uipc_socket.c revision 1.281 1 /* $NetBSD: uipc_socket.c,v 1.281 2019/07/16 22:57:55 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.281 2019/07/16 22:57:55 pgoyette Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #include "opt_sctp.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/file.h>
90 #include <sys/filedesc.h>
91 #include <sys/kmem.h>
92 #include <sys/mbuf.h>
93 #include <sys/domain.h>
94 #include <sys/kernel.h>
95 #include <sys/protosw.h>
96 #include <sys/socket.h>
97 #include <sys/socketvar.h>
98 #include <sys/signalvar.h>
99 #include <sys/resourcevar.h>
100 #include <sys/uidinfo.h>
101 #include <sys/event.h>
102 #include <sys/poll.h>
103 #include <sys/kauth.h>
104 #include <sys/mutex.h>
105 #include <sys/condvar.h>
106 #include <sys/kthread.h>
107 #include <sys/compat_stub.h>
108
109 #include <compat/sys/time.h>
110 #include <compat/sys/socket.h>
111
112 #include <uvm/uvm_extern.h>
113 #include <uvm/uvm_loan.h>
114 #include <uvm/uvm_page.h>
115
116 #ifdef SCTP
117 #include <netinet/sctp_route.h>
118 #endif
119
120 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
121
122 extern const struct fileops socketops;
123
124 static int sooptions;
125 extern int somaxconn; /* patchable (XXX sysctl) */
126 int somaxconn = SOMAXCONN;
127 kmutex_t *softnet_lock;
128
129 #ifdef SOSEND_COUNTERS
130 #include <sys/device.h>
131
132 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
133 NULL, "sosend", "loan big");
134 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
135 NULL, "sosend", "copy big");
136 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
137 NULL, "sosend", "copy small");
138 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
139 NULL, "sosend", "kva limit");
140
141 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
142
143 EVCNT_ATTACH_STATIC(sosend_loan_big);
144 EVCNT_ATTACH_STATIC(sosend_copy_big);
145 EVCNT_ATTACH_STATIC(sosend_copy_small);
146 EVCNT_ATTACH_STATIC(sosend_kvalimit);
147 #else
148
149 #define SOSEND_COUNTER_INCR(ev) /* nothing */
150
151 #endif /* SOSEND_COUNTERS */
152
153 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
154 int sock_loan_thresh = -1;
155 #else
156 int sock_loan_thresh = 4096;
157 #endif
158
159 static kmutex_t so_pendfree_lock;
160 static struct mbuf *so_pendfree = NULL;
161
162 #ifndef SOMAXKVA
163 #define SOMAXKVA (16 * 1024 * 1024)
164 #endif
165 int somaxkva = SOMAXKVA;
166 static int socurkva;
167 static kcondvar_t socurkva_cv;
168
169 static kauth_listener_t socket_listener;
170
171 #define SOCK_LOAN_CHUNK 65536
172
173 static void sopendfree_thread(void *);
174 static kcondvar_t pendfree_thread_cv;
175 static lwp_t *sopendfree_lwp;
176
177 static void sysctl_kern_socket_setup(void);
178 static struct sysctllog *socket_sysctllog;
179
180 static vsize_t
181 sokvareserve(struct socket *so, vsize_t len)
182 {
183 int error;
184
185 mutex_enter(&so_pendfree_lock);
186 while (socurkva + len > somaxkva) {
187 SOSEND_COUNTER_INCR(&sosend_kvalimit);
188 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
189 if (error) {
190 len = 0;
191 break;
192 }
193 }
194 socurkva += len;
195 mutex_exit(&so_pendfree_lock);
196 return len;
197 }
198
199 static void
200 sokvaunreserve(vsize_t len)
201 {
202
203 mutex_enter(&so_pendfree_lock);
204 socurkva -= len;
205 cv_broadcast(&socurkva_cv);
206 mutex_exit(&so_pendfree_lock);
207 }
208
209 /*
210 * sokvaalloc: allocate kva for loan.
211 */
212 vaddr_t
213 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
214 {
215 vaddr_t lva;
216
217 if (sokvareserve(so, len) == 0)
218 return 0;
219
220 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
221 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
222 if (lva == 0) {
223 sokvaunreserve(len);
224 return 0;
225 }
226
227 return lva;
228 }
229
230 /*
231 * sokvafree: free kva for loan.
232 */
233 void
234 sokvafree(vaddr_t sva, vsize_t len)
235 {
236
237 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
238 sokvaunreserve(len);
239 }
240
241 static void
242 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
243 {
244 vaddr_t sva, eva;
245 vsize_t len;
246 int npgs;
247
248 KASSERT(pgs != NULL);
249
250 eva = round_page((vaddr_t) buf + size);
251 sva = trunc_page((vaddr_t) buf);
252 len = eva - sva;
253 npgs = len >> PAGE_SHIFT;
254
255 pmap_kremove(sva, len);
256 pmap_update(pmap_kernel());
257 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
258 sokvafree(sva, len);
259 }
260
261 /*
262 * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
263 * so_pendfree_lock when freeing mbufs.
264 */
265 static void
266 sopendfree_thread(void *v)
267 {
268 struct mbuf *m, *next;
269 size_t rv;
270
271 mutex_enter(&so_pendfree_lock);
272
273 for (;;) {
274 rv = 0;
275 while (so_pendfree != NULL) {
276 m = so_pendfree;
277 so_pendfree = NULL;
278 mutex_exit(&so_pendfree_lock);
279
280 for (; m != NULL; m = next) {
281 next = m->m_next;
282 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
283 0);
284 KASSERT(m->m_ext.ext_refcnt == 0);
285
286 rv += m->m_ext.ext_size;
287 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
288 m->m_ext.ext_size);
289 pool_cache_put(mb_cache, m);
290 }
291
292 mutex_enter(&so_pendfree_lock);
293 }
294 if (rv)
295 cv_broadcast(&socurkva_cv);
296 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
297 }
298 panic("sopendfree_thread");
299 /* NOTREACHED */
300 }
301
302 void
303 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
304 {
305
306 KASSERT(m != NULL);
307
308 /*
309 * postpone freeing mbuf.
310 *
311 * we can't do it in interrupt context
312 * because we need to put kva back to kernel_map.
313 */
314
315 mutex_enter(&so_pendfree_lock);
316 m->m_next = so_pendfree;
317 so_pendfree = m;
318 cv_signal(&pendfree_thread_cv);
319 mutex_exit(&so_pendfree_lock);
320 }
321
322 static long
323 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
324 {
325 struct iovec *iov = uio->uio_iov;
326 vaddr_t sva, eva;
327 vsize_t len;
328 vaddr_t lva;
329 int npgs, error;
330 vaddr_t va;
331 int i;
332
333 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
334 return 0;
335
336 if (iov->iov_len < (size_t) space)
337 space = iov->iov_len;
338 if (space > SOCK_LOAN_CHUNK)
339 space = SOCK_LOAN_CHUNK;
340
341 eva = round_page((vaddr_t) iov->iov_base + space);
342 sva = trunc_page((vaddr_t) iov->iov_base);
343 len = eva - sva;
344 npgs = len >> PAGE_SHIFT;
345
346 KASSERT(npgs <= M_EXT_MAXPAGES);
347
348 lva = sokvaalloc(sva, len, so);
349 if (lva == 0)
350 return 0;
351
352 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
353 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
354 if (error) {
355 sokvafree(lva, len);
356 return 0;
357 }
358
359 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
360 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
361 VM_PROT_READ, 0);
362 pmap_update(pmap_kernel());
363
364 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
365
366 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
367 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
368
369 uio->uio_resid -= space;
370 /* uio_offset not updated, not set/used for write(2) */
371 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
372 uio->uio_iov->iov_len -= space;
373 if (uio->uio_iov->iov_len == 0) {
374 uio->uio_iov++;
375 uio->uio_iovcnt--;
376 }
377
378 return space;
379 }
380
381 static int
382 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
383 void *arg0, void *arg1, void *arg2, void *arg3)
384 {
385 int result;
386 enum kauth_network_req req;
387
388 result = KAUTH_RESULT_DEFER;
389 req = (enum kauth_network_req)arg0;
390
391 if ((action != KAUTH_NETWORK_SOCKET) &&
392 (action != KAUTH_NETWORK_BIND))
393 return result;
394
395 switch (req) {
396 case KAUTH_REQ_NETWORK_BIND_PORT:
397 result = KAUTH_RESULT_ALLOW;
398 break;
399
400 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
401 /* Normal users can only drop their own connections. */
402 struct socket *so = (struct socket *)arg1;
403
404 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
405 result = KAUTH_RESULT_ALLOW;
406
407 break;
408 }
409
410 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
411 /* We allow "raw" routing/bluetooth sockets to anyone. */
412 switch ((u_long)arg1) {
413 case PF_ROUTE:
414 case PF_OROUTE:
415 case PF_BLUETOOTH:
416 case PF_CAN:
417 result = KAUTH_RESULT_ALLOW;
418 break;
419 default:
420 /* Privileged, let secmodel handle this. */
421 if ((u_long)arg2 == SOCK_RAW)
422 break;
423 result = KAUTH_RESULT_ALLOW;
424 break;
425 }
426 break;
427
428 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
429 result = KAUTH_RESULT_ALLOW;
430
431 break;
432
433 default:
434 break;
435 }
436
437 return result;
438 }
439
440 void
441 soinit(void)
442 {
443
444 sysctl_kern_socket_setup();
445
446 #ifdef SCTP
447 /* Update the SCTP function hooks if necessary*/
448
449 vec_sctp_add_ip_address = sctp_add_ip_address;
450 vec_sctp_delete_ip_address = sctp_delete_ip_address;
451 #endif
452
453 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
454 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
455 cv_init(&socurkva_cv, "sokva");
456 cv_init(&pendfree_thread_cv, "sopendfr");
457 soinit2();
458
459 /* Set the initial adjusted socket buffer size. */
460 if (sb_max_set(sb_max))
461 panic("bad initial sb_max value: %lu", sb_max);
462
463 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
464 socket_listener_cb, NULL);
465 }
466
467 void
468 soinit1(void)
469 {
470 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
471 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
472 if (error)
473 panic("soinit1 %d", error);
474 }
475
476 /*
477 * socreate: create a new socket of the specified type and the protocol.
