Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.283
      1 /*	$NetBSD: uipc_socket.c,v 1.283 2019/09/14 15:06:33 mlelstv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.283 2019/09/14 15:06:33 mlelstv Exp $");
     75 
     76 #ifdef _KERNEL_OPT
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_sock_counters.h"
     79 #include "opt_sosend_loan.h"
     80 #include "opt_mbuftrace.h"
     81 #include "opt_somaxkva.h"
     82 #include "opt_multiprocessor.h"	/* XXX */
     83 #include "opt_sctp.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/file.h>
     90 #include <sys/filedesc.h>
     91 #include <sys/kmem.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/domain.h>
     94 #include <sys/kernel.h>
     95 #include <sys/protosw.h>
     96 #include <sys/socket.h>
     97 #include <sys/socketvar.h>
     98 #include <sys/signalvar.h>
     99 #include <sys/resourcevar.h>
    100 #include <sys/uidinfo.h>
    101 #include <sys/event.h>
    102 #include <sys/poll.h>
    103 #include <sys/kauth.h>
    104 #include <sys/mutex.h>
    105 #include <sys/condvar.h>
    106 #include <sys/kthread.h>
    107 #include <sys/compat_stub.h>
    108 
    109 #include <compat/sys/time.h>
    110 #include <compat/sys/socket.h>
    111 
    112 #include <uvm/uvm_extern.h>
    113 #include <uvm/uvm_loan.h>
    114 #include <uvm/uvm_page.h>
    115 
    116 #ifdef SCTP
    117 #include <netinet/sctp_route.h>
    118 #endif
    119 
    120 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    121 
    122 extern const struct fileops socketops;
    123 
    124 static int	sooptions;
    125 extern int	somaxconn;			/* patchable (XXX sysctl) */
    126 int		somaxconn = SOMAXCONN;
    127 kmutex_t	*softnet_lock;
    128 
    129 #ifdef SOSEND_COUNTERS
    130 #include <sys/device.h>
    131 
    132 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    133     NULL, "sosend", "loan big");
    134 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    135     NULL, "sosend", "copy big");
    136 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    137     NULL, "sosend", "copy small");
    138 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    139     NULL, "sosend", "kva limit");
    140 
    141 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    142 
    143 EVCNT_ATTACH_STATIC(sosend_loan_big);
    144 EVCNT_ATTACH_STATIC(sosend_copy_big);
    145 EVCNT_ATTACH_STATIC(sosend_copy_small);
    146 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    147 #else
    148 
    149 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    150 
    151 #endif /* SOSEND_COUNTERS */
    152 
    153 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    154 int sock_loan_thresh = -1;
    155 #else
    156 int sock_loan_thresh = 4096;
    157 #endif
    158 
    159 static kmutex_t so_pendfree_lock;
    160 static struct mbuf *so_pendfree = NULL;
    161 
    162 #ifndef SOMAXKVA
    163 #define	SOMAXKVA (16 * 1024 * 1024)
    164 #endif
    165 int somaxkva = SOMAXKVA;
    166 static int socurkva;
    167 static kcondvar_t socurkva_cv;
    168 
    169 static kauth_listener_t socket_listener;
    170 
    171 #define	SOCK_LOAN_CHUNK		65536
    172 
    173 static void sopendfree_thread(void *);
    174 static kcondvar_t pendfree_thread_cv;
    175 static lwp_t *sopendfree_lwp;
    176 
    177 static void sysctl_kern_socket_setup(void);
    178 static struct sysctllog *socket_sysctllog;
    179 
    180 static vsize_t
    181 sokvareserve(struct socket *so, vsize_t len)
    182 {
    183 	int error;
    184 
    185 	mutex_enter(&so_pendfree_lock);
    186 	while (socurkva + len > somaxkva) {
    187 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    188 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    189 		if (error) {
    190 			len = 0;
    191 			break;
    192 		}
    193 	}
    194 	socurkva += len;
    195 	mutex_exit(&so_pendfree_lock);
    196 	return len;
    197 }
    198 
    199 static void
    200 sokvaunreserve(vsize_t len)
    201 {
    202 
    203 	mutex_enter(&so_pendfree_lock);
    204 	socurkva -= len;
    205 	cv_broadcast(&socurkva_cv);
    206 	mutex_exit(&so_pendfree_lock);
    207 }
    208 
    209 /*
    210  * sokvaalloc: allocate kva for loan.
    211  */
    212 vaddr_t
    213 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    214 {
    215 	vaddr_t lva;
    216 
    217 	if (sokvareserve(so, len) == 0)
    218 		return 0;
    219 
    220 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    221 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    222 	if (lva == 0) {
    223 		sokvaunreserve(len);
    224 		return 0;
    225 	}
    226 
    227 	return lva;
    228 }
    229 
    230 /*
    231  * sokvafree: free kva for loan.
    232  */
    233 void
    234 sokvafree(vaddr_t sva, vsize_t len)
    235 {
    236 
    237 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    238 	sokvaunreserve(len);
    239 }
    240 
    241 static void
    242 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    243 {
    244 	vaddr_t sva, eva;
    245 	vsize_t len;
    246 	int npgs;
    247 
    248 	KASSERT(pgs != NULL);
    249 
    250 	eva = round_page((vaddr_t) buf + size);
    251 	sva = trunc_page((vaddr_t) buf);
    252 	len = eva - sva;
    253 	npgs = len >> PAGE_SHIFT;
    254 
    255 	pmap_kremove(sva, len);
    256 	pmap_update(pmap_kernel());
    257 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    258 	sokvafree(sva, len);
    259 }
    260 
    261 /*
    262  * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
    263  * so_pendfree_lock when freeing mbufs.
    264  */
    265 static void
    266 sopendfree_thread(void *v)
    267 {
    268 	struct mbuf *m, *next;
    269 	size_t rv;
    270 
    271 	mutex_enter(&so_pendfree_lock);
    272 
    273 	for (;;) {
    274 		rv = 0;
    275 		while (so_pendfree != NULL) {
    276 			m = so_pendfree;
    277 			so_pendfree = NULL;
    278 			mutex_exit(&so_pendfree_lock);
    279 
    280 			for (; m != NULL; m = next) {
    281 				next = m->m_next;
    282 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
    283 				    0);
    284 				KASSERT(m->m_ext.ext_refcnt == 0);
    285 
    286 				rv += m->m_ext.ext_size;
    287 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    288 				    m->m_ext.ext_size);
    289 				pool_cache_put(mb_cache, m);
    290 			}
    291 
    292 			mutex_enter(&so_pendfree_lock);
    293 		}
    294 		if (rv)
    295 			cv_broadcast(&socurkva_cv);
    296 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    297 	}
    298 	panic("sopendfree_thread");
    299 	/* NOTREACHED */
    300 }
    301 
    302 void
    303 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    304 {
    305 
    306 	KASSERT(m != NULL);
    307 
    308 	/*
    309 	 * postpone freeing mbuf.
    310 	 *
    311 	 * we can't do it in interrupt context
    312 	 * because we need to put kva back to kernel_map.
    313 	 */
    314 
    315 	mutex_enter(&so_pendfree_lock);
    316 	m->m_next = so_pendfree;
    317 	so_pendfree = m;
    318 	cv_signal(&pendfree_thread_cv);
    319 	mutex_exit(&so_pendfree_lock);
    320 }
    321 
    322 static long
    323 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    324 {
    325 	struct iovec *iov = uio->uio_iov;
    326 	vaddr_t sva, eva;
    327 	vsize_t len;
    328 	vaddr_t lva;
    329 	int npgs, error;
    330 	vaddr_t va;
    331 	int i;
    332 
    333 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    334 		return 0;
    335 
    336 	if (iov->iov_len < (size_t) space)
    337 		space = iov->iov_len;
    338 	if (space > SOCK_LOAN_CHUNK)
    339 		space = SOCK_LOAN_CHUNK;
    340 
    341 	eva = round_page((vaddr_t) iov->iov_base + space);
    342 	sva = trunc_page((vaddr_t) iov->iov_base);
    343 	len = eva - sva;
    344 	npgs = len >> PAGE_SHIFT;
    345 
    346 	KASSERT(npgs <= M_EXT_MAXPAGES);
    347 
    348 	lva = sokvaalloc(sva, len, so);
    349 	if (lva == 0)
    350 		return 0;
    351 
    352 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    353 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    354 	if (error) {
    355 		sokvafree(lva, len);
    356 		return 0;
    357 	}
    358 
    359 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    360 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    361 		    VM_PROT_READ, 0);
    362 	pmap_update(pmap_kernel());
    363 
    364 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    365 
    366 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    367 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    368 
    369 	uio->uio_resid -= space;
    370 	/* uio_offset not updated, not set/used for write(2) */
    371 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    372 	uio->uio_iov->iov_len -= space;
    373 	if (uio->uio_iov->iov_len == 0) {
    374 		uio->uio_iov++;
    375 		uio->uio_iovcnt--;
    376 	}
    377 
    378 	return space;
    379 }
    380 
    381 static int
    382 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    383     void *arg0, void *arg1, void *arg2, void *arg3)
    384 {
    385 	int result;
    386 	enum kauth_network_req req;
    387 
    388 	result = KAUTH_RESULT_DEFER;
    389 	req = (enum kauth_network_req)arg0;
    390 
    391 	if ((action != KAUTH_NETWORK_SOCKET) &&
    392 	    (action != KAUTH_NETWORK_BIND))
    393 		return result;
    394 
    395 	switch (req) {
    396 	case KAUTH_REQ_NETWORK_BIND_PORT:
    397 		result = KAUTH_RESULT_ALLOW;
    398 		break;
    399 
    400 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    401 		/* Normal users can only drop their own connections. */
    402 		struct socket *so = (struct socket *)arg1;
    403 
    404 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    405 			result = KAUTH_RESULT_ALLOW;
    406 
    407 		break;
    408 		}
    409 
    410 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    411 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    412 		switch ((u_long)arg1) {
    413 		case PF_ROUTE:
    414 		case PF_OROUTE:
    415 		case PF_BLUETOOTH:
    416 		case PF_CAN:
    417 			result = KAUTH_RESULT_ALLOW;
    418 			break;
    419 		default:
    420 			/* Privileged, let secmodel handle this. */
    421 			if ((u_long)arg2 == SOCK_RAW)
    422 				break;
    423 			result = KAUTH_RESULT_ALLOW;
    424 			break;
    425 		}
    426 		break;
    427 
    428 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    429 		result = KAUTH_RESULT_ALLOW;
    430 
    431 		break;
    432 
    433 	default:
    434 		break;
    435 	}
    436 
    437 	return result;
    438 }
    439 
    440 void
    441 soinit(void)
    442 {
    443 
    444 	sysctl_kern_socket_setup();
    445 
    446 #ifdef SCTP
    447 	/* Update the SCTP function hooks if necessary*/
    448 
    449         vec_sctp_add_ip_address = sctp_add_ip_address;
    450         vec_sctp_delete_ip_address = sctp_delete_ip_address;
    451 #endif
    452 
    453 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    454 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    455 	cv_init(&socurkva_cv, "sokva");
    456 	cv_init(&pendfree_thread_cv, "sopendfr");
    457 	soinit2();
    458 
    459 	/* Set the initial adjusted socket buffer size. */
    460 	if (sb_max_set(sb_max))
    461 		panic("bad initial sb_max value: %lu", sb_max);
    462 
    463 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    464 	    socket_listener_cb, NULL);
    465 }
    466 
    467 void
    468 soinit1(void)
    469 {
    470 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    471 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    472 	if (error)
    473 		panic("soinit1 %d", error);
    474 }
    475 
    476 /*
    477  * socreate: create a new socket of the specified type and the protocol.
