *so;
2271
2272 so = ((file_t *)kn->kn_obj)->f_socket;
2273 solock(so);
2274 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2275 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2276 so->so_snd.sb_flags &= ~SB_KNOTE;
2277 sounlock(so);
2278 }
2279
2280 /*ARGSUSED*/
2281 static int
2282 filt_sowrite(struct knote *kn, long hint)
2283 {
2284 struct socket *so;
2285 int rv;
2286
2287 so = ((file_t *)kn->kn_obj)->f_socket;
2288 if (hint != NOTE_SUBMIT)
2289 solock(so);
2290 kn->kn_data = sbspace(&so->so_snd);
2291 if (so->so_state & SS_CANTSENDMORE) {
2292 kn->kn_flags |= EV_EOF;
2293 kn->kn_fflags = so->so_error;
2294 rv = 1;
2295 } else if (so->so_error)
2296 rv = 1;
2297 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2298 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2299 rv = 0;
2300 else if (kn->kn_sfflags & NOTE_LOWAT)
2301 rv = (kn->kn_data >= kn->kn_sdata);
2302 else
2303 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2304 if (hint != NOTE_SUBMIT)
2305 sounlock(so);
2306 return rv;
2307 }
2308
2309 /*ARGSUSED*/
2310 static int
2311 filt_solisten(struct knote *kn, long hint)
2312 {
2313 struct socket *so;
2314 int rv;
2315
2316 so = ((file_t *)kn->kn_obj)->f_socket;
2317
2318 /*
2319 * Set kn_data to number of incoming connections, not
2320 * counting partial (incomplete) connections.
2321 */
2322 if (hint != NOTE_SUBMIT)
2323 solock(so);
2324 kn->kn_data = so->so_qlen;
2325 rv = (kn->kn_data > 0);
2326 if (hint != NOTE_SUBMIT)
2327 sounlock(so);
2328 return rv;
2329 }
2330
2331 static const struct filterops solisten_filtops = {
2332 .f_isfd = 1,
2333 .f_attach = NULL,
2334 .f_detach = filt_sordetach,
2335 .f_event = filt_solisten,
2336 };
2337
2338 static const struct filterops soread_filtops = {
2339 .f_isfd = 1,
2340 .f_attach = NULL,
2341 .f_detach = filt_sordetach,
2342 .f_event = filt_soread,
2343 };
2344
2345 static const struct filterops sowrite_filtops = {
2346 .f_isfd = 1,
2347 .f_attach = NULL,
2348 .f_detach = filt_sowdetach,
2349 .f_event = filt_sowrite,
2350 };
2351
2352 int
2353 soo_kqfilter(struct file *fp, struct knote *kn)
2354 {
2355 struct socket *so;
2356 struct sockbuf *sb;
2357
2358 so = ((file_t *)kn->kn_obj)->f_socket;
2359 solock(so);
2360 switch (kn->kn_filter) {
2361 case EVFILT_READ:
2362 if (so->so_options & SO_ACCEPTCONN)
2363 kn->kn_fop = &solisten_filtops;
2364 else
2365 kn->kn_fop = &soread_filtops;
2366 sb = &so->so_rcv;
2367 break;
2368 case EVFILT_WRITE:
2369 kn->kn_fop = &sowrite_filtops;
2370 sb = &so->so_snd;
2371 break;
2372 default:
2373 sounlock(so);
2374 return EINVAL;
2375 }
2376 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2377 sb->sb_flags |= SB_KNOTE;
2378 sounlock(so);
2379 return 0;
2380 }
2381
2382 static int
2383 sodopoll(struct socket *so, int events)
2384 {
2385 int revents;
2386
2387 revents = 0;
2388
2389 if (events & (POLLIN | POLLRDNORM))
2390 if (soreadable(so))
2391 revents |= events & (POLLIN | POLLRDNORM);
2392
2393 if (events & (POLLOUT | POLLWRNORM))
2394 if (sowritable(so))
2395 revents |= events & (POLLOUT | POLLWRNORM);
2396
2397 if (events & (POLLPRI | POLLRDBAND))
2398 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2399 revents |= events & (POLLPRI | POLLRDBAND);
2400
2401 return revents;
2402 }
2403
2404 int
2405 sopoll(struct socket *so, int events)
2406 {
2407 int revents = 0;
2408
2409 #ifndef DIAGNOSTIC
2410 /*
2411 * Do a quick, unlocked check in expectation that the socket
2412 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2413 * as the solocked() assertions will fail.
