uipc_socket.c revision 1.292 1 /* $NetBSD: uipc_socket.c,v 1.292 2020/10/17 09:06:15 mlelstv Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.292 2020/10/17 09:06:15 mlelstv Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #include "opt_sctp.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/file.h>
90 #include <sys/filedesc.h>
91 #include <sys/kmem.h>
92 #include <sys/mbuf.h>
93 #include <sys/domain.h>
94 #include <sys/kernel.h>
95 #include <sys/protosw.h>
96 #include <sys/socket.h>
97 #include <sys/socketvar.h>
98 #include <sys/signalvar.h>
99 #include <sys/resourcevar.h>
100 #include <sys/uidinfo.h>
101 #include <sys/event.h>
102 #include <sys/poll.h>
103 #include <sys/kauth.h>
104 #include <sys/mutex.h>
105 #include <sys/condvar.h>
106 #include <sys/kthread.h>
107 #include <sys/compat_stub.h>
108
109 #include <compat/sys/time.h>
110 #include <compat/sys/socket.h>
111
112 #include <uvm/uvm_extern.h>
113 #include <uvm/uvm_loan.h>
114 #include <uvm/uvm_page.h>
115
116 #ifdef SCTP
117 #include <netinet/sctp_route.h>
118 #endif
119
120 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
121
122 extern const struct fileops socketops;
123
124 static int sooptions;
125 extern int somaxconn; /* patchable (XXX sysctl) */
126 int somaxconn = SOMAXCONN;
127 kmutex_t *softnet_lock;
128
129 #ifdef SOSEND_COUNTERS
130 #include <sys/device.h>
131
132 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
133 NULL, "sosend", "loan big");
134 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
135 NULL, "sosend", "copy big");
136 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
137 NULL, "sosend", "copy small");
138 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
139 NULL, "sosend", "kva limit");
140
141 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
142
143 EVCNT_ATTACH_STATIC(sosend_loan_big);
144 EVCNT_ATTACH_STATIC(sosend_copy_big);
145 EVCNT_ATTACH_STATIC(sosend_copy_small);
146 EVCNT_ATTACH_STATIC(sosend_kvalimit);
147 #else
148
149 #define SOSEND_COUNTER_INCR(ev) /* nothing */
150
151 #endif /* SOSEND_COUNTERS */
152
153 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
154 int sock_loan_thresh = -1;
155 #else
156 int sock_loan_thresh = 4096;
157 #endif
158
159 static kmutex_t so_pendfree_lock;
160 static struct mbuf *so_pendfree = NULL;
161
162 #ifndef SOMAXKVA
163 #define SOMAXKVA (16 * 1024 * 1024)
164 #endif
165 int somaxkva = SOMAXKVA;
166 static int socurkva;
167 static kcondvar_t socurkva_cv;
168
169 #ifndef SOFIXEDBUF
170 #define SOFIXEDBUF true
171 #endif
172 bool sofixedbuf = SOFIXEDBUF;
173
174 static kauth_listener_t socket_listener;
175
176 #define SOCK_LOAN_CHUNK 65536
177
178 static void sopendfree_thread(void *);
179 static kcondvar_t pendfree_thread_cv;
180 static lwp_t *sopendfree_lwp;
181
182 static void sysctl_kern_socket_setup(void);
183 static struct sysctllog *socket_sysctllog;
184
185 static vsize_t
186 sokvareserve(struct socket *so, vsize_t len)
187 {
188 int error;
189
190 mutex_enter(&so_pendfree_lock);
191 while (socurkva + len > somaxkva) {
192 SOSEND_COUNTER_INCR(&sosend_kvalimit);
193 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
194 if (error) {
195 len = 0;
196 break;
197 }
198 }
199 socurkva += len;
200 mutex_exit(&so_pendfree_lock);
201 return len;
202 }
203
204 static void
205 sokvaunreserve(vsize_t len)
206 {
207
208 mutex_enter(&so_pendfree_lock);
209 socurkva -= len;
210 cv_broadcast(&socurkva_cv);
211 mutex_exit(&so_pendfree_lock);
212 }
213
214 /*
215 * sokvaalloc: allocate kva for loan.