478 *
479 * => Caller may specify another socket for lock sharing (must not be held).
480 * => Returns the new socket without lock held.
481 */
482 int
483 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
484 struct socket *lockso)
485 {
486 const struct protosw *prp;
487 struct socket *so;
488 uid_t uid;
489 int error;
490 kmutex_t *lock;
491
492 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
493 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
494 KAUTH_ARG(proto));
495 if (error != 0)
496 return error;
497
498 if (proto)
499 prp = pffindproto(dom, proto, type);
500 else
501 prp = pffindtype(dom, type);
502 if (prp == NULL) {
503 /* no support for domain */
504 if (pffinddomain(dom) == 0)
505 return EAFNOSUPPORT;
506 /* no support for socket type */
507 if (proto == 0 && type != 0)
508 return EPROTOTYPE;
509 return EPROTONOSUPPORT;
510 }
511 if (prp->pr_usrreqs == NULL)
512 return EPROTONOSUPPORT;
513 if (prp->pr_type != type)
514 return EPROTOTYPE;
515
516 so = soget(true);
517 so->so_type = type;
518 so->so_proto = prp;
519 so->so_send = sosend;
520 so->so_receive = soreceive;
521 so->so_options = sooptions;
522 #ifdef MBUFTRACE
523 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
524 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
525 so->so_mowner = &prp->pr_domain->dom_mowner;
526 #endif
527 uid = kauth_cred_geteuid(l->l_cred);
528 so->so_uidinfo = uid_find(uid);
529 so->so_cpid = l->l_proc->p_pid;
530
531 /*
532 * Lock assigned and taken during PCB attach, unless we share
533 * the lock with another socket, e.g. socketpair(2) case.
534 */
535 if (lockso) {
536 lock = lockso->so_lock;
537 so->so_lock = lock;
538 mutex_obj_hold(lock);
539 mutex_enter(lock);
540 }
541
542 /* Attach the PCB (returns with the socket lock held). */
543 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
544 KASSERT(solocked(so));
545
546 if (error) {
547 KASSERT(so->so_pcb == NULL);
548 so->so_state |= SS_NOFDREF;
549 sofree(so);
550 return error;
551 }
552 so->so_cred = kauth_cred_dup(l->l_cred);
553 sounlock(so);
554
555 *aso = so;
556 return 0;
557 }
558
559 /*
560 * fsocreate: create a socket and a file descriptor associated with it.
561 *
562 * => On success, write file descriptor to fdout and return zero.
563 * => On failure, return non-zero; *fdout will be undefined.
564 */
565 int
566 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
567 {
568 lwp_t *l = curlwp;
569 int error, fd, flags;
570 struct socket *so;
571 struct file *fp;
572
573 if ((error = fd_allocfile(&fp, &fd)) != 0) {
574 return error;
575 }
576 flags = type & SOCK_FLAGS_MASK;
577 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
578 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
579 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
580 fp->f_type = DTYPE_SOCKET;
581 fp->f_ops = &socketops;
582
583 type &= ~SOCK_FLAGS_MASK;
584 error = socreate(domain, &so, type, proto, l, NULL);
585 if (error) {
586 fd_abort(curproc, fp, fd);
587 return error;
588 }
589 if (flags & SOCK_NONBLOCK) {
590 so->so_state |= SS_NBIO;
591 }
592 fp->f_socket = so;
593 fd_affix(curproc, fp, fd);
594
595 if (sop != NULL) {
596 *sop = so;
597 }
598 *fdout = fd;
599 return error;
600 }
601
602 int
603 sofamily(const struct socket *so)
604 {
605 const struct protosw *pr;
606 const struct domain *dom;
607
608 if ((pr = so->so_proto) == NULL)
609 return AF_UNSPEC;
610 if ((dom = pr->pr_domain) == NULL)
611 return AF_UNSPEC;
612 return dom->dom_family;
613 }
614
615 int
616 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
617 {
618 int error;
619
620 solock(so);
621 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
622 sounlock(so);
623 return EAFNOSUPPORT;
624 }
625 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
626 sounlock(so);
627 return error;
628 }
629
630 int
631 solisten(struct socket *so, int backlog, struct lwp *l)
632 {
633 int error;
634 short oldopt, oldqlimit;
635
636 solock(so);
637 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
638 SS_ISDISCONNECTING)) != 0) {
639 sounlock(so);
640 return EINVAL;
641 }
642 oldopt = so->so_options;
643 oldqlimit = so->so_qlimit;
644 if (TAILQ_EMPTY(&so->so_q))
645 so->so_options |= SO_ACCEPTCONN;
646 if (backlog < 0)
647 backlog = 0;
648 so->so_qlimit = uimin(backlog, somaxconn);
649
650 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
651 if (error != 0) {
652 so->so_options = oldopt;
653 so->so_qlimit = oldqlimit;
654 sounlock(so);
655 return error;
656 }
657 sounlock(so);
658 return 0;
659 }
660
661 void
662 sofree(struct socket *so)
663 {
664 u_int refs;
665
666 KASSERT(solocked(so));
667
668 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
669 sounlock(so);
670 return;
671 }
672 if (so->so_head) {
673 /*
674 * We must not decommission a socket that's on the accept(2)
675 * queue. If we do, then accept(2) may hang after select(2)
676 * indicated that the listening socket was ready.
677 */
678 if (!soqremque(so, 0)) {
679 sounlock(so);
680 return;
681 }
682 }
683 if (so->so_rcv.sb_hiwat)
684 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
685 RLIM_INFINITY);
686 if (so->so_snd.sb_hiwat)
687 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
688 RLIM_INFINITY);
689 sbrelease(&so->so_snd, so);
690 KASSERT(!cv_has_waiters(&so->so_cv));
691 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
692 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
693 sorflush(so);
694 refs = so->so_aborting; /* XXX */
695 /* Remove acccept filter if one is present. */
696 if (so->so_accf != NULL)
697 (void)accept_filt_clear(so);
698 sounlock(so);
699 if (refs == 0) /* XXX */
700 soput(so);
701 }
702
703 /*
704 * soclose: close a socket on last file table reference removal.
705 * Initiate disconnect if connected. Free socket when disconnect complete.
706 */
707 int
708 soclose(struct socket *so)
709 {
710 struct socket *so2;
711 int error = 0;
712
713 solock(so);
714 if (so->so_options & SO_ACCEPTCONN) {
715 for (;;) {
716 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
717 KASSERT(solocked2(so, so2));
718 (void) soqremque(so2, 0);
719 /* soabort drops the lock. */
720 (void) soabort(so2);
721 solock(so);
722 continue;
723 }
724 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
725 KASSERT(solocked2(so, so2));
726 (void) soqremque(so2, 1);
727 /* soabort drops the lock. */
728 (void) soabort(so2);
729 solock(so);
730 continue;
731 }
732 break;
733 }
734 }
735 if (so->so_pcb == NULL)
736 goto discard;
737 if (so->so_state & SS_ISCONNECTED) {
738 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
739 error = sodisconnect(so);
740 if (error)
741 goto drop;
742 }
743 if (so->so_options & SO_LINGER) {
744 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
745 (SS_ISDISCONNECTING|SS_NBIO))
746 goto drop;
747 while (so->so_state & SS_ISCONNECTED) {
748 error = sowait(so, true, so->so_linger * hz);
749 if (error)
750 break;
751 }
752 }
753 }
754 drop:
755 if (so->so_pcb) {
756 KASSERT(solocked(so));
757 (*so->so_proto->pr_usrreqs->pr_detach)(so);
758 }
759 discard:
760 KASSERT((so->so_state & SS_NOFDREF) == 0);
761 kauth_cred_free(so->so_cred);
762 so->so_cred = NULL;
763 so->so_state |= SS_NOFDREF;
764 sofree(so);
765 return error;
766 }
767
768 /*
769 * Must be called with the socket locked.. Will return with it unlocked.
