Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.273
      1 /*	$NetBSD: uipc_socket.c,v 1.273 2019/04/08 18:38:45 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.273 2019/04/08 18:38:45 maxv Exp $");
     75 
     76 #ifdef _KERNEL_OPT
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_sock_counters.h"
     79 #include "opt_sosend_loan.h"
     80 #include "opt_mbuftrace.h"
     81 #include "opt_somaxkva.h"
     82 #include "opt_multiprocessor.h"	/* XXX */
     83 #include "opt_sctp.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/file.h>
     90 #include <sys/filedesc.h>
     91 #include <sys/kmem.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/domain.h>
     94 #include <sys/kernel.h>
     95 #include <sys/protosw.h>
     96 #include <sys/socket.h>
     97 #include <sys/socketvar.h>
     98 #include <sys/signalvar.h>
     99 #include <sys/resourcevar.h>
    100 #include <sys/uidinfo.h>
    101 #include <sys/event.h>
    102 #include <sys/poll.h>
    103 #include <sys/kauth.h>
    104 #include <sys/mutex.h>
    105 #include <sys/condvar.h>
    106 #include <sys/kthread.h>
    107 
    108 #ifdef COMPAT_50
    109 #include <compat/sys/time.h>
    110 #include <compat/sys/socket.h>
    111 #endif
    112 
    113 #include <uvm/uvm_extern.h>
    114 #include <uvm/uvm_loan.h>
    115 #include <uvm/uvm_page.h>
    116 
    117 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    118 
    119 extern const struct fileops socketops;
    120 
    121 static int	sooptions;
    122 extern int	somaxconn;			/* patchable (XXX sysctl) */
    123 int		somaxconn = SOMAXCONN;
    124 kmutex_t	*softnet_lock;
    125 
    126 #ifdef SOSEND_COUNTERS
    127 #include <sys/device.h>
    128 
    129 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    130     NULL, "sosend", "loan big");
    131 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    132     NULL, "sosend", "copy big");
    133 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    134     NULL, "sosend", "copy small");
    135 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    136     NULL, "sosend", "kva limit");
    137 
    138 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    139 
    140 EVCNT_ATTACH_STATIC(sosend_loan_big);
    141 EVCNT_ATTACH_STATIC(sosend_copy_big);
    142 EVCNT_ATTACH_STATIC(sosend_copy_small);
    143 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    144 #else
    145 
    146 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    147 
    148 #endif /* SOSEND_COUNTERS */
    149 
    150 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    151 int sock_loan_thresh = -1;
    152 #else
    153 int sock_loan_thresh = 4096;
    154 #endif
    155 
    156 static kmutex_t so_pendfree_lock;
    157 static struct mbuf *so_pendfree = NULL;
    158 
    159 #ifndef SOMAXKVA
    160 #define	SOMAXKVA (16 * 1024 * 1024)
    161 #endif
    162 int somaxkva = SOMAXKVA;
    163 static int socurkva;
    164 static kcondvar_t socurkva_cv;
    165 
    166 static kauth_listener_t socket_listener;
    167 
    168 #define	SOCK_LOAN_CHUNK		65536
    169 
    170 static void sopendfree_thread(void *);
    171 static kcondvar_t pendfree_thread_cv;
    172 static lwp_t *sopendfree_lwp;
    173 
    174 static void sysctl_kern_socket_setup(void);
    175 static struct sysctllog *socket_sysctllog;
    176 
    177 static vsize_t
    178 sokvareserve(struct socket *so, vsize_t len)
    179 {
    180 	int error;
    181 
    182 	mutex_enter(&so_pendfree_lock);
    183 	while (socurkva + len > somaxkva) {
    184 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    185 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    186 		if (error) {
    187 			len = 0;
    188 			break;
    189 		}
    190 	}
    191 	socurkva += len;
    192 	mutex_exit(&so_pendfree_lock);
    193 	return len;
    194 }
    195 
    196 static void
    197 sokvaunreserve(vsize_t len)
    198 {
    199 
    200 	mutex_enter(&so_pendfree_lock);
    201 	socurkva -= len;
    202 	cv_broadcast(&socurkva_cv);
    203 	mutex_exit(&so_pendfree_lock);
    204 }
    205 
    206 /*
    207  * sokvaalloc: allocate kva for loan.
    208  */
    209 vaddr_t
    210 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    211 {
    212 	vaddr_t lva;
    213 
    214 	if (sokvareserve(so, len) == 0)
    215 		return 0;
    216 
    217 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    218 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    219 	if (lva == 0) {
    220 		sokvaunreserve(len);
    221 		return 0;
    222 	}
    223 
    224 	return lva;
    225 }
    226 
    227 /*
    228  * sokvafree: free kva for loan.
    229  */
    230 void
    231 sokvafree(vaddr_t sva, vsize_t len)
    232 {
    233 
    234 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    235 	sokvaunreserve(len);
    236 }
    237 
    238 static void
    239 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    240 {
    241 	vaddr_t sva, eva;
    242 	vsize_t len;
    243 	int npgs;
    244 
    245 	KASSERT(pgs != NULL);
    246 
    247 	eva = round_page((vaddr_t) buf + size);
    248 	sva = trunc_page((vaddr_t) buf);
    249 	len = eva - sva;
    250 	npgs = len >> PAGE_SHIFT;
    251 
    252 	pmap_kremove(sva, len);
    253 	pmap_update(pmap_kernel());
    254 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    255 	sokvafree(sva, len);
    256 }
    257 
    258 /*
    259  * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
    260  * so_pendfree_lock when freeing mbufs.
    261  */
    262 static void
    263 sopendfree_thread(void *v)
    264 {
    265 	struct mbuf *m, *next;
    266 	size_t rv;
    267 
    268 	mutex_enter(&so_pendfree_lock);
    269 
    270 	for (;;) {
    271 		rv = 0;
    272 		while (so_pendfree != NULL) {
    273 			m = so_pendfree;
    274 			so_pendfree = NULL;
    275 			mutex_exit(&so_pendfree_lock);
    276 
    277 			for (; m != NULL; m = next) {
    278 				next = m->m_next;
    279 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
    280 				    0);
    281 				KASSERT(m->m_ext.ext_refcnt == 0);
    282 
    283 				rv += m->m_ext.ext_size;
    284 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    285 				    m->m_ext.ext_size);
    286 				pool_cache_put(mb_cache, m);
    287 			}
    288 
    289 			mutex_enter(&so_pendfree_lock);
    290 		}
    291 		if (rv)
    292 			cv_broadcast(&socurkva_cv);
    293 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    294 	}
    295 	panic("sopendfree_thread");
    296 	/* NOTREACHED */
    297 }
    298 
    299 void
    300 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    301 {
    302 
    303 	KASSERT(m != NULL);
    304 
    305 	/*
    306 	 * postpone freeing mbuf.
    307 	 *
    308 	 * we can't do it in interrupt context
    309 	 * because we need to put kva back to kernel_map.
    310 	 */
    311 
    312 	mutex_enter(&so_pendfree_lock);
    313 	m->m_next = so_pendfree;
    314 	so_pendfree = m;
    315 	cv_signal(&pendfree_thread_cv);
    316 	mutex_exit(&so_pendfree_lock);
    317 }
    318 
    319 static long
    320 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    321 {
    322 	struct iovec *iov = uio->uio_iov;
    323 	vaddr_t sva, eva;
    324 	vsize_t len;
    325 	vaddr_t lva;
    326 	int npgs, error;
    327 	vaddr_t va;
    328 	int i;
    329 
    330 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    331 		return 0;
    332 
    333 	if (iov->iov_len < (size_t) space)
    334 		space = iov->iov_len;
    335 	if (space > SOCK_LOAN_CHUNK)
    336 		space = SOCK_LOAN_CHUNK;
    337 
    338 	eva = round_page((vaddr_t) iov->iov_base + space);
    339 	sva = trunc_page((vaddr_t) iov->iov_base);
    340 	len = eva - sva;
    341 	npgs = len >> PAGE_SHIFT;
    342 
    343 	KASSERT(npgs <= M_EXT_MAXPAGES);
    344 
    345 	lva = sokvaalloc(sva, len, so);
    346 	if (lva == 0)
    347 		return 0;
    348 
    349 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    350 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    351 	if (error) {
    352 		sokvafree(lva, len);
    353 		return 0;
    354 	}
    355 
    356 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    357 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    358 		    VM_PROT_READ, 0);
    359 	pmap_update(pmap_kernel());
    360 
    361 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    362 
    363 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    364 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    365 
    366 	uio->uio_resid -= space;
    367 	/* uio_offset not updated, not set/used for write(2) */
    368 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    369 	uio->uio_iov->iov_len -= space;
    370 	if (uio->uio_iov->iov_len == 0) {
    371 		uio->uio_iov++;
    372 		uio->uio_iovcnt--;
    373 	}
    374 
    375 	return space;
    376 }
    377 
    378 static int
    379 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    380     void *arg0, void *arg1, void *arg2, void *arg3)
    381 {
    382 	int result;
    383 	enum kauth_network_req req;
    384 
    385 	result = KAUTH_RESULT_DEFER;
    386 	req = (enum kauth_network_req)arg0;
    387 
    388 	if ((action != KAUTH_NETWORK_SOCKET) &&
    389 	    (action != KAUTH_NETWORK_BIND))
    390 		return result;
    391 
    392 	switch (req) {
    393 	case KAUTH_REQ_NETWORK_BIND_PORT:
    394 		result = KAUTH_RESULT_ALLOW;
    395 		break;
    396 
    397 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    398 		/* Normal users can only drop their own connections. */
    399 		struct socket *so = (struct socket *)arg1;
    400 
    401 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    402 			result = KAUTH_RESULT_ALLOW;
    403 
    404 		break;
    405 		}
    406 
    407 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    408 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    409 		switch ((u_long)arg1) {
    410 		case PF_ROUTE:
    411 		case PF_OROUTE:
    412 		case PF_BLUETOOTH:
    413 		case PF_CAN:
    414 			result = KAUTH_RESULT_ALLOW;
    415 			break;
    416 		default:
    417 			/* Privileged, let secmodel handle this. */
    418 			if ((u_long)arg2 == SOCK_RAW)
    419 				break;
    420 			result = KAUTH_RESULT_ALLOW;
    421 			break;
    422 		}
    423 		break;
    424 
    425 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    426 		result = KAUTH_RESULT_ALLOW;
    427 
    428 		break;
    429 
    430 	default:
    431 		break;
    432 	}
    433 
    434 	return result;
    435 }
    436 
    437 void
    438 soinit(void)
    439 {
    440 
    441 	sysctl_kern_socket_setup();
    442 
    443 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    444 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    445 	cv_init(&socurkva_cv, "sokva");
    446 	cv_init(&pendfree_thread_cv, "sopendfr");
    447 	soinit2();
    448 
    449 	/* Set the initial adjusted socket buffer size. */
    450 	if (sb_max_set(sb_max))
    451 		panic("bad initial sb_max value: %lu", sb_max);
    452 
    453 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    454 	    socket_listener_cb, NULL);
    455 }
    456 
    457 void
    458 soinit1(void)
    459 {
    460 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    461 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    462 	if (error)
    463 		panic("soinit1 %d", error);
    464 }
    465 
    466 /*
    467  * socreate: create a new socket of the specified type and the protocol.