    478  *
    479  * => Caller may specify another socket for lock sharing (must not be held).
    480  * => Returns the new socket without lock held.
    481  */
    482 int
    483 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    484     struct socket *lockso)
    485 {
    486 	const struct protosw *prp;
    487 	struct socket *so;
    488 	uid_t uid;
    489 	int error;
    490 	kmutex_t *lock;
    491 
    492 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    493 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    494 	    KAUTH_ARG(proto));
    495 	if (error != 0)
    496 		return error;
    497 
    498 	if (proto)
    499 		prp = pffindproto(dom, proto, type);
    500 	else
    501 		prp = pffindtype(dom, type);
    502 	if (prp == NULL) {
    503 		/* no support for domain */
    504 		if (pffinddomain(dom) == 0)
    505 			return EAFNOSUPPORT;
    506 		/* no support for socket type */
    507 		if (proto == 0 && type != 0)
    508 			return EPROTOTYPE;
    509 		return EPROTONOSUPPORT;
    510 	}
    511 	if (prp->pr_usrreqs == NULL)
    512 		return EPROTONOSUPPORT;
    513 	if (prp->pr_type != type)
    514 		return EPROTOTYPE;
    515 
    516 	so = soget(true);
    517 	so->so_type = type;
    518 	so->so_proto = prp;
    519 	so->so_send = sosend;
    520 	so->so_receive = soreceive;
    521 	so->so_options = sooptions;
    522 #ifdef MBUFTRACE
    523 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    524 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    525 	so->so_mowner = &prp->pr_domain->dom_mowner;
    526 #endif
    527 	uid = kauth_cred_geteuid(l->l_cred);
    528 	so->so_uidinfo = uid_find(uid);
    529 	so->so_cpid = l->l_proc->p_pid;
    530 
    531 	/*
    532 	 * Lock assigned and taken during PCB attach, unless we share
    533 	 * the lock with another socket, e.g. socketpair(2) case.
    534 	 */
    535 	if (lockso) {
    536 		lock = lockso->so_lock;
    537 		so->so_lock = lock;
    538 		mutex_obj_hold(lock);
    539 		mutex_enter(lock);
    540 	}
    541 
    542 	/* Attach the PCB (returns with the socket lock held). */
    543 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    544 	KASSERT(solocked(so));
    545 
    546 	if (error) {
    547 		KASSERT(so->so_pcb == NULL);
    548 		so->so_state |= SS_NOFDREF;
    549 		sofree(so);
    550 		return error;
    551 	}
    552 	so->so_cred = kauth_cred_dup(l->l_cred);
    553 	sounlock(so);
    554 
    555 	*aso = so;
    556 	return 0;
    557 }
    558 
    559 /*
    560  * fsocreate: create a socket and a file descriptor associated with it.
    561  *
    562  * => On success, write file descriptor to fdout and return zero.
    563  * => On failure, return non-zero; *fdout will be undefined.
    564  */
    565 int
    566 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    567 {
    568 	lwp_t *l = curlwp;
    569 	int error, fd, flags;
    570 	struct socket *so;
    571 	struct file *fp;
    572 
    573 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    574 		return error;
    575 	}
    576 	flags = type & SOCK_FLAGS_MASK;
    577 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    578 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    579 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    580 	fp->f_type = DTYPE_SOCKET;
    581 	fp->f_ops = &socketops;
    582 
    583 	type &= ~SOCK_FLAGS_MASK;
    584 	error = socreate(domain, &so, type, proto, l, NULL);
    585 	if (error) {
    586 		fd_abort(curproc, fp, fd);
    587 		return error;
    588 	}
    589 	if (flags & SOCK_NONBLOCK) {
    590 		so->so_state |= SS_NBIO;
    591 	}
    592 	fp->f_socket = so;
    593 	fd_affix(curproc, fp, fd);
    594 
    595 	if (sop != NULL) {
    596 		*sop = so;
    597 	}
    598 	*fdout = fd;
    599 	return error;
    600 }
    601 
    602 int
    603 sofamily(const struct socket *so)
    604 {
    605 	const struct protosw *pr;
    606 	const struct domain *dom;
    607 
    608 	if ((pr = so->so_proto) == NULL)
    609 		return AF_UNSPEC;
    610 	if ((dom = pr->pr_domain) == NULL)
    611 		return AF_UNSPEC;
    612 	return dom->dom_family;
    613 }
    614 
    615 int
    616 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    617 {
    618 	int error;
    619 
    620 	solock(so);
    621 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    622 		sounlock(so);
    623 		return EAFNOSUPPORT;
    624 	}
    625 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    626 	sounlock(so);
    627 	return error;
    628 }
    629 
    630 int
    631 solisten(struct socket *so, int backlog, struct lwp *l)
    632 {
    633 	int error;
    634 	short oldopt, oldqlimit;
    635 
    636 	solock(so);
    637 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    638 	    SS_ISDISCONNECTING)) != 0) {
    639 		sounlock(so);
    640 		return EINVAL;
    641 	}
    642 	oldopt = so->so_options;
    643 	oldqlimit = so->so_qlimit;
    644 	if (TAILQ_EMPTY(&so->so_q))
    645 		so->so_options |= SO_ACCEPTCONN;
    646 	if (backlog < 0)
    647 		backlog = 0;
    648 	so->so_qlimit = uimin(backlog, somaxconn);
    649 
    650 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    651 	if (error != 0) {
    652 		so->so_options = oldopt;
    653 		so->so_qlimit = oldqlimit;
    654 		sounlock(so);
    655 		return error;
    656 	}
    657 	sounlock(so);
    658 	return 0;
    659 }
    660 
    661 void
    662 sofree(struct socket *so)
    663 {
    664 	u_int refs;
    665 
    666 	KASSERT(solocked(so));
    667 
    668 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    669 		sounlock(so);
    670 		return;
    671 	}
    672 	if (so->so_head) {
    673 		/*
    674 		 * We must not decommission a socket that's on the accept(2)
    675 		 * queue.  If we do, then accept(2) may hang after select(2)
    676 		 * indicated that the listening socket was ready.
    677 		 */
    678 		if (!soqremque(so, 0)) {
    679 			sounlock(so);
    680 			return;
    681 		}
    682 	}
    683 	if (so->so_rcv.sb_hiwat)
    684 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    685 		    RLIM_INFINITY);
    686 	if (so->so_snd.sb_hiwat)
    687 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    688 		    RLIM_INFINITY);
    689 	sbrelease(&so->so_snd, so);
    690 	KASSERT(!cv_has_waiters(&so->so_cv));
    691 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    692 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    693 	sorflush(so);
    694 	refs = so->so_aborting;	/* XXX */
    695 	/* Remove acccept filter if one is present. */
    696 	if (so->so_accf != NULL)
    697 		(void)accept_filt_clear(so);
    698 	sounlock(so);
    699 	if (refs == 0)		/* XXX */
    700 		soput(so);
    701 }
    702 
    703 /*
    704  * soclose: close a socket on last file table reference removal.
    705  * Initiate disconnect if connected.  Free socket when disconnect complete.
