uipc_socket.c revision 1.283 1 /* $NetBSD: uipc_socket.c,v 1.283 2019/09/14 15:06:33 mlelstv Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.283 2019/09/14 15:06:33 mlelstv Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #include "opt_sctp.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/file.h>
90 #include <sys/filedesc.h>
91 #include <sys/kmem.h>
92 #include <sys/mbuf.h>
93 #include <sys/domain.h>
94 #include <sys/kernel.h>
95 #include <sys/protosw.h>
96 #include <sys/socket.h>
97 #include <sys/socketvar.h>
98 #include <sys/signalvar.h>
99 #include <sys/resourcevar.h>
100 #include <sys/uidinfo.h>
101 #include <sys/event.h>
102 #include <sys/poll.h>
103 #include <sys/kauth.h>
104 #include <sys/mutex.h>
105 #include <sys/condvar.h>
106 #include <sys/kthread.h>
107 #include <sys/compat_stub.h>
108
109 #include <compat/sys/time.h>
110 #include <compat/sys/socket.h>
111
112 #include <uvm/uvm_extern.h>
113 #include <uvm/uvm_loan.h>
114 #include <uvm/uvm_page.h>
115
116 #ifdef SCTP
117 #include <netinet/sctp_route.h>
118 #endif
119
120 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
121
122 extern const struct fileops socketops;
123
124 static int sooptions;
125 extern int somaxconn; /* patchable (XXX sysctl) */
126 int somaxconn = SOMAXCONN;
127 kmutex_t *softnet_lock;
128
129 #ifdef SOSEND_COUNTERS
130 #include <sys/device.h>
131
132 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
133 NULL, "sosend", "loan big");
134 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
135 NULL, "sosend", "copy big");
136 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
137 NULL, "sosend", "copy small");
138 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
139 NULL, "sosend", "kva limit");
140
141 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
142
143 EVCNT_ATTACH_STATIC(sosend_loan_big);
144 EVCNT_ATTACH_STATIC(sosend_copy_big);
145 EVCNT_ATTACH_STATIC(sosend_copy_small);
146 EVCNT_ATTACH_STATIC(sosend_kvalimit);
147 #else
148
149 #define SOSEND_COUNTER_INCR(ev) /* nothing */
150
151 #endif /* SOSEND_COUNTERS */
152
153 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
154 int sock_loan_thresh = -1;
155 #else
156 int sock_loan_thresh = 4096;
157 #endif
158
159 static kmutex_t so_pendfree_lock;
160 static struct mbuf *so_pendfree = NULL;
161
162 #ifndef SOMAXKVA
163 #define SOMAXKVA (16 * 1024 * 1024)
164 #endif
165 int somaxkva = SOMAXKVA;
166 static int socurkva;
167 static kcondvar_t socurkva_cv;
168
169 static kauth_listener_t socket_listener;
170
171 #define SOCK_LOAN_CHUNK 65536
172
173 static void sopendfree_thread(void *);
174 static kcondvar_t pendfree_thread_cv;
175 static lwp_t *sopendfree_lwp;
176
177 static void sysctl_kern_socket_setup(void);
178 static struct sysctllog *socket_sysctllog;
179
180 static vsize_t
181 sokvareserve(struct socket *so, vsize_t len)
182 {
183 int error;
184
185 mutex_enter(&so_pendfree_lock);
186 while (socurkva + len > somaxkva) {
187 SOSEND_COUNTER_INCR(&sosend_kvalimit);
188 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
189 if (error) {
190 len = 0;
191 break;
192 }
193 }
194 socurkva += len;
195 mutex_exit(&so_pendfree_lock);
196 return len;
197 }
198
199 static void
200 sokvaunreserve(vsize_t len)
201 {
202
203 mutex_enter(&so_pendfree_lock);
204 socurkva -= len;
205 cv_broadcast(&socurkva_cv);
206 mutex_exit(&so_pendfree_lock);
207 }
208
209 /*
210 * sokvaalloc: allocate kva for loan.
211 */
212 vaddr_t
213 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
214 {
215 vaddr_t lva;
216
217 if (sokvareserve(so, len) == 0)
218 return 0;
219
220 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
221 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
222 if (lva == 0) {
223 sokvaunreserve(len);
224 return 0;
225 }
226
227 return lva;
228 }
229
230 /*
231 * sokvafree: free kva for loan.
232 */
233 void
234 sokvafree(vaddr_t sva, vsize_t len)
235 {
236
237 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
238 sokvaunreserve(len);
239 }
240
241 static void
242 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
243 {
244 vaddr_t sva, eva;
245 vsize_t len;
246 int npgs;
247
248 KASSERT(pgs != NULL);
249
250 eva = round_page((vaddr_t) buf + size);
251 sva = trunc_page((vaddr_t) buf);
252 len = eva - sva;
253 npgs = len >> PAGE_SHIFT;
254
255 pmap_kremove(sva, len);
256 pmap_update(pmap_kernel());
257 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
258 sokvafree(sva, len);
259 }
260
261 /*
262 * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
263 * so_pendfree_lock when freeing mbufs.
264 */
265 static void
266 sopendfree_thread(void *v)
267 {
268 struct mbuf *m, *next;
269 size_t rv;
270
271 mutex_enter(&so_pendfree_lock);
272
273 for (;;) {
274 rv = 0;
275 while (so_pendfree != NULL) {
276 m = so_pendfree;
277 so_pendfree = NULL;
278 mutex_exit(&so_pendfree_lock);
279
280 for (; m != NULL; m = next) {
281 next = m->m_next;
282 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
283 0);
284 KASSERT(m->m_ext.ext_refcnt == 0);
285
286 rv += m->m_ext.ext_size;
287 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
288 m->m_ext.ext_size);
289 pool_cache_put(mb_cache, m);
290 }
291
292 mutex_enter(&so_pendfree_lock);
293 }
294 if (rv)
295 cv_broadcast(&socurkva_cv);
296 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
297 }
298 panic("sopendfree_thread");
299 /* NOTREACHED */
300 }
301
302 void
303 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
304 {
305
306 KASSERT(m != NULL);
307
308 /*
309 * postpone freeing mbuf.
310 *
311 * we can't do it in interrupt context
312 * because we need to put kva back to kernel_map.
313 */
314
315 mutex_enter(&so_pendfree_lock);
316 m->m_next = so_pendfree;
317 so_pendfree = m;
318 cv_signal(&pendfree_thread_cv);
319 mutex_exit(&so_pendfree_lock);
320 }
321
322 static long
323 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
324 {
325 struct iovec *iov = uio->uio_iov;
326 vaddr_t sva, eva;
327 vsize_t len;
328 vaddr_t lva;
329 int npgs, error;
330 vaddr_t va;
331 int i;
332
333 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
334 return 0;
335
336 if (iov->iov_len < (size_t) space)
337 space = iov->iov_len;
338 if (space > SOCK_LOAN_CHUNK)
339 space = SOCK_LOAN_CHUNK;
340
341 eva = round_page((vaddr_t) iov->iov_base + space);
342 sva = trunc_page((vaddr_t) iov->iov_base);
343 len = eva - sva;
344 npgs = len >> PAGE_SHIFT;
345
346 KASSERT(npgs <= M_EXT_MAXPAGES);
347
348 lva = sokvaalloc(sva, len, so);
349 if (lva == 0)
350 return 0;
351
352 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
353 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
354 if (error) {
355 sokvafree(lva, len);
356 return 0;
357 }
358
359 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
360 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
361 VM_PROT_READ, 0);
362 pmap_update(pmap_kernel());
363
364 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
365
366 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
367 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
368
369 uio->uio_resid -= space;
370 /* uio_offset not updated, not set/used for write(2) */
371 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
372 uio->uio_iov->iov_len -= space;
373 if (uio->uio_iov->iov_len == 0) {
374 uio->uio_iov++;
375 uio->uio_iovcnt--;
376 }
377
378 return space;
379 }
380
381 static int
382 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
383 void *arg0, void *arg1, void *arg2, void *arg3)
384 {
385 int result;
386 enum kauth_network_req req;
387
388 result = KAUTH_RESULT_DEFER;
389 req = (enum kauth_network_req)arg0;
390
391 if ((action != KAUTH_NETWORK_SOCKET) &&
392 (action != KAUTH_NETWORK_BIND))
393 return result;
394
395 switch (req) {
396 case KAUTH_REQ_NETWORK_BIND_PORT:
397 result = KAUTH_RESULT_ALLOW;
398 break;
399
400 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
401 /* Normal users can only drop their own connections. */
402 struct socket *so = (struct socket *)arg1;
403
404 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
405 result = KAUTH_RESULT_ALLOW;
406
407 break;
408 }
409
410 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
411 /* We allow "raw" routing/bluetooth sockets to anyone. */
412 switch ((u_long)arg1) {
413 case PF_ROUTE:
414 case PF_OROUTE:
415 case PF_BLUETOOTH:
416 case PF_CAN:
417 result = KAUTH_RESULT_ALLOW;
418 break;
419 default:
420 /* Privileged, let secmodel handle this. */
421 if ((u_long)arg2 == SOCK_RAW)
422 break;
423 result = KAUTH_RESULT_ALLOW;
424 break;
425 }
426 break;
427
428 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
429 result = KAUTH_RESULT_ALLOW;
430
431 break;
432
433 default:
434 break;
435 }
436
437 return result;
438 }
439
440 void
441 soinit(void)
442 {
443
444 sysctl_kern_socket_setup();
445
446 #ifdef SCTP
447 /* Update the SCTP function hooks if necessary*/
448
449 vec_sctp_add_ip_address = sctp_add_ip_address;
450 vec_sctp_delete_ip_address = sctp_delete_ip_address;
451 #endif
452
453 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
454 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
455 cv_init(&socurkva_cv, "sokva");
456 cv_init(&pendfree_thread_cv, "sopendfr");
457 soinit2();
458
459 /* Set the initial adjusted socket buffer size. */
460 if (sb_max_set(sb_max))
461 panic("bad initial sb_max value: %lu", sb_max);
462
463 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
464 socket_listener_cb, NULL);
465 }
466
467 void
468 soinit1(void)
469 {
470 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
471 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
472 if (error)
473 panic("soinit1 %d", error);
474 }
475
476 /*
477 * socreate: create a new socket of the specified type and the protocol.