    468  *
    469  * => Caller may specify another socket for lock sharing (must not be held).
    470  * => Returns the new socket without lock held.
    471  */
    472 int
    473 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    474     struct socket *lockso)
    475 {
    476 	const struct protosw *prp;
    477 	struct socket *so;
    478 	uid_t uid;
    479 	int error;
    480 	kmutex_t *lock;
    481 
    482 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    483 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    484 	    KAUTH_ARG(proto));
    485 	if (error != 0)
    486 		return error;
    487 
    488 	if (proto)
    489 		prp = pffindproto(dom, proto, type);
    490 	else
    491 		prp = pffindtype(dom, type);
    492 	if (prp == NULL) {
    493 		/* no support for domain */
    494 		if (pffinddomain(dom) == 0)
    495 			return EAFNOSUPPORT;
    496 		/* no support for socket type */
    497 		if (proto == 0 && type != 0)
    498 			return EPROTOTYPE;
    499 		return EPROTONOSUPPORT;
    500 	}
    501 	if (prp->pr_usrreqs == NULL)
    502 		return EPROTONOSUPPORT;
    503 	if (prp->pr_type != type)
    504 		return EPROTOTYPE;
    505 
    506 	so = soget(true);
    507 	so->so_type = type;
    508 	so->so_proto = prp;
    509 	so->so_send = sosend;
    510 	so->so_receive = soreceive;
    511 	so->so_options = sooptions;
    512 #ifdef MBUFTRACE
    513 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    514 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    515 	so->so_mowner = &prp->pr_domain->dom_mowner;
    516 #endif
    517 	uid = kauth_cred_geteuid(l->l_cred);
    518 	so->so_uidinfo = uid_find(uid);
    519 	so->so_cpid = l->l_proc->p_pid;
    520 
    521 	/*
    522 	 * Lock assigned and taken during PCB attach, unless we share
    523 	 * the lock with another socket, e.g. socketpair(2) case.
    524 	 */
    525 	if (lockso) {
    526 		lock = lockso->so_lock;
    527 		so->so_lock = lock;
    528 		mutex_obj_hold(lock);
    529 		mutex_enter(lock);
    530 	}
    531 
    532 	/* Attach the PCB (returns with the socket lock held). */
    533 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    534 	KASSERT(solocked(so));
    535 
    536 	if (error) {
    537 		KASSERT(so->so_pcb == NULL);
    538 		so->so_state |= SS_NOFDREF;
    539 		sofree(so);
    540 		return error;
    541 	}
    542 	so->so_cred = kauth_cred_dup(l->l_cred);
    543 	sounlock(so);
    544 
    545 	*aso = so;
    546 	return 0;
    547 }
    548 
    549 /*
    550  * fsocreate: create a socket and a file descriptor associated with it.
    551  *
    552  * => On success, write file descriptor to fdout and return zero.
    553  * => On failure, return non-zero; *fdout will be undefined.
    554  */
    555 int
    556 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    557 {
    558 	lwp_t *l = curlwp;
    559 	int error, fd, flags;
    560 	struct socket *so;
    561 	struct file *fp;
    562 
    563 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    564 		return error;
    565 	}
    566 	flags = type & SOCK_FLAGS_MASK;
    567 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    568 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    569 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    570 	fp->f_type = DTYPE_SOCKET;
    571 	fp->f_ops = &socketops;
    572 
    573 	type &= ~SOCK_FLAGS_MASK;
    574 	error = socreate(domain, &so, type, proto, l, NULL);
    575 	if (error) {
    576 		fd_abort(curproc, fp, fd);
    577 		return error;
    578 	}
    579 	if (flags & SOCK_NONBLOCK) {
    580 		so->so_state |= SS_NBIO;
    581 	}
    582 	fp->f_socket = so;
    583 	fd_affix(curproc, fp, fd);
    584 
    585 	if (sop != NULL) {
    586 		*sop = so;
    587 	}
    588 	*fdout = fd;
    589 	return error;
    590 }
    591 
    592 int
    593 sofamily(const struct socket *so)
    594 {
    595 	const struct protosw *pr;
    596 	const struct domain *dom;
    597 
    598 	if ((pr = so->so_proto) == NULL)
    599 		return AF_UNSPEC;
    600 	if ((dom = pr->pr_domain) == NULL)
    601 		return AF_UNSPEC;
    602 	return dom->dom_family;
    603 }
    604 
    605 int
    606 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    607 {
    608 	int error;
    609 
    610 	solock(so);
    611 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    612 		sounlock(so);
    613 		return EAFNOSUPPORT;
    614 	}
    615 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    616 	sounlock(so);
    617 	return error;
    618 }
    619 
    620 int
    621 solisten(struct socket *so, int backlog, struct lwp *l)
    622 {
    623 	int error;
    624 	short oldopt, oldqlimit;
    625 
    626 	solock(so);
    627 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    628 	    SS_ISDISCONNECTING)) != 0) {
    629 		sounlock(so);
    630 		return EINVAL;
    631 	}
    632 	oldopt = so->so_options;
    633 	oldqlimit = so->so_qlimit;
    634 	if (TAILQ_EMPTY(&so->so_q))
    635 		so->so_options |= SO_ACCEPTCONN;
    636 	if (backlog < 0)
    637 		backlog = 0;
    638 	so->so_qlimit = uimin(backlog, somaxconn);
    639 
    640 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    641 	if (error != 0) {
    642 		so->so_options = oldopt;
    643 		so->so_qlimit = oldqlimit;
    644 		sounlock(so);
    645 		return error;
    646 	}
    647 	sounlock(so);
    648 	return 0;
    649 }
    650 
    651 void
    652 sofree(struct socket *so)
    653 {
    654 	u_int refs;
    655 
    656 	KASSERT(solocked(so));
    657 
    658 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    659 		sounlock(so);
    660 		return;
    661 	}
    662 	if (so->so_head) {
    663 		/*
    664 		 * We must not decommission a socket that's on the accept(2)
    665 		 * queue.  If we do, then accept(2) may hang after select(2)
    666 		 * indicated that the listening socket was ready.
    667 		 */
    668 		if (!soqremque(so, 0)) {
    669 			sounlock(so);
    670 			return;
    671 		}
    672 	}
    673 	if (so->so_rcv.sb_hiwat)
    674 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    675 		    RLIM_INFINITY);
    676 	if (so->so_snd.sb_hiwat)
    677 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    678 		    RLIM_INFINITY);
    679 	sbrelease(&so->so_snd, so);
    680 	KASSERT(!cv_has_waiters(&so->so_cv));
    681 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    682 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    683 	sorflush(so);
    684 	refs = so->so_aborting;	/* XXX */
    685 	/* Remove acccept filter if one is present. */
    686 	if (so->so_accf != NULL)
    687 		(void)accept_filt_clear(so);
    688 	sounlock(so);
    689 	if (refs == 0)		/* XXX */
    690 		soput(so);
    691 }
    692 
    693 /*
    694  * soclose: close a socket on last file table reference removal.
    695  * Initiate disconnect if connected.  Free socket when disconnect complete.
    696  */
    697 int
    698 soclose(struct socket *so)
    699 {
    700 	struct socket *so2;
    701 	int error = 0;
    702 
    703 	solock(so);
    704 	if (so->so_options & SO_ACCEPTCONN) {
    705 		for (;;) {
    706 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    707 				KASSERT(solocked2(so, so2));
    708 				(void) soqremque(so2, 0);
    709 				/* soabort drops the lock. */
    710 				(void) soabort(so2);
    711 				solock(so);
    712 				continue;
    713 			}
    714 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    715 				KASSERT(solocked2(so, so2));
    716 				(void) soqremque(so2, 1);
    717 				/* soabort drops the lock. */
    718 				(void) soabort(so2);
    719 				solock(so);
    720 				continue;
    721 			}
    722 			break;
    723 		}
    724 	}
    725 	if (so->so_pcb == NULL)
    726 		goto discard;
    727 	if (so->so_state & SS_ISCONNECTED) {
    728 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    729 			error = sodisconnect(so);
    730 			if (error)
    731 				goto drop;
    732 		}
    733 		if (so->so_options & SO_LINGER) {
    734 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    735 			    (SS_ISDISCONNECTING|SS_NBIO))
    736 				goto drop;
    737 			while (so->so_state & SS_ISCONNECTED) {
    738 				error = sowait(so, true, so->so_linger * hz);
    739 				if (error)
    740 					break;
    741 			}
    742 		}
    743 	}
    744  drop:
    745 	if (so->so_pcb) {
    746 		KASSERT(solocked(so));
    747 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    748 	}
    749  discard:
    750 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    751 	kauth_cred_free(so->so_cred);
    752 	so->so_cred = NULL;
    753 	so->so_state |= SS_NOFDREF;
    754 	sofree(so);
    755 	return error;
    756 }
    757 
    758 /*
    759  * Must be called with the socket locked..  Will return with it unlocked.