770 */
771 int
772 soabort(struct socket *so)
773 {
774 u_int refs;
775 int error;
776
777 KASSERT(solocked(so));
778 KASSERT(so->so_head == NULL);
779
780 so->so_aborting++; /* XXX */
781 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
782 refs = --so->so_aborting; /* XXX */
783 if (error || (refs == 0)) {
784 sofree(so);
785 } else {
786 sounlock(so);
787 }
788 return error;
789 }
790
791 int
792 soaccept(struct socket *so, struct sockaddr *nam)
793 {
794 int error;
795
796 KASSERT(solocked(so));
797 KASSERT((so->so_state & SS_NOFDREF) != 0);
798
799 so->so_state &= ~SS_NOFDREF;
800 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
801 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
802 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
803 else
804 error = ECONNABORTED;
805
806 return error;
807 }
808
809 int
810 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
811 {
812 int error;
813
814 KASSERT(solocked(so));
815
816 if (so->so_options & SO_ACCEPTCONN)
817 return EOPNOTSUPP;
818 /*
819 * If protocol is connection-based, can only connect once.
820 * Otherwise, if connected, try to disconnect first.
821 * This allows user to disconnect by connecting to, e.g.,
822 * a null address.
823 */
824 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
825 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
826 (error = sodisconnect(so)))) {
827 error = EISCONN;
828 } else {
829 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
830 return EAFNOSUPPORT;
831 }
832 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
833 }
834
835 return error;
836 }
837
838 int
839 soconnect2(struct socket *so1, struct socket *so2)
840 {
841 KASSERT(solocked2(so1, so2));
842
843 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
844 }
845
846 int
847 sodisconnect(struct socket *so)
848 {
849 int error;
850
851 KASSERT(solocked(so));
852
853 if ((so->so_state & SS_ISCONNECTED) == 0) {
854 error = ENOTCONN;
855 } else if (so->so_state & SS_ISDISCONNECTING) {
856 error = EALREADY;
857 } else {
858 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
859 }
860 return error;
861 }
862
863 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
864 /*
865 * Send on a socket.
866 * If send must go all at once and message is larger than
867 * send buffering, then hard error.
868 * Lock against other senders.
869 * If must go all at once and not enough room now, then
870 * inform user that this would block and do nothing.
871 * Otherwise, if nonblocking, send as much as possible.
872 * The data to be sent is described by "uio" if nonzero,
873 * otherwise by the mbuf chain "top" (which must be null
874 * if uio is not). Data provided in mbuf chain must be small
875 * enough to send all at once.
876 *
877 * Returns nonzero on error, timeout or signal; callers
878 * must check for short counts if EINTR/ERESTART are returned.
879 * Data and control buffers are freed on return.
880 */
881 int
882 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
883 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
884 {
885 struct mbuf **mp, *m;
886 long space, len, resid, clen, mlen;
887 int error, s, dontroute, atomic;
888 short wakeup_state = 0;
889
890 clen = 0;
891
892 /*
893 * solock() provides atomicity of access. splsoftnet() prevents
894 * protocol processing soft interrupts from interrupting us and
895 * blocking (expensive).
896 */
897 s = splsoftnet();
898 solock(so);
899 atomic = sosendallatonce(so) || top;
900 if (uio)
901 resid = uio->uio_resid;
902 else
903 resid = top->m_pkthdr.len;
904 /*
905 * In theory resid should be unsigned.
906 * However, space must be signed, as it might be less than 0
907 * if we over-committed, and we must use a signed comparison
908 * of space and resid. On the other hand, a negative resid
909 * causes us to loop sending 0-length segments to the protocol.
910 */
911 if (resid < 0) {
912 error = EINVAL;
913 goto out;
914 }
915 dontroute =
916 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
917 (so->so_proto->pr_flags & PR_ATOMIC);
918 l->l_ru.ru_msgsnd++;
919 if (control)
920 clen = control->m_len;
921 restart:
922 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
923 goto out;
924 do {
925 if (so->so_state & SS_CANTSENDMORE) {
926 error = EPIPE;
927 goto release;
928 }
929 if (so->so_error) {
930 error = so->so_error;
931 so->so_error = 0;
932 goto release;
933 }
934 if ((so->so_state & SS_ISCONNECTED) == 0) {
935 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
936 if (resid || clen == 0) {
937 error = ENOTCONN;
938 goto release;
939 }
940 } else if (addr == NULL) {
941 error = EDESTADDRREQ;
942 goto release;
943 }
944 }
945 space = sbspace(&so->so_snd);
946 if (flags & MSG_OOB)
947 space += 1024;
948 if ((atomic && resid > so->so_snd.sb_hiwat) ||
949 clen > so->so_snd.sb_hiwat) {
950 error = EMSGSIZE;
951 goto release;
952 }
953 if (space < resid + clen &&
954 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
955 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
956 error = EWOULDBLOCK;
957 goto release;
958 }
959 sbunlock(&so->so_snd);
960 if (wakeup_state & SS_RESTARTSYS) {
961 error = ERESTART;
962 goto out;
963 }
964 error = sbwait(&so->so_snd);
965 if (error)
966 goto out;
967 wakeup_state = so->so_state;
968 goto restart;
969 }
970 wakeup_state = 0;
971 mp = ⊤
972 space -= clen;
973 do {
974 if (uio == NULL) {
975 /*
976 * Data is prepackaged in "top".
977 */
978 resid = 0;
979 if (flags & MSG_EOR)
980 top->m_flags |= M_EOR;
981 } else do {
982 sounlock(so);
983 splx(s);
984 if (top == NULL) {
985 m = m_gethdr(M_WAIT, MT_DATA);
986 mlen = MHLEN;
987 m->m_pkthdr.len = 0;
988 m_reset_rcvif(m);
989 } else {
990 m = m_get(M_WAIT, MT_DATA);
991 mlen = MLEN;
992 }
993 MCLAIM(m, so->so_snd.sb_mowner);
994 if (sock_loan_thresh >= 0 &&
995 uio->uio_iov->iov_len >= sock_loan_thresh &&
996 space >= sock_loan_thresh &&
997 (len = sosend_loan(so, uio, m,
998 space)) != 0) {
999 SOSEND_COUNTER_INCR(&sosend_loan_big);
1000 space -= len;
1001 goto have_data;
1002 }
1003 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1004 SOSEND_COUNTER_INCR(&sosend_copy_big);
1005 m_clget(m, M_DONTWAIT);
1006 if ((m->m_flags & M_EXT) == 0)
1007 goto nopages;
1008 mlen = MCLBYTES;
1009 if (atomic && top == 0) {
1010 len = lmin(MCLBYTES - max_hdr,
1011 resid);
1012 m->m_data += max_hdr;
1013 } else
1014 len = lmin(MCLBYTES, resid);
1015 space -= len;
1016 } else {
1017 nopages:
1018 SOSEND_COUNTER_INCR(&sosend_copy_small);
1019 len = lmin(lmin(mlen, resid), space);
1020 space -= len;
1021 /*
1022 * For datagram protocols, leave room
1023 * for protocol headers in first mbuf.
1024 */
1025 if (atomic && top == 0 && len < mlen)
1026 m_align(m, len);
1027 }
1028 error = uiomove(mtod(m, void *), (int)len, uio);
1029 have_data:
1030 resid = uio->uio_resid;
1031 m->m_len = len;
1032 *mp = m;
1033 top->m_pkthdr.len += len;
1034 s = splsoftnet();
1035 solock(so);
1036 if (error != 0)
1037 goto release;
1038 mp = &m->m_next;
1039 if (resid <= 0) {
1040 if (flags & MSG_EOR)
1041 top->m_flags |= M_EOR;
1042 break;
1043 }
1044 } while (space > 0 && atomic);
1045
1046 if (so->so_state & SS_CANTSENDMORE) {
1047 error = EPIPE;
1048 goto release;
1049 }
1050 if (dontroute)
1051 so->so_options |= SO_DONTROUTE;
1052 if (resid > 0)
1053 so->so_state |= SS_MORETOCOME;
1054 if (flags & MSG_OOB) {
1055 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1056 so, top, control);
1057 } else {
1058 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1059 top, addr, control, l);
1060 }
1061 if (dontroute)
1062 so->so_options &= ~SO_DONTROUTE;
1063 if (resid > 0)
1064 so->so_state &= ~SS_MORETOCOME;
1065 clen = 0;
1066 control = NULL;
1067 top = NULL;
1068 mp = ⊤
1069 if (error != 0)
1070 goto release;
1071 } while (resid && space > 0);
1072 } while (resid);
1073
1074 release:
1075 sbunlock(&so->so_snd);
1076 out:
1077 sounlock(so);
1078 splx(s);
1079 if (top)
1080 m_freem(top);
1081 if (control)
1082 m_freem(control);
1083 return error;
1084 }
1085
1086 /*
1087 * Following replacement or removal of the first mbuf on the first
1088 * mbuf chain of a socket buffer, push necessary state changes back
1089 * into the socket buffer so that other consumers see the values
1090 * consistently. 'nextrecord' is the caller's locally stored value of
1091 * the original value of sb->sb_mb->m_nextpkt which must be restored
1092 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1093 */
1094 static void
1095 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1096 {
1097
1098 KASSERT(solocked(sb->sb_so));
1099
1100 /*
1101 * First, update for the new value of nextrecord. If necessary,
1102 * make it the first record.