478 *
479 * => Caller may specify another socket for lock sharing (must not be held).
480 * => Returns the new socket without lock held.
481 */
482 int
483 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
484 struct socket *lockso)
485 {
486 const struct protosw *prp;
487 struct socket *so;
488 uid_t uid;
489 int error;
490 kmutex_t *lock;
491
492 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
493 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
494 KAUTH_ARG(proto));
495 if (error != 0)
496 return error;
497
498 if (proto)
499 prp = pffindproto(dom, proto, type);
500 else
501 prp = pffindtype(dom, type);
502 if (prp == NULL) {
503 /* no support for domain */
504 if (pffinddomain(dom) == 0)
505 return EAFNOSUPPORT;
506 /* no support for socket type */
507 if (proto == 0 && type != 0)
508 return EPROTOTYPE;
509 return EPROTONOSUPPORT;
510 }
511 if (prp->pr_usrreqs == NULL)
512 return EPROTONOSUPPORT;
513 if (prp->pr_type != type)
514 return EPROTOTYPE;
515
516 so = soget(true);
517 so->so_type = type;
518 so->so_proto = prp;
519 so->so_send = sosend;
520 so->so_receive = soreceive;
521 so->so_options = sooptions;
522 #ifdef MBUFTRACE
523 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
524 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
525 so->so_mowner = &prp->pr_domain->dom_mowner;
526 #endif
527 uid = kauth_cred_geteuid(l->l_cred);
528 so->so_uidinfo = uid_find(uid);
529 so->so_cpid = l->l_proc->p_pid;
530
531 /*
532 * Lock assigned and taken during PCB attach, unless we share
533 * the lock with another socket, e.g. socketpair(2) case.
534 */
535 if (lockso) {
536 lock = lockso->so_lock;
537 so->so_lock = lock;
538 mutex_obj_hold(lock);
539 mutex_enter(lock);
540 }
541
542 /* Attach the PCB (returns with the socket lock held). */
543 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
544 KASSERT(solocked(so));
545
546 if (error) {
547 KASSERT(so->so_pcb == NULL);
548 so->so_state |= SS_NOFDREF;
549 sofree(so);
550 return error;
551 }
552 so->so_cred = kauth_cred_dup(l->l_cred);
553 sounlock(so);
554
555 *aso = so;
556 return 0;
557 }
558
559 /*
560 * fsocreate: create a socket and a file descriptor associated with it.
561 *
562 * => On success, write file descriptor to fdout and return zero.
563 * => On failure, return non-zero; *fdout will be undefined.
564 */
565 int
566 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
567 {
568 lwp_t *l = curlwp;
569 int error, fd, flags;
570 struct socket *so;
571 struct file *fp;
572
573 if ((error = fd_allocfile(&fp, &fd)) != 0) {
574 return error;
575 }
576 flags = type & SOCK_FLAGS_MASK;
577 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
578 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
579 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
580 fp->f_type = DTYPE_SOCKET;
581 fp->f_ops = &socketops;
582
583 type &= ~SOCK_FLAGS_MASK;
584 error = socreate(domain, &so, type, proto, l, NULL);
585 if (error) {
586 fd_abort(curproc, fp, fd);
587 return error;
588 }
589 if (flags & SOCK_NONBLOCK) {
590 so->so_state |= SS_NBIO;
591 }
592 fp->f_socket = so;
593 fd_affix(curproc, fp, fd);
594
595 if (sop != NULL) {
596 *sop = so;
597 }
598 *fdout = fd;
599 return error;
600 }
601
602 int
603 sofamily(const struct socket *so)
604 {
605 const struct protosw *pr;
606 const struct domain *dom;
607
608 if ((pr = so->so_proto) == NULL)
609 return AF_UNSPEC;
610 if ((dom = pr->pr_domain) == NULL)
611 return AF_UNSPEC;
612 return dom->dom_family;
613 }
614
615 int
616 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
617 {
618 int error;
619
620 solock(so);
621 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
622 sounlock(so);
623 return EAFNOSUPPORT;
624 }
625 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
626 sounlock(so);
627 return error;
628 }
629
630 int
631 solisten(struct socket *so, int backlog, struct lwp *l)
632 {
633 int error;
634 short oldopt, oldqlimit;
635
636 solock(so);
637 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
638 SS_ISDISCONNECTING)) != 0) {
639 sounlock(so);
640 return EINVAL;
641 }
642 oldopt = so->so_options;
643 oldqlimit = so->so_qlimit;
644 if (TAILQ_EMPTY(&so->so_q))
645 so->so_options |= SO_ACCEPTCONN;
646 if (backlog < 0)
647 backlog = 0;
648 so->so_qlimit = uimin(backlog, somaxconn);
649
650 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
651 if (error != 0) {
652 so->so_options = oldopt;
653 so->so_qlimit = oldqlimit;
654 sounlock(so);
655 return error;
656 }
657 sounlock(so);
658 return 0;
659 }
660
661 void
662 sofree(struct socket *so)
663 {
664 u_int refs;
665
666 KASSERT(solocked(so));
667
668 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
669 sounlock(so);
670 return;
671 }
672 if (so->so_head) {
673 /*
674 * We must not decommission a socket that's on the accept(2)
675 * queue. If we do, then accept(2) may hang after select(2)
676 * indicated that the listening socket was ready.
677 */
678 if (!soqremque(so, 0)) {
679 sounlock(so);
680 return;
681 }
682 }
683 if (so->so_rcv.sb_hiwat)
684 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
685 RLIM_INFINITY);
686 if (so->so_snd.sb_hiwat)
687 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
688 RLIM_INFINITY);
689 sbrelease(&so->so_snd, so);
690 KASSERT(!cv_has_waiters(&so->so_cv));
691 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
692 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
693 sorflush(so);
694 refs = so->so_aborting; /* XXX */
695 /* Remove acccept filter if one is present. */
696 if (so->so_accf != NULL)
697 (void)accept_filt_clear(so);
698 sounlock(so);
699 if (refs == 0) /* XXX */
700 soput(so);
701 }
702
703 /*
704 * soclose: close a socket on last file table reference removal.
705 * Initiate disconnect if connected. Free socket when disconnect complete.
706 */
707 int
708 soclose(struct socket *so)
709 {
710 struct socket *so2;
711 int error = 0;
712
713 solock(so);
714 if (so->so_options & SO_ACCEPTCONN) {
715 for (;;) {
716 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
717 KASSERT(solocked2(so, so2));
718 (void) soqremque(so2, 0);
719 /* soabort drops the lock. */
720 (void) soabort(so2);
721 solock(so);
722 continue;
723 }
724 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
725 KASSERT(solocked2(so, so2));
726 (void) soqremque(so2, 1);
727 /* soabort drops the lock. */
728 (void) soabort(so2);
729 solock(so);
730 continue;
731 }
732 break;
733 }
734 }
735 if (so->so_pcb == NULL)
736 goto discard;
737 if (so->so_state & SS_ISCONNECTED) {
738 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
739 error = sodisconnect(so);
740 if (error)
741 goto drop;
742 }
743 if (so->so_options & SO_LINGER) {
744 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
745 (SS_ISDISCONNECTING|SS_NBIO))
746 goto drop;
747 while (so->so_state & SS_ISCONNECTED) {
748 error = sowait(so, true, so->so_linger * hz);
749 if (error)
750 break;
751 }
752 }
753 }
754 drop:
755 if (so->so_pcb) {
756 KASSERT(solocked(so));
757 (*so->so_proto->pr_usrreqs->pr_detach)(so);
758 }
759 discard:
760 KASSERT((so->so_state & SS_NOFDREF) == 0);
761 kauth_cred_free(so->so_cred);
762 so->so_cred = NULL;
763 so->so_state |= SS_NOFDREF;
764 sofree(so);
765 return error;
766 }
767
768 /*
769 * Must be called with the socket locked.. Will return with it unlocked.