    760  */
    761 int
    762 soabort(struct socket *so)
    763 {
    764 	u_int refs;
    765 	int error;
    766 
    767 	KASSERT(solocked(so));
    768 	KASSERT(so->so_head == NULL);
    769 
    770 	so->so_aborting++;		/* XXX */
    771 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    772 	refs = --so->so_aborting;	/* XXX */
    773 	if (error || (refs == 0)) {
    774 		sofree(so);
    775 	} else {
    776 		sounlock(so);
    777 	}
    778 	return error;
    779 }
    780 
    781 int
    782 soaccept(struct socket *so, struct sockaddr *nam)
    783 {
    784 	int error;
    785 
    786 	KASSERT(solocked(so));
    787 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    788 
    789 	so->so_state &= ~SS_NOFDREF;
    790 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    791 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    792 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    793 	else
    794 		error = ECONNABORTED;
    795 
    796 	return error;
    797 }
    798 
    799 int
    800 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    801 {
    802 	int error;
    803 
    804 	KASSERT(solocked(so));
    805 
    806 	if (so->so_options & SO_ACCEPTCONN)
    807 		return EOPNOTSUPP;
    808 	/*
    809 	 * If protocol is connection-based, can only connect once.
    810 	 * Otherwise, if connected, try to disconnect first.
    811 	 * This allows user to disconnect by connecting to, e.g.,
    812 	 * a null address.
    813 	 */
    814 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    815 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    816 	    (error = sodisconnect(so)))) {
    817 		error = EISCONN;
    818 	} else {
    819 		if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    820 			return EAFNOSUPPORT;
    821 		}
    822 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    823 	}
    824 
    825 	return error;
    826 }
    827 
    828 int
    829 soconnect2(struct socket *so1, struct socket *so2)
    830 {
    831 	KASSERT(solocked2(so1, so2));
    832 
    833 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    834 }
    835 
    836 int
    837 sodisconnect(struct socket *so)
    838 {
    839 	int error;
    840 
    841 	KASSERT(solocked(so));
    842 
    843 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    844 		error = ENOTCONN;
    845 	} else if (so->so_state & SS_ISDISCONNECTING) {
    846 		error = EALREADY;
    847 	} else {
    848 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    849 	}
    850 	return error;
    851 }
    852 
    853 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    854 /*
    855  * Send on a socket.
    856  * If send must go all at once and message is larger than
    857  * send buffering, then hard error.
    858  * Lock against other senders.
    859  * If must go all at once and not enough room now, then
    860  * inform user that this would block and do nothing.
    861  * Otherwise, if nonblocking, send as much as possible.
    862  * The data to be sent is described by "uio" if nonzero,
    863  * otherwise by the mbuf chain "top" (which must be null
    864  * if uio is not).  Data provided in mbuf chain must be small
    865  * enough to send all at once.
    866  *
    867  * Returns nonzero on error, timeout or signal; callers
    868  * must check for short counts if EINTR/ERESTART are returned.
    869  * Data and control buffers are freed on return.
    870  */
    871 int
    872 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
    873 	struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
    874 {
    875 	struct mbuf **mp, *m;
    876 	long space, len, resid, clen, mlen;
    877 	int error, s, dontroute, atomic;
    878 	short wakeup_state = 0;
    879 
    880 	clen = 0;
    881 
    882 	/*
    883 	 * solock() provides atomicity of access.  splsoftnet() prevents
    884 	 * protocol processing soft interrupts from interrupting us and
    885 	 * blocking (expensive).
    886 	 */
    887 	s = splsoftnet();
    888 	solock(so);
    889 	atomic = sosendallatonce(so) || top;
    890 	if (uio)
    891 		resid = uio->uio_resid;
    892 	else
    893 		resid = top->m_pkthdr.len;
    894 	/*
    895 	 * In theory resid should be unsigned.
    896 	 * However, space must be signed, as it might be less than 0
    897 	 * if we over-committed, and we must use a signed comparison
    898 	 * of space and resid.  On the other hand, a negative resid
    899 	 * causes us to loop sending 0-length segments to the protocol.
    900 	 */
    901 	if (resid < 0) {
    902 		error = EINVAL;
    903 		goto out;
    904 	}
    905 	dontroute =
    906 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    907 	    (so->so_proto->pr_flags & PR_ATOMIC);
    908 	l->l_ru.ru_msgsnd++;
    909 	if (control)
    910 		clen = control->m_len;
    911  restart:
    912 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    913 		goto out;
    914 	do {
    915 		if (so->so_state & SS_CANTSENDMORE) {
    916 			error = EPIPE;
    917 			goto release;
    918 		}
    919 		if (so->so_error) {
    920 			error = so->so_error;
    921 			so->so_error = 0;
    922 			goto release;
    923 		}
    924 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    925 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    926 				if (resid || clen == 0) {
    927 					error = ENOTCONN;
    928 					goto release;
    929 				}
    930 			} else if (addr == NULL) {
    931 				error = EDESTADDRREQ;
    932 				goto release;
    933 			}
    934 		}
    935 		space = sbspace(&so->so_snd);
    936 		if (flags & MSG_OOB)
    937 			space += 1024;
    938 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    939 		    clen > so->so_snd.sb_hiwat) {
    940 			error = EMSGSIZE;
    941 			goto release;
    942 		}
    943 		if (space < resid + clen &&
    944 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    945 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    946 				error = EWOULDBLOCK;
    947 				goto release;
    948 			}
    949 			sbunlock(&so->so_snd);
    950 			if (wakeup_state & SS_RESTARTSYS) {
    951 				error = ERESTART;
    952 				goto out;
    953 			}
    954 			error = sbwait(&so->so_snd);
    955 			if (error)
    956 				goto out;
    957 			wakeup_state = so->so_state;
    958 			goto restart;
    959 		}
    960 		wakeup_state = 0;
    961 		mp = &top;
    962 		space -= clen;
    963 		do {
    964 			if (uio == NULL) {
    965 				/*
    966 				 * Data is prepackaged in "top".
    967 				 */
    968 				resid = 0;
    969 				if (flags & MSG_EOR)
    970 					top->m_flags |= M_EOR;
    971 			} else do {
    972 				sounlock(so);
    973 				splx(s);
    974 				if (top == NULL) {
    975 					m = m_gethdr(M_WAIT, MT_DATA);
    976 					mlen = MHLEN;
    977 					m->m_pkthdr.len = 0;
    978 					m_reset_rcvif(m);
    979 				} else {
    980 					m = m_get(M_WAIT, MT_DATA);
    981 					mlen = MLEN;
    982 				}
    983 				MCLAIM(m, so->so_snd.sb_mowner);
    984 				if (sock_loan_thresh >= 0 &&
    985 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    986 				    space >= sock_loan_thresh &&
    987 				    (len = sosend_loan(so, uio, m,
    988 						       space)) != 0) {
    989 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    990 					space -= len;
    991 					goto have_data;
    992 				}
    993 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    994 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    995 					m_clget(m, M_DONTWAIT);
    996 					if ((m->m_flags & M_EXT) == 0)
    997 						goto nopages;
    998 					mlen = MCLBYTES;
    999 					if (atomic && top == 0) {
   1000 						len = lmin(MCLBYTES - max_hdr,
   1001 						    resid);
   1002 						m->m_data += max_hdr;
   1003 					} else
   1004 						len = lmin(MCLBYTES, resid);
   1005 					space -= len;
   1006 				} else {
   1007  nopages:
   1008 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1009 					len = lmin(lmin(mlen, resid), space);
   1010 					space -= len;
   1011 					/*
   1012 					 * For datagram protocols, leave room
   1013 					 * for protocol headers in first mbuf.
   1014 					 */
   1015 					if (atomic && top == 0 && len < mlen)
   1016 						m_align(m, len);
   1017 				}
   1018 				error = uiomove(mtod(m, void *), (int)len, uio);
   1019  have_data:
   1020 				resid = uio->uio_resid;
   1021 				m->m_len = len;
   1022 				*mp = m;
   1023 				top->m_pkthdr.len += len;
   1024 				s = splsoftnet();
   1025 				solock(so);
   1026 				if (error != 0)
   1027 					goto release;
   1028 				mp = &m->m_next;
   1029 				if (resid <= 0) {
   1030 					if (flags & MSG_EOR)
   1031 						top->m_flags |= M_EOR;
   1032 					break;
   1033 				}
   1034 			} while (space > 0 && atomic);
   1035 
   1036 			if (so->so_state & SS_CANTSENDMORE) {
   1037 				error = EPIPE;
   1038 				goto release;
   1039 			}
   1040 			if (dontroute)
   1041 				so->so_options |= SO_DONTROUTE;
   1042 			if (resid > 0)
   1043 				so->so_state |= SS_MORETOCOME;
   1044 			if (flags & MSG_OOB) {
   1045 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
   1046 				    so, top, control);
   1047 			} else {
   1048 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1049 				    top, addr, control, l);
   1050 			}
   1051 			if (dontroute)
   1052 				so->so_options &= ~SO_DONTROUTE;
   1053 			if (resid > 0)
   1054 				so->so_state &= ~SS_MORETOCOME;
   1055 			clen = 0;
   1056 			control = NULL;
   1057 			top = NULL;
   1058 			mp = &top;
   1059 			if (error != 0)
   1060 				goto release;
   1061 		} while (resid && space > 0);
   1062 	} while (resid);
   1063 
   1064  release:
   1065 	sbunlock(&so->so_snd);
   1066  out:
   1067 	sounlock(so);
   1068 	splx(s);
   1069 	if (top)
   1070 		m_freem(top);
   1071 	if (control)
   1072 		m_freem(control);
   1073 	return error;
   1074 }
   1075 
   1076 /*
   1077  * Following replacement or removal of the first mbuf on the first
   1078  * mbuf chain of a socket buffer, push necessary state changes back
   1079  * into the socket buffer so that other consumers see the values
   1080  * consistently.  'nextrecord' is the caller's locally stored value of
   1081  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1082  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1083  */
   1084 static void
   1085 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1086 {
   1087 
   1088 	KASSERT(solocked(sb->sb_so));
   1089 
   1090 	/*
   1091 	 * First, update for the new value of nextrecord.  If necessary,
   1092 	 * make it the first record.