216 */
217 vaddr_t
218 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
219 {
220 vaddr_t lva;
221
222 if (sokvareserve(so, len) == 0)
223 return 0;
224
225 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
226 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
227 if (lva == 0) {
228 sokvaunreserve(len);
229 return 0;
230 }
231
232 return lva;
233 }
234
235 /*
236 * sokvafree: free kva for loan.
237 */
238 void
239 sokvafree(vaddr_t sva, vsize_t len)
240 {
241
242 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
243 sokvaunreserve(len);
244 }
245
246 static void
247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
248 {
249 vaddr_t sva, eva;
250 vsize_t len;
251 int npgs;
252
253 KASSERT(pgs != NULL);
254
255 eva = round_page((vaddr_t) buf + size);
256 sva = trunc_page((vaddr_t) buf);
257 len = eva - sva;
258 npgs = len >> PAGE_SHIFT;
259
260 pmap_kremove(sva, len);
261 pmap_update(pmap_kernel());
262 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
263 sokvafree(sva, len);
264 }
265
266 /*
267 * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
268 * so_pendfree_lock when freeing mbufs.
269 */
270 static void
271 sopendfree_thread(void *v)
272 {
273 struct mbuf *m, *next;
274 size_t rv;
275
276 mutex_enter(&so_pendfree_lock);
277
278 for (;;) {
279 rv = 0;
280 while (so_pendfree != NULL) {
281 m = so_pendfree;
282 so_pendfree = NULL;
283 mutex_exit(&so_pendfree_lock);
284
285 for (; m != NULL; m = next) {
286 next = m->m_next;
287 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
288 0);
289 KASSERT(m->m_ext.ext_refcnt == 0);
290
291 rv += m->m_ext.ext_size;
292 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
293 m->m_ext.ext_size);
294 pool_cache_put(mb_cache, m);
295 }
296
297 mutex_enter(&so_pendfree_lock);
298 }
299 if (rv)
300 cv_broadcast(&socurkva_cv);
301 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
302 }
303 panic("sopendfree_thread");
304 /* NOTREACHED */
305 }
306
307 void
308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
309 {
310
311 KASSERT(m != NULL);
312
313 /*
314 * postpone freeing mbuf.
315 *
316 * we can't do it in interrupt context
317 * because we need to put kva back to kernel_map.
318 */
319
320 mutex_enter(&so_pendfree_lock);
321 m->m_next = so_pendfree;
322 so_pendfree = m;
323 cv_signal(&pendfree_thread_cv);
324 mutex_exit(&so_pendfree_lock);
325 }
326
327 static long
328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
329 {
330 struct iovec *iov = uio->uio_iov;
331 vaddr_t sva, eva;
332 vsize_t len;
333 vaddr_t lva;
334 int npgs, error;
335 vaddr_t va;
336 int i;
337
338 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
339 return 0;
340
341 if (iov->iov_len < (size_t) space)
342 space = iov->iov_len;
343 if (space > SOCK_LOAN_CHUNK)
344 space = SOCK_LOAN_CHUNK;
345
346 eva = round_page((vaddr_t) iov->iov_base + space);
347 sva = trunc_page((vaddr_t) iov->iov_base);
348 len = eva - sva;
349 npgs = len >> PAGE_SHIFT;
350
351 KASSERT(npgs <= M_EXT_MAXPAGES);
352
353 lva = sokvaalloc(sva, len, so);
354 if (lva == 0)
355 return 0;
356
357 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
358 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
359 if (error) {
360 sokvafree(lva, len);
361 return 0;
362 }
363
364 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
365 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
366 VM_PROT_READ, 0);
367 pmap_update(pmap_kernel());
368
369 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
370
371 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
372 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
373
374 uio->uio_resid -= space;
375 /* uio_offset not updated, not set/used for write(2) */
376 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
377 uio->uio_iov->iov_len -= space;
378 if (uio->uio_iov->iov_len == 0) {
379 uio->uio_iov++;
380 uio->uio_iovcnt--;
381 }
382
383 return space;
384 }
385
386 static int
387 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