770 */
771 int
772 soabort(struct socket *so)
773 {
774 u_int refs;
775 int error;
776
777 KASSERT(solocked(so));
778 KASSERT(so->so_head == NULL);
779
780 so->so_aborting++; /* XXX */
781 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
782 refs = --so->so_aborting; /* XXX */
783 if (error || (refs == 0)) {
784 sofree(so);
785 } else {
786 sounlock(so);
787 }
788 return error;
789 }
790
791 int
792 soaccept(struct socket *so, struct sockaddr *nam)
793 {
794 int error;
795
796 KASSERT(solocked(so));
797 KASSERT((so->so_state & SS_NOFDREF) != 0);
798
799 so->so_state &= ~SS_NOFDREF;
800 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
801 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
802 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
803 else
804 error = ECONNABORTED;
805
806 return error;
807 }
808
809 int
810 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
811 {
812 int error;
813
814 KASSERT(solocked(so));
815
816 if (so->so_options & SO_ACCEPTCONN)
817 return EOPNOTSUPP;
818 /*
819 * If protocol is connection-based, can only connect once.
820 * Otherwise, if connected, try to disconnect first.
821 * This allows user to disconnect by connecting to, e.g.,
822 * a null address.
823 */
824 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
825 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
826 (error = sodisconnect(so)))) {
827 error = EISCONN;
828 } else {
829 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
830 return EAFNOSUPPORT;
831 }
832 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
833 }
834
835 return error;
836 }
837
838 int
839 soconnect2(struct socket *so1, struct socket *so2)
840 {
841 KASSERT(solocked2(so1, so2));
842
843 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
844 }
845
846 int
847 sodisconnect(struct socket *so)
848 {
849 int error;
850
851 KASSERT(solocked(so));
852
853 if ((so->so_state & SS_ISCONNECTED) == 0) {
854 error = ENOTCONN;
855 } else if (so->so_state & SS_ISDISCONNECTING) {
856 error = EALREADY;
857 } else {
858 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
859 }
860 return error;
861 }
862
863 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
864 /*
865 * Send on a socket.
866 * If send must go all at once and message is larger than
867 * send buffering, then hard error.
868 * Lock against other senders.
869 * If must go all at once and not enough room now, then
870 * inform user that this would block and do nothing.
871 * Otherwise, if nonblocking, send as much as possible.
872 * The data to be sent is described by "uio" if nonzero,
873 * otherwise by the mbuf chain "top" (which must be null
874 * if uio is not). Data provided in mbuf chain must be small
875 * enough to send all at once.
876 *
877 * Returns nonzero on error, timeout or signal; callers
878 * must check for short counts if EINTR/ERESTART are returned.
879 * Data and control buffers are freed on return.
880 */
881 int
882 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
883 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
884 {
885 struct mbuf **mp, *m;
886 long space, len, resid, clen, mlen;
887 int error, s, dontroute, atomic;
888 short wakeup_state = 0;
889
890 clen = 0;
891
892 /*
893 * solock() provides atomicity of access. splsoftnet() prevents
894 * protocol processing soft interrupts from interrupting us and
895 * blocking (expensive).
896 */
897 s = splsoftnet();
898 solock(so);
899 atomic = sosendallatonce(so) || top;
900 if (uio)
901 resid = uio->uio_resid;
902 else
903 resid = top->m_pkthdr.len;
904 /*
905 * In theory resid should be unsigned.
906 * However, space must be signed, as it might be less than 0
907 * if we over-committed, and we must use a signed comparison
908 * of space and resid. On the other hand, a negative resid
909 * causes us to loop sending 0-length segments to the protocol.
910 */
911 if (resid < 0) {
912 error = EINVAL;
913 goto out;
914 }
915 dontroute =
916 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
917 (so->so_proto->pr_flags & PR_ATOMIC);
918 l->l_ru.ru_msgsnd++;
919 if (control)
920 clen = control->m_len;
921 restart:
922 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
923 goto out;
924 do {
925 if (so->so_state & SS_CANTSENDMORE) {
926 error = EPIPE;
927 goto release;
928 }
929 if (so->so_error) {
930 error = so->so_error;
931 if ((flags & MSG_PEEK) == 0)
932 so->so_error = 0;
933 goto release;
934 }
935 if ((so->so_state & SS_ISCONNECTED) == 0) {
936 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
937 if (resid || clen == 0) {
938 error = ENOTCONN;
939 goto release;
940 }
941 } else if (addr == NULL) {
942 error = EDESTADDRREQ;
943 goto release;
944 }
945 }
946 space = sbspace(&so->so_snd);
947 if (flags & MSG_OOB)
948 space += 1024;
949 if ((atomic && resid > so->so_snd.sb_hiwat) ||
950 clen > so->so_snd.sb_hiwat) {
951 error = EMSGSIZE;
952 goto release;
953 }
954 if (space < resid + clen &&
955 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
956 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
957 error = EWOULDBLOCK;
958 goto release;
959 }
960 sbunlock(&so->so_snd);
961 if (wakeup_state & SS_RESTARTSYS) {
962 error = ERESTART;
963 goto out;
964 }
965 error = sbwait(&so->so_snd);
966 if (error)
967 goto out;
968 wakeup_state = so->so_state;
969 goto restart;
970 }
971 wakeup_state = 0;
972 mp = ⊤
973 space -= clen;
974 do {
975 if (uio == NULL) {
976 /*
977 * Data is prepackaged in "top".
978 */
979 resid = 0;
980 if (flags & MSG_EOR)
981 top->m_flags |= M_EOR;
982 } else do {
983 sounlock(so);
984 splx(s);
985 if (top == NULL) {
986 m = m_gethdr(M_WAIT, MT_DATA);
987 mlen = MHLEN;
988 m->m_pkthdr.len = 0;
989 m_reset_rcvif(m);
990 } else {
991 m = m_get(M_WAIT, MT_DATA);
992 mlen = MLEN;
993 }
994 MCLAIM(m, so->so_snd.sb_mowner);
995 if (sock_loan_thresh >= 0 &&
996 uio->uio_iov->iov_len >= sock_loan_thresh &&
997 space >= sock_loan_thresh &&
998 (len = sosend_loan(so, uio, m,
999 space)) != 0) {
1000 SOSEND_COUNTER_INCR(&sosend_loan_big);
1001 space -= len;
1002 goto have_data;
1003 }
1004 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1005 SOSEND_COUNTER_INCR(&sosend_copy_big);
1006 m_clget(m, M_DONTWAIT);
1007 if ((m->m_flags & M_EXT) == 0)
1008 goto nopages;
1009 mlen = MCLBYTES;
1010 if (atomic && top == 0) {
1011 len = lmin(MCLBYTES - max_hdr,
1012 resid);
1013 m->m_data += max_hdr;
1014 } else
1015 len = lmin(MCLBYTES, resid);
1016 space -= len;
1017 } else {
1018 nopages:
1019 SOSEND_COUNTER_INCR(&sosend_copy_small);
1020 len = lmin(lmin(mlen, resid), space);
1021 space -= len;
1022 /*
1023 * For datagram protocols, leave room
1024 * for protocol headers in first mbuf.
1025 */
1026 if (atomic && top == 0 && len < mlen)
1027 m_align(m, len);
1028 }
1029 error = uiomove(mtod(m, void *), (int)len, uio);
1030 have_data:
1031 resid = uio->uio_resid;
1032 m->m_len = len;
1033 *mp = m;
1034 top->m_pkthdr.len += len;
1035 s = splsoftnet();
1036 solock(so);
1037 if (error != 0)
1038 goto release;
1039 mp = &m->m_next;
1040 if (resid <= 0) {
1041 if (flags & MSG_EOR)
1042 top->m_flags |= M_EOR;
1043 break;
1044 }
1045 } while (space > 0 && atomic);
1046
1047 if (so->so_state & SS_CANTSENDMORE) {
1048 error = EPIPE;
1049 goto release;
1050 }
1051 if (dontroute)
1052 so->so_options |= SO_DONTROUTE;
1053 if (resid > 0)
1054 so->so_state |= SS_MORETOCOME;
1055 if (flags & MSG_OOB) {
1056 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1057 so, top, control);
1058 } else {
1059 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1060 top, addr, control, l);
1061 }
1062 if (dontroute)
1063 so->so_options &= ~SO_DONTROUTE;
1064 if (resid > 0)
1065 so->so_state &= ~SS_MORETOCOME;
1066 clen = 0;
1067 control = NULL;
1068 top = NULL;
1069 mp = ⊤
1070 if (error != 0)
1071 goto release;
1072 } while (resid && space > 0);
1073 } while (resid);
1074
1075 release:
1076 sbunlock(&so->so_snd);
1077 out:
1078 sounlock(so);
1079 splx(s);
1080 if (top)
1081 m_freem(top);
1082 if (control)
1083 m_freem(control);
1084 return error;
1085 }
1086
1087 /*
1088 * Following replacement or removal of the first mbuf on the first
1089 * mbuf chain of a socket buffer, push necessary state changes back
1090 * into the socket buffer so that other consumers see the values
1091 * consistently. 'nextrecord' is the caller's locally stored value of
1092 * the original value of sb->sb_mb->m_nextpkt which must be restored
1093 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1094 */
1095 static void
1096 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1097 {
1098
1099 KASSERT(solocked(sb->sb_so));
1100
1101 /*
1102 * First, update for the new value of nextrecord. If necessary,
1103 * make it the first record.