   1093 	 */
   1094 	if (sb->sb_mb != NULL)
   1095 		sb->sb_mb->m_nextpkt = nextrecord;
   1096 	else
   1097 		sb->sb_mb = nextrecord;
   1098 
   1099         /*
   1100          * Now update any dependent socket buffer fields to reflect
   1101          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1102          * the addition of a second clause that takes care of the
   1103          * case where sb_mb has been updated, but remains the last
   1104          * record.
   1105          */
   1106         if (sb->sb_mb == NULL) {
   1107                 sb->sb_mbtail = NULL;
   1108                 sb->sb_lastrecord = NULL;
   1109         } else if (sb->sb_mb->m_nextpkt == NULL)
   1110                 sb->sb_lastrecord = sb->sb_mb;
   1111 }
   1112 
   1113 /*
   1114  * Implement receive operations on a socket.
   1115  *
   1116  * We depend on the way that records are added to the sockbuf by sbappend*. In
   1117  * particular, each record (mbufs linked through m_next) must begin with an
   1118  * address if the protocol so specifies, followed by an optional mbuf or mbufs
   1119  * containing ancillary data, and then zero or more mbufs of data.
   1120  *
   1121  * In order to avoid blocking network interrupts for the entire time here, we
   1122  * splx() while doing the actual copy to user space. Although the sockbuf is
   1123  * locked, new data may still be appended, and thus we must maintain
   1124  * consistency of the sockbuf during that time.
   1125  *
   1126  * The caller may receive the data as a single mbuf chain by supplying an mbuf
   1127  * **mp0 for use in returning the chain. The uio is then used only for the
   1128  * count in uio_resid.
   1129  */
   1130 int
   1131 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1132     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1133 {
   1134 	struct lwp *l = curlwp;
   1135 	struct mbuf *m, **mp, *mt;
   1136 	size_t len, offset, moff, orig_resid;
   1137 	int atomic, flags, error, s, type;
   1138 	const struct protosw *pr;
   1139 	struct mbuf *nextrecord;
   1140 	int mbuf_removed = 0;
   1141 	const struct domain *dom;
   1142 	short wakeup_state = 0;
   1143 
   1144 	pr = so->so_proto;
   1145 	atomic = pr->pr_flags & PR_ATOMIC;
   1146 	dom = pr->pr_domain;
   1147 	mp = mp0;
   1148 	type = 0;
   1149 	orig_resid = uio->uio_resid;
   1150 
   1151 	if (paddr != NULL)
   1152 		*paddr = NULL;
   1153 	if (controlp != NULL)
   1154 		*controlp = NULL;
   1155 	if (flagsp != NULL)
   1156 		flags = *flagsp &~ MSG_EOR;
   1157 	else
   1158 		flags = 0;
   1159 
   1160 	if (flags & MSG_OOB) {
   1161 		m = m_get(M_WAIT, MT_DATA);
   1162 		solock(so);
   1163 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1164 		sounlock(so);
   1165 		if (error)
   1166 			goto bad;
   1167 		do {
   1168 			error = uiomove(mtod(m, void *),
   1169 			    MIN(uio->uio_resid, m->m_len), uio);
   1170 			m = m_free(m);
   1171 		} while (uio->uio_resid > 0 && error == 0 && m);
   1172 bad:
   1173 		if (m != NULL)
   1174 			m_freem(m);
   1175 		return error;
   1176 	}
   1177 	if (mp != NULL)
   1178 		*mp = NULL;
   1179 
   1180 	/*
   1181 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1182 	 * protocol processing soft interrupts from interrupting us and
   1183 	 * blocking (expensive).
   1184 	 */
   1185 	s = splsoftnet();
   1186 	solock(so);
   1187 restart:
   1188 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1189 		sounlock(so);
   1190 		splx(s);
   1191 		return error;
   1192 	}
   1193 	m = so->so_rcv.sb_mb;
   1194 
   1195 	/*
   1196 	 * If we have less data than requested, block awaiting more
   1197 	 * (subject to any timeout) if:
   1198 	 *   1. the current count is less than the low water mark,
   1199 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1200 	 *	receive operation at once if we block (resid <= hiwat), or
   1201 	 *   3. MSG_DONTWAIT is not set.
   1202 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1203 	 * we have to do the receive in sections, and thus risk returning
   1204 	 * a short count if a timeout or signal occurs after we start.
   1205 	 */
   1206 	if (m == NULL ||
   1207 	    ((flags & MSG_DONTWAIT) == 0 &&
   1208 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1209 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1210 	      ((flags & MSG_WAITALL) &&
   1211 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1212 	     m->m_nextpkt == NULL && !atomic)) {
   1213 #ifdef DIAGNOSTIC
   1214 		if (m == NULL && so->so_rcv.sb_cc)
   1215 			panic("receive 1");
   1216 #endif
   1217 		if (so->so_error || so->so_rerror) {
   1218 			if (m != NULL)
   1219 				goto dontblock;
   1220 			if (so->so_error) {
   1221 				error = so->so_error;
   1222 				so->so_error = 0;
   1223 			} else {
   1224 				error = so->so_rerror;
   1225 				so->so_rerror = 0;
   1226 			}
   1227 			goto release;
   1228 		}
   1229 		if (so->so_state & SS_CANTRCVMORE) {
   1230 			if (m != NULL)
   1231 				goto dontblock;
   1232 			else
   1233 				goto release;
   1234 		}
   1235 		for (; m != NULL; m = m->m_next)
   1236 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1237 				m = so->so_rcv.sb_mb;
   1238 				goto dontblock;
   1239 			}
   1240 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1241 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1242 			error = ENOTCONN;
   1243 			goto release;
   1244 		}
   1245 		if (uio->uio_resid == 0)
   1246 			goto release;
   1247 		if ((so->so_state & SS_NBIO) ||
   1248 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1249 			error = EWOULDBLOCK;
   1250 			goto release;
   1251 		}
   1252 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1253 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1254 		sbunlock(&so->so_rcv);
   1255 		if (wakeup_state & SS_RESTARTSYS)
   1256 			error = ERESTART;
   1257 		else
   1258 			error = sbwait(&so->so_rcv);
   1259 		if (error != 0) {
   1260 			sounlock(so);
   1261 			splx(s);
   1262 			return error;
   1263 		}
   1264 		wakeup_state = so->so_state;
   1265 		goto restart;
   1266 	}
   1267 
   1268 dontblock:
   1269 	/*
   1270 	 * On entry here, m points to the first record of the socket buffer.
   1271 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1272 	 * pointer to the next record in the socket buffer.  We must keep the
   1273 	 * various socket buffer pointers and local stack versions of the
   1274 	 * pointers in sync, pushing out modifications before dropping the
   1275 	 * socket lock, and re-reading them when picking it up.
   1276 	 *
   1277 	 * Otherwise, we will race with the network stack appending new data
   1278 	 * or records onto the socket buffer by using inconsistent/stale
   1279 	 * versions of the field, possibly resulting in socket buffer
   1280 	 * corruption.
   1281 	 *
   1282 	 * By holding the high-level sblock(), we prevent simultaneous
   1283 	 * readers from pulling off the front of the socket buffer.
   1284 	 */
   1285 	if (l != NULL)
   1286 		l->l_ru.ru_msgrcv++;
   1287 	KASSERT(m == so->so_rcv.sb_mb);
   1288 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1289 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1290 	nextrecord = m->m_nextpkt;
   1291 
   1292 	if (pr->pr_flags & PR_ADDR) {
   1293 		KASSERT(m->m_type == MT_SONAME);
   1294 		orig_resid = 0;
   1295 		if (flags & MSG_PEEK) {
   1296 			if (paddr)
   1297 				*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1298 			m = m->m_next;
   1299 		} else {
   1300 			sbfree(&so->so_rcv, m);
   1301 			mbuf_removed = 1;
   1302 			if (paddr != NULL) {
   1303 				*paddr = m;
   1304 				so->so_rcv.sb_mb = m->m_next;
   1305 				m->m_next = NULL;
   1306 				m = so->so_rcv.sb_mb;
   1307 			} else {
   1308 				m = so->so_rcv.sb_mb = m_free(m);
   1309 			}
   1310 			sbsync(&so->so_rcv, nextrecord);
   1311 		}
   1312 	}
   1313 
   1314 	if (pr->pr_flags & PR_ADDR_OPT) {
   1315 		/*
   1316 		 * For SCTP we may be getting a whole message OR a partial
   1317 		 * delivery.
   1318 		 */
   1319 		if (m->m_type == MT_SONAME) {
   1320 			orig_resid = 0;
   1321 			if (flags & MSG_PEEK) {
   1322 				if (paddr)
   1323 					*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1324 				m = m->m_next;
   1325 			} else {
   1326 				sbfree(&so->so_rcv, m);
   1327 				if (paddr) {
   1328 					*paddr = m;
   1329 					so->so_rcv.sb_mb = m->m_next;
   1330 					m->m_next = 0;
   1331 					m = so->so_rcv.sb_mb;
   1332 				} else {
   1333 					m = so->so_rcv.sb_mb = m_free(m);
   1334 				}
   1335 			}
   1336 		}
   1337 	}
   1338 
   1339 	/*
   1340 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1341 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1342 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1343 	 * perform externalization (or freeing if controlp == NULL).