1103 */
1104 if (sb->sb_mb != NULL)
1105 sb->sb_mb->m_nextpkt = nextrecord;
1106 else
1107 sb->sb_mb = nextrecord;
1108
1109 /*
1110 * Now update any dependent socket buffer fields to reflect
1111 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1112 * the addition of a second clause that takes care of the
1113 * case where sb_mb has been updated, but remains the last
1114 * record.
1115 */
1116 if (sb->sb_mb == NULL) {
1117 sb->sb_mbtail = NULL;
1118 sb->sb_lastrecord = NULL;
1119 } else if (sb->sb_mb->m_nextpkt == NULL)
1120 sb->sb_lastrecord = sb->sb_mb;
1121 }
1122
1123 /*
1124 * Implement receive operations on a socket.
1125 *
1126 * We depend on the way that records are added to the sockbuf by sbappend*. In
1127 * particular, each record (mbufs linked through m_next) must begin with an
1128 * address if the protocol so specifies, followed by an optional mbuf or mbufs
1129 * containing ancillary data, and then zero or more mbufs of data.
1130 *
1131 * In order to avoid blocking network interrupts for the entire time here, we
1132 * splx() while doing the actual copy to user space. Although the sockbuf is
1133 * locked, new data may still be appended, and thus we must maintain
1134 * consistency of the sockbuf during that time.
1135 *
1136 * The caller may receive the data as a single mbuf chain by supplying an mbuf
1137 * **mp0 for use in returning the chain. The uio is then used only for the
1138 * count in uio_resid.
1139 */
1140 int
1141 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1142 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1143 {
1144 struct lwp *l = curlwp;
1145 struct mbuf *m, **mp, *mt;
1146 size_t len, offset, moff, orig_resid;
1147 int atomic, flags, error, s, type;
1148 const struct protosw *pr;
1149 struct mbuf *nextrecord;
1150 int mbuf_removed = 0;
1151 const struct domain *dom;
1152 short wakeup_state = 0;
1153
1154 pr = so->so_proto;
1155 atomic = pr->pr_flags & PR_ATOMIC;
1156 dom = pr->pr_domain;
1157 mp = mp0;
1158 type = 0;
1159 orig_resid = uio->uio_resid;
1160
1161 if (paddr != NULL)
1162 *paddr = NULL;
1163 if (controlp != NULL)
1164 *controlp = NULL;
1165 if (flagsp != NULL)
1166 flags = *flagsp &~ MSG_EOR;
1167 else
1168 flags = 0;
1169
1170 if (flags & MSG_OOB) {
1171 m = m_get(M_WAIT, MT_DATA);
1172 solock(so);
1173 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1174 sounlock(so);
1175 if (error)
1176 goto bad;
1177 do {
1178 error = uiomove(mtod(m, void *),
1179 MIN(uio->uio_resid, m->m_len), uio);
1180 m = m_free(m);
1181 } while (uio->uio_resid > 0 && error == 0 && m);
1182 bad:
1183 if (m != NULL)
1184 m_freem(m);
1185 return error;
1186 }
1187 if (mp != NULL)
1188 *mp = NULL;
1189
1190 /*
1191 * solock() provides atomicity of access. splsoftnet() prevents
1192 * protocol processing soft interrupts from interrupting us and
1193 * blocking (expensive).
1194 */
1195 s = splsoftnet();
1196 solock(so);
1197 restart:
1198 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1199 sounlock(so);
1200 splx(s);
1201 return error;
1202 }
1203 m = so->so_rcv.sb_mb;
1204
1205 /*
1206 * If we have less data than requested, block awaiting more
1207 * (subject to any timeout) if:
1208 * 1. the current count is less than the low water mark,
1209 * 2. MSG_WAITALL is set, and it is possible to do the entire
1210 * receive operation at once if we block (resid <= hiwat), or
1211 * 3. MSG_DONTWAIT is not set.
1212 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1213 * we have to do the receive in sections, and thus risk returning
1214 * a short count if a timeout or signal occurs after we start.
1215 */
1216 if (m == NULL ||
1217 ((flags & MSG_DONTWAIT) == 0 &&
1218 so->so_rcv.sb_cc < uio->uio_resid &&
1219 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1220 ((flags & MSG_WAITALL) &&
1221 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1222 m->m_nextpkt == NULL && !atomic)) {
1223 #ifdef DIAGNOSTIC
1224 if (m == NULL && so->so_rcv.sb_cc)
1225 panic("receive 1");
1226 #endif
1227 if (so->so_error || so->so_rerror) {
1228 if (m != NULL)
1229 goto dontblock;
1230 if (so->so_error) {
1231 error = so->so_error;
1232 so->so_error = 0;
1233 } else {
1234 error = so->so_rerror;
1235 so->so_rerror = 0;
1236 }
1237 goto release;
1238 }
1239 if (so->so_state & SS_CANTRCVMORE) {
1240 if (m != NULL)
1241 goto dontblock;
1242 else
1243 goto release;
1244 }
1245 for (; m != NULL; m = m->m_next)
1246 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1247 m = so->so_rcv.sb_mb;
1248 goto dontblock;
1249 }
1250 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1251 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1252 error = ENOTCONN;
1253 goto release;
1254 }
1255 if (uio->uio_resid == 0)
1256 goto release;
1257 if ((so->so_state & SS_NBIO) ||
1258 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1259 error = EWOULDBLOCK;
1260 goto release;
1261 }
1262 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1263 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1264 sbunlock(&so->so_rcv);
1265 if (wakeup_state & SS_RESTARTSYS)
1266 error = ERESTART;
1267 else
1268 error = sbwait(&so->so_rcv);
1269 if (error != 0) {
1270 sounlock(so);
1271 splx(s);
1272 return error;
1273 }
1274 wakeup_state = so->so_state;
1275 goto restart;
1276 }
1277
1278 dontblock:
1279 /*
1280 * On entry here, m points to the first record of the socket buffer.
1281 * From this point onward, we maintain 'nextrecord' as a cache of the
1282 * pointer to the next record in the socket buffer. We must keep the
1283 * various socket buffer pointers and local stack versions of the
1284 * pointers in sync, pushing out modifications before dropping the
1285 * socket lock, and re-reading them when picking it up.
1286 *
1287 * Otherwise, we will race with the network stack appending new data
1288 * or records onto the socket buffer by using inconsistent/stale
1289 * versions of the field, possibly resulting in socket buffer
1290 * corruption.
1291 *
1292 * By holding the high-level sblock(), we prevent simultaneous
1293 * readers from pulling off the front of the socket buffer.
1294 */
1295 if (l != NULL)
1296 l->l_ru.ru_msgrcv++;
1297 KASSERT(m == so->so_rcv.sb_mb);
1298 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1299 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1300 nextrecord = m->m_nextpkt;
1301
1302 if (pr->pr_flags & PR_ADDR) {
1303 KASSERT(m->m_type == MT_SONAME);
1304 orig_resid = 0;
1305 if (flags & MSG_PEEK) {
1306 if (paddr)
1307 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1308 m = m->m_next;
1309 } else {
1310 sbfree(&so->so_rcv, m);
1311 mbuf_removed = 1;
1312 if (paddr != NULL) {
1313 *paddr = m;
1314 so->so_rcv.sb_mb = m->m_next;
1315 m->m_next = NULL;
1316 m = so->so_rcv.sb_mb;
1317 } else {
1318 m = so->so_rcv.sb_mb = m_free(m);
1319 }
1320 sbsync(&so->so_rcv, nextrecord);
1321 }
1322 }
1323
1324 if (pr->pr_flags & PR_ADDR_OPT) {
1325 /*
1326 * For SCTP we may be getting a whole message OR a partial
1327 * delivery.