388 void *arg0, void *arg1, void *arg2, void *arg3)
389 {
390 int result;
391 enum kauth_network_req req;
392
393 result = KAUTH_RESULT_DEFER;
394 req = (enum kauth_network_req)(uintptr_t)arg0;
395
396 if ((action != KAUTH_NETWORK_SOCKET) &&
397 (action != KAUTH_NETWORK_BIND))
398 return result;
399
400 switch (req) {
401 case KAUTH_REQ_NETWORK_BIND_PORT:
402 result = KAUTH_RESULT_ALLOW;
403 break;
404
405 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
406 /* Normal users can only drop their own connections. */
407 struct socket *so = (struct socket *)arg1;
408
409 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
410 result = KAUTH_RESULT_ALLOW;
411
412 break;
413 }
414
415 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
416 /* We allow "raw" routing/bluetooth sockets to anyone. */
417 switch ((u_long)arg1) {
418 case PF_ROUTE:
419 case PF_OROUTE:
420 case PF_BLUETOOTH:
421 case PF_CAN:
422 result = KAUTH_RESULT_ALLOW;
423 break;
424 default:
425 /* Privileged, let secmodel handle this. */
426 if ((u_long)arg2 == SOCK_RAW)
427 break;
428 result = KAUTH_RESULT_ALLOW;
429 break;
430 }
431 break;
432
433 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
434 result = KAUTH_RESULT_ALLOW;
435
436 break;
437
438 default:
439 break;
440 }
441
442 return result;
443 }
444
445 void
446 soinit(void)
447 {
448
449 sysctl_kern_socket_setup();
450
451 #ifdef SCTP
452 /* Update the SCTP function hooks if necessary*/
453
454 vec_sctp_add_ip_address = sctp_add_ip_address;
455 vec_sctp_delete_ip_address = sctp_delete_ip_address;
456 #endif
457
458 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
459 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
460 cv_init(&socurkva_cv, "sokva");
461 cv_init(&pendfree_thread_cv, "sopendfr");
462 soinit2();
463
464 /* Set the initial adjusted socket buffer size. */
465 if (sb_max_set(sb_max))
466 panic("bad initial sb_max value: %lu", sb_max);
467
468 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
469 socket_listener_cb, NULL);
470 }
471
472 void
473 soinit1(void)
474 {
475 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
476 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
477 if (error)
478 panic("soinit1 %d", error);
479 }
480
481 /*
482 * socreate: create a new socket of the specified type and the protocol.
483 *
484 * => Caller may specify another socket for lock sharing (must not be held).
485 * => Returns the new socket without lock held.
486 */
487 int
488 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
489 struct socket *lockso)
490 {
491 const struct protosw *prp;
492 struct socket *so;
493 uid_t uid;
494 int error;
495 kmutex_t *lock;
496
497 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
498 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
499 KAUTH_ARG(proto));
500 if (error != 0)
501 return error;
502
503 if (proto)
504 prp = pffindproto(dom, proto, type);
505 else
506 prp = pffindtype(dom, type);
507 if (prp == NULL) {
508 /* no support for domain */
509 if (pffinddomain(dom) == 0)
510 return EAFNOSUPPORT;
511 /* no support for socket type */
512 if (proto == 0 && type != 0)
513 return EPROTOTYPE;
514 return EPROTONOSUPPORT;
515 }
516 if (prp->pr_usrreqs == NULL)
517 return EPROTONOSUPPORT;
518 if (prp->pr_type != type)
519 return EPROTOTYPE;
520
521 so = soget(true);
522 so->so_type = type;
523 so->so_proto = prp;
524 so->so_send = sosend;
525 so->so_receive = soreceive;
526 so->so_options = sooptions;
527 #ifdef MBUFTRACE
528 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
529 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
530 so->so_mowner = &prp->pr_domain->dom_mowner;
531 #endif
532 uid = kauth_cred_geteuid(l->l_cred);
533 so->so_uidinfo = uid_find(uid);
534 so->so_egid = kauth_cred_getegid(l->l_cred);
535 so->so_cpid = l->l_proc->p_pid;
536
537 /*
538 * Lock assigned and taken during PCB attach, unless we share
539 * the lock with another socket, e.g. socketpair(2) case.