1104 */
1105 if (sb->sb_mb != NULL)
1106 sb->sb_mb->m_nextpkt = nextrecord;
1107 else
1108 sb->sb_mb = nextrecord;
1109
1110 /*
1111 * Now update any dependent socket buffer fields to reflect
1112 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1113 * the addition of a second clause that takes care of the
1114 * case where sb_mb has been updated, but remains the last
1115 * record.
1116 */
1117 if (sb->sb_mb == NULL) {
1118 sb->sb_mbtail = NULL;
1119 sb->sb_lastrecord = NULL;
1120 } else if (sb->sb_mb->m_nextpkt == NULL)
1121 sb->sb_lastrecord = sb->sb_mb;
1122 }
1123
1124 /*
1125 * Implement receive operations on a socket.
1126 *
1127 * We depend on the way that records are added to the sockbuf by sbappend*. In
1128 * particular, each record (mbufs linked through m_next) must begin with an
1129 * address if the protocol so specifies, followed by an optional mbuf or mbufs
1130 * containing ancillary data, and then zero or more mbufs of data.
1131 *
1132 * In order to avoid blocking network interrupts for the entire time here, we
1133 * splx() while doing the actual copy to user space. Although the sockbuf is
1134 * locked, new data may still be appended, and thus we must maintain
1135 * consistency of the sockbuf during that time.
1136 *
1137 * The caller may receive the data as a single mbuf chain by supplying an mbuf
1138 * **mp0 for use in returning the chain. The uio is then used only for the
1139 * count in uio_resid.
1140 */
1141 int
1142 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1143 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1144 {
1145 struct lwp *l = curlwp;
1146 struct mbuf *m, **mp, *mt;
1147 size_t len, offset, moff, orig_resid;
1148 int atomic, flags, error, s, type;
1149 const struct protosw *pr;
1150 struct mbuf *nextrecord;
1151 int mbuf_removed = 0;
1152 const struct domain *dom;
1153 short wakeup_state = 0;
1154
1155 pr = so->so_proto;
1156 atomic = pr->pr_flags & PR_ATOMIC;
1157 dom = pr->pr_domain;
1158 mp = mp0;
1159 type = 0;
1160 orig_resid = uio->uio_resid;
1161
1162 if (paddr != NULL)
1163 *paddr = NULL;
1164 if (controlp != NULL)
1165 *controlp = NULL;
1166 if (flagsp != NULL)
1167 flags = *flagsp &~ MSG_EOR;
1168 else
1169 flags = 0;
1170
1171 if (flags & MSG_OOB) {
1172 m = m_get(M_WAIT, MT_DATA);
1173 solock(so);
1174 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1175 sounlock(so);
1176 if (error)
1177 goto bad;
1178 do {
1179 error = uiomove(mtod(m, void *),
1180 MIN(uio->uio_resid, m->m_len), uio);
1181 m = m_free(m);
1182 } while (uio->uio_resid > 0 && error == 0 && m);
1183 bad:
1184 if (m != NULL)
1185 m_freem(m);
1186 return error;
1187 }
1188 if (mp != NULL)
1189 *mp = NULL;
1190
1191 /*
1192 * solock() provides atomicity of access. splsoftnet() prevents
1193 * protocol processing soft interrupts from interrupting us and
1194 * blocking (expensive).
1195 */
1196 s = splsoftnet();
1197 solock(so);
1198 restart:
1199 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1200 sounlock(so);
1201 splx(s);
1202 return error;
1203 }
1204 m = so->so_rcv.sb_mb;
1205
1206 /*
1207 * If we have less data than requested, block awaiting more
1208 * (subject to any timeout) if:
1209 * 1. the current count is less than the low water mark,
1210 * 2. MSG_WAITALL is set, and it is possible to do the entire
1211 * receive operation at once if we block (resid <= hiwat), or
1212 * 3. MSG_DONTWAIT is not set.
1213 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1214 * we have to do the receive in sections, and thus risk returning
1215 * a short count if a timeout or signal occurs after we start.
1216 */
1217 if (m == NULL ||
1218 ((flags & MSG_DONTWAIT) == 0 &&
1219 so->so_rcv.sb_cc < uio->uio_resid &&
1220 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1221 ((flags & MSG_WAITALL) &&
1222 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1223 m->m_nextpkt == NULL && !atomic)) {
1224 #ifdef DIAGNOSTIC
1225 if (m == NULL && so->so_rcv.sb_cc)
1226 panic("receive 1");
1227 #endif
1228 if (so->so_error || so->so_rerror) {
1229 u_short *e;
1230 if (m != NULL)
1231 goto dontblock;
1232 e = so->so_error ? &so->so_error : &so->so_rerror;
1233 error = *e;
1234 if ((flags & MSG_PEEK) == 0)
1235 *e = 0;
1236 goto release;
1237 }
1238 if (so->so_state & SS_CANTRCVMORE) {
1239 if (m != NULL)
1240 goto dontblock;
1241 else
1242 goto release;
1243 }
1244 for (; m != NULL; m = m->m_next)
1245 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1246 m = so->so_rcv.sb_mb;
1247 goto dontblock;
1248 }
1249 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1250 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1251 error = ENOTCONN;
1252 goto release;
1253 }
1254 if (uio->uio_resid == 0)
1255 goto release;
1256 if ((so->so_state & SS_NBIO) ||
1257 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1258 error = EWOULDBLOCK;
1259 goto release;
1260 }
1261 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1262 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1263 sbunlock(&so->so_rcv);
1264 if (wakeup_state & SS_RESTARTSYS)
1265 error = ERESTART;
1266 else
1267 error = sbwait(&so->so_rcv);
1268 if (error != 0) {
1269 sounlock(so);
1270 splx(s);
1271 return error;
1272 }
1273 wakeup_state = so->so_state;
1274 goto restart;
1275 }
1276
1277 dontblock:
1278 /*
1279 * On entry here, m points to the first record of the socket buffer.
1280 * From this point onward, we maintain 'nextrecord' as a cache of the
1281 * pointer to the next record in the socket buffer. We must keep the
1282 * various socket buffer pointers and local stack versions of the
1283 * pointers in sync, pushing out modifications before dropping the
1284 * socket lock, and re-reading them when picking it up.
1285 *
1286 * Otherwise, we will race with the network stack appending new data
1287 * or records onto the socket buffer by using inconsistent/stale
1288 * versions of the field, possibly resulting in socket buffer
1289 * corruption.
1290 *
1291 * By holding the high-level sblock(), we prevent simultaneous
1292 * readers from pulling off the front of the socket buffer.
1293 */
1294 if (l != NULL)
1295 l->l_ru.ru_msgrcv++;
1296 KASSERT(m == so->so_rcv.sb_mb);
1297 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1298 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1299 nextrecord = m->m_nextpkt;
1300
1301 if (pr->pr_flags & PR_ADDR) {
1302 KASSERT(m->m_type == MT_SONAME);
1303 orig_resid = 0;
1304 if (flags & MSG_PEEK) {
1305 if (paddr)
1306 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1307 m = m->m_next;
1308 } else {
1309 sbfree(&so->so_rcv, m);
1310 mbuf_removed = 1;
1311 if (paddr != NULL) {
1312 *paddr = m;
1313 so->so_rcv.sb_mb = m->m_next;
1314 m->m_next = NULL;
1315 m = so->so_rcv.sb_mb;
1316 } else {
1317 m = so->so_rcv.sb_mb = m_free(m);
1318 }
1319 sbsync(&so->so_rcv, nextrecord);
1320 }
1321 }
1322
1323 if (pr->pr_flags & PR_ADDR_OPT) {
1324 /*
1325 * For SCTP we may be getting a whole message OR a partial
1326 * delivery.