   1344 	 */
   1345 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1346 		struct mbuf *cm = NULL, *cmn;
   1347 		struct mbuf **cme = &cm;
   1348 
   1349 		do {
   1350 			if (flags & MSG_PEEK) {
   1351 				if (controlp != NULL) {
   1352 					*controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1353 					controlp = &(*controlp)->m_next;
   1354 				}
   1355 				m = m->m_next;
   1356 			} else {
   1357 				sbfree(&so->so_rcv, m);
   1358 				so->so_rcv.sb_mb = m->m_next;
   1359 				m->m_next = NULL;
   1360 				*cme = m;
   1361 				cme = &(*cme)->m_next;
   1362 				m = so->so_rcv.sb_mb;
   1363 			}
   1364 		} while (m != NULL && m->m_type == MT_CONTROL);
   1365 		if ((flags & MSG_PEEK) == 0)
   1366 			sbsync(&so->so_rcv, nextrecord);
   1367 
   1368 		for (; cm != NULL; cm = cmn) {
   1369 			cmn = cm->m_next;
   1370 			cm->m_next = NULL;
   1371 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1372 			if (controlp != NULL) {
   1373 				if (dom->dom_externalize != NULL &&
   1374 				    type == SCM_RIGHTS) {
   1375 					sounlock(so);
   1376 					splx(s);
   1377 					error = (*dom->dom_externalize)(cm, l,
   1378 					    (flags & MSG_CMSG_CLOEXEC) ?
   1379 					    O_CLOEXEC : 0);
   1380 					s = splsoftnet();
   1381 					solock(so);
   1382 				}
   1383 				*controlp = cm;
   1384 				while (*controlp != NULL)
   1385 					controlp = &(*controlp)->m_next;
   1386 			} else {
   1387 				/*
   1388 				 * Dispose of any SCM_RIGHTS message that went
   1389 				 * through the read path rather than recv.
   1390 				 */
   1391 				if (dom->dom_dispose != NULL &&
   1392 				    type == SCM_RIGHTS) {
   1393 					sounlock(so);
   1394 					(*dom->dom_dispose)(cm);
   1395 					solock(so);
   1396 				}
   1397 				m_freem(cm);
   1398 			}
   1399 		}
   1400 		if (m != NULL)
   1401 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1402 		else
   1403 			nextrecord = so->so_rcv.sb_mb;
   1404 		orig_resid = 0;
   1405 	}
   1406 
   1407 	/* If m is non-NULL, we have some data to read. */
   1408 	if (__predict_true(m != NULL)) {
   1409 		type = m->m_type;
   1410 		if (type == MT_OOBDATA)
   1411 			flags |= MSG_OOB;
   1412 	}
   1413 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1414 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1415 
   1416 	moff = 0;
   1417 	offset = 0;
   1418 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1419 		/*
   1420 		 * If the type of mbuf has changed, end the receive
   1421 		 * operation and do a short read.
   1422 		 */
   1423 		if (m->m_type == MT_OOBDATA) {
   1424 			if (type != MT_OOBDATA)
   1425 				break;
   1426 		} else if (type == MT_OOBDATA) {
   1427 			break;
   1428 		} else if (m->m_type == MT_CONTROL) {
   1429 			break;
   1430 		}
   1431 #ifdef DIAGNOSTIC
   1432 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
   1433 			panic("%s: m_type=%d", __func__, m->m_type);
   1434 		}
   1435 #endif
   1436 
   1437 		so->so_state &= ~SS_RCVATMARK;
   1438 		wakeup_state = 0;
   1439 		len = uio->uio_resid;
   1440 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1441 			len = so->so_oobmark - offset;
   1442 		if (len > m->m_len - moff)
   1443 			len = m->m_len - moff;
   1444 
   1445 		/*
   1446 		 * If mp is set, just pass back the mbufs.
   1447 		 * Otherwise copy them out via the uio, then free.
   1448 		 * Sockbuf must be consistent here (points to current mbuf,
   1449 		 * it points to next record) when we drop priority;
   1450 		 * we must note any additions to the sockbuf when we
   1451 		 * block interrupts again.
   1452 		 */
   1453 		if (mp == NULL) {
   1454 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1455 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1456 			sounlock(so);
   1457 			splx(s);
   1458 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1459 			s = splsoftnet();
   1460 			solock(so);
   1461 			if (error != 0) {
   1462 				/*
   1463 				 * If any part of the record has been removed
   1464 				 * (such as the MT_SONAME mbuf, which will
   1465 				 * happen when PR_ADDR, and thus also
   1466 				 * PR_ATOMIC, is set), then drop the entire
   1467 				 * record to maintain the atomicity of the
   1468 				 * receive operation.
   1469 				 *
   1470 				 * This avoids a later panic("receive 1a")
   1471 				 * when compiled with DIAGNOSTIC.
   1472 				 */
   1473 				if (m && mbuf_removed && atomic)
   1474 					(void) sbdroprecord(&so->so_rcv);
   1475 
   1476 				goto release;
   1477 			}
   1478 		} else {
   1479 			uio->uio_resid -= len;
   1480 		}
   1481 
   1482 		if (len == m->m_len - moff) {
   1483 			if (m->m_flags & M_EOR)
   1484 				flags |= MSG_EOR;
   1485 #ifdef SCTP
   1486 			if (m->m_flags & M_NOTIFICATION)
   1487 				flags |= MSG_NOTIFICATION;
   1488 #endif
   1489 			if (flags & MSG_PEEK) {
   1490 				m = m->m_next;
   1491 				moff = 0;
   1492 			} else {
   1493 				nextrecord = m->m_nextpkt;
   1494 				sbfree(&so->so_rcv, m);
   1495 				if (mp) {
   1496 					*mp = m;
   1497 					mp = &m->m_next;
   1498 					so->so_rcv.sb_mb = m = m->m_next;
   1499 					*mp = NULL;
   1500 				} else {
   1501 					m = so->so_rcv.sb_mb = m_free(m);
   1502 				}
   1503 				/*
   1504 				 * If m != NULL, we also know that
   1505 				 * so->so_rcv.sb_mb != NULL.
   1506 				 */
   1507 				KASSERT(so->so_rcv.sb_mb == m);
   1508 				if (m) {
   1509 					m->m_nextpkt = nextrecord;
   1510 					if (nextrecord == NULL)
   1511 						so->so_rcv.sb_lastrecord = m;
   1512 				} else {
   1513 					so->so_rcv.sb_mb = nextrecord;
   1514 					SB_EMPTY_FIXUP(&so->so_rcv);
   1515 				}
   1516 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1517 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1518 			}
   1519 		} else if (flags & MSG_PEEK) {
   1520 			moff += len;
   1521 		} else {
   1522 			if (mp != NULL) {
   1523 				mt = m_copym(m, 0, len, M_NOWAIT);
   1524 				if (__predict_false(mt == NULL)) {
   1525 					sounlock(so);
   1526 					mt = m_copym(m, 0, len, M_WAIT);
   1527 					solock(so);
   1528 				}
   1529 				*mp = mt;
   1530 			}
   1531 			m->m_data += len;
   1532 			m->m_len -= len;
   1533 			so->so_rcv.sb_cc -= len;
   1534 		}
   1535 
   1536 		if (so->so_oobmark) {
   1537 			if ((flags & MSG_PEEK) == 0) {
   1538 				so->so_oobmark -= len;
   1539 				if (so->so_oobmark == 0) {
   1540 					so->so_state |= SS_RCVATMARK;
   1541 					break;
   1542 				}
   1543 			} else {
   1544 				offset += len;
   1545 				if (offset == so->so_oobmark)
   1546 					break;
   1547 			}
   1548 		}
   1549 		if (flags & MSG_EOR)
   1550 			break;
   1551 
   1552 		/*
   1553 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1554 		 * we must not quit until "uio->uio_resid == 0" or an error
   1555 		 * termination.  If a signal/timeout occurs, return
   1556 		 * with a short count but without error.
   1557 		 * Keep sockbuf locked against other readers.
   1558 		 */
   1559 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1560 		    !sosendallatonce(so) && !nextrecord) {
   1561 			if (so->so_error || so->so_rerror ||
   1562 			    so->so_state & SS_CANTRCVMORE)
   1563 				break;
   1564 			/*
   1565 			 * If we are peeking and the socket receive buffer is
   1566 			 * full, stop since we can't get more data to peek at.
   1567 			 */
   1568 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1569 				break;
   1570 			/*
   1571 			 * If we've drained the socket buffer, tell the
   1572 			 * protocol in case it needs to do something to
   1573 			 * get it filled again.
   1574 			 */
   1575 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1576 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1577 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1578 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1579 			if (wakeup_state & SS_RESTARTSYS)
   1580 				error = ERESTART;
   1581 			else
   1582 				error = sbwait(&so->so_rcv);
   1583 			if (error != 0) {
   1584 				sbunlock(&so->so_rcv);
   1585 				sounlock(so);
   1586 				splx(s);
   1587 				return 0;
   1588 			}
   1589 			if ((m = so->so_rcv.sb_mb) != NULL)
   1590 				nextrecord = m->m_nextpkt;
   1591 			wakeup_state = so->so_state;
   1592 		}
   1593 	}
   1594 
   1595 	if (m && atomic) {
   1596 		flags |= MSG_TRUNC;
   1597 		if ((flags & MSG_PEEK) == 0)
   1598 			(void) sbdroprecord(&so->so_rcv);
   1599 	}
   1600 	if ((flags & MSG_PEEK) == 0) {
   1601 		if (m == NULL) {
   1602 			/*
   1603 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1604 			 * part makes sure sb_lastrecord is up-to-date if
   1605 			 * there is still data in the socket buffer.