    706  */
    707 int
    708 soclose(struct socket *so)
    709 {
    710 	struct socket *so2;
    711 	int error = 0;
    712 
    713 	solock(so);
    714 	if (so->so_options & SO_ACCEPTCONN) {
    715 		for (;;) {
    716 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    717 				KASSERT(solocked2(so, so2));
    718 				(void) soqremque(so2, 0);
    719 				/* soabort drops the lock. */
    720 				(void) soabort(so2);
    721 				solock(so);
    722 				continue;
    723 			}
    724 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    725 				KASSERT(solocked2(so, so2));
    726 				(void) soqremque(so2, 1);
    727 				/* soabort drops the lock. */
    728 				(void) soabort(so2);
    729 				solock(so);
    730 				continue;
    731 			}
    732 			break;
    733 		}
    734 	}
    735 	if (so->so_pcb == NULL)
    736 		goto discard;
    737 	if (so->so_state & SS_ISCONNECTED) {
    738 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    739 			error = sodisconnect(so);
    740 			if (error)
    741 				goto drop;
    742 		}
    743 		if (so->so_options & SO_LINGER) {
    744 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    745 			    (SS_ISDISCONNECTING|SS_NBIO))
    746 				goto drop;
    747 			while (so->so_state & SS_ISCONNECTED) {
    748 				error = sowait(so, true, so->so_linger * hz);
    749 				if (error)
    750 					break;
    751 			}
    752 		}
    753 	}
    754  drop:
    755 	if (so->so_pcb) {
    756 		KASSERT(solocked(so));
    757 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    758 	}
    759  discard:
    760 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    761 	kauth_cred_free(so->so_cred);
    762 	so->so_cred = NULL;
    763 	so->so_state |= SS_NOFDREF;
    764 	sofree(so);
    765 	return error;
    766 }
    767 
    768 /*
    769  * Must be called with the socket locked..  Will return with it unlocked.
    770  */
    771 int
    772 soabort(struct socket *so)
    773 {
    774 	u_int refs;
    775 	int error;
    776 
    777 	KASSERT(solocked(so));
    778 	KASSERT(so->so_head == NULL);
    779 
    780 	so->so_aborting++;		/* XXX */
    781 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    782 	refs = --so->so_aborting;	/* XXX */
    783 	if (error || (refs == 0)) {
    784 		sofree(so);
    785 	} else {
    786 		sounlock(so);
    787 	}
    788 	return error;
    789 }
    790 
    791 int
    792 soaccept(struct socket *so, struct sockaddr *nam)
    793 {
    794 	int error;
    795 
    796 	KASSERT(solocked(so));
    797 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    798 
    799 	so->so_state &= ~SS_NOFDREF;
    800 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    801 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    802 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    803 	else
    804 		error = ECONNABORTED;
    805 
    806 	return error;
    807 }
    808 
    809 int
    810 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    811 {
    812 	int error;
    813 
    814 	KASSERT(solocked(so));
    815 
    816 	if (so->so_options & SO_ACCEPTCONN)
    817 		return EOPNOTSUPP;
    818 	/*
    819 	 * If protocol is connection-based, can only connect once.
    820 	 * Otherwise, if connected, try to disconnect first.
    821 	 * This allows user to disconnect by connecting to, e.g.,
    822 	 * a null address.
    823 	 */
    824 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    825 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    826 	    (error = sodisconnect(so)))) {
    827 		error = EISCONN;
    828 	} else {
    829 		if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    830 			return EAFNOSUPPORT;
    831 		}
    832 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    833 	}
    834 
    835 	return error;
    836 }
    837 
    838 int
    839 soconnect2(struct socket *so1, struct socket *so2)
    840 {
    841 	KASSERT(solocked2(so1, so2));
    842 
    843 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    844 }
    845 
    846 int
    847 sodisconnect(struct socket *so)
    848 {
    849 	int error;
    850 
    851 	KASSERT(solocked(so));
    852 
    853 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    854 		error = ENOTCONN;
    855 	} else if (so->so_state & SS_ISDISCONNECTING) {
    856 		error = EALREADY;
    857 	} else {
    858 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    859 	}
    860 	return error;
    861 }
    862 
    863 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    864 /*
    865  * Send on a socket.
    866  * If send must go all at once and message is larger than
    867  * send buffering, then hard error.
    868  * Lock against other senders.
    869  * If must go all at once and not enough room now, then
    870  * inform user that this would block and do nothing.
    871  * Otherwise, if nonblocking, send as much as possible.
    872  * The data to be sent is described by "uio" if nonzero,
    873  * otherwise by the mbuf chain "top" (which must be null
    874  * if uio is not).  Data provided in mbuf chain must be small
    875  * enough to send all at once.
    876  *
    877  * Returns nonzero on error, timeout or signal; callers
    878  * must check for short counts if EINTR/ERESTART are returned.
    879  * Data and control buffers are freed on return.
    880  */
    881 int
    882 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
    883 	struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
    884 {
    885 	struct mbuf **mp, *m;
    886 	long space, len, resid, clen, mlen;
    887 	int error, s, dontroute, atomic;
    888 	short wakeup_state = 0;
    889 
    890 	clen = 0;
    891 
    892 	/*
    893 	 * solock() provides atomicity of access.  splsoftnet() prevents
    894 	 * protocol processing soft interrupts from interrupting us and
    895 	 * blocking (expensive).
    896 	 */
    897 	s = splsoftnet();
    898 	solock(so);
    899 	atomic = sosendallatonce(so) || top;
    900 	if (uio)
    901 		resid = uio->uio_resid;
    902 	else
    903 		resid = top->m_pkthdr.len;
    904 	/*
    905 	 * In theory resid should be unsigned.
    906 	 * However, space must be signed, as it might be less than 0
    907 	 * if we over-committed, and we must use a signed comparison
    908 	 * of space and resid.  On the other hand, a negative resid
    909 	 * causes us to loop sending 0-length segments to the protocol.
    910 	 */
    911 	if (resid < 0) {
    912 		error = EINVAL;
    913 		goto out;
    914 	}
    915 	dontroute =
    916 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    917 	    (so->so_proto->pr_flags & PR_ATOMIC);
    918 	l->l_ru.ru_msgsnd++;
    919 	if (control)
    920 		clen = control->m_len;
    921  restart:
    922 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    923 		goto out;
    924 	do {
    925 		if (so->so_state & SS_CANTSENDMORE) {
    926 			error = EPIPE;
    927 			goto release;
    928 		}
    929 		if (so->so_error) {
    930 			error = so->so_error;
    931 			if ((flags & MSG_PEEK) == 0)
    932 				so->so_error = 0;
    933 			goto release;
    934 		}
    935 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    936 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    937 				if (resid || clen == 0) {
    938 					error = ENOTCONN;
    939 					goto release;
    940 				}
    941 			} else if (addr == NULL) {
    942 				error = EDESTADDRREQ;
    943 				goto release;
    944 			}
    945 		}
    946 		space = sbspace(&so->so_snd);
    947 		if (flags & MSG_OOB)
    948 			space += 1024;
    949 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    950 		    clen > so->so_snd.sb_hiwat) {
    951 			error = EMSGSIZE;
    952 			goto release;
    953 		}
    954 		if (space < resid + clen &&
    955 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    956 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    957 				error = EWOULDBLOCK;
    958 				goto release;
    959 			}
    960 			sbunlock(&so->so_snd);
    961 			if (wakeup_state & SS_RESTARTSYS) {
    962 				error = ERESTART;
    963 				goto out;
    964 			}
    965 			error = sbwait(&so->so_snd);
    966 			if (error)
    967 				goto out;
    968 			wakeup_state = so->so_state;
    969 			goto restart;
    970 		}
    971 		wakeup_state = 0;
    972 		mp = &top;
    973 		space -= clen;
    974 		do {
    975 			if (uio == NULL) {
    976 				/*
    977 				 * Data is prepackaged in "top".
    978 				 */
    979 				resid = 0;
    980 				if (flags & MSG_EOR)
    981 					top->m_flags |= M_EOR;
    982 			} else do {
    983 				sounlock(so);
    984 				splx(s);
    985 				if (top == NULL) {
    986 					m = m_gethdr(M_WAIT, MT_DATA);
    987 					mlen = MHLEN;
    988 					m->m_pkthdr.len = 0;
    989 					m_reset_rcvif(m);
    990 				} else {
    991 					m = m_get(M_WAIT, MT_DATA);
    992 					mlen = MLEN;
    993 				}
    994 				MCLAIM(m, so->so_snd.sb_mowner);
    995 				if (sock_loan_thresh >= 0 &&
    996 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    997 				    space >= sock_loan_thresh &&
    998 				    (len = sosend_loan(so, uio, m,
    999 						       space)) != 0) {
   1000 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1001 					space -= len;
   1002 					goto have_data;
   1003 				}
   1004 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1005 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1006 					m_clget(m, M_DONTWAIT);
   1007 					if ((m->m_flags & M_EXT) == 0)
   1008 						goto nopages;
   1009 					mlen = MCLBYTES;
   1010 					if (atomic && top == 0) {
   1011 						len = lmin(MCLBYTES - max_hdr,
   1012 						    resid);
   1013 						m->m_data += max_hdr;
   1014 					} else
   1015 						len = lmin(MCLBYTES, resid);
   1016 					space -= len;
   1017 				} else {
   1018  nopages:
   1019 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1020 					len = lmin(lmin(mlen, resid), space);
   1021 					space -= len;
   1022 					/*
   1023 					 * For datagram protocols, leave room
   1024 					 * for protocol headers in first mbuf.