1327 */
1328 if (m->m_type == MT_SONAME) {
1329 orig_resid = 0;
1330 if (flags & MSG_PEEK) {
1331 if (paddr)
1332 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1333 m = m->m_next;
1334 } else {
1335 sbfree(&so->so_rcv, m);
1336 /* XXX XXX XXX: should set mbuf_removed? */
1337 if (paddr) {
1338 *paddr = m;
1339 so->so_rcv.sb_mb = m->m_next;
1340 m->m_next = 0;
1341 m = so->so_rcv.sb_mb;
1342 } else {
1343 m = so->so_rcv.sb_mb = m_free(m);
1344 }
1345 /* XXX XXX XXX: isn't there an sbsync()
1346 * missing here? */
1347 }
1348 }
1349 }
1350
1351 /*
1352 * Process one or more MT_CONTROL mbufs present before any data mbufs
1353 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1354 * just copy the data; if !MSG_PEEK, we call into the protocol to
1355 * perform externalization (or freeing if controlp == NULL).
1356 */
1357 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1358 struct mbuf *cm = NULL, *cmn;
1359 struct mbuf **cme = &cm;
1360
1361 do {
1362 if (flags & MSG_PEEK) {
1363 if (controlp != NULL) {
1364 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1365 controlp = &(*controlp)->m_next;
1366 }
1367 m = m->m_next;
1368 } else {
1369 sbfree(&so->so_rcv, m);
1370 so->so_rcv.sb_mb = m->m_next;
1371 m->m_next = NULL;
1372 *cme = m;
1373 cme = &(*cme)->m_next;
1374 m = so->so_rcv.sb_mb;
1375 }
1376 } while (m != NULL && m->m_type == MT_CONTROL);
1377 if ((flags & MSG_PEEK) == 0)
1378 sbsync(&so->so_rcv, nextrecord);
1379
1380 for (; cm != NULL; cm = cmn) {
1381 cmn = cm->m_next;
1382 cm->m_next = NULL;
1383 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1384 if (controlp != NULL) {
1385 if (dom->dom_externalize != NULL &&
1386 type == SCM_RIGHTS) {
1387 sounlock(so);
1388 splx(s);
1389 error = (*dom->dom_externalize)(cm, l,
1390 (flags & MSG_CMSG_CLOEXEC) ?
1391 O_CLOEXEC : 0);
1392 s = splsoftnet();
1393 solock(so);
1394 }
1395 *controlp = cm;
1396 while (*controlp != NULL)
1397 controlp = &(*controlp)->m_next;
1398 } else {
1399 /*
1400 * Dispose of any SCM_RIGHTS message that went
1401 * through the read path rather than recv.
1402 */
1403 if (dom->dom_dispose != NULL &&
1404 type == SCM_RIGHTS) {
1405 sounlock(so);
1406 (*dom->dom_dispose)(cm);
1407 solock(so);
1408 }
1409 m_freem(cm);
1410 }
1411 }
1412 if (m != NULL)
1413 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1414 else
1415 nextrecord = so->so_rcv.sb_mb;
1416 orig_resid = 0;
1417 }
1418
1419 /* If m is non-NULL, we have some data to read. */
1420 if (__predict_true(m != NULL)) {
1421 type = m->m_type;
1422 if (type == MT_OOBDATA)
1423 flags |= MSG_OOB;
1424 }
1425 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1426 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1427
1428 moff = 0;
1429 offset = 0;
1430 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1431 /*
1432 * If the type of mbuf has changed, end the receive
1433 * operation and do a short read.
1434 */
1435 if (m->m_type == MT_OOBDATA) {
1436 if (type != MT_OOBDATA)
1437 break;
1438 } else if (type == MT_OOBDATA) {
1439 break;
1440 } else if (m->m_type == MT_CONTROL) {
1441 break;
1442 }
1443 #ifdef DIAGNOSTIC
1444 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1445 panic("%s: m_type=%d", __func__, m->m_type);
1446 }
1447 #endif
1448
1449 so->so_state &= ~SS_RCVATMARK;
1450 wakeup_state = 0;
1451 len = uio->uio_resid;
1452 if (so->so_oobmark && len > so->so_oobmark - offset)
1453 len = so->so_oobmark - offset;
1454 if (len > m->m_len - moff)
1455 len = m->m_len - moff;
1456
1457 /*
1458 * If mp is set, just pass back the mbufs.
1459 * Otherwise copy them out via the uio, then free.
1460 * Sockbuf must be consistent here (points to current mbuf,
1461 * it points to next record) when we drop priority;
1462 * we must note any additions to the sockbuf when we
1463 * block interrupts again.
1464 */
1465 if (mp == NULL) {
1466 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1467 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1468 sounlock(so);
1469 splx(s);
1470 error = uiomove(mtod(m, char *) + moff, len, uio);
1471 s = splsoftnet();
1472 solock(so);
1473 if (error != 0) {
1474 /*
1475 * If any part of the record has been removed
1476 * (such as the MT_SONAME mbuf, which will
1477 * happen when PR_ADDR, and thus also
1478 * PR_ATOMIC, is set), then drop the entire
1479 * record to maintain the atomicity of the
1480 * receive operation.
1481 *
1482 * This avoids a later panic("receive 1a")
1483 * when compiled with DIAGNOSTIC.
1484 */
1485 if (m && mbuf_removed && atomic)
1486 (void) sbdroprecord(&so->so_rcv);
1487
1488 goto release;
1489 }
1490 } else {
1491 uio->uio_resid -= len;
1492 }
1493
1494 if (len == m->m_len - moff) {
1495 if (m->m_flags & M_EOR)
1496 flags |= MSG_EOR;
1497 #ifdef SCTP
1498 if (m->m_flags & M_NOTIFICATION)
1499 flags |= MSG_NOTIFICATION;
1500 #endif
1501 if (flags & MSG_PEEK) {
1502 m = m->m_next;
1503 moff = 0;
1504 } else {
1505 nextrecord = m->m_nextpkt;
1506 sbfree(&so->so_rcv, m);
1507 if (mp) {
1508 *mp = m;
1509 mp = &m->m_next;
1510 so->so_rcv.sb_mb = m = m->m_next;
1511 *mp = NULL;
1512 } else {
1513 m = so->so_rcv.sb_mb = m_free(m);
1514 }
1515 /*
1516 * If m != NULL, we also know that
1517 * so->so_rcv.sb_mb != NULL.
1518 */
1519 KASSERT(so->so_rcv.sb_mb == m);
1520 if (m) {
1521 m->m_nextpkt = nextrecord;
1522 if (nextrecord == NULL)
1523 so->so_rcv.sb_lastrecord = m;
1524 } else {
1525 so->so_rcv.sb_mb = nextrecord;
1526 SB_EMPTY_FIXUP(&so->so_rcv);
1527 }
1528 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1529 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1530 }
1531 } else if (flags & MSG_PEEK) {
1532 moff += len;
1533 } else {
1534 if (mp != NULL) {
1535 mt = m_copym(m, 0, len, M_NOWAIT);
1536 if (__predict_false(mt == NULL)) {
1537 sounlock(so);
1538 mt = m_copym(m, 0, len, M_WAIT);
1539 solock(so);
1540 }
1541 *mp = mt;
1542 }
1543 m->m_data += len;
1544 m->m_len -= len;
1545 so->so_rcv.sb_cc -= len;
1546 }
1547
1548 if (so->so_oobmark) {
1549 if ((flags & MSG_PEEK) == 0) {
1550 so->so_oobmark -= len;
1551 if (so->so_oobmark == 0) {
1552 so->so_state |= SS_RCVATMARK;
1553 break;
1554 }
1555 } else {
1556 offset += len;
1557 if (offset == so->so_oobmark)
1558 break;
1559 }
1560 }
1561 if (flags & MSG_EOR)
1562 break;
1563
1564 /*
1565 * If the MSG_WAITALL flag is set (for non-atomic socket),
1566 * we must not quit until "uio->uio_resid == 0" or an error
1567 * termination. If a signal/timeout occurs, return
1568 * with a short count but without error.
1569 * Keep sockbuf locked against other readers.
1570 */
1571 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1572 !sosendallatonce(so) && !nextrecord) {
1573 if (so->so_error || so->so_rerror ||
1574 so->so_state & SS_CANTRCVMORE)
1575 break;
1576 /*
1577 * If we are peeking and the socket receive buffer is
1578 * full, stop since we can't get more data to peek at.
1579 */
1580 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1581 break;
1582 /*
1583 * If we've drained the socket buffer, tell the
1584 * protocol in case it needs to do something to
1585 * get it filled again.