1328 */
1329 if (m->m_type == MT_SONAME) {
1330 orig_resid = 0;
1331 if (flags & MSG_PEEK) {
1332 if (paddr)
1333 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1334 m = m->m_next;
1335 } else {
1336 sbfree(&so->so_rcv, m);
1337 /* XXX XXX XXX: should set mbuf_removed? */
1338 if (paddr) {
1339 *paddr = m;
1340 so->so_rcv.sb_mb = m->m_next;
1341 m->m_next = 0;
1342 m = so->so_rcv.sb_mb;
1343 } else {
1344 m = so->so_rcv.sb_mb = m_free(m);
1345 }
1346 /* XXX XXX XXX: isn't there an sbsync()
1347 * missing here? */
1348 }
1349 }
1350 }
1351
1352 /*
1353 * Process one or more MT_CONTROL mbufs present before any data mbufs
1354 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1355 * just copy the data; if !MSG_PEEK, we call into the protocol to
1356 * perform externalization (or freeing if controlp == NULL).
1357 */
1358 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1359 struct mbuf *cm = NULL, *cmn;
1360 struct mbuf **cme = &cm;
1361
1362 do {
1363 if (flags & MSG_PEEK) {
1364 if (controlp != NULL) {
1365 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1366 controlp = &(*controlp)->m_next;
1367 }
1368 m = m->m_next;
1369 } else {
1370 sbfree(&so->so_rcv, m);
1371 so->so_rcv.sb_mb = m->m_next;
1372 m->m_next = NULL;
1373 *cme = m;
1374 cme = &(*cme)->m_next;
1375 m = so->so_rcv.sb_mb;
1376 }
1377 } while (m != NULL && m->m_type == MT_CONTROL);
1378 if ((flags & MSG_PEEK) == 0)
1379 sbsync(&so->so_rcv, nextrecord);
1380
1381 for (; cm != NULL; cm = cmn) {
1382 cmn = cm->m_next;
1383 cm->m_next = NULL;
1384 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1385 if (controlp != NULL) {
1386 if (dom->dom_externalize != NULL &&
1387 type == SCM_RIGHTS) {
1388 sounlock(so);
1389 splx(s);
1390 error = (*dom->dom_externalize)(cm, l,
1391 (flags & MSG_CMSG_CLOEXEC) ?
1392 O_CLOEXEC : 0);
1393 s = splsoftnet();
1394 solock(so);
1395 }
1396 *controlp = cm;
1397 while (*controlp != NULL)
1398 controlp = &(*controlp)->m_next;
1399 } else {
1400 /*
1401 * Dispose of any SCM_RIGHTS message that went
1402 * through the read path rather than recv.
1403 */
1404 if (dom->dom_dispose != NULL &&
1405 type == SCM_RIGHTS) {
1406 sounlock(so);
1407 (*dom->dom_dispose)(cm);
1408 solock(so);
1409 }
1410 m_freem(cm);
1411 }
1412 }
1413 if (m != NULL)
1414 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1415 else
1416 nextrecord = so->so_rcv.sb_mb;
1417 orig_resid = 0;
1418 }
1419
1420 /* If m is non-NULL, we have some data to read. */
1421 if (__predict_true(m != NULL)) {
1422 type = m->m_type;
1423 if (type == MT_OOBDATA)
1424 flags |= MSG_OOB;
1425 }
1426 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1427 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1428
1429 moff = 0;
1430 offset = 0;
1431 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1432 /*
1433 * If the type of mbuf has changed, end the receive
1434 * operation and do a short read.
1435 */
1436 if (m->m_type == MT_OOBDATA) {
1437 if (type != MT_OOBDATA)
1438 break;
1439 } else if (type == MT_OOBDATA) {
1440 break;
1441 } else if (m->m_type == MT_CONTROL) {
1442 break;
1443 }
1444 #ifdef DIAGNOSTIC
1445 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1446 panic("%s: m_type=%d", __func__, m->m_type);
1447 }
1448 #endif
1449
1450 so->so_state &= ~SS_RCVATMARK;
1451 wakeup_state = 0;
1452 len = uio->uio_resid;
1453 if (so->so_oobmark && len > so->so_oobmark - offset)
1454 len = so->so_oobmark - offset;
1455 if (len > m->m_len - moff)
1456 len = m->m_len - moff;
1457
1458 /*
1459 * If mp is set, just pass back the mbufs.
1460 * Otherwise copy them out via the uio, then free.
1461 * Sockbuf must be consistent here (points to current mbuf,
1462 * it points to next record) when we drop priority;
1463 * we must note any additions to the sockbuf when we
1464 * block interrupts again.
1465 */
1466 if (mp == NULL) {
1467 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1468 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1469 sounlock(so);
1470 splx(s);
1471 error = uiomove(mtod(m, char *) + moff, len, uio);
1472 s = splsoftnet();
1473 solock(so);
1474 if (error != 0) {
1475 /*
1476 * If any part of the record has been removed
1477 * (such as the MT_SONAME mbuf, which will
1478 * happen when PR_ADDR, and thus also
1479 * PR_ATOMIC, is set), then drop the entire
1480 * record to maintain the atomicity of the
1481 * receive operation.
1482 *
1483 * This avoids a later panic("receive 1a")
1484 * when compiled with DIAGNOSTIC.
1485 */
1486 if (m && mbuf_removed && atomic)
1487 (void) sbdroprecord(&so->so_rcv);
1488
1489 goto release;
1490 }
1491 } else {
1492 uio->uio_resid -= len;
1493 }
1494
1495 if (len == m->m_len - moff) {
1496 if (m->m_flags & M_EOR)
1497 flags |= MSG_EOR;
1498 #ifdef SCTP
1499 if (m->m_flags & M_NOTIFICATION)
1500 flags |= MSG_NOTIFICATION;
1501 #endif
1502 if (flags & MSG_PEEK) {
1503 m = m->m_next;
1504 moff = 0;
1505 } else {
1506 nextrecord = m->m_nextpkt;
1507 sbfree(&so->so_rcv, m);
1508 if (mp) {
1509 *mp = m;
1510 mp = &m->m_next;
1511 so->so_rcv.sb_mb = m = m->m_next;
1512 *mp = NULL;
1513 } else {
1514 m = so->so_rcv.sb_mb = m_free(m);
1515 }
1516 /*
1517 * If m != NULL, we also know that
1518 * so->so_rcv.sb_mb != NULL.
1519 */
1520 KASSERT(so->so_rcv.sb_mb == m);
1521 if (m) {
1522 m->m_nextpkt = nextrecord;
1523 if (nextrecord == NULL)
1524 so->so_rcv.sb_lastrecord = m;
1525 } else {
1526 so->so_rcv.sb_mb = nextrecord;
1527 SB_EMPTY_FIXUP(&so->so_rcv);
1528 }
1529 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1530 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1531 }
1532 } else if (flags & MSG_PEEK) {
1533 moff += len;
1534 } else {
1535 if (mp != NULL) {
1536 mt = m_copym(m, 0, len, M_NOWAIT);
1537 if (__predict_false(mt == NULL)) {
1538 sounlock(so);
1539 mt = m_copym(m, 0, len, M_WAIT);
1540 solock(so);
1541 }
1542 *mp = mt;
1543 }
1544 m->m_data += len;
1545 m->m_len -= len;
1546 so->so_rcv.sb_cc -= len;
1547 }
1548
1549 if (so->so_oobmark) {
1550 if ((flags & MSG_PEEK) == 0) {
1551 so->so_oobmark -= len;
1552 if (so->so_oobmark == 0) {
1553 so->so_state |= SS_RCVATMARK;
1554 break;
1555 }
1556 } else {
1557 offset += len;
1558 if (offset == so->so_oobmark)
1559 break;
1560 }
1561 }
1562 if (flags & MSG_EOR)
1563 break;
1564
1565 /*
1566 * If the MSG_WAITALL flag is set (for non-atomic socket),
1567 * we must not quit until "uio->uio_resid == 0" or an error
1568 * termination. If a signal/timeout occurs, return
1569 * with a short count but without error.
1570 * Keep sockbuf locked against other readers.
1571 */
1572 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1573 !sosendallatonce(so) && !nextrecord) {
1574 if (so->so_error || so->so_rerror ||
1575 so->so_state & SS_CANTRCVMORE)
1576 break;
1577 /*
1578 * If we are peeking and the socket receive buffer is
1579 * full, stop since we can't get more data to peek at.
1580 */
1581 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1582 break;
1583 /*
1584 * If we've drained the socket buffer, tell the
1585 * protocol in case it needs to do something to
1586 * get it filled again.