   1606 			 */
   1607 			so->so_rcv.sb_mb = nextrecord;
   1608 			if (so->so_rcv.sb_mb == NULL) {
   1609 				so->so_rcv.sb_mbtail = NULL;
   1610 				so->so_rcv.sb_lastrecord = NULL;
   1611 			} else if (nextrecord->m_nextpkt == NULL)
   1612 				so->so_rcv.sb_lastrecord = nextrecord;
   1613 		}
   1614 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1615 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1616 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1617 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1618 	}
   1619 	if (orig_resid == uio->uio_resid && orig_resid &&
   1620 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1621 		sbunlock(&so->so_rcv);
   1622 		goto restart;
   1623 	}
   1624 
   1625 	if (flagsp != NULL)
   1626 		*flagsp |= flags;
   1627 release:
   1628 	sbunlock(&so->so_rcv);
   1629 	sounlock(so);
   1630 	splx(s);
   1631 	return error;
   1632 }
   1633 
   1634 int
   1635 soshutdown(struct socket *so, int how)
   1636 {
   1637 	const struct protosw *pr;
   1638 	int error;
   1639 
   1640 	KASSERT(solocked(so));
   1641 
   1642 	pr = so->so_proto;
   1643 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1644 		return EINVAL;
   1645 
   1646 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1647 		sorflush(so);
   1648 		error = 0;
   1649 	}
   1650 	if (how == SHUT_WR || how == SHUT_RDWR)
   1651 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1652 
   1653 	return error;
   1654 }
   1655 
   1656 void
   1657 sorestart(struct socket *so)
   1658 {
   1659 	/*
   1660 	 * An application has called close() on an fd on which another
   1661 	 * of its threads has called a socket system call.
   1662 	 * Mark this and wake everyone up, and code that would block again
   1663 	 * instead returns ERESTART.
   1664 	 * On system call re-entry the fd is validated and EBADF returned.
   1665 	 * Any other fd will block again on the 2nd syscall.
   1666 	 */
   1667 	solock(so);
   1668 	so->so_state |= SS_RESTARTSYS;
   1669 	cv_broadcast(&so->so_cv);
   1670 	cv_broadcast(&so->so_snd.sb_cv);
   1671 	cv_broadcast(&so->so_rcv.sb_cv);
   1672 	sounlock(so);
   1673 }
   1674 
   1675 void
   1676 sorflush(struct socket *so)
   1677 {
   1678 	struct sockbuf *sb, asb;
   1679 	const struct protosw *pr;
   1680 
   1681 	KASSERT(solocked(so));
   1682 
   1683 	sb = &so->so_rcv;
   1684 	pr = so->so_proto;
   1685 	socantrcvmore(so);
   1686 	sb->sb_flags |= SB_NOINTR;
   1687 	(void )sblock(sb, M_WAITOK);
   1688 	sbunlock(sb);
   1689 	asb = *sb;
   1690 	/*
   1691 	 * Clear most of the sockbuf structure, but leave some of the
   1692 	 * fields valid.
   1693 	 */
   1694 	memset(&sb->sb_startzero, 0,
   1695 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1696 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1697 		sounlock(so);
   1698 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1699 		solock(so);
   1700 	}
   1701 	sbrelease(&asb, so);
   1702 }
   1703 
   1704 /*
   1705  * internal set SOL_SOCKET options
   1706  */
   1707 static int
   1708 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1709 {
   1710 	int error = EINVAL, opt;
   1711 	int optval = 0; /* XXX: gcc */
   1712 	struct linger l;
   1713 	struct timeval tv;
   1714 
   1715 	switch ((opt = sopt->sopt_name)) {
   1716 
   1717 	case SO_ACCEPTFILTER:
   1718 		error = accept_filt_setopt(so, sopt);
   1719 		KASSERT(solocked(so));
   1720 		break;
   1721 
   1722 	case SO_LINGER:
   1723 		error = sockopt_get(sopt, &l, sizeof(l));
   1724 		solock(so);
   1725 		if (error)
   1726 			break;
   1727 		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1728 		    l.l_linger > (INT_MAX / hz)) {
   1729 			error = EDOM;
   1730 			break;
   1731 		}
   1732 		so->so_linger = l.l_linger;
   1733 		if (l.l_onoff)
   1734 			so->so_options |= SO_LINGER;
   1735 		else
   1736 			so->so_options &= ~SO_LINGER;
   1737 		break;
   1738 
   1739 	case SO_DEBUG:
   1740 	case SO_KEEPALIVE:
   1741 	case SO_DONTROUTE:
   1742 	case SO_USELOOPBACK:
   1743 	case SO_BROADCAST:
   1744 	case SO_REUSEADDR:
   1745 	case SO_REUSEPORT:
   1746 	case SO_OOBINLINE:
   1747 	case SO_TIMESTAMP:
   1748 	case SO_NOSIGPIPE:
   1749 	case SO_RERROR:
   1750 #ifdef SO_OTIMESTAMP
   1751 	case SO_OTIMESTAMP:
   1752 #endif
   1753 		error = sockopt_getint(sopt, &optval);
   1754 		solock(so);
   1755 		if (error)
   1756 			break;
   1757 		if (optval)
   1758 			so->so_options |= opt;
   1759 		else
   1760 			so->so_options &= ~opt;
   1761 		break;
   1762 
   1763 	case SO_SNDBUF:
   1764 	case SO_RCVBUF:
   1765 	case SO_SNDLOWAT:
   1766 	case SO_RCVLOWAT:
   1767 		error = sockopt_getint(sopt, &optval);
   1768 		solock(so);
   1769 		if (error)
   1770 			break;
   1771 
   1772 		/*
   1773 		 * Values < 1 make no sense for any of these
   1774 		 * options, so disallow them.
   1775 		 */
   1776 		if (optval < 1) {
   1777 			error = EINVAL;
   1778 			break;
   1779 		}
   1780 
   1781 		switch (opt) {
   1782 		case SO_SNDBUF:
   1783 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1784 				error = ENOBUFS;
   1785 				break;
   1786 			}
   1787 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1788 			break;
   1789 
   1790 		case SO_RCVBUF:
   1791 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1792 				error = ENOBUFS;
   1793 				break;
   1794 			}
   1795 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1796 			break;
   1797 
   1798 		/*
   1799 		 * Make sure the low-water is never greater than
   1800 		 * the high-water.
   1801 		 */
   1802 		case SO_SNDLOWAT:
   1803 			if (optval > so->so_snd.sb_hiwat)
   1804 				optval = so->so_snd.sb_hiwat;
   1805 
   1806 			so->so_snd.sb_lowat = optval;
   1807 			break;
   1808 
   1809 		case SO_RCVLOWAT:
   1810 			if (optval > so->so_rcv.sb_hiwat)
   1811 				optval = so->so_rcv.sb_hiwat;
   1812 
   1813 			so->so_rcv.sb_lowat = optval;
   1814 			break;
   1815 		}
   1816 		break;
   1817 
   1818 #ifdef COMPAT_50
   1819 	case SO_OSNDTIMEO:
   1820 	case SO_ORCVTIMEO: {
   1821 		struct timeval50 otv;
   1822 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1823 		if (error) {
   1824 			solock(so);
   1825 			break;
   1826 		}
   1827 		timeval50_to_timeval(&otv, &tv);
   1828 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1829 		error = 0;
   1830 		/*FALLTHROUGH*/
   1831 	}
   1832 #endif /* COMPAT_50 */
   1833 
   1834 		/*FALLTHROUGH*/
   1835 	case SO_SNDTIMEO:
   1836 		/*FALLTHROUGH*/
   1837 	case SO_RCVTIMEO:
   1838 		if (error)
   1839 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1840 		solock(so);
   1841 		if (error)
   1842 			break;
   1843 
   1844 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1845 			error = EDOM;
   1846 			break;
   1847 		}
   1848 
   1849 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1850 		if (optval == 0 && tv.tv_usec != 0)
   1851 			optval = 1;
   1852 
   1853 		switch (opt) {
   1854 		case SO_SNDTIMEO:
   1855 			so->so_snd.sb_timeo = optval;
   1856 			break;
   1857 		case SO_RCVTIMEO:
   1858 			so->so_rcv.sb_timeo = optval;
   1859 			break;
   1860 		}
   1861 		break;
   1862 
   1863 	default:
   1864 		solock(so);
   1865 		error = ENOPROTOOPT;
   1866 		break;
   1867 	}
   1868 	KASSERT(solocked(so));
   1869 	return error;
   1870 }
   1871 
   1872 int
   1873 sosetopt(struct socket *so, struct sockopt *sopt)
   1874 {
   1875 	int error, prerr;
   1876 
   1877 	if (sopt->sopt_level == SOL_SOCKET) {
   1878 		error = sosetopt1(so, sopt);
   1879 		KASSERT(solocked(so));
   1880 	} else {
   1881 		error = ENOPROTOOPT;
   1882 		solock(so);
   1883 	}
   1884 
   1885 	if ((error == 0 || error == ENOPROTOOPT) &&
   1886 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1887 		/* give the protocol stack a shot */
   1888 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1889 		if (prerr == 0)
   1890 			error = 0;
   1891 		else if (prerr != ENOPROTOOPT)
   1892 			error = prerr;
   1893 	}
   1894 	sounlock(so);
   1895 	return error;
   1896 }
   1897 
   1898 /*
   1899  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1900  */
   1901 int
   1902 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1903     const void *val, size_t valsize)
   1904 {
   1905 	struct sockopt sopt;
   1906 	int error;
   1907 
   1908 	KASSERT(valsize == 0 || val != NULL);
   1909 
   1910 	sockopt_init(&sopt, level, name, valsize);
   1911 	sockopt_set(&sopt, val, valsize);
   1912 
   1913 	error = sosetopt(so, &sopt);
   1914 
   1915 	sockopt_destroy(&sopt);
   1916 
   1917 	return error;
   1918 }
   1919 
   1920 /*
   1921  * internal get SOL_SOCKET options
   1922  */
   1923 static int
   1924 sogetopt1(struct socket *so, struct sockopt *sopt)
   1925 {
   1926 	int error, optval, opt;
   1927 	struct linger l;
   1928 	struct timeval tv;
   1929 
   1930 	switch ((opt = sopt->sopt_name)) {
   1931 
   1932 	case SO_ACCEPTFILTER:
   1933 		error = accept_filt_getopt(so, sopt);
   1934 		break;
   1935 
   1936 	case SO_LINGER:
   1937 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1938 		l.l_linger = so->so_linger;
   1939 
   1940 		error = sockopt_set(sopt, &l, sizeof(l));
   1941 		break;
   1942 
   1943 	case SO_USELOOPBACK:
   1944 	case SO_DONTROUTE:
   1945 	case SO_DEBUG:
   1946 	case SO_KEEPALIVE:
   1947 	case SO_REUSEADDR:
   1948 	case SO_REUSEPORT:
   1949 	case SO_BROADCAST:
   1950 	case SO_OOBINLINE:
   1951 	case SO_TIMESTAMP:
   1952 	case SO_NOSIGPIPE:
   1953 	case SO_RERROR:
   1954 #ifdef SO_OTIMESTAMP
   1955 	case SO_OTIMESTAMP:
   1956 #endif
   1957 	case SO_ACCEPTCONN:
   1958 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1959 		break;
   1960 
   1961 	case SO_TYPE:
   1962 		error = sockopt_setint(sopt, so->so_type);
   1963 		break;
   1964 
   1965 	case SO_ERROR:
   1966 		if (so->so_error == 0) {
   1967 			so->so_error = so->so_rerror;
   1968 			so->so_rerror = 0;
   1969 		}
   1970 		error = sockopt_setint(sopt, so->so_error);
   1971 		so->so_error = 0;
   1972 		break;
   1973 
   1974 	case SO_SNDBUF:
   1975 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1976 		break;
   1977 
   1978 	case SO_RCVBUF:
   1979 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1980 		break;
   1981 
   1982 	case SO_SNDLOWAT:
   1983 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1984 		break;
   1985 
   1986 	case SO_RCVLOWAT:
   1987 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1988 		break;
   1989 
   1990 #ifdef COMPAT_50
   1991 	case SO_OSNDTIMEO:
   1992 	case SO_ORCVTIMEO: {
   1993 		struct timeval50 otv;
   1994 
   1995 		optval = (opt == SO_OSNDTIMEO ?