1586 */
1587 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1588 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1589 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1590 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1591 if (wakeup_state & SS_RESTARTSYS)
1592 error = ERESTART;
1593 else
1594 error = sbwait(&so->so_rcv);
1595 if (error != 0) {
1596 sbunlock(&so->so_rcv);
1597 sounlock(so);
1598 splx(s);
1599 return 0;
1600 }
1601 if ((m = so->so_rcv.sb_mb) != NULL)
1602 nextrecord = m->m_nextpkt;
1603 wakeup_state = so->so_state;
1604 }
1605 }
1606
1607 if (m && atomic) {
1608 flags |= MSG_TRUNC;
1609 if ((flags & MSG_PEEK) == 0)
1610 (void) sbdroprecord(&so->so_rcv);
1611 }
1612 if ((flags & MSG_PEEK) == 0) {
1613 if (m == NULL) {
1614 /*
1615 * First part is an inline SB_EMPTY_FIXUP(). Second
1616 * part makes sure sb_lastrecord is up-to-date if
1617 * there is still data in the socket buffer.
1618 */
1619 so->so_rcv.sb_mb = nextrecord;
1620 if (so->so_rcv.sb_mb == NULL) {
1621 so->so_rcv.sb_mbtail = NULL;
1622 so->so_rcv.sb_lastrecord = NULL;
1623 } else if (nextrecord->m_nextpkt == NULL)
1624 so->so_rcv.sb_lastrecord = nextrecord;
1625 }
1626 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1627 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1628 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1629 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1630 }
1631 if (orig_resid == uio->uio_resid && orig_resid &&
1632 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1633 sbunlock(&so->so_rcv);
1634 goto restart;
1635 }
1636
1637 if (flagsp != NULL)
1638 *flagsp |= flags;
1639 release:
1640 sbunlock(&so->so_rcv);
1641 sounlock(so);
1642 splx(s);
1643 return error;
1644 }
1645
1646 int
1647 soshutdown(struct socket *so, int how)
1648 {
1649 const struct protosw *pr;
1650 int error;
1651
1652 KASSERT(solocked(so));
1653
1654 pr = so->so_proto;
1655 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1656 return EINVAL;
1657
1658 if (how == SHUT_RD || how == SHUT_RDWR) {
1659 sorflush(so);
1660 error = 0;
1661 }
1662 if (how == SHUT_WR || how == SHUT_RDWR)
1663 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1664
1665 return error;
1666 }
1667
1668 void
1669 sorestart(struct socket *so)
1670 {
1671 /*
1672 * An application has called close() on an fd on which another
1673 * of its threads has called a socket system call.
1674 * Mark this and wake everyone up, and code that would block again
1675 * instead returns ERESTART.
1676 * On system call re-entry the fd is validated and EBADF returned.
1677 * Any other fd will block again on the 2nd syscall.
1678 */
1679 solock(so);
1680 so->so_state |= SS_RESTARTSYS;
1681 cv_broadcast(&so->so_cv);
1682 cv_broadcast(&so->so_snd.sb_cv);
1683 cv_broadcast(&so->so_rcv.sb_cv);
1684 sounlock(so);
1685 }
1686
1687 void
1688 sorflush(struct socket *so)
1689 {
1690 struct sockbuf *sb, asb;
1691 const struct protosw *pr;
1692
1693 KASSERT(solocked(so));
1694
1695 sb = &so->so_rcv;
1696 pr = so->so_proto;
1697 socantrcvmore(so);
1698 sb->sb_flags |= SB_NOINTR;
1699 (void )sblock(sb, M_WAITOK);
1700 sbunlock(sb);
1701 asb = *sb;
1702 /*
1703 * Clear most of the sockbuf structure, but leave some of the
1704 * fields valid.
1705 */
1706 memset(&sb->sb_startzero, 0,
1707 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1708 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1709 sounlock(so);
1710 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1711 solock(so);
1712 }
1713 sbrelease(&asb, so);
1714 }
1715
1716 /*
1717 * internal set SOL_SOCKET options
1718 */
1719 static int
1720 sosetopt1(struct socket *so, const struct sockopt *sopt)
1721 {
1722 int error, opt;
1723 int optval = 0; /* XXX: gcc */
1724 struct linger l;
1725 struct timeval tv;
1726
1727 opt = sopt->sopt_name;
1728
1729 switch (opt) {
1730
1731 case SO_ACCEPTFILTER:
1732 error = accept_filt_setopt(so, sopt);
1733 KASSERT(solocked(so));
1734 break;
1735
1736 case SO_LINGER:
1737 error = sockopt_get(sopt, &l, sizeof(l));
1738 solock(so);
1739 if (error)
1740 break;
1741 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1742 l.l_linger > (INT_MAX / hz)) {
1743 error = EDOM;
1744 break;
1745 }
1746 so->so_linger = l.l_linger;
1747 if (l.l_onoff)
1748 so->so_options |= SO_LINGER;
1749 else
1750 so->so_options &= ~SO_LINGER;
1751 break;
1752
1753 case SO_DEBUG:
1754 case SO_KEEPALIVE:
1755 case SO_DONTROUTE:
1756 case SO_USELOOPBACK:
1757 case SO_BROADCAST:
1758 case SO_REUSEADDR:
1759 case SO_REUSEPORT:
1760 case SO_OOBINLINE:
1761 case SO_TIMESTAMP:
1762 case SO_NOSIGPIPE:
1763 case SO_RERROR:
1764 error = sockopt_getint(sopt, &optval);
1765 solock(so);
1766 if (error)
1767 break;
1768 if (optval)
1769 so->so_options |= opt;
1770 else
1771 so->so_options &= ~opt;
1772 break;
1773
1774 case SO_SNDBUF:
1775 case SO_RCVBUF:
1776 case SO_SNDLOWAT:
1777 case SO_RCVLOWAT:
1778 error = sockopt_getint(sopt, &optval);
1779 solock(so);
1780 if (error)
1781 break;
1782
1783 /*
1784 * Values < 1 make no sense for any of these
1785 * options, so disallow them.
1786 */
1787 if (optval < 1) {
1788 error = EINVAL;
1789 break;
1790 }
1791
1792 switch (opt) {
1793 case SO_SNDBUF:
1794 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1795 error = ENOBUFS;
1796 break;
1797 }
1798 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1799 break;
1800
1801 case SO_RCVBUF:
1802 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1803 error = ENOBUFS;
1804 break;
1805 }
1806 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1807 break;
1808
1809 /*
1810 * Make sure the low-water is never greater than
1811 * the high-water.
1812 */
1813 case SO_SNDLOWAT:
1814 if (optval > so->so_snd.sb_hiwat)
1815 optval = so->so_snd.sb_hiwat;
1816
1817 so->so_snd.sb_lowat = optval;
1818 break;
1819
1820 case SO_RCVLOWAT:
1821 if (optval > so->so_rcv.sb_hiwat)
1822 optval = so->so_rcv.sb_hiwat;
1823
1824 so->so_rcv.sb_lowat = optval;
1825 break;
1826 }
1827 break;
1828
1829 case SO_SNDTIMEO:
1830 case SO_RCVTIMEO:
1831 solock(so);
1832 error = sockopt_get(sopt, &tv, sizeof(tv));
1833 if (error)
1834 break;
1835
1836 if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1837 error = EDOM;
1838 break;
1839 }
1840 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1841 error = EDOM;
1842 break;
1843 }
1844
1845 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1846 if (optval == 0 && tv.tv_usec != 0)
1847 optval = 1;
1848
1849 switch (opt) {
1850 case SO_SNDTIMEO:
1851 so->so_snd.sb_timeo = optval;
1852 break;
1853 case SO_RCVTIMEO:
1854 so->so_rcv.sb_timeo = optval;
1855 break;
1856 }
1857 break;
1858
1859 default:
1860 MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
1861 (opt, so, sopt), enosys(), error);
1862 if (error == ENOSYS || error == EPASSTHROUGH) {
1863 solock(so);
1864 error = ENOPROTOOPT;
1865 }
1866 break;
1867 }
1868 KASSERT(solocked(so));
1869 return error;
1870 }
1871
1872 int
1873 sosetopt(struct socket *so, struct sockopt *sopt)
1874 {
1875 int error, prerr;
1876
1877 if (sopt->sopt_level == SOL_SOCKET) {
1878 error = sosetopt1(so, sopt);
1879 KASSERT(solocked(so));
1880 } else {
1881 error = ENOPROTOOPT;
1882 solock(so);
1883 }
1884
1885 if ((error == 0 || error == ENOPROTOOPT) &&
1886 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1887 /* give the protocol stack a shot */
1888 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1889 if (prerr == 0)
1890 error = 0;
1891 else if (prerr != ENOPROTOOPT)
1892 error = prerr;
1893 }
1894 sounlock(so);
1895 return error;
1896 }
1897
1898 /*
1899 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1900 */
1901 int
1902 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1903 const void *val, size_t valsize)
1904 {
1905 struct sockopt sopt;
1906 int error;
1907
1908 KASSERT(valsize == 0 || val != NULL);
1909
1910 sockopt_init(&sopt, level, name, valsize);
1911 sockopt_set(&sopt, val, valsize);
1912
1913 error = sosetopt(so, &sopt);
1914
1915 sockopt_destroy(&sopt);
1916
1917 return error;
1918 }
1919
1920 /*
1921 * internal get SOL_SOCKET options
1922 */
1923 static int
1924 sogetopt1(struct socket *so, struct sockopt *sopt)
1925 {
1926 int error, optval, opt;
1927 struct linger l;
1928 struct timeval tv;
1929
1930 switch ((opt = sopt->sopt_name)) {
1931
1932 case SO_ACCEPTFILTER:
1933 error = accept_filt_getopt(so, sopt);
1934 break;
1935
1936 case SO_LINGER:
1937 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1938 l.l_linger = so->so_linger;
1939
1940 error = sockopt_set(sopt, &l, sizeof(l));
1941 break;
1942
1943 case SO_USELOOPBACK:
1944 case SO_DONTROUTE:
1945 case SO_DEBUG:
1946 case SO_KEEPALIVE:
1947 case SO_REUSEADDR:
1948 case SO_REUSEPORT:
1949 case SO_BROADCAST:
1950 case SO_OOBINLINE:
1951 case SO_TIMESTAMP:
1952 case SO_NOSIGPIPE:
1953 case SO_RERROR:
1954 case SO_ACCEPTCONN:
1955 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1956 break;
1957
1958 case SO_TYPE:
1959 error = sockopt_setint(sopt, so->so_type);
1960 break;
1961
1962 case SO_ERROR:
1963 if (so->so_error == 0) {
1964 so->so_error = so->so_rerror;
1965 so->so_rerror = 0;
1966 }
1967 error = sockopt_setint(sopt, so->so_error);
1968 so->so_error = 0;
1969 break;
1970
1971 case SO_SNDBUF:
1972 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1973 break;
1974
1975 case SO_RCVBUF:
1976 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1977 break;
1978
1979 case SO_SNDLOWAT:
1980 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1981 break;
1982
1983 case SO_RCVLOWAT:
1984 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1985 break;
1986
1987 case SO_SNDTIMEO:
1988 case SO_RCVTIMEO:
1989 optval = (opt == SO_SNDTIMEO ?