1587 */
1588 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1589 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1590 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1591 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1592 if (wakeup_state & SS_RESTARTSYS)
1593 error = ERESTART;
1594 else
1595 error = sbwait(&so->so_rcv);
1596 if (error != 0) {
1597 sbunlock(&so->so_rcv);
1598 sounlock(so);
1599 splx(s);
1600 return 0;
1601 }
1602 if ((m = so->so_rcv.sb_mb) != NULL)
1603 nextrecord = m->m_nextpkt;
1604 wakeup_state = so->so_state;
1605 }
1606 }
1607
1608 if (m && atomic) {
1609 flags |= MSG_TRUNC;
1610 if ((flags & MSG_PEEK) == 0)
1611 (void) sbdroprecord(&so->so_rcv);
1612 }
1613 if ((flags & MSG_PEEK) == 0) {
1614 if (m == NULL) {
1615 /*
1616 * First part is an inline SB_EMPTY_FIXUP(). Second
1617 * part makes sure sb_lastrecord is up-to-date if
1618 * there is still data in the socket buffer.
1619 */
1620 so->so_rcv.sb_mb = nextrecord;
1621 if (so->so_rcv.sb_mb == NULL) {
1622 so->so_rcv.sb_mbtail = NULL;
1623 so->so_rcv.sb_lastrecord = NULL;
1624 } else if (nextrecord->m_nextpkt == NULL)
1625 so->so_rcv.sb_lastrecord = nextrecord;
1626 }
1627 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1628 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1629 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1630 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1631 }
1632 if (orig_resid == uio->uio_resid && orig_resid &&
1633 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1634 sbunlock(&so->so_rcv);
1635 goto restart;
1636 }
1637
1638 if (flagsp != NULL)
1639 *flagsp |= flags;
1640 release:
1641 sbunlock(&so->so_rcv);
1642 sounlock(so);
1643 splx(s);
1644 return error;
1645 }
1646
1647 int
1648 soshutdown(struct socket *so, int how)
1649 {
1650 const struct protosw *pr;
1651 int error;
1652
1653 KASSERT(solocked(so));
1654
1655 pr = so->so_proto;
1656 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1657 return EINVAL;
1658
1659 if (how == SHUT_RD || how == SHUT_RDWR) {
1660 sorflush(so);
1661 error = 0;
1662 }
1663 if (how == SHUT_WR || how == SHUT_RDWR)
1664 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1665
1666 return error;
1667 }
1668
1669 void
1670 sorestart(struct socket *so)
1671 {
1672 /*
1673 * An application has called close() on an fd on which another
1674 * of its threads has called a socket system call.
1675 * Mark this and wake everyone up, and code that would block again
1676 * instead returns ERESTART.
1677 * On system call re-entry the fd is validated and EBADF returned.
1678 * Any other fd will block again on the 2nd syscall.
1679 */
1680 solock(so);
1681 so->so_state |= SS_RESTARTSYS;
1682 cv_broadcast(&so->so_cv);
1683 cv_broadcast(&so->so_snd.sb_cv);
1684 cv_broadcast(&so->so_rcv.sb_cv);
1685 sounlock(so);
1686 }
1687
1688 void
1689 sorflush(struct socket *so)
1690 {
1691 struct sockbuf *sb, asb;
1692 const struct protosw *pr;
1693
1694 KASSERT(solocked(so));
1695
1696 sb = &so->so_rcv;
1697 pr = so->so_proto;
1698 socantrcvmore(so);
1699 sb->sb_flags |= SB_NOINTR;
1700 (void )sblock(sb, M_WAITOK);
1701 sbunlock(sb);
1702 asb = *sb;
1703 /*
1704 * Clear most of the sockbuf structure, but leave some of the
1705 * fields valid.
1706 */
1707 memset(&sb->sb_startzero, 0,
1708 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1709 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1710 sounlock(so);
1711 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1712 solock(so);
1713 }
1714 sbrelease(&asb, so);
1715 }
1716
1717 /*
1718 * internal set SOL_SOCKET options
1719 */
1720 static int
1721 sosetopt1(struct socket *so, const struct sockopt *sopt)
1722 {
1723 int error, opt;
1724 int optval = 0; /* XXX: gcc */
1725 struct linger l;
1726 struct timeval tv;
1727
1728 opt = sopt->sopt_name;
1729
1730 switch (opt) {
1731
1732 case SO_ACCEPTFILTER:
1733 error = accept_filt_setopt(so, sopt);
1734 KASSERT(solocked(so));
1735 break;
1736
1737 case SO_LINGER:
1738 error = sockopt_get(sopt, &l, sizeof(l));
1739 solock(so);
1740 if (error)
1741 break;
1742 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1743 l.l_linger > (INT_MAX / hz)) {
1744 error = EDOM;
1745 break;
1746 }
1747 so->so_linger = l.l_linger;
1748 if (l.l_onoff)
1749 so->so_options |= SO_LINGER;
1750 else
1751 so->so_options &= ~SO_LINGER;
1752 break;
1753
1754 case SO_DEBUG:
1755 case SO_KEEPALIVE:
1756 case SO_DONTROUTE:
1757 case SO_USELOOPBACK:
1758 case SO_BROADCAST:
1759 case SO_REUSEADDR:
1760 case SO_REUSEPORT:
1761 case SO_OOBINLINE:
1762 case SO_TIMESTAMP:
1763 case SO_NOSIGPIPE:
1764 case SO_RERROR:
1765 error = sockopt_getint(sopt, &optval);
1766 solock(so);
1767 if (error)
1768 break;
1769 if (optval)
1770 so->so_options |= opt;
1771 else
1772 so->so_options &= ~opt;
1773 break;
1774
1775 case SO_SNDBUF:
1776 case SO_RCVBUF:
1777 case SO_SNDLOWAT:
1778 case SO_RCVLOWAT:
1779 error = sockopt_getint(sopt, &optval);
1780 solock(so);
1781 if (error)
1782 break;
1783
1784 /*
1785 * Values < 1 make no sense for any of these
1786 * options, so disallow them.
1787 */
1788 if (optval < 1) {
1789 error = EINVAL;
1790 break;
1791 }
1792
1793 switch (opt) {
1794 case SO_SNDBUF:
1795 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1796 error = ENOBUFS;
1797 break;
1798 }
1799 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1800 break;
1801
1802 case SO_RCVBUF:
1803 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1804 error = ENOBUFS;
1805 break;
1806 }
1807 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1808 break;
1809
1810 /*
1811 * Make sure the low-water is never greater than
1812 * the high-water.
1813 */
1814 case SO_SNDLOWAT:
1815 if (optval > so->so_snd.sb_hiwat)
1816 optval = so->so_snd.sb_hiwat;
1817
1818 so->so_snd.sb_lowat = optval;
1819 break;
1820
1821 case SO_RCVLOWAT:
1822 if (optval > so->so_rcv.sb_hiwat)
1823 optval = so->so_rcv.sb_hiwat;
1824
1825 so->so_rcv.sb_lowat = optval;
1826 break;
1827 }
1828 break;
1829
1830 case SO_SNDTIMEO:
1831 case SO_RCVTIMEO:
1832 solock(so);
1833 error = sockopt_get(sopt, &tv, sizeof(tv));
1834 if (error)
1835 break;
1836
1837 if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1838 error = EDOM;
1839 break;
1840 }
1841 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1842 error = EDOM;
1843 break;
1844 }
1845
1846 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1847 if (optval == 0 && tv.tv_usec != 0)
1848 optval = 1;
1849
1850 switch (opt) {
1851 case SO_SNDTIMEO:
1852 so->so_snd.sb_timeo = optval;
1853 break;
1854 case SO_RCVTIMEO:
1855 so->so_rcv.sb_timeo = optval;
1856 break;
1857 }
1858 break;
1859
1860 default:
1861 MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
1862 (opt, so, sopt), enosys(), error);
1863 if (error == ENOSYS || error == EPASSTHROUGH) {
1864 solock(so);
1865 error = ENOPROTOOPT;
1866 }
1867 break;
1868 }
1869 KASSERT(solocked(so));
1870 return error;
1871 }
1872
1873 int
1874 sosetopt(struct socket *so, struct sockopt *sopt)
1875 {
1876 int error, prerr;
1877
1878 if (sopt->sopt_level == SOL_SOCKET) {
1879 error = sosetopt1(so, sopt);
1880 KASSERT(solocked(so));
1881 } else {
1882 error = ENOPROTOOPT;
1883 solock(so);
1884 }
1885
1886 if ((error == 0 || error == ENOPROTOOPT) &&
1887 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1888 /* give the protocol stack a shot */
1889 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1890 if (prerr == 0)
1891 error = 0;
1892 else if (prerr != ENOPROTOOPT)
1893 error = prerr;
1894 }
1895 sounlock(so);
1896 return error;
1897 }
1898
1899 /*
1900 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1901 */
1902 int
1903 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1904 const void *val, size_t valsize)
1905 {
1906 struct sockopt sopt;
1907 int error;
1908
1909 KASSERT(valsize == 0 || val != NULL);
1910
1911 sockopt_init(&sopt, level, name, valsize);
1912 sockopt_set(&sopt, val, valsize);
1913
1914 error = sosetopt(so, &sopt);
1915
1916 sockopt_destroy(&sopt);
1917
1918 return error;
1919 }
1920
1921 /*
1922 * internal get SOL_SOCKET options
1923 */
1924 static int
1925 sogetopt1(struct socket *so, struct sockopt *sopt)
1926 {
1927 int error, optval, opt;
1928 struct linger l;
1929 struct timeval tv;
1930
1931 switch ((opt = sopt->sopt_name)) {
1932
1933 case SO_ACCEPTFILTER:
1934 error = accept_filt_getopt(so, sopt);
1935 break;
1936
1937 case SO_LINGER:
1938 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1939 l.l_linger = so->so_linger;
1940
1941 error = sockopt_set(sopt, &l, sizeof(l));
1942 break;
1943
1944 case SO_USELOOPBACK:
1945 case SO_DONTROUTE:
1946 case SO_DEBUG:
1947 case SO_KEEPALIVE:
1948 case SO_REUSEADDR:
1949 case SO_REUSEPORT:
1950 case SO_BROADCAST:
1951 case SO_OOBINLINE:
1952 case SO_TIMESTAMP:
1953 case SO_NOSIGPIPE:
1954 case SO_RERROR:
1955 case SO_ACCEPTCONN:
1956 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1957 break;
1958
1959 case SO_TYPE:
1960 error = sockopt_setint(sopt, so->so_type);
1961 break;
1962
1963 case SO_ERROR:
1964 if (so->so_error == 0) {
1965 so->so_error = so->so_rerror;
1966 so->so_rerror = 0;
1967 }
1968 error = sockopt_setint(sopt, so->so_error);
1969 so->so_error = 0;
1970 break;
1971
1972 case SO_SNDBUF:
1973 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1974 break;
1975
1976 case SO_RCVBUF:
1977 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1978 break;
1979
1980 case SO_SNDLOWAT:
1981 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1982 break;
1983
1984 case SO_RCVLOWAT:
1985 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1986 break;
1987
1988 case SO_SNDTIMEO:
1989 case SO_RCVTIMEO:
1990 optval = (opt == SO_SNDTIMEO ?