2414 */
2415 if ((revents = sodopoll(so, events)) != 0)
2416 return revents;
2417 #endif
2418
2419 solock(so);
2420 if ((revents = sodopoll(so, events)) == 0) {
2421 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2422 selrecord(curlwp, &so->so_rcv.sb_sel);
2423 so->so_rcv.sb_flags |= SB_NOTIFY;
2424 }
2425
2426 if (events & (POLLOUT | POLLWRNORM)) {
2427 selrecord(curlwp, &so->so_snd.sb_sel);
2428 so->so_snd.sb_flags |= SB_NOTIFY;
2429 }
2430 }
2431 sounlock(so);
2432
2433 return revents;
2434 }
2435
2436 struct mbuf **
2437 sbsavetimestamp(int opt, struct mbuf **mp)
2438 {
2439 struct timeval tv;
2440 microtime(&tv);
2441
2442 #ifdef SO_OTIMESTAMP
2443 if (opt & SO_OTIMESTAMP) {
2444 struct timeval50 tv50;
2445
2446 timeval_to_timeval50(&tv, &tv50);
2447 *mp = sbcreatecontrol(&tv50, sizeof(tv50),
2448 SCM_OTIMESTAMP, SOL_SOCKET);
2449 if (*mp)
2450 mp = &(*mp)->m_next;
2451 } else
2452 #endif
2453
2454 if (opt & SO_TIMESTAMP) {
2455 *mp = sbcreatecontrol(&tv, sizeof(tv),
2456 SCM_TIMESTAMP, SOL_SOCKET);
2457 if (*mp)
2458 mp = &(*mp)->m_next;
2459 }
2460 return mp;
2461 }
2462
2463
2464 #include <sys/sysctl.h>
2465
2466 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2467 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2468
2469 /*
2470 * sysctl helper routine for kern.somaxkva. ensures that the given
2471 * value is not too small.
2472 * (XXX should we maybe make sure it's not too large as well?)
2473 */
2474 static int
2475 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2476 {
2477 int error, new_somaxkva;
2478 struct sysctlnode node;
2479
2480 new_somaxkva = somaxkva;
2481 node = *rnode;
2482 node.sysctl_data = &new_somaxkva;
2483 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2484 if (error || newp == NULL)
2485 return error;
2486
2487 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2488 return EINVAL;
2489
2490 mutex_enter(&so_pendfree_lock);
2491 somaxkva = new_somaxkva;
2492 cv_broadcast(&socurkva_cv);
2493 mutex_exit(&so_pendfree_lock);
2494
2495 return error;
2496 }
2497
2498 /*
2499 * sysctl helper routine for kern.sbmax. Basically just ensures that
2500 * any new value is not too small.
2501 */
2502 static int
2503 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2504 {
2505 int error, new_sbmax;
2506 struct sysctlnode node;
2507
2508 new_sbmax = sb_max;
2509 node = *rnode;
2510 node.sysctl_data = &new_sbmax;
2511 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2512 if (error || newp == NULL)
2513 return error;
2514
2515 KERNEL_LOCK(1, NULL);
2516 error = sb_max_set(new_sbmax);
2517 KERNEL_UNLOCK_ONE(NULL);
2518
2519 return error;
2520 }
2521
2522 /*
2523 * sysctl helper routine for kern.sooptions. Ensures that only allowed
2524 * options can be set.
2525 */
2526 static int
2527 sysctl_kern_sooptions(SYSCTLFN_ARGS)
2528 {
2529 int error, new_options;
2530 struct sysctlnode node;
2531
2532 new_options = sooptions;
2533 node = *rnode;
2534 node.sysctl_data = &new_options;
2535 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2536 if (error || newp == NULL)
2537 return error;
2538
2539 if (new_options & ~SO_DEFOPTS)
2540 return EINVAL;
2541
2542 sooptions = new_options;
2543
2544 return 0;
2545 }
2546
2547 static void
2548 sysctl_kern_socket_setup(void)
2549 {
2550
2551 KASSERT(socket_sysctllog == NULL);
2552
2553 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2554 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2555 CTLTYPE_INT, "somaxkva",
2556 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2557 "used for socket buffers"),
2558 sysctl_kern_somaxkva, 0, NULL, 0,
2559 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2560
2561 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2562 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2563 CTLTYPE_INT, "sbmax",
2564 SYSCTL_DESCR("Maximum socket buffer size"),
2565 sysctl_kern_sbmax, 0, NULL, 0,
2566 CTL_KERN, KERN_SBMAX, CTL_EOL);
2567
2568 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2569 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2570 CTLTYPE_INT, "sooptions",
2571 SYSCTL_DESCR("Default socket options"),
2572 sysctl_kern_sooptions, 0, NULL, 0,
2573 CTL_KERN, CTL_CREATE, CTL_EOL);
2574 }
2575