   1025 					 */
   1026 					if (atomic && top == 0 && len < mlen)
   1027 						m_align(m, len);
   1028 				}
   1029 				error = uiomove(mtod(m, void *), (int)len, uio);
   1030  have_data:
   1031 				resid = uio->uio_resid;
   1032 				m->m_len = len;
   1033 				*mp = m;
   1034 				top->m_pkthdr.len += len;
   1035 				s = splsoftnet();
   1036 				solock(so);
   1037 				if (error != 0)
   1038 					goto release;
   1039 				mp = &m->m_next;
   1040 				if (resid <= 0) {
   1041 					if (flags & MSG_EOR)
   1042 						top->m_flags |= M_EOR;
   1043 					break;
   1044 				}
   1045 			} while (space > 0 && atomic);
   1046 
   1047 			if (so->so_state & SS_CANTSENDMORE) {
   1048 				error = EPIPE;
   1049 				goto release;
   1050 			}
   1051 			if (dontroute)
   1052 				so->so_options |= SO_DONTROUTE;
   1053 			if (resid > 0)
   1054 				so->so_state |= SS_MORETOCOME;
   1055 			if (flags & MSG_OOB) {
   1056 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
   1057 				    so, top, control);
   1058 			} else {
   1059 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1060 				    top, addr, control, l);
   1061 			}
   1062 			if (dontroute)
   1063 				so->so_options &= ~SO_DONTROUTE;
   1064 			if (resid > 0)
   1065 				so->so_state &= ~SS_MORETOCOME;
   1066 			clen = 0;
   1067 			control = NULL;
   1068 			top = NULL;
   1069 			mp = &top;
   1070 			if (error != 0)
   1071 				goto release;
   1072 		} while (resid && space > 0);
   1073 	} while (resid);
   1074 
   1075  release:
   1076 	sbunlock(&so->so_snd);
   1077  out:
   1078 	sounlock(so);
   1079 	splx(s);
   1080 	if (top)
   1081 		m_freem(top);
   1082 	if (control)
   1083 		m_freem(control);
   1084 	return error;
   1085 }
   1086 
   1087 /*
   1088  * Following replacement or removal of the first mbuf on the first
   1089  * mbuf chain of a socket buffer, push necessary state changes back
   1090  * into the socket buffer so that other consumers see the values
   1091  * consistently.  'nextrecord' is the caller's locally stored value of
   1092  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1093  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1094  */
   1095 static void
   1096 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1097 {
   1098 
   1099 	KASSERT(solocked(sb->sb_so));
   1100 
   1101 	/*
   1102 	 * First, update for the new value of nextrecord.  If necessary,
   1103 	 * make it the first record.
   1104 	 */
   1105 	if (sb->sb_mb != NULL)
   1106 		sb->sb_mb->m_nextpkt = nextrecord;
   1107 	else
   1108 		sb->sb_mb = nextrecord;
   1109 
   1110         /*
   1111          * Now update any dependent socket buffer fields to reflect
   1112          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1113          * the addition of a second clause that takes care of the
   1114          * case where sb_mb has been updated, but remains the last
   1115          * record.
   1116          */
   1117         if (sb->sb_mb == NULL) {
   1118                 sb->sb_mbtail = NULL;
   1119                 sb->sb_lastrecord = NULL;
   1120         } else if (sb->sb_mb->m_nextpkt == NULL)
   1121                 sb->sb_lastrecord = sb->sb_mb;
   1122 }
   1123 
   1124 /*
   1125  * Implement receive operations on a socket.
   1126  *
   1127  * We depend on the way that records are added to the sockbuf by sbappend*. In
   1128  * particular, each record (mbufs linked through m_next) must begin with an
   1129  * address if the protocol so specifies, followed by an optional mbuf or mbufs
   1130  * containing ancillary data, and then zero or more mbufs of data.
   1131  *
   1132  * In order to avoid blocking network interrupts for the entire time here, we
   1133  * splx() while doing the actual copy to user space. Although the sockbuf is
   1134  * locked, new data may still be appended, and thus we must maintain
   1135  * consistency of the sockbuf during that time.
   1136  *
   1137  * The caller may receive the data as a single mbuf chain by supplying an mbuf
   1138  * **mp0 for use in returning the chain. The uio is then used only for the
   1139  * count in uio_resid.
   1140  */
   1141 int
   1142 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1143     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1144 {
   1145 	struct lwp *l = curlwp;
   1146 	struct mbuf *m, **mp, *mt;
   1147 	size_t len, offset, moff, orig_resid;
   1148 	int atomic, flags, error, s, type;
   1149 	const struct protosw *pr;
   1150 	struct mbuf *nextrecord;
   1151 	int mbuf_removed = 0;
   1152 	const struct domain *dom;
   1153 	short wakeup_state = 0;
   1154 
   1155 	pr = so->so_proto;
   1156 	atomic = pr->pr_flags & PR_ATOMIC;
   1157 	dom = pr->pr_domain;
   1158 	mp = mp0;
   1159 	type = 0;
   1160 	orig_resid = uio->uio_resid;
   1161 
   1162 	if (paddr != NULL)
   1163 		*paddr = NULL;
   1164 	if (controlp != NULL)
   1165 		*controlp = NULL;
   1166 	if (flagsp != NULL)
   1167 		flags = *flagsp &~ MSG_EOR;
   1168 	else
   1169 		flags = 0;
   1170 
   1171 	if (flags & MSG_OOB) {
   1172 		m = m_get(M_WAIT, MT_DATA);
   1173 		solock(so);
   1174 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1175 		sounlock(so);
   1176 		if (error)
   1177 			goto bad;
   1178 		do {
   1179 			error = uiomove(mtod(m, void *),
   1180 			    MIN(uio->uio_resid, m->m_len), uio);
   1181 			m = m_free(m);
   1182 		} while (uio->uio_resid > 0 && error == 0 && m);
   1183 bad:
   1184 		if (m != NULL)
   1185 			m_freem(m);
   1186 		return error;
   1187 	}
   1188 	if (mp != NULL)
   1189 		*mp = NULL;
   1190 
   1191 	/*
   1192 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1193 	 * protocol processing soft interrupts from interrupting us and
   1194 	 * blocking (expensive).
   1195 	 */
   1196 	s = splsoftnet();
   1197 	solock(so);
   1198 restart:
   1199 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1200 		sounlock(so);
   1201 		splx(s);
   1202 		return error;
   1203 	}
   1204 	m = so->so_rcv.sb_mb;
   1205 
   1206 	/*
   1207 	 * If we have less data than requested, block awaiting more
   1208 	 * (subject to any timeout) if:
   1209 	 *   1. the current count is less than the low water mark,
   1210 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1211 	 *	receive operation at once if we block (resid <= hiwat), or
   1212 	 *   3. MSG_DONTWAIT is not set.
   1213 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1214 	 * we have to do the receive in sections, and thus risk returning
   1215 	 * a short count if a timeout or signal occurs after we start.
   1216 	 */
   1217 	if (m == NULL ||
   1218 	    ((flags & MSG_DONTWAIT) == 0 &&
   1219 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1220 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1221 	      ((flags & MSG_WAITALL) &&
   1222 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1223 	     m->m_nextpkt == NULL && !atomic)) {
   1224 #ifdef DIAGNOSTIC
   1225 		if (m == NULL && so->so_rcv.sb_cc)
   1226 			panic("receive 1");
   1227 #endif
   1228 		if (so->so_error || so->so_rerror) {
   1229 			u_short *e;
   1230 			if (m != NULL)
   1231 				goto dontblock;
   1232 			e = so->so_error ? &so->so_error : &so->so_rerror;
   1233 			error = *e;
   1234 			if ((flags & MSG_PEEK) == 0)
   1235 				*e = 0;
   1236 			goto release;
   1237 		}
   1238 		if (so->so_state & SS_CANTRCVMORE) {
   1239 			if (m != NULL)
   1240 				goto dontblock;
   1241 			else
   1242 				goto release;
   1243 		}
   1244 		for (; m != NULL; m = m->m_next)
   1245 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1246 				m = so->so_rcv.sb_mb;
   1247 				goto dontblock;
   1248 			}
   1249 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1250 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1251 			error = ENOTCONN;
   1252 			goto release;
   1253 		}
   1254 		if (uio->uio_resid == 0)
   1255 			goto release;
   1256 		if ((so->so_state & SS_NBIO) ||
   1257 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1258 			error = EWOULDBLOCK;
   1259 			goto release;
   1260 		}
   1261 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1262 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1263 		sbunlock(&so->so_rcv);
   1264 		if (wakeup_state & SS_RESTARTSYS)
   1265 			error = ERESTART;
   1266 		else
   1267 			error = sbwait(&so->so_rcv);
   1268 		if (error != 0) {
   1269 			sounlock(so);
   1270 			splx(s);
   1271 			return error;
   1272 		}
   1273 		wakeup_state = so->so_state;
   1274 		goto restart;
   1275 	}
   1276 
   1277 dontblock:
   1278 	/*
   1279 	 * On entry here, m points to the first record of the socket buffer.
   1280 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1281 	 * pointer to the next record in the socket buffer.  We must keep the
   1282 	 * various socket buffer pointers and local stack versions of the
   1283 	 * pointers in sync, pushing out modifications before dropping the
   1284 	 * socket lock, and re-reading them when picking it up.
   1285 	 *
   1286 	 * Otherwise, we will race with the network stack appending new data
   1287 	 * or records onto the socket buffer by using inconsistent/stale
   1288 	 * versions of the field, possibly resulting in socket buffer
   1289 	 * corruption.
   1290 	 *
   1291 	 * By holding the high-level sblock(), we prevent simultaneous
   1292 	 * readers from pulling off the front of the socket buffer.
   1293 	 */
   1294 	if (l != NULL)
   1295 		l->l_ru.ru_msgrcv++;
   1296 	KASSERT(m == so->so_rcv.sb_mb);
   1297 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1298 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1299 	nextrecord = m->m_nextpkt;
   1300 
   1301 	if (pr->pr_flags & PR_ADDR) {
   1302 		KASSERT(m->m_type == MT_SONAME);
   1303 		orig_resid = 0;
   1304 		if (flags & MSG_PEEK) {
   1305 			if (paddr)
   1306 				*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1307 			m = m->m_next;
   1308 		} else {
   1309 			sbfree(&so->so_rcv, m);
   1310 			mbuf_removed = 1;
   1311 			if (paddr != NULL) {
   1312 				*paddr = m;
   1313 				so->so_rcv.sb_mb = m->m_next;
   1314 				m->m_next = NULL;
   1315 				m = so->so_rcv.sb_mb;
   1316 			} else {
   1317 				m = so->so_rcv.sb_mb = m_free(m);
   1318 			}
   1319 			sbsync(&so->so_rcv, nextrecord);
   1320 		}
   1321 	}
   1322 
   1323 	if (pr->pr_flags & PR_ADDR_OPT) {
   1324 		/*
   1325 		 * For SCTP we may be getting a whole message OR a partial
   1326 		 * delivery.