1991 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1992
1993 tv.tv_sec = optval / hz;
1994 tv.tv_usec = (optval % hz) * tick;
1995
1996 error = sockopt_set(sopt, &tv, sizeof(tv));
1997 break;
1998
1999 case SO_OVERFLOWED:
2000 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2001 break;
2002
2003 default:
2004 MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
2005 (opt, so, sopt), enosys(), error);
2006 if (error)
2007 error = ENOPROTOOPT;
2008 break;
2009 }
2010
2011 return error;
2012 }
2013
2014 int
2015 sogetopt(struct socket *so, struct sockopt *sopt)
2016 {
2017 int error;
2018
2019 solock(so);
2020 if (sopt->sopt_level != SOL_SOCKET) {
2021 if (so->so_proto && so->so_proto->pr_ctloutput) {
2022 error = ((*so->so_proto->pr_ctloutput)
2023 (PRCO_GETOPT, so, sopt));
2024 } else
2025 error = (ENOPROTOOPT);
2026 } else {
2027 error = sogetopt1(so, sopt);
2028 }
2029 sounlock(so);
2030 return error;
2031 }
2032
2033 /*
2034 * alloc sockopt data buffer buffer
2035 * - will be released at destroy
2036 */
2037 static int
2038 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2039 {
2040
2041 KASSERT(sopt->sopt_size == 0);
2042
2043 if (len > sizeof(sopt->sopt_buf)) {
2044 sopt->sopt_data = kmem_zalloc(len, kmflag);
2045 if (sopt->sopt_data == NULL)
2046 return ENOMEM;
2047 } else
2048 sopt->sopt_data = sopt->sopt_buf;
2049
2050 sopt->sopt_size = len;
2051 return 0;
2052 }
2053
2054 /*
2055 * initialise sockopt storage
2056 * - MAY sleep during allocation
2057 */
2058 void
2059 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2060 {
2061
2062 memset(sopt, 0, sizeof(*sopt));
2063
2064 sopt->sopt_level = level;
2065 sopt->sopt_name = name;
2066 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2067 }
2068
2069 /*
2070 * destroy sockopt storage
2071 * - will release any held memory references
2072 */
2073 void
2074 sockopt_destroy(struct sockopt *sopt)
2075 {
2076
2077 if (sopt->sopt_data != sopt->sopt_buf)
2078 kmem_free(sopt->sopt_data, sopt->sopt_size);
2079
2080 memset(sopt, 0, sizeof(*sopt));
2081 }
2082
2083 /*
2084 * set sockopt value
2085 * - value is copied into sockopt
2086 * - memory is allocated when necessary, will not sleep
2087 */
2088 int
2089 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2090 {
2091 int error;
2092
2093 if (sopt->sopt_size == 0) {
2094 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2095 if (error)
2096 return error;
2097 }
2098
2099 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2100 memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
2101
2102 return 0;
2103 }
2104
2105 /*
2106 * common case of set sockopt integer value
2107 */
2108 int
2109 sockopt_setint(struct sockopt *sopt, int val)
2110 {
2111
2112 return sockopt_set(sopt, &val, sizeof(int));
2113 }
2114
2115 /*
2116 * get sockopt value
2117 * - correct size must be given
2118 */
2119 int
2120 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2121 {
2122
2123 if (sopt->sopt_size != len)
2124 return EINVAL;
2125
2126 memcpy(buf, sopt->sopt_data, len);
2127 return 0;
2128 }
2129
2130 /*
2131 * common case of get sockopt integer value
2132 */
2133 int
2134 sockopt_getint(const struct sockopt *sopt, int *valp)
2135 {
2136
2137 return sockopt_get(sopt, valp, sizeof(int));
2138 }
2139
2140 /*
2141 * set sockopt value from mbuf
2142 * - ONLY for legacy code
2143 * - mbuf is released by sockopt
2144 * - will not sleep
2145 */
2146 int
2147 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2148 {
2149 size_t len;
2150 int error;
2151
2152 len = m_length(m);
2153
2154 if (sopt->sopt_size == 0) {
2155 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2156 if (error)
2157 return error;
2158 }
2159
2160 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2161 m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
2162 m_freem(m);
2163
2164 return 0;
2165 }
2166
2167 /*
2168 * get sockopt value into mbuf
2169 * - ONLY for legacy code
2170 * - mbuf to be released by the caller
2171 * - will not sleep
2172 */
2173 struct mbuf *
2174 sockopt_getmbuf(const struct sockopt *sopt)
2175 {
2176 struct mbuf *m;
2177
2178 if (sopt->sopt_size > MCLBYTES)
2179 return NULL;
2180
2181 m = m_get(M_DONTWAIT, MT_SOOPTS);
2182 if (m == NULL)
2183 return NULL;
2184
2185 if (sopt->sopt_size > MLEN) {
2186 MCLGET(m, M_DONTWAIT);
2187 if ((m->m_flags & M_EXT) == 0) {
2188 m_free(m);
2189 return NULL;
2190 }
2191 }
2192
2193 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2194 m->m_len = sopt->sopt_size;
2195
2196 return m;
2197 }
2198
2199 void
2200 sohasoutofband(struct socket *so)
2201 {
2202
2203 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2204 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2205 }
2206
2207 static void
2208 filt_sordetach(struct knote *kn)
2209 {
2210 struct socket *so;
2211
2212 so = ((file_t *)kn->kn_obj)->f_socket;
2213 solock(so);
2214 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2215 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2216 so->so_rcv.sb_flags &= ~SB_KNOTE;
2217 sounlock(so);
2218 }
2219
2220 /*ARGSUSED*/
2221 static int
2222 filt_soread(struct knote *kn, long hint)
2223 {
2224 struct socket *so;
2225 int rv;
2226
2227 so = ((file_t *)kn->kn_obj)->f_socket;
2228 if (hint != NOTE_SUBMIT)
2229 solock(so);
2230 kn->kn_data = so->so_rcv.sb_cc;
2231 if (so->so_state & SS_CANTRCVMORE) {
2232 kn->kn_flags |= EV_EOF;
2233 kn->kn_fflags = so->so_error;
2234 rv = 1;
2235 } else if (so->so_error || so->so_rerror)
2236 rv = 1;
2237 else if (kn->kn_sfflags & NOTE_LOWAT)
2238 rv = (kn->kn_data >= kn->kn_sdata);
2239 else
2240 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2241 if (hint != NOTE_SUBMIT)
2242 sounlock(so);
2243 return rv;
2244 }
2245
2246 static void
2247 filt_sowdetach(struct knote *kn)
2248 {
2249 struct socket *so;
2250
2251 so = ((file_t *)kn->kn_obj)->f_socket;
2252 solock(so);
2253 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2254 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2255 so->so_snd.sb_flags &= ~SB_KNOTE;
2256 sounlock(so);
2257 }
2258
2259 /*ARGSUSED*/
2260 static int
2261 filt_sowrite(struct knote *kn, long hint)
2262 {
2263 struct socket *so;
2264 int rv;
2265
2266 so = ((file_t *)kn->kn_obj)->f_socket;
2267 if (hint != NOTE_SUBMIT)
2268 solock(so);
2269 kn->kn_data = sbspace(&so->so_snd);
2270 if (so->so_state & SS_CANTSENDMORE) {
2271 kn->kn_flags |= EV_EOF;
2272 kn->kn_fflags = so->so_error;
2273 rv = 1;
2274 } else if (so->so_error)
2275 rv = 1;
2276 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2277 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2278 rv = 0;
2279 else if (kn->kn_sfflags & NOTE_LOWAT)
2280 rv = (kn->kn_data >= kn->kn_sdata);
2281 else
2282 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2283 if (hint != NOTE_SUBMIT)
2284 sounlock(so);
2285 return rv;
2286 }
2287
2288 /*ARGSUSED*/
2289 static int
2290 filt_solisten(struct knote *kn, long hint)
2291 {
2292 struct socket *so;
2293 int rv;
2294
2295 so = ((file_t *)kn->kn_obj)->f_socket;
2296
2297 /*
2298 * Set kn_data to number of incoming connections, not
2299 * counting partial (incomplete) connections.