1990 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1991
1992 tv.tv_sec = optval / hz;
1993 tv.tv_usec = (optval % hz) * tick;
1994
1995 error = sockopt_set(sopt, &tv, sizeof(tv));
1996 break;
1997
1998 case SO_OVERFLOWED:
1999 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2000 break;
2001
2002 default:
2003 MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
2004 (opt, so, sopt), enosys(), error);
2005 if (error)
2006 error = ENOPROTOOPT;
2007 break;
2008 }
2009
2010 return error;
2011 }
2012
2013 int
2014 sogetopt(struct socket *so, struct sockopt *sopt)
2015 {
2016 int error;
2017
2018 solock(so);
2019 if (sopt->sopt_level != SOL_SOCKET) {
2020 if (so->so_proto && so->so_proto->pr_ctloutput) {
2021 error = ((*so->so_proto->pr_ctloutput)
2022 (PRCO_GETOPT, so, sopt));
2023 } else
2024 error = (ENOPROTOOPT);
2025 } else {
2026 error = sogetopt1(so, sopt);
2027 }
2028 sounlock(so);
2029 return error;
2030 }
2031
2032 /*
2033 * alloc sockopt data buffer buffer
2034 * - will be released at destroy
2035 */
2036 static int
2037 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2038 {
2039
2040 KASSERT(sopt->sopt_size == 0);
2041
2042 if (len > sizeof(sopt->sopt_buf)) {
2043 sopt->sopt_data = kmem_zalloc(len, kmflag);
2044 if (sopt->sopt_data == NULL)
2045 return ENOMEM;
2046 } else
2047 sopt->sopt_data = sopt->sopt_buf;
2048
2049 sopt->sopt_size = len;
2050 return 0;
2051 }
2052
2053 /*
2054 * initialise sockopt storage
2055 * - MAY sleep during allocation
2056 */
2057 void
2058 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2059 {
2060
2061 memset(sopt, 0, sizeof(*sopt));
2062
2063 sopt->sopt_level = level;
2064 sopt->sopt_name = name;
2065 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2066 }
2067
2068 /*
2069 * destroy sockopt storage
2070 * - will release any held memory references
2071 */
2072 void
2073 sockopt_destroy(struct sockopt *sopt)
2074 {
2075
2076 if (sopt->sopt_data != sopt->sopt_buf)
2077 kmem_free(sopt->sopt_data, sopt->sopt_size);
2078
2079 memset(sopt, 0, sizeof(*sopt));
2080 }
2081
2082 /*
2083 * set sockopt value
2084 * - value is copied into sockopt
2085 * - memory is allocated when necessary, will not sleep
2086 */
2087 int
2088 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2089 {
2090 int error;
2091
2092 if (sopt->sopt_size == 0) {
2093 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2094 if (error)
2095 return error;
2096 }
2097
2098 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2099 memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
2100
2101 return 0;
2102 }
2103
2104 /*
2105 * common case of set sockopt integer value
2106 */
2107 int
2108 sockopt_setint(struct sockopt *sopt, int val)
2109 {
2110
2111 return sockopt_set(sopt, &val, sizeof(int));
2112 }
2113
2114 /*
2115 * get sockopt value
2116 * - correct size must be given
2117 */
2118 int
2119 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2120 {
2121
2122 if (sopt->sopt_size != len)
2123 return EINVAL;
2124
2125 memcpy(buf, sopt->sopt_data, len);
2126 return 0;
2127 }
2128
2129 /*
2130 * common case of get sockopt integer value
2131 */
2132 int
2133 sockopt_getint(const struct sockopt *sopt, int *valp)
2134 {
2135
2136 return sockopt_get(sopt, valp, sizeof(int));
2137 }
2138
2139 /*
2140 * set sockopt value from mbuf
2141 * - ONLY for legacy code
2142 * - mbuf is released by sockopt
2143 * - will not sleep
2144 */
2145 int
2146 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2147 {
2148 size_t len;
2149 int error;
2150
2151 len = m_length(m);
2152
2153 if (sopt->sopt_size == 0) {
2154 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2155 if (error)
2156 return error;
2157 }
2158
2159 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2160 m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
2161 m_freem(m);
2162
2163 return 0;
2164 }
2165
2166 /*
2167 * get sockopt value into mbuf
2168 * - ONLY for legacy code
2169 * - mbuf to be released by the caller
2170 * - will not sleep
2171 */
2172 struct mbuf *
2173 sockopt_getmbuf(const struct sockopt *sopt)
2174 {
2175 struct mbuf *m;
2176
2177 if (sopt->sopt_size > MCLBYTES)
2178 return NULL;
2179
2180 m = m_get(M_DONTWAIT, MT_SOOPTS);
2181 if (m == NULL)
2182 return NULL;
2183
2184 if (sopt->sopt_size > MLEN) {
2185 MCLGET(m, M_DONTWAIT);
2186 if ((m->m_flags & M_EXT) == 0) {
2187 m_free(m);
2188 return NULL;
2189 }
2190 }
2191
2192 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2193 m->m_len = sopt->sopt_size;
2194
2195 return m;
2196 }
2197
2198 void
2199 sohasoutofband(struct socket *so)
2200 {
2201
2202 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2203 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2204 }
2205
2206 static void
2207 filt_sordetach(struct knote *kn)
2208 {
2209 struct socket *so;
2210
2211 so = ((file_t *)kn->kn_obj)->f_socket;
2212 solock(so);
2213 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2214 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2215 so->so_rcv.sb_flags &= ~SB_KNOTE;
2216 sounlock(so);
2217 }
2218
2219 /*ARGSUSED*/
2220 static int
2221 filt_soread(struct knote *kn, long hint)
2222 {
2223 struct socket *so;
2224 int rv;
2225
2226 so = ((file_t *)kn->kn_obj)->f_socket;
2227 if (hint != NOTE_SUBMIT)
2228 solock(so);
2229 kn->kn_data = so->so_rcv.sb_cc;
2230 if (so->so_state & SS_CANTRCVMORE) {
2231 kn->kn_flags |= EV_EOF;
2232 kn->kn_fflags = so->so_error;
2233 rv = 1;
2234 } else if (so->so_error || so->so_rerror)
2235 rv = 1;
2236 else if (kn->kn_sfflags & NOTE_LOWAT)
2237 rv = (kn->kn_data >= kn->kn_sdata);
2238 else
2239 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2240 if (hint != NOTE_SUBMIT)
2241 sounlock(so);
2242 return rv;
2243 }
2244
2245 static void
2246 filt_sowdetach(struct knote *kn)
2247 {
2248 struct socket *so;
2249
2250 so = ((file_t *)kn->kn_obj)->f_socket;
2251 solock(so);
2252 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2253 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2254 so->so_snd.sb_flags &= ~SB_KNOTE;
2255 sounlock(so);
2256 }
2257
2258 /*ARGSUSED*/
2259 static int
2260 filt_sowrite(struct knote *kn, long hint)
2261 {
2262 struct socket *so;
2263 int rv;
2264
2265 so = ((file_t *)kn->kn_obj)->f_socket;
2266 if (hint != NOTE_SUBMIT)
2267 solock(so);
2268 kn->kn_data = sbspace(&so->so_snd);
2269 if (so->so_state & SS_CANTSENDMORE) {
2270 kn->kn_flags |= EV_EOF;
2271 kn->kn_fflags = so->so_error;
2272 rv = 1;
2273 } else if (so->so_error)
2274 rv = 1;
2275 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2276 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2277 rv = 0;
2278 else if (kn->kn_sfflags & NOTE_LOWAT)
2279 rv = (kn->kn_data >= kn->kn_sdata);
2280 else
2281 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2282 if (hint != NOTE_SUBMIT)
2283 sounlock(so);
2284 return rv;
2285 }
2286
2287 /*ARGSUSED*/
2288 static int
2289 filt_solisten(struct knote *kn, long hint)
2290 {
2291 struct socket *so;
2292 int rv;
2293
2294 so = ((file_t *)kn->kn_obj)->f_socket;
2295
2296 /*
2297 * Set kn_data to number of incoming connections, not
2298 * counting partial (incomplete) connections.