   1327 		 */
   1328 		if (m->m_type == MT_SONAME) {
   1329 			orig_resid = 0;
   1330 			if (flags & MSG_PEEK) {
   1331 				if (paddr)
   1332 					*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1333 				m = m->m_next;
   1334 			} else {
   1335 				sbfree(&so->so_rcv, m);
   1336 				/* XXX XXX XXX: should set mbuf_removed? */
   1337 				if (paddr) {
   1338 					*paddr = m;
   1339 					so->so_rcv.sb_mb = m->m_next;
   1340 					m->m_next = 0;
   1341 					m = so->so_rcv.sb_mb;
   1342 				} else {
   1343 					m = so->so_rcv.sb_mb = m_free(m);
   1344 				}
   1345 				/* XXX XXX XXX: isn't there an sbsync()
   1346 				 * missing here? */
   1347 			}
   1348 		}
   1349 	}
   1350 
   1351 	/*
   1352 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1353 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1354 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1355 	 * perform externalization (or freeing if controlp == NULL).
   1356 	 */
   1357 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1358 		struct mbuf *cm = NULL, *cmn;
   1359 		struct mbuf **cme = &cm;
   1360 
   1361 		do {
   1362 			if (flags & MSG_PEEK) {
   1363 				if (controlp != NULL) {
   1364 					*controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1365 					controlp = &(*controlp)->m_next;
   1366 				}
   1367 				m = m->m_next;
   1368 			} else {
   1369 				sbfree(&so->so_rcv, m);
   1370 				so->so_rcv.sb_mb = m->m_next;
   1371 				m->m_next = NULL;
   1372 				*cme = m;
   1373 				cme = &(*cme)->m_next;
   1374 				m = so->so_rcv.sb_mb;
   1375 			}
   1376 		} while (m != NULL && m->m_type == MT_CONTROL);
   1377 		if ((flags & MSG_PEEK) == 0)
   1378 			sbsync(&so->so_rcv, nextrecord);
   1379 
   1380 		for (; cm != NULL; cm = cmn) {
   1381 			cmn = cm->m_next;
   1382 			cm->m_next = NULL;
   1383 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1384 			if (controlp != NULL) {
   1385 				if (dom->dom_externalize != NULL &&
   1386 				    type == SCM_RIGHTS) {
   1387 					sounlock(so);
   1388 					splx(s);
   1389 					error = (*dom->dom_externalize)(cm, l,
   1390 					    (flags & MSG_CMSG_CLOEXEC) ?
   1391 					    O_CLOEXEC : 0);
   1392 					s = splsoftnet();
   1393 					solock(so);
   1394 				}
   1395 				*controlp = cm;
   1396 				while (*controlp != NULL)
   1397 					controlp = &(*controlp)->m_next;
   1398 			} else {
   1399 				/*
   1400 				 * Dispose of any SCM_RIGHTS message that went
   1401 				 * through the read path rather than recv.
   1402 				 */
   1403 				if (dom->dom_dispose != NULL &&
   1404 				    type == SCM_RIGHTS) {
   1405 					sounlock(so);
   1406 					(*dom->dom_dispose)(cm);
   1407 					solock(so);
   1408 				}
   1409 				m_freem(cm);
   1410 			}
   1411 		}
   1412 		if (m != NULL)
   1413 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1414 		else
   1415 			nextrecord = so->so_rcv.sb_mb;
   1416 		orig_resid = 0;
   1417 	}
   1418 
   1419 	/* If m is non-NULL, we have some data to read. */
   1420 	if (__predict_true(m != NULL)) {
   1421 		type = m->m_type;
   1422 		if (type == MT_OOBDATA)
   1423 			flags |= MSG_OOB;
   1424 	}
   1425 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1426 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1427 
   1428 	moff = 0;
   1429 	offset = 0;
   1430 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1431 		/*
   1432 		 * If the type of mbuf has changed, end the receive
   1433 		 * operation and do a short read.
   1434 		 */
   1435 		if (m->m_type == MT_OOBDATA) {
   1436 			if (type != MT_OOBDATA)
   1437 				break;
   1438 		} else if (type == MT_OOBDATA) {
   1439 			break;
   1440 		} else if (m->m_type == MT_CONTROL) {
   1441 			break;
   1442 		}
   1443 #ifdef DIAGNOSTIC
   1444 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
   1445 			panic("%s: m_type=%d", __func__, m->m_type);
   1446 		}
   1447 #endif
   1448 
   1449 		so->so_state &= ~SS_RCVATMARK;
   1450 		wakeup_state = 0;
   1451 		len = uio->uio_resid;
   1452 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1453 			len = so->so_oobmark - offset;
   1454 		if (len > m->m_len - moff)
   1455 			len = m->m_len - moff;
   1456 
   1457 		/*
   1458 		 * If mp is set, just pass back the mbufs.
   1459 		 * Otherwise copy them out via the uio, then free.
   1460 		 * Sockbuf must be consistent here (points to current mbuf,
   1461 		 * it points to next record) when we drop priority;
   1462 		 * we must note any additions to the sockbuf when we
   1463 		 * block interrupts again.
   1464 		 */
   1465 		if (mp == NULL) {
   1466 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1467 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1468 			sounlock(so);
   1469 			splx(s);
   1470 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1471 			s = splsoftnet();
   1472 			solock(so);
   1473 			if (error != 0) {
   1474 				/*
   1475 				 * If any part of the record has been removed
   1476 				 * (such as the MT_SONAME mbuf, which will
   1477 				 * happen when PR_ADDR, and thus also
   1478 				 * PR_ATOMIC, is set), then drop the entire
   1479 				 * record to maintain the atomicity of the
   1480 				 * receive operation.
   1481 				 *
   1482 				 * This avoids a later panic("receive 1a")
   1483 				 * when compiled with DIAGNOSTIC.
   1484 				 */
   1485 				if (m && mbuf_removed && atomic)
   1486 					(void) sbdroprecord(&so->so_rcv);
   1487 
   1488 				goto release;
   1489 			}
   1490 		} else {
   1491 			uio->uio_resid -= len;
   1492 		}
   1493 
   1494 		if (len == m->m_len - moff) {
   1495 			if (m->m_flags & M_EOR)
   1496 				flags |= MSG_EOR;
   1497 #ifdef SCTP
   1498 			if (m->m_flags & M_NOTIFICATION)
   1499 				flags |= MSG_NOTIFICATION;
   1500 #endif
   1501 			if (flags & MSG_PEEK) {
   1502 				m = m->m_next;
   1503 				moff = 0;
   1504 			} else {
   1505 				nextrecord = m->m_nextpkt;
   1506 				sbfree(&so->so_rcv, m);
   1507 				if (mp) {
   1508 					*mp = m;
   1509 					mp = &m->m_next;
   1510 					so->so_rcv.sb_mb = m = m->m_next;
   1511 					*mp = NULL;
   1512 				} else {
   1513 					m = so->so_rcv.sb_mb = m_free(m);
   1514 				}
   1515 				/*
   1516 				 * If m != NULL, we also know that
   1517 				 * so->so_rcv.sb_mb != NULL.
   1518 				 */
   1519 				KASSERT(so->so_rcv.sb_mb == m);
   1520 				if (m) {
   1521 					m->m_nextpkt = nextrecord;
   1522 					if (nextrecord == NULL)
   1523 						so->so_rcv.sb_lastrecord = m;
   1524 				} else {
   1525 					so->so_rcv.sb_mb = nextrecord;
   1526 					SB_EMPTY_FIXUP(&so->so_rcv);
   1527 				}
   1528 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1529 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1530 			}
   1531 		} else if (flags & MSG_PEEK) {
   1532 			moff += len;
   1533 		} else {
   1534 			if (mp != NULL) {
   1535 				mt = m_copym(m, 0, len, M_NOWAIT);
   1536 				if (__predict_false(mt == NULL)) {
   1537 					sounlock(so);
   1538 					mt = m_copym(m, 0, len, M_WAIT);
   1539 					solock(so);
   1540 				}
   1541 				*mp = mt;
   1542 			}
   1543 			m->m_data += len;
   1544 			m->m_len -= len;
   1545 			so->so_rcv.sb_cc -= len;
   1546 		}
   1547 
   1548 		if (so->so_oobmark) {
   1549 			if ((flags & MSG_PEEK) == 0) {
   1550 				so->so_oobmark -= len;
   1551 				if (so->so_oobmark == 0) {
   1552 					so->so_state |= SS_RCVATMARK;
   1553 					break;
   1554 				}
   1555 			} else {
   1556 				offset += len;
   1557 				if (offset == so->so_oobmark)
   1558 					break;
   1559 			}
   1560 		}
   1561 		if (flags & MSG_EOR)
   1562 			break;
   1563 
   1564 		/*
   1565 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1566 		 * we must not quit until "uio->uio_resid == 0" or an error
   1567 		 * termination.  If a signal/timeout occurs, return
   1568 		 * with a short count but without error.
   1569 		 * Keep sockbuf locked against other readers.
   1570 		 */
   1571 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1572 		    !sosendallatonce(so) && !nextrecord) {
   1573 			if (so->so_error || so->so_rerror ||
   1574 			    so->so_state & SS_CANTRCVMORE)
   1575 				break;
   1576 			/*
   1577 			 * If we are peeking and the socket receive buffer is
   1578 			 * full, stop since we can't get more data to peek at.
   1579 			 */
   1580 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1581 				break;
   1582 			/*
   1583 			 * If we've drained the socket buffer, tell the
   1584 			 * protocol in case it needs to do something to
   1585 			 * get it filled again.