   1996 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1997 
   1998 		otv.tv_sec = optval / hz;
   1999 		otv.tv_usec = (optval % hz) * tick;
   2000 
   2001 		error = sockopt_set(sopt, &otv, sizeof(otv));
   2002 		break;
   2003 	}
   2004 #endif /* COMPAT_50 */
   2005 
   2006 	case SO_SNDTIMEO:
   2007 	case SO_RCVTIMEO:
   2008 		optval = (opt == SO_SNDTIMEO ?
   2009 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   2010 
   2011 		tv.tv_sec = optval / hz;
   2012 		tv.tv_usec = (optval % hz) * tick;
   2013 
   2014 		error = sockopt_set(sopt, &tv, sizeof(tv));
   2015 		break;
   2016 
   2017 	case SO_OVERFLOWED:
   2018 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   2019 		break;
   2020 
   2021 	default:
   2022 		error = ENOPROTOOPT;
   2023 		break;
   2024 	}
   2025 
   2026 	return error;
   2027 }
   2028 
   2029 int
   2030 sogetopt(struct socket *so, struct sockopt *sopt)
   2031 {
   2032 	int error;
   2033 
   2034 	solock(so);
   2035 	if (sopt->sopt_level != SOL_SOCKET) {
   2036 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2037 			error = ((*so->so_proto->pr_ctloutput)
   2038 			    (PRCO_GETOPT, so, sopt));
   2039 		} else
   2040 			error = (ENOPROTOOPT);
   2041 	} else {
   2042 		error = sogetopt1(so, sopt);
   2043 	}
   2044 	sounlock(so);
   2045 	return error;
   2046 }
   2047 
   2048 /*
   2049  * alloc sockopt data buffer buffer
   2050  *	- will be released at destroy
   2051  */
   2052 static int
   2053 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2054 {
   2055 
   2056 	KASSERT(sopt->sopt_size == 0);
   2057 
   2058 	if (len > sizeof(sopt->sopt_buf)) {
   2059 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2060 		if (sopt->sopt_data == NULL)
   2061 			return ENOMEM;
   2062 	} else
   2063 		sopt->sopt_data = sopt->sopt_buf;
   2064 
   2065 	sopt->sopt_size = len;
   2066 	return 0;
   2067 }
   2068 
   2069 /*
   2070  * initialise sockopt storage
   2071  *	- MAY sleep during allocation
   2072  */
   2073 void
   2074 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2075 {
   2076 
   2077 	memset(sopt, 0, sizeof(*sopt));
   2078 
   2079 	sopt->sopt_level = level;
   2080 	sopt->sopt_name = name;
   2081 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2082 }
   2083 
   2084 /*
   2085  * destroy sockopt storage
   2086  *	- will release any held memory references
   2087  */
   2088 void
   2089 sockopt_destroy(struct sockopt *sopt)
   2090 {
   2091 
   2092 	if (sopt->sopt_data != sopt->sopt_buf)
   2093 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2094 
   2095 	memset(sopt, 0, sizeof(*sopt));
   2096 }
   2097 
   2098 /*
   2099  * set sockopt value
   2100  *	- value is copied into sockopt
   2101  *	- memory is allocated when necessary, will not sleep
   2102  */
   2103 int
   2104 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2105 {
   2106 	int error;
   2107 
   2108 	if (sopt->sopt_size == 0) {
   2109 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2110 		if (error)
   2111 			return error;
   2112 	}
   2113 
   2114 	if (sopt->sopt_size < len)
   2115 		return EINVAL;
   2116 
   2117 	memcpy(sopt->sopt_data, buf, len);
   2118 	sopt->sopt_retsize = len;
   2119 
   2120 	return 0;
   2121 }
   2122 
   2123 /*
   2124  * common case of set sockopt integer value
   2125  */
   2126 int
   2127 sockopt_setint(struct sockopt *sopt, int val)
   2128 {
   2129 
   2130 	return sockopt_set(sopt, &val, sizeof(int));
   2131 }
   2132 
   2133 /*
   2134  * get sockopt value
   2135  *	- correct size must be given
   2136  */
   2137 int
   2138 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2139 {
   2140 
   2141 	if (sopt->sopt_size != len)
   2142 		return EINVAL;
   2143 
   2144 	memcpy(buf, sopt->sopt_data, len);
   2145 	return 0;
   2146 }
   2147 
   2148 /*
   2149  * common case of get sockopt integer value
   2150  */
   2151 int
   2152 sockopt_getint(const struct sockopt *sopt, int *valp)
   2153 {
   2154 
   2155 	return sockopt_get(sopt, valp, sizeof(int));
   2156 }
   2157 
   2158 /*
   2159  * set sockopt value from mbuf
   2160  *	- ONLY for legacy code
   2161  *	- mbuf is released by sockopt
   2162  *	- will not sleep
   2163  */
   2164 int
   2165 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2166 {
   2167 	size_t len;
   2168 	int error;
   2169 
   2170 	len = m_length(m);
   2171 
   2172 	if (sopt->sopt_size == 0) {
   2173 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2174 		if (error)
   2175 			return error;
   2176 	}
   2177 
   2178 	if (sopt->sopt_size < len)
   2179 		return EINVAL;
   2180 
   2181 	m_copydata(m, 0, len, sopt->sopt_data);
   2182 	m_freem(m);
   2183 	sopt->sopt_retsize = len;
   2184 
   2185 	return 0;
   2186 }
   2187 
   2188 /*
   2189  * get sockopt value into mbuf
   2190  *	- ONLY for legacy code
   2191  *	- mbuf to be released by the caller
   2192  *	- will not sleep
   2193  */
   2194 struct mbuf *
   2195 sockopt_getmbuf(const struct sockopt *sopt)
   2196 {
   2197 	struct mbuf *m;
   2198 
   2199 	if (sopt->sopt_size > MCLBYTES)
   2200 		return NULL;
   2201 
   2202 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2203 	if (m == NULL)
   2204 		return NULL;
   2205 
   2206 	if (sopt->sopt_size > MLEN) {
   2207 		MCLGET(m, M_DONTWAIT);
   2208 		if ((m->m_flags & M_EXT) == 0) {
   2209 			m_free(m);
   2210 			return NULL;
   2211 		}
   2212 	}
   2213 
   2214 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2215 	m->m_len = sopt->sopt_size;
   2216 
   2217 	return m;
   2218 }
   2219 
   2220 void
   2221 sohasoutofband(struct socket *so)
   2222 {
   2223 
   2224 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2225 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2226 }
   2227 
   2228 static void
   2229 filt_sordetach(struct knote *kn)
   2230 {
   2231 	struct socket *so;
   2232 
   2233 	so = ((file_t *)kn->kn_obj)->f_socket;
   2234 	solock(so);
   2235 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2236 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2237 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2238 	sounlock(so);
   2239 }
   2240 
   2241 /*ARGSUSED*/
   2242 static int
   2243 filt_soread(struct knote *kn, long hint)
   2244 {
   2245 	struct socket *so;
   2246 	int rv;
   2247 
   2248 	so = ((file_t *)kn->kn_obj)->f_socket;
   2249 	if (hint != NOTE_SUBMIT)
   2250 		solock(so);
   2251 	kn->kn_data = so->so_rcv.sb_cc;
   2252 	if (so->so_state & SS_CANTRCVMORE) {
   2253 		kn->kn_flags |= EV_EOF;
   2254 		kn->kn_fflags = so->so_error;
   2255 		rv = 1;
   2256 	} else if (so->so_error || so->so_rerror)
   2257 		rv = 1;
   2258 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2259 		rv = (kn->kn_data >= kn->kn_sdata);
   2260 	else
   2261 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2262 	if (hint != NOTE_SUBMIT)
   2263 		sounlock(so);
   2264 	return rv;
   2265 }
   2266 
   2267 static void
   2268 filt_sowdetach(struct knote *kn)
   2269 {
   2270 	struct socket *so;
   2271 
   2272 	so = ((file_t *)kn->kn_obj)->f_socket;
   2273 	solock(so);
   2274 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2275 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2276 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2277 	sounlock(so);
   2278 }
   2279 
   2280 /*ARGSUSED*/
   2281 static int
   2282 filt_sowrite(struct knote *kn, long hint)
   2283 {
   2284 	struct socket *so;
   2285 	int rv;
   2286 
   2287 	so = ((file_t *)kn->kn_obj)->f_socket;
   2288 	if (hint != NOTE_SUBMIT)
   2289 		solock(so);
   2290 	kn->kn_data = sbspace(&so->so_snd);
   2291 	if (so->so_state & SS_CANTSENDMORE) {
   2292 		kn->kn_flags |= EV_EOF;
   2293 		kn->kn_fflags = so->so_error;
   2294 		rv = 1;
   2295 	} else if (so->so_error)
   2296 		rv = 1;
   2297 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2298 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2299 		rv = 0;
   2300 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2301 		rv = (kn->kn_data >= kn->kn_sdata);
   2302 	else
   2303 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2304 	if (hint != NOTE_SUBMIT)
   2305 		sounlock(so);
   2306 	return rv;
   2307 }
   2308 
   2309 /*ARGSUSED*/
   2310 static int
   2311 filt_solisten(struct knote *kn, long hint)
   2312 {
   2313 	struct socket *so;
   2314 	int rv;
   2315 
   2316 	so = ((file_t *)kn->kn_obj)->f_socket;
   2317 
   2318 	/*
   2319 	 * Set kn_data to number of incoming connections, not
   2320 	 * counting partial (incomplete) connections.