2299 */
2300 if (hint != NOTE_SUBMIT)
2301 solock(so);
2302 kn->kn_data = so->so_qlen;
2303 rv = (kn->kn_data > 0);
2304 if (hint != NOTE_SUBMIT)
2305 sounlock(so);
2306 return rv;
2307 }
2308
2309 static const struct filterops solisten_filtops = {
2310 .f_isfd = 1,
2311 .f_attach = NULL,
2312 .f_detach = filt_sordetach,
2313 .f_event = filt_solisten,
2314 };
2315
2316 static const struct filterops soread_filtops = {
2317 .f_isfd = 1,
2318 .f_attach = NULL,
2319 .f_detach = filt_sordetach,
2320 .f_event = filt_soread,
2321 };
2322
2323 static const struct filterops sowrite_filtops = {
2324 .f_isfd = 1,
2325 .f_attach = NULL,
2326 .f_detach = filt_sowdetach,
2327 .f_event = filt_sowrite,
2328 };
2329
2330 int
2331 soo_kqfilter(struct file *fp, struct knote *kn)
2332 {
2333 struct socket *so;
2334 struct sockbuf *sb;
2335
2336 so = ((file_t *)kn->kn_obj)->f_socket;
2337 solock(so);
2338 switch (kn->kn_filter) {
2339 case EVFILT_READ:
2340 if (so->so_options & SO_ACCEPTCONN)
2341 kn->kn_fop = &solisten_filtops;
2342 else
2343 kn->kn_fop = &soread_filtops;
2344 sb = &so->so_rcv;
2345 break;
2346 case EVFILT_WRITE:
2347 kn->kn_fop = &sowrite_filtops;
2348 sb = &so->so_snd;
2349 break;
2350 default:
2351 sounlock(so);
2352 return EINVAL;
2353 }
2354 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2355 sb->sb_flags |= SB_KNOTE;
2356 sounlock(so);
2357 return 0;
2358 }
2359
2360 static int
2361 sodopoll(struct socket *so, int events)
2362 {
2363 int revents;
2364
2365 revents = 0;
2366
2367 if (events & (POLLIN | POLLRDNORM))
2368 if (soreadable(so))
2369 revents |= events & (POLLIN | POLLRDNORM);
2370
2371 if (events & (POLLOUT | POLLWRNORM))
2372 if (sowritable(so))
2373 revents |= events & (POLLOUT | POLLWRNORM);
2374
2375 if (events & (POLLPRI | POLLRDBAND))
2376 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2377 revents |= events & (POLLPRI | POLLRDBAND);
2378
2379 return revents;
2380 }
2381
2382 int
2383 sopoll(struct socket *so, int events)
2384 {
2385 int revents = 0;
2386
2387 #ifndef DIAGNOSTIC
2388 /*
2389 * Do a quick, unlocked check in expectation that the socket
2390 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2391 * as the solocked() assertions will fail.
2392 */
2393 if ((revents = sodopoll(so, events)) != 0)
2394 return revents;
2395 #endif
2396
2397 solock(so);
2398 if ((revents = sodopoll(so, events)) == 0) {
2399 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2400 selrecord(curlwp, &so->so_rcv.sb_sel);
2401 so->so_rcv.sb_flags |= SB_NOTIFY;
2402 }
2403
2404 if (events & (POLLOUT | POLLWRNORM)) {
2405 selrecord(curlwp, &so->so_snd.sb_sel);
2406 so->so_snd.sb_flags |= SB_NOTIFY;
2407 }
2408 }
2409 sounlock(so);
2410
2411 return revents;
2412 }
2413
2414 struct mbuf **
2415 sbsavetimestamp(int opt, struct mbuf **mp)
2416 {
2417 struct timeval tv;
2418 int error;
2419
2420 microtime(&tv);
2421
2422 MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, mp), enosys(), error);
2423 if (error == 0)
2424 return mp;
2425
2426 if (opt & SO_TIMESTAMP) {
2427 *mp = sbcreatecontrol(&tv, sizeof(tv),
2428 SCM_TIMESTAMP, SOL_SOCKET);
2429 if (*mp)
2430 mp = &(*mp)->m_next;
2431 }
2432 return mp;
2433 }
2434
2435
2436 #include <sys/sysctl.h>
2437
2438 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2439 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2440
2441 /*
2442 * sysctl helper routine for kern.somaxkva. ensures that the given
2443 * value is not too small.
2444 * (XXX should we maybe make sure it's not too large as well?)
2445 */
2446 static int
2447 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2448 {
2449 int error, new_somaxkva;
2450 struct sysctlnode node;
2451
2452 new_somaxkva = somaxkva;
2453 node = *rnode;
2454 node.sysctl_data = &new_somaxkva;
2455 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2456 if (error || newp == NULL)
2457 return error;
2458
2459 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2460 return EINVAL;
2461
2462 mutex_enter(&so_pendfree_lock);
2463 somaxkva = new_somaxkva;
2464 cv_broadcast(&socurkva_cv);
2465 mutex_exit(&so_pendfree_lock);
2466
2467 return error;
2468 }
2469
2470 /*
2471 * sysctl helper routine for kern.sbmax. Basically just ensures that
2472 * any new value is not too small.
2473 */
2474 static int
2475 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2476 {
2477 int error, new_sbmax;
2478 struct sysctlnode node;
2479
2480 new_sbmax = sb_max;
2481 node = *rnode;
2482 node.sysctl_data = &new_sbmax;
2483 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2484 if (error || newp == NULL)
2485 return error;
2486
2487 KERNEL_LOCK(1, NULL);
2488 error = sb_max_set(new_sbmax);
2489 KERNEL_UNLOCK_ONE(NULL);
2490
2491 return error;
2492 }
2493
2494 /*
2495 * sysctl helper routine for kern.sooptions. Ensures that only allowed
2496 * options can be set.
2497 */
2498 static int
2499 sysctl_kern_sooptions(SYSCTLFN_ARGS)
2500 {
2501 int error, new_options;
2502 struct sysctlnode node;
2503
2504 new_options = sooptions;
2505 node = *rnode;
2506 node.sysctl_data = &new_options;
2507 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2508 if (error || newp == NULL)
2509 return error;
2510
2511 if (new_options & ~SO_DEFOPTS)
2512 return EINVAL;
2513
2514 sooptions = new_options;
2515
2516 return 0;
2517 }
2518
2519 static void
2520 sysctl_kern_socket_setup(void)
2521 {
2522
2523 KASSERT(socket_sysctllog == NULL);
2524
2525 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2526 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2527 CTLTYPE_INT, "somaxkva",
2528 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2529 "used for socket buffers"),
2530 sysctl_kern_somaxkva, 0, NULL, 0,
2531 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2532
2533 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2534 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2535 CTLTYPE_INT, "sbmax",
2536 SYSCTL_DESCR("Maximum socket buffer size"),
2537 sysctl_kern_sbmax, 0, NULL, 0,
2538 CTL_KERN, KERN_SBMAX, CTL_EOL);
2539
2540 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2541 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2542 CTLTYPE_INT, "sooptions",
2543 SYSCTL_DESCR("Default socket options"),
2544 sysctl_kern_sooptions, 0, NULL, 0,
2545 CTL_KERN, CTL_CREATE, CTL_EOL);
2546 }
2547