   1586 			 */
   1587 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1588 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1589 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1590 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1591 			if (wakeup_state & SS_RESTARTSYS)
   1592 				error = ERESTART;
   1593 			else
   1594 				error = sbwait(&so->so_rcv);
   1595 			if (error != 0) {
   1596 				sbunlock(&so->so_rcv);
   1597 				sounlock(so);
   1598 				splx(s);
   1599 				return 0;
   1600 			}
   1601 			if ((m = so->so_rcv.sb_mb) != NULL)
   1602 				nextrecord = m->m_nextpkt;
   1603 			wakeup_state = so->so_state;
   1604 		}
   1605 	}
   1606 
   1607 	if (m && atomic) {
   1608 		flags |= MSG_TRUNC;
   1609 		if ((flags & MSG_PEEK) == 0)
   1610 			(void) sbdroprecord(&so->so_rcv);
   1611 	}
   1612 	if ((flags & MSG_PEEK) == 0) {
   1613 		if (m == NULL) {
   1614 			/*
   1615 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1616 			 * part makes sure sb_lastrecord is up-to-date if
   1617 			 * there is still data in the socket buffer.
   1618 			 */
   1619 			so->so_rcv.sb_mb = nextrecord;
   1620 			if (so->so_rcv.sb_mb == NULL) {
   1621 				so->so_rcv.sb_mbtail = NULL;
   1622 				so->so_rcv.sb_lastrecord = NULL;
   1623 			} else if (nextrecord->m_nextpkt == NULL)
   1624 				so->so_rcv.sb_lastrecord = nextrecord;
   1625 		}
   1626 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1627 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1628 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1629 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1630 	}
   1631 	if (orig_resid == uio->uio_resid && orig_resid &&
   1632 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1633 		sbunlock(&so->so_rcv);
   1634 		goto restart;
   1635 	}
   1636 
   1637 	if (flagsp != NULL)
   1638 		*flagsp |= flags;
   1639 release:
   1640 	sbunlock(&so->so_rcv);
   1641 	sounlock(so);
   1642 	splx(s);
   1643 	return error;
   1644 }
   1645 
   1646 int
   1647 soshutdown(struct socket *so, int how)
   1648 {
   1649 	const struct protosw *pr;
   1650 	int error;
   1651 
   1652 	KASSERT(solocked(so));
   1653 
   1654 	pr = so->so_proto;
   1655 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1656 		return EINVAL;
   1657 
   1658 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1659 		sorflush(so);
   1660 		error = 0;
   1661 	}
   1662 	if (how == SHUT_WR || how == SHUT_RDWR)
   1663 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1664 
   1665 	return error;
   1666 }
   1667 
   1668 void
   1669 sorestart(struct socket *so)
   1670 {
   1671 	/*
   1672 	 * An application has called close() on an fd on which another
   1673 	 * of its threads has called a socket system call.
   1674 	 * Mark this and wake everyone up, and code that would block again
   1675 	 * instead returns ERESTART.
   1676 	 * On system call re-entry the fd is validated and EBADF returned.
   1677 	 * Any other fd will block again on the 2nd syscall.
   1678 	 */
   1679 	solock(so);
   1680 	so->so_state |= SS_RESTARTSYS;
   1681 	cv_broadcast(&so->so_cv);
   1682 	cv_broadcast(&so->so_snd.sb_cv);
   1683 	cv_broadcast(&so->so_rcv.sb_cv);
   1684 	sounlock(so);
   1685 }
   1686 
   1687 void
   1688 sorflush(struct socket *so)
   1689 {
   1690 	struct sockbuf *sb, asb;
   1691 	const struct protosw *pr;
   1692 
   1693 	KASSERT(solocked(so));
   1694 
   1695 	sb = &so->so_rcv;
   1696 	pr = so->so_proto;
   1697 	socantrcvmore(so);
   1698 	sb->sb_flags |= SB_NOINTR;
   1699 	(void )sblock(sb, M_WAITOK);
   1700 	sbunlock(sb);
   1701 	asb = *sb;
   1702 	/*
   1703 	 * Clear most of the sockbuf structure, but leave some of the
   1704 	 * fields valid.
   1705 	 */
   1706 	memset(&sb->sb_startzero, 0,
   1707 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1708 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1709 		sounlock(so);
   1710 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1711 		solock(so);
   1712 	}
   1713 	sbrelease(&asb, so);
   1714 }
   1715 
   1716 /*
   1717  * internal set SOL_SOCKET options
   1718  */
   1719 static int
   1720 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1721 {
   1722 	int error, opt;
   1723 	int optval = 0; /* XXX: gcc */
   1724 	struct linger l;
   1725 	struct timeval tv;
   1726 
   1727 	opt = sopt->sopt_name;
   1728 
   1729 	switch (opt) {
   1730 
   1731 	case SO_ACCEPTFILTER:
   1732 		error = accept_filt_setopt(so, sopt);
   1733 		KASSERT(solocked(so));
   1734 		break;
   1735 
   1736 	case SO_LINGER:
   1737 		error = sockopt_get(sopt, &l, sizeof(l));
   1738 		solock(so);
   1739 		if (error)
   1740 			break;
   1741 		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1742 		    l.l_linger > (INT_MAX / hz)) {
   1743 			error = EDOM;
   1744 			break;
   1745 		}
   1746 		so->so_linger = l.l_linger;
   1747 		if (l.l_onoff)
   1748 			so->so_options |= SO_LINGER;
   1749 		else
   1750 			so->so_options &= ~SO_LINGER;
   1751 		break;
   1752 
   1753 	case SO_DEBUG:
   1754 	case SO_KEEPALIVE:
   1755 	case SO_DONTROUTE:
   1756 	case SO_USELOOPBACK:
   1757 	case SO_BROADCAST:
   1758 	case SO_REUSEADDR:
   1759 	case SO_REUSEPORT:
   1760 	case SO_OOBINLINE:
   1761 	case SO_TIMESTAMP:
   1762 	case SO_NOSIGPIPE:
   1763 	case SO_RERROR:
   1764 		error = sockopt_getint(sopt, &optval);
   1765 		solock(so);
   1766 		if (error)
   1767 			break;
   1768 		if (optval)
   1769 			so->so_options |= opt;
   1770 		else
   1771 			so->so_options &= ~opt;
   1772 		break;
   1773 
   1774 	case SO_SNDBUF:
   1775 	case SO_RCVBUF:
   1776 	case SO_SNDLOWAT:
   1777 	case SO_RCVLOWAT:
   1778 		error = sockopt_getint(sopt, &optval);
   1779 		solock(so);
   1780 		if (error)
   1781 			break;
   1782 
   1783 		/*
   1784 		 * Values < 1 make no sense for any of these
   1785 		 * options, so disallow them.
   1786 		 */
   1787 		if (optval < 1) {
   1788 			error = EINVAL;
   1789 			break;
   1790 		}
   1791 
   1792 		switch (opt) {
   1793 		case SO_SNDBUF:
   1794 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1795 				error = ENOBUFS;
   1796 				break;
   1797 			}
   1798 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1799 			break;
   1800 
   1801 		case SO_RCVBUF:
   1802 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1803 				error = ENOBUFS;
   1804 				break;
   1805 			}
   1806 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1807 			break;
   1808 
   1809 		/*
   1810 		 * Make sure the low-water is never greater than
   1811 		 * the high-water.