2300 */
2301 if (hint != NOTE_SUBMIT)
2302 solock(so);
2303 kn->kn_data = so->so_qlen;
2304 rv = (kn->kn_data > 0);
2305 if (hint != NOTE_SUBMIT)
2306 sounlock(so);
2307 return rv;
2308 }
2309
2310 static const struct filterops solisten_filtops = {
2311 .f_isfd = 1,
2312 .f_attach = NULL,
2313 .f_detach = filt_sordetach,
2314 .f_event = filt_solisten,
2315 };
2316
2317 static const struct filterops soread_filtops = {
2318 .f_isfd = 1,
2319 .f_attach = NULL,
2320 .f_detach = filt_sordetach,
2321 .f_event = filt_soread,
2322 };
2323
2324 static const struct filterops sowrite_filtops = {
2325 .f_isfd = 1,
2326 .f_attach = NULL,
2327 .f_detach = filt_sowdetach,
2328 .f_event = filt_sowrite,
2329 };
2330
2331 int
2332 soo_kqfilter(struct file *fp, struct knote *kn)
2333 {
2334 struct socket *so;
2335 struct sockbuf *sb;
2336
2337 so = ((file_t *)kn->kn_obj)->f_socket;
2338 solock(so);
2339 switch (kn->kn_filter) {
2340 case EVFILT_READ:
2341 if (so->so_options & SO_ACCEPTCONN)
2342 kn->kn_fop = &solisten_filtops;
2343 else
2344 kn->kn_fop = &soread_filtops;
2345 sb = &so->so_rcv;
2346 break;
2347 case EVFILT_WRITE:
2348 kn->kn_fop = &sowrite_filtops;
2349 sb = &so->so_snd;
2350 break;
2351 default:
2352 sounlock(so);
2353 return EINVAL;
2354 }
2355 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2356 sb->sb_flags |= SB_KNOTE;
2357 sounlock(so);
2358 return 0;
2359 }
2360
2361 static int
2362 sodopoll(struct socket *so, int events)
2363 {
2364 int revents;
2365
2366 revents = 0;
2367
2368 if (events & (POLLIN | POLLRDNORM))
2369 if (soreadable(so))
2370 revents |= events & (POLLIN | POLLRDNORM);
2371
2372 if (events & (POLLOUT | POLLWRNORM))
2373 if (sowritable(so))
2374 revents |= events & (POLLOUT | POLLWRNORM);
2375
2376 if (events & (POLLPRI | POLLRDBAND))
2377 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2378 revents |= events & (POLLPRI | POLLRDBAND);
2379
2380 return revents;
2381 }
2382
2383 int
2384 sopoll(struct socket *so, int events)
2385 {
2386 int revents = 0;
2387
2388 #ifndef DIAGNOSTIC
2389 /*
2390 * Do a quick, unlocked check in expectation that the socket
2391 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2392 * as the solocked() assertions will fail.
2393 */
2394 if ((revents = sodopoll(so, events)) != 0)
2395 return revents;
2396 #endif
2397
2398 solock(so);
2399 if ((revents = sodopoll(so, events)) == 0) {
2400 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2401 selrecord(curlwp, &so->so_rcv.sb_sel);
2402 so->so_rcv.sb_flags |= SB_NOTIFY;
2403 }
2404
2405 if (events & (POLLOUT | POLLWRNORM)) {
2406 selrecord(curlwp, &so->so_snd.sb_sel);
2407 so->so_snd.sb_flags |= SB_NOTIFY;
2408 }
2409 }
2410 sounlock(so);
2411
2412 return revents;
2413 }
2414
2415 struct mbuf **
2416 sbsavetimestamp(int opt, struct mbuf **mp)
2417 {
2418 struct timeval tv;
2419 int error;
2420
2421 microtime(&tv);
2422
2423 MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, mp), enosys(), error);
2424 if (error == 0)
2425 return mp;
2426
2427 if (opt & SO_TIMESTAMP) {
2428 *mp = sbcreatecontrol(&tv, sizeof(tv),
2429 SCM_TIMESTAMP, SOL_SOCKET);
2430 if (*mp)
2431 mp = &(*mp)->m_next;
2432 }
2433 return mp;
2434 }
2435
2436
2437 #include <sys/sysctl.h>
2438
2439 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2440 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2441
2442 /*
2443 * sysctl helper routine for kern.somaxkva. ensures that the given
2444 * value is not too small.
2445 * (XXX should we maybe make sure it's not too large as well?)
2446 */
2447 static int
2448 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2449 {
2450 int error, new_somaxkva;
2451 struct sysctlnode node;
2452
2453 new_somaxkva = somaxkva;
2454 node = *rnode;
2455 node.sysctl_data = &new_somaxkva;
2456 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2457 if (error || newp == NULL)
2458 return error;
2459
2460 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2461 return EINVAL;
2462
2463 mutex_enter(&so_pendfree_lock);
2464 somaxkva = new_somaxkva;
2465 cv_broadcast(&socurkva_cv);
2466 mutex_exit(&so_pendfree_lock);
2467
2468 return error;
2469 }
2470
2471 /*
2472 * sysctl helper routine for kern.sbmax. Basically just ensures that
2473 * any new value is not too small.
2474 */
2475 static int
2476 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2477 {
2478 int error, new_sbmax;
2479 struct sysctlnode node;
2480
2481 new_sbmax = sb_max;
2482 node = *rnode;
2483 node.sysctl_data = &new_sbmax;
2484 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2485 if (error || newp == NULL)
2486 return error;
2487
2488 KERNEL_LOCK(1, NULL);
2489 error = sb_max_set(new_sbmax);
2490 KERNEL_UNLOCK_ONE(NULL);
2491
2492 return error;
2493 }
2494
2495 /*
2496 * sysctl helper routine for kern.sooptions. Ensures that only allowed
2497 * options can be set.
2498 */
2499 static int
2500 sysctl_kern_sooptions(SYSCTLFN_ARGS)
2501 {
2502 int error, new_options;
2503 struct sysctlnode node;
2504
2505 new_options = sooptions;
2506 node = *rnode;
2507 node.sysctl_data = &new_options;
2508 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2509 if (error || newp == NULL)
2510 return error;
2511
2512 if (new_options & ~SO_DEFOPTS)
2513 return EINVAL;
2514
2515 sooptions = new_options;
2516
2517 return 0;
2518 }
2519
2520 static void
2521 sysctl_kern_socket_setup(void)
2522 {
2523
2524 KASSERT(socket_sysctllog == NULL);
2525
2526 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2527 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2528 CTLTYPE_INT, "somaxkva",
2529 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2530 "used for socket buffers"),
2531 sysctl_kern_somaxkva, 0, NULL, 0,
2532 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2533
2534 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2535 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2536 CTLTYPE_INT, "sbmax",
2537 SYSCTL_DESCR("Maximum socket buffer size"),
2538 sysctl_kern_sbmax, 0, NULL, 0,
2539 CTL_KERN, KERN_SBMAX, CTL_EOL);
2540
2541 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2542 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2543 CTLTYPE_INT, "sooptions",
2544 SYSCTL_DESCR("Default socket options"),
2545 sysctl_kern_sooptions, 0, NULL, 0,
2546 CTL_KERN, CTL_CREATE, CTL_EOL);
2547 }
2548