   2321 	 */
   2322 	if (hint != NOTE_SUBMIT)
   2323 		solock(so);
   2324 	kn->kn_data = so->so_qlen;
   2325 	rv = (kn->kn_data > 0);
   2326 	if (hint != NOTE_SUBMIT)
   2327 		sounlock(so);
   2328 	return rv;
   2329 }
   2330 
   2331 static const struct filterops solisten_filtops = {
   2332 	.f_isfd = 1,
   2333 	.f_attach = NULL,
   2334 	.f_detach = filt_sordetach,
   2335 	.f_event = filt_solisten,
   2336 };
   2337 
   2338 static const struct filterops soread_filtops = {
   2339 	.f_isfd = 1,
   2340 	.f_attach = NULL,
   2341 	.f_detach = filt_sordetach,
   2342 	.f_event = filt_soread,
   2343 };
   2344 
   2345 static const struct filterops sowrite_filtops = {
   2346 	.f_isfd = 1,
   2347 	.f_attach = NULL,
   2348 	.f_detach = filt_sowdetach,
   2349 	.f_event = filt_sowrite,
   2350 };
   2351 
   2352 int
   2353 soo_kqfilter(struct file *fp, struct knote *kn)
   2354 {
   2355 	struct socket *so;
   2356 	struct sockbuf *sb;
   2357 
   2358 	so = ((file_t *)kn->kn_obj)->f_socket;
   2359 	solock(so);
   2360 	switch (kn->kn_filter) {
   2361 	case EVFILT_READ:
   2362 		if (so->so_options & SO_ACCEPTCONN)
   2363 			kn->kn_fop = &solisten_filtops;
   2364 		else
   2365 			kn->kn_fop = &soread_filtops;
   2366 		sb = &so->so_rcv;
   2367 		break;
   2368 	case EVFILT_WRITE:
   2369 		kn->kn_fop = &sowrite_filtops;
   2370 		sb = &so->so_snd;
   2371 		break;
   2372 	default:
   2373 		sounlock(so);
   2374 		return EINVAL;
   2375 	}
   2376 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2377 	sb->sb_flags |= SB_KNOTE;
   2378 	sounlock(so);
   2379 	return 0;
   2380 }
   2381 
   2382 static int
   2383 sodopoll(struct socket *so, int events)
   2384 {
   2385 	int revents;
   2386 
   2387 	revents = 0;
   2388 
   2389 	if (events & (POLLIN | POLLRDNORM))
   2390 		if (soreadable(so))
   2391 			revents |= events & (POLLIN | POLLRDNORM);
   2392 
   2393 	if (events & (POLLOUT | POLLWRNORM))
   2394 		if (sowritable(so))
   2395 			revents |= events & (POLLOUT | POLLWRNORM);
   2396 
   2397 	if (events & (POLLPRI | POLLRDBAND))
   2398 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2399 			revents |= events & (POLLPRI | POLLRDBAND);
   2400 
   2401 	return revents;
   2402 }
   2403 
   2404 int
   2405 sopoll(struct socket *so, int events)
   2406 {
   2407 	int revents = 0;
   2408 
   2409 #ifndef DIAGNOSTIC
   2410 	/*
   2411 	 * Do a quick, unlocked check in expectation that the socket
   2412 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2413 	 * as the solocked() assertions will fail.
   2414 	 */
   2415 	if ((revents = sodopoll(so, events)) != 0)
   2416 		return revents;
   2417 #endif
   2418 
   2419 	solock(so);
   2420 	if ((revents = sodopoll(so, events)) == 0) {
   2421 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2422 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2423 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2424 		}
   2425 
   2426 		if (events & (POLLOUT | POLLWRNORM)) {
   2427 			selrecord(curlwp, &so->so_snd.sb_sel);
   2428 			so->so_snd.sb_flags |= SB_NOTIFY;
   2429 		}
   2430 	}
   2431 	sounlock(so);
   2432 
   2433 	return revents;
   2434 }
   2435 
   2436 struct mbuf **
   2437 sbsavetimestamp(int opt, struct mbuf **mp)
   2438 {
   2439 	struct timeval tv;
   2440 	microtime(&tv);
   2441 
   2442 #ifdef SO_OTIMESTAMP
   2443 	if (opt & SO_OTIMESTAMP) {
   2444 		struct timeval50 tv50;
   2445 
   2446 		timeval_to_timeval50(&tv, &tv50);
   2447 		*mp = sbcreatecontrol(&tv50, sizeof(tv50),
   2448 		    SCM_OTIMESTAMP, SOL_SOCKET);
   2449 		if (*mp)
   2450 			mp = &(*mp)->m_next;
   2451 	} else
   2452 #endif
   2453 
   2454 	if (opt & SO_TIMESTAMP) {
   2455 		*mp = sbcreatecontrol(&tv, sizeof(tv),
   2456 		    SCM_TIMESTAMP, SOL_SOCKET);
   2457 		if (*mp)
   2458 			mp = &(*mp)->m_next;
   2459 	}
   2460 	return mp;
   2461 }
   2462 
   2463 
   2464 #include <sys/sysctl.h>
   2465 
   2466 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2467 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2468 
   2469 /*
   2470  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2471  * value is not too small.
   2472  * (XXX should we maybe make sure it's not too large as well?)
   2473  */
   2474 static int
   2475 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2476 {
   2477 	int error, new_somaxkva;
   2478 	struct sysctlnode node;
   2479 
   2480 	new_somaxkva = somaxkva;
   2481 	node = *rnode;
   2482 	node.sysctl_data = &new_somaxkva;
   2483 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2484 	if (error || newp == NULL)
   2485 		return error;
   2486 
   2487 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2488 		return EINVAL;
   2489 
   2490 	mutex_enter(&so_pendfree_lock);
   2491 	somaxkva = new_somaxkva;
   2492 	cv_broadcast(&socurkva_cv);
   2493 	mutex_exit(&so_pendfree_lock);
   2494 
   2495 	return error;
   2496 }
   2497 
   2498 /*
   2499  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2500  * any new value is not too small.
   2501  */
   2502 static int
   2503 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2504 {
   2505 	int error, new_sbmax;
   2506 	struct sysctlnode node;
   2507 
   2508 	new_sbmax = sb_max;
   2509 	node = *rnode;
   2510 	node.sysctl_data = &new_sbmax;
   2511 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2512 	if (error || newp == NULL)
   2513 		return error;
   2514 
   2515 	KERNEL_LOCK(1, NULL);
   2516 	error = sb_max_set(new_sbmax);
   2517 	KERNEL_UNLOCK_ONE(NULL);
   2518 
   2519 	return error;
   2520 }
   2521 
   2522 /*
   2523  * sysctl helper routine for kern.sooptions. Ensures that only allowed
   2524  * options can be set.
   2525  */
   2526 static int
   2527 sysctl_kern_sooptions(SYSCTLFN_ARGS)
   2528 {
   2529 	int error, new_options;
   2530 	struct sysctlnode node;
   2531 
   2532 	new_options = sooptions;
   2533 	node = *rnode;
   2534 	node.sysctl_data = &new_options;
   2535 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2536 	if (error || newp == NULL)
   2537 		return error;
   2538 
   2539 	if (new_options & ~SO_DEFOPTS)
   2540 		return EINVAL;
   2541 
   2542 	sooptions = new_options;
   2543 
   2544 	return 0;
   2545 }
   2546 
   2547 static void
   2548 sysctl_kern_socket_setup(void)
   2549 {
   2550 
   2551 	KASSERT(socket_sysctllog == NULL);
   2552 
   2553 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2554 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2555 		       CTLTYPE_INT, "somaxkva",
   2556 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2557 		                    "used for socket buffers"),
   2558 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2559 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2560 
   2561 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2562 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2563 		       CTLTYPE_INT, "sbmax",
   2564 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2565 		       sysctl_kern_sbmax, 0, NULL, 0,
   2566 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2567 
   2568 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2569 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2570 		       CTLTYPE_INT, "sooptions",
   2571 		       SYSCTL_DESCR("Default socket options"),
   2572 		       sysctl_kern_sooptions, 0, NULL, 0,
   2573 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   2574 }
   2575