   1812 		 */
   1813 		case SO_SNDLOWAT:
   1814 			if (optval > so->so_snd.sb_hiwat)
   1815 				optval = so->so_snd.sb_hiwat;
   1816 
   1817 			so->so_snd.sb_lowat = optval;
   1818 			break;
   1819 
   1820 		case SO_RCVLOWAT:
   1821 			if (optval > so->so_rcv.sb_hiwat)
   1822 				optval = so->so_rcv.sb_hiwat;
   1823 
   1824 			so->so_rcv.sb_lowat = optval;
   1825 			break;
   1826 		}
   1827 		break;
   1828 
   1829 	case SO_SNDTIMEO:
   1830 	case SO_RCVTIMEO:
   1831 		solock(so);
   1832 		error = sockopt_get(sopt, &tv, sizeof(tv));
   1833 		if (error)
   1834 			break;
   1835 
   1836 		if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
   1837 			error = EDOM;
   1838 			break;
   1839 		}
   1840 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1841 			error = EDOM;
   1842 			break;
   1843 		}
   1844 
   1845 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1846 		if (optval == 0 && tv.tv_usec != 0)
   1847 			optval = 1;
   1848 
   1849 		switch (opt) {
   1850 		case SO_SNDTIMEO:
   1851 			so->so_snd.sb_timeo = optval;
   1852 			break;
   1853 		case SO_RCVTIMEO:
   1854 			so->so_rcv.sb_timeo = optval;
   1855 			break;
   1856 		}
   1857 		break;
   1858 
   1859 	default:
   1860 		MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
   1861 		    (opt, so, sopt), enosys(), error);
   1862 		if (error == ENOSYS || error == EPASSTHROUGH) {
   1863 			solock(so);
   1864 			error = ENOPROTOOPT;
   1865 		}
   1866 		break;
   1867 	}
   1868 	KASSERT(solocked(so));
   1869 	return error;
   1870 }
   1871 
   1872 int
   1873 sosetopt(struct socket *so, struct sockopt *sopt)
   1874 {
   1875 	int error, prerr;
   1876 
   1877 	if (sopt->sopt_level == SOL_SOCKET) {
   1878 		error = sosetopt1(so, sopt);
   1879 		KASSERT(solocked(so));
   1880 	} else {
   1881 		error = ENOPROTOOPT;
   1882 		solock(so);
   1883 	}
   1884 
   1885 	if ((error == 0 || error == ENOPROTOOPT) &&
   1886 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1887 		/* give the protocol stack a shot */
   1888 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1889 		if (prerr == 0)
   1890 			error = 0;
   1891 		else if (prerr != ENOPROTOOPT)
   1892 			error = prerr;
   1893 	}
   1894 	sounlock(so);
   1895 	return error;
   1896 }
   1897 
   1898 /*
   1899  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1900  */
   1901 int
   1902 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1903     const void *val, size_t valsize)
   1904 {
   1905 	struct sockopt sopt;
   1906 	int error;
   1907 
   1908 	KASSERT(valsize == 0 || val != NULL);
   1909 
   1910 	sockopt_init(&sopt, level, name, valsize);
   1911 	sockopt_set(&sopt, val, valsize);
   1912 
   1913 	error = sosetopt(so, &sopt);
   1914 
   1915 	sockopt_destroy(&sopt);
   1916 
   1917 	return error;
   1918 }
   1919 
   1920 /*
   1921  * internal get SOL_SOCKET options
   1922  */
   1923 static int
   1924 sogetopt1(struct socket *so, struct sockopt *sopt)
   1925 {
   1926 	int error, optval, opt;
   1927 	struct linger l;
   1928 	struct timeval tv;
   1929 
   1930 	switch ((opt = sopt->sopt_name)) {
   1931 
   1932 	case SO_ACCEPTFILTER:
   1933 		error = accept_filt_getopt(so, sopt);
   1934 		break;
   1935 
   1936 	case SO_LINGER:
   1937 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1938 		l.l_linger = so->so_linger;
   1939 
   1940 		error = sockopt_set(sopt, &l, sizeof(l));
   1941 		break;
   1942 
   1943 	case SO_USELOOPBACK:
   1944 	case SO_DONTROUTE:
   1945 	case SO_DEBUG:
   1946 	case SO_KEEPALIVE:
   1947 	case SO_REUSEADDR:
   1948 	case SO_REUSEPORT:
   1949 	case SO_BROADCAST:
   1950 	case SO_OOBINLINE:
   1951 	case SO_TIMESTAMP:
   1952 	case SO_NOSIGPIPE:
   1953 	case SO_RERROR:
   1954 	case SO_ACCEPTCONN:
   1955 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1956 		break;
   1957 
   1958 	case SO_TYPE:
   1959 		error = sockopt_setint(sopt, so->so_type);
   1960 		break;
   1961 
   1962 	case SO_ERROR:
   1963 		if (so->so_error == 0) {
   1964 			so->so_error = so->so_rerror;
   1965 			so->so_rerror = 0;
   1966 		}
   1967 		error = sockopt_setint(sopt, so->so_error);
   1968 		so->so_error = 0;
   1969 		break;
   1970 
   1971 	case SO_SNDBUF:
   1972 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1973 		break;
   1974 
   1975 	case SO_RCVBUF:
   1976 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1977 		break;
   1978 
   1979 	case SO_SNDLOWAT:
   1980 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1981 		break;
   1982 
   1983 	case SO_RCVLOWAT:
   1984 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1985 		break;
   1986 
   1987 	case SO_SNDTIMEO:
   1988 	case SO_RCVTIMEO:
   1989 		optval = (opt == SO_SNDTIMEO ?
   1990 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1991 
   1992 		tv.tv_sec = optval / hz;
   1993 		tv.tv_usec = (optval % hz) * tick;
   1994 
   1995 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1996 		break;
   1997 
   1998 	case SO_OVERFLOWED:
   1999 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   2000 		break;
   2001 
   2002 	default:
   2003 		MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
   2004 		    (opt, so, sopt), enosys(), error);
   2005 		if (error)
   2006 			error = ENOPROTOOPT;
   2007 		break;
   2008 	}
   2009 
   2010 	return error;
   2011 }
   2012 
   2013 int
   2014 sogetopt(struct socket *so, struct sockopt *sopt)
   2015 {
   2016 	int error;
   2017 
   2018 	solock(so);
   2019 	if (sopt->sopt_level != SOL_SOCKET) {
   2020 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2021 			error = ((*so->so_proto->pr_ctloutput)
   2022 			    (PRCO_GETOPT, so, sopt));
   2023 		} else
   2024 			error = (ENOPROTOOPT);
   2025 	} else {
   2026 		error = sogetopt1(so, sopt);
   2027 	}
   2028 	sounlock(so);
   2029 	return error;
   2030 }
   2031 
   2032 /*
   2033  * alloc sockopt data buffer buffer
   2034  *	- will be released at destroy
   2035  */
   2036 static int
   2037 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2038 {
   2039 
   2040 	KASSERT(sopt->sopt_size == 0);
   2041 
   2042 	if (len > sizeof(sopt->sopt_buf)) {
   2043 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2044 		if (sopt->sopt_data == NULL)
   2045 			return ENOMEM;
   2046 	} else
   2047 		sopt->sopt_data = sopt->sopt_buf;
   2048 
   2049 	sopt->sopt_size = len;
   2050 	return 0;
   2051 }
   2052 
   2053 /*
   2054  * initialise sockopt storage
   2055  *	- MAY sleep during allocation
   2056  */
   2057 void
   2058 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2059 {
   2060 
   2061 	memset(sopt, 0, sizeof(*sopt));
   2062 
   2063 	sopt->sopt_level = level;
   2064 	sopt->sopt_name = name;
   2065 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2066 }
   2067 
   2068 /*
   2069  * destroy sockopt storage
   2070  *	- will release any held memory references
   2071  */
   2072 void
   2073 sockopt_destroy(struct sockopt *sopt)
   2074 {
   2075 
   2076 	if (sopt->sopt_data != sopt->sopt_buf)
   2077 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2078 
   2079 	memset(sopt, 0, sizeof(*sopt));
   2080 }
   2081 
   2082 /*
   2083  * set sockopt value
   2084  *	- value is copied into sockopt
   2085  *	- memory is allocated when necessary, will not sleep
   2086  */
   2087 int
   2088 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2089 {
   2090 	int error;
   2091 
   2092 	if (sopt->sopt_size == 0) {
   2093 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2094 		if (error)
   2095 			return error;
   2096 	}
   2097 
   2098 	sopt->sopt_retsize = MIN(sopt->sopt_size, len);
   2099 	memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
   2100 
   2101 	return 0;
   2102 }
   2103 
   2104 /*
   2105  * common case of set sockopt integer value
   2106  */
   2107 int
   2108 sockopt_setint(struct sockopt *sopt, int val)
   2109 {
   2110 
   2111 	return sockopt_set(sopt, &val, sizeof(int));
   2112 }
   2113 
   2114 /*
   2115  * get sockopt value
   2116  *	- correct size must be given
   2117  */
   2118 int
   2119 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2120 {
   2121 
   2122 	if (sopt->sopt_size != len)
   2123 		return EINVAL;
   2124 
   2125 	memcpy(buf, sopt->sopt_data, len);
   2126 	return 0;
   2127 }
   2128 
   2129 /*
   2130  * common case of get sockopt integer value
   2131  */
   2132 int
   2133 sockopt_getint(const struct sockopt *sopt, int *valp)
   2134 {
   2135 
   2136 	return sockopt_get(sopt, valp, sizeof(int));
   2137 }
   2138 
   2139 /*
   2140  * set sockopt value from mbuf
   2141  *	- ONLY for legacy code
   2142  *	- mbuf is released by sockopt
   2143  *	- will not sleep
   2144  */
   2145 int
   2146 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2147 {
   2148 	size_t len;
   2149 	int error;
   2150 
   2151 	len = m_length(m);
   2152 
   2153 	if (sopt->sopt_size == 0) {
   2154 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2155 		if (error)
   2156 			return error;
   2157 	}
   2158 
   2159 	sopt->sopt_retsize = MIN(sopt->sopt_size, len);
   2160 	m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
   2161 	m_freem(m);
   2162 
   2163 	return 0;
   2164 }
   2165 
   2166 /*
   2167  * get sockopt value into mbuf
   2168  *	- ONLY for legacy code
   2169  *	- mbuf to be released by the caller
   2170  *	- will not sleep
   2171  */
   2172 struct mbuf *
   2173 sockopt_getmbuf(const struct sockopt *sopt)
   2174 {
   2175 	struct mbuf *m;
   2176 
   2177 	if (sopt->sopt_size > MCLBYTES)
   2178 		return NULL;
   2179 
   2180 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2181 	if (m == NULL)
   2182 		return NULL;
   2183 
   2184 	if (sopt->sopt_size > MLEN) {
   2185 		MCLGET(m, M_DONTWAIT);
   2186 		if ((m->m_flags & M_EXT) == 0) {
   2187 			m_free(m);
   2188 			return NULL;
   2189 		}
   2190 	}
   2191 
   2192 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2193 	m->m_len = sopt->sopt_size;
   2194 
   2195 	return m;
   2196 }
   2197 
   2198 void
   2199 sohasoutofband(struct socket *so)
   2200 {
   2201 
   2202 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2203 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2204 }
   2205 
   2206 static void
   2207 filt_sordetach(struct knote *kn)
   2208 {
   2209 	struct socket *so;
   2210 
   2211 	so = ((file_t *)kn->kn_obj)->f_socket;
   2212 	solock(so);
   2213 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2214 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2215 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2216 	sounlock(so);
   2217 }
   2218 
   2219 /*ARGSUSED*/
   2220 static int
   2221 filt_soread(struct knote *kn, long hint)
   2222 {
   2223 	struct socket *so;
   2224 	int rv;
   2225 
   2226 	so = ((file_t *)kn->kn_obj)->f_socket;
   2227 	if (hint != NOTE_SUBMIT)
   2228 		solock(so);
   2229 	kn->kn_data = so->so_rcv.sb_cc;
   2230 	if (so->so_state & SS_CANTRCVMORE) {
   2231 		kn->kn_flags |= EV_EOF;
   2232 		kn->kn_fflags = so->so_error;
   2233 		rv = 1;
   2234 	} else if (so->so_error || so->so_rerror)
   2235 		rv = 1;
   2236 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2237 		rv = (kn->kn_data >= kn->kn_sdata);
   2238 	else
   2239 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2240 	if (hint != NOTE_SUBMIT)
   2241 		sounlock(so);
   2242 	return rv;
   2243 }
   2244 
   2245 static void
   2246 filt_sowdetach(struct knote *kn)
   2247 {
   2248 	struct socket *so;
   2249 
   2250 	so = ((file_t *)kn->kn_obj)->f_socket;
   2251 	solock(so);
   2252 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2253 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2254 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2255 	sounlock(so);
   2256 }
   2257 
   2258 /*ARGSUSED*/
   2259 static int
   2260 filt_sowrite(struct knote *kn, long hint)
   2261 {
   2262 	struct socket *so;
   2263 	int rv;
   2264 
   2265 	so = ((file_t *)kn->kn_obj)->f_socket;
   2266 	if (hint != NOTE_SUBMIT)
   2267 		solock(so);
   2268 	kn->kn_data = sbspace(&so->so_snd);
   2269 	if (so->so_state & SS_CANTSENDMORE) {
   2270 		kn->kn_flags |= EV_EOF;
   2271 		kn->kn_fflags = so->so_error;
   2272 		rv = 1;
   2273 	} else if (so->so_error)
   2274 		rv = 1;
   2275 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2276 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2277 		rv = 0;
   2278 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2279 		rv = (kn->kn_data >= kn->kn_sdata);
   2280 	else
   2281 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2282 	if (hint != NOTE_SUBMIT)
   2283 		sounlock(so);
   2284 	return rv;
   2285 }
   2286 
   2287 /*ARGSUSED*/
   2288 static int
   2289 filt_solisten(struct knote *kn, long hint)
   2290 {
   2291 	struct socket *so;
   2292 	int rv;
   2293 
   2294 	so = ((file_t *)kn->kn_obj)->f_socket;
   2295 
   2296 	/*
   2297 	 * Set kn_data to number of incoming connections, not
   2298 	 * counting partial (incomplete) connections.
   2299 	 */
   2300 	if (hint != NOTE_SUBMIT)
   2301 		solock(so);
   2302 	kn->kn_data = so->so_qlen;
   2303 	rv = (kn->kn_data > 0);
   2304 	if (hint != NOTE_SUBMIT)
   2305 		sounlock(so);
   2306 	return rv;
   2307 }
   2308 
   2309 static const struct filterops solisten_filtops = {
   2310 	.f_isfd = 1,
   2311 	.f_attach = NULL,
   2312 	.f_detach = filt_sordetach,
   2313 	.f_event = filt_solisten,
   2314 };
   2315 
   2316 static const struct filterops soread_filtops = {
   2317 	.f_isfd = 1,
   2318 	.f_attach = NULL,
   2319 	.f_detach = filt_sordetach,
   2320 	.f_event = filt_soread,
   2321 };
   2322 
   2323 static const struct filterops sowrite_filtops = {
   2324 	.f_isfd = 1,
   2325 	.f_attach = NULL,
   2326 	.f_detach = filt_sowdetach,
   2327 	.f_event = filt_sowrite,
   2328 };
   2329 
   2330 int
   2331 soo_kqfilter(struct file *fp, struct knote *kn)
   2332 {
   2333 	struct socket *so;
   2334 	struct sockbuf *sb;
   2335 
   2336 	so = ((file_t *)kn->kn_obj)->f_socket;
   2337 	solock(so);
   2338 	switch (kn->kn_filter) {
   2339 	case EVFILT_READ:
   2340 		if (so->so_options & SO_ACCEPTCONN)
   2341 			kn->kn_fop = &solisten_filtops;
   2342 		else
   2343 			kn->kn_fop = &soread_filtops;
   2344 		sb = &so->so_rcv;
   2345 		break;
   2346 	case EVFILT_WRITE:
   2347 		kn->kn_fop = &sowrite_filtops;
   2348 		sb = &so->so_snd;
   2349 		break;
   2350 	default:
   2351 		sounlock(so);
   2352 		return EINVAL;
   2353 	}
   2354 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2355 	sb->sb_flags |= SB_KNOTE;
   2356 	sounlock(so);
   2357 	return 0;
   2358 }
   2359 
   2360 static int
   2361 sodopoll(struct socket *so, int events)
   2362 {
   2363 	int revents;
   2364 
   2365 	revents = 0;
   2366 
   2367 	if (events & (POLLIN | POLLRDNORM))
   2368 		if (soreadable(so))
   2369 			revents |= events & (POLLIN | POLLRDNORM);
   2370 
   2371 	if (events & (POLLOUT | POLLWRNORM))
   2372 		if (sowritable(so))
   2373 			revents |= events & (POLLOUT | POLLWRNORM);
   2374 
   2375 	if (events & (POLLPRI | POLLRDBAND))
   2376 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2377 			revents |= events & (POLLPRI | POLLRDBAND);
   2378 
   2379 	return revents;
   2380 }
   2381 
   2382 int
   2383 sopoll(struct socket *so, int events)
   2384 {
   2385 	int revents = 0;
   2386 
   2387 #ifndef DIAGNOSTIC
   2388 	/*
   2389 	 * Do a quick, unlocked check in expectation that the socket
   2390 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2391 	 * as the solocked() assertions will fail.
   2392 	 */
   2393 	if ((revents = sodopoll(so, events)) != 0)
   2394 		return revents;
   2395 #endif
   2396 
   2397 	solock(so);
   2398 	if ((revents = sodopoll(so, events)) == 0) {
   2399 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2400 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2401 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2402 		}
   2403 
   2404 		if (events & (POLLOUT | POLLWRNORM)) {
   2405 			selrecord(curlwp, &so->so_snd.sb_sel);
   2406 			so->so_snd.sb_flags |= SB_NOTIFY;
   2407 		}
   2408 	}
   2409 	sounlock(so);
   2410 
   2411 	return revents;
   2412 }
   2413 
   2414 struct mbuf **
   2415 sbsavetimestamp(int opt, struct mbuf **mp)
   2416 {
   2417 	struct timeval tv;
   2418 	int error;
   2419 
   2420 	microtime(&tv);
   2421 
   2422 	MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, mp), enosys(), error);
   2423 	if (error == 0)
   2424 		return mp;
   2425 
   2426 	if (opt & SO_TIMESTAMP) {
   2427 		*mp = sbcreatecontrol(&tv, sizeof(tv),
   2428 		    SCM_TIMESTAMP, SOL_SOCKET);
   2429 		if (*mp)
   2430 			mp = &(*mp)->m_next;
   2431 	}
   2432 	return mp;
   2433 }
   2434 
   2435 
   2436 #include <sys/sysctl.h>
   2437 
   2438 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2439 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2440 
   2441 /*
   2442  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2443  * value is not too small.
   2444  * (XXX should we maybe make sure it's not too large as well?)
   2445  */
   2446 static int
   2447 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2448 {
   2449 	int error, new_somaxkva;
   2450 	struct sysctlnode node;
   2451 
   2452 	new_somaxkva = somaxkva;
   2453 	node = *rnode;
   2454 	node.sysctl_data = &new_somaxkva;
   2455 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2456 	if (error || newp == NULL)
   2457 		return error;
   2458 
   2459 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2460 		return EINVAL;
   2461 
   2462 	mutex_enter(&so_pendfree_lock);
   2463 	somaxkva = new_somaxkva;
   2464 	cv_broadcast(&socurkva_cv);
   2465 	mutex_exit(&so_pendfree_lock);
   2466 
   2467 	return error;
   2468 }
   2469 
   2470 /*
   2471  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2472  * any new value is not too small.
   2473  */
   2474 static int
   2475 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2476 {
   2477 	int error, new_sbmax;
   2478 	struct sysctlnode node;
   2479 
   2480 	new_sbmax = sb_max;
   2481 	node = *rnode;
   2482 	node.sysctl_data = &new_sbmax;
   2483 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2484 	if (error || newp == NULL)
   2485 		return error;
   2486 
   2487 	KERNEL_LOCK(1, NULL);
   2488 	error = sb_max_set(new_sbmax);
   2489 	KERNEL_UNLOCK_ONE(NULL);
   2490 
   2491 	return error;
   2492 }
   2493 
   2494 /*
   2495  * sysctl helper routine for kern.sooptions. Ensures that only allowed
   2496  * options can be set.
   2497  */
   2498 static int
   2499 sysctl_kern_sooptions(SYSCTLFN_ARGS)
   2500 {
   2501 	int error, new_options;
   2502 	struct sysctlnode node;
   2503 
   2504 	new_options = sooptions;
   2505 	node = *rnode;
   2506 	node.sysctl_data = &new_options;
   2507 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2508 	if (error || newp == NULL)
   2509 		return error;
   2510 
   2511 	if (new_options & ~SO_DEFOPTS)
   2512 		return EINVAL;
   2513 
   2514 	sooptions = new_options;
   2515 
   2516 	return 0;
   2517 }
   2518 
   2519 static void
   2520 sysctl_kern_socket_setup(void)
   2521 {
   2522 
   2523 	KASSERT(socket_sysctllog == NULL);
   2524 
   2525 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2526 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2527 		       CTLTYPE_INT, "somaxkva",
   2528 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2529 		                    "used for socket buffers"),
   2530 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2531 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2532 
   2533 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2534 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2535 		       CTLTYPE_INT, "sbmax",
   2536 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2537 		       sysctl_kern_sbmax, 0, NULL, 0,
   2538 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2539 
   2540 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2541 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2542 		       CTLTYPE_INT, "sooptions",
   2543 		       SYSCTL_DESCR("Default socket options"),
   2544 		       sysctl_kern_sooptions, 0, NULL, 0,
   2545 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   2546 }
   2547