540 */
541 if (lockso) {
542 lock = lockso->so_lock;
543 so->so_lock = lock;
544 mutex_obj_hold(lock);
545 mutex_enter(lock);
546 }
547
548 /* Attach the PCB (returns with the socket lock held). */
549 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
550 KASSERT(solocked(so));
551
552 if (error) {
553 KASSERT(so->so_pcb == NULL);
554 so->so_state |= SS_NOFDREF;
555 sofree(so);
556 return error;
557 }
558 so->so_cred = kauth_cred_dup(l->l_cred);
559 sounlock(so);
560
561 *aso = so;
562 return 0;
563 }
564
565 /*
566 * fsocreate: create a socket and a file descriptor associated with it.
567 *
568 * => On success, write file descriptor to fdout and return zero.
569 * => On failure, return non-zero; *fdout will be undefined.
570 */
571 int
572 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
573 {
574 lwp_t *l = curlwp;
575 int error, fd, flags;
576 struct socket *so;
577 struct file *fp;
578
579 if ((error = fd_allocfile(&fp, &fd)) != 0) {
580 return error;
581 }
582 flags = type & SOCK_FLAGS_MASK;
583 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
584 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
585 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
586 fp->f_type = DTYPE_SOCKET;
587 fp->f_ops = &socketops;
588
589 type &= ~SOCK_FLAGS_MASK;
590 error = socreate(domain, &so, type, proto, l, NULL);
591 if (error) {
592 fd_abort(curproc, fp, fd);
593 return error;
594 }
595 if (flags & SOCK_NONBLOCK) {
596 so->so_state |= SS_NBIO;
597 }
598 fp->f_socket = so;
599 fd_affix(curproc, fp, fd);
600
601 if (sop != NULL) {
602 *sop = so;
603 }
604 *fdout = fd;
605 return error;
606 }
607
608 int
609 sofamily(const struct socket *so)
610 {
611 const struct protosw *pr;
612 const struct domain *dom;
613
614 if ((pr = so->so_proto) == NULL)
615 return AF_UNSPEC;
616 if ((dom = pr->pr_domain) == NULL)
617 return AF_UNSPEC;
618 return dom->dom_family;
619 }
620
621 int
622 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
623 {
624 int error;
625
626 solock(so);
627 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
628 sounlock(so);
629 return EAFNOSUPPORT;
630 }
631 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
632 sounlock(so);
633 return error;
634 }
635
636 int
637 solisten(struct socket *so, int backlog, struct lwp *l)
638 {
639 int error;
640 short oldopt, oldqlimit;
641
642 solock(so);
643 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
644 SS_ISDISCONNECTING)) != 0) {
645 sounlock(so);
646 return EINVAL;
647 }
648 oldopt = so->so_options;
649 oldqlimit = so->so_qlimit;
650 if (TAILQ_EMPTY(&so->so_q))
651 so->so_options |= SO_ACCEPTCONN;
652 if (backlog < 0)
653 backlog = 0;
654 so->so_qlimit = uimin(backlog, somaxconn);
655
656 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
657 if (error != 0) {
658 so->so_options = oldopt;
659 so->so_qlimit = oldqlimit;
660 sounlock(so);
661 return error;
662 }
663 sounlock(so);
664 return 0;
665 }
666
667 void
668 sofree(struct socket *so)
669 {
670 u_int refs;
671
672 KASSERT(solocked(so));
673
674 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
675 sounlock(so);
676 return;
677 }
678 if (so->so_head) {
679 /*
680 * We must not decommission a socket that's on the accept(2)
681 * queue. If we do, then accept(2) may hang after select(2)
682 * indicated that the listening socket was ready.
683 */
684 if (!soqremque(so, 0)) {
685 sounlock(so);
686 return;
687 }
688 }
689 if (so->so_rcv.sb_hiwat)
690 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
691 RLIM_INFINITY);
692 if (so->so_snd.sb_hiwat)
693 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
694 RLIM_INFINITY);
695 sbrelease(&so->so_snd, so);
696 KASSERT(!cv_has_waiters(&so->so_cv));
697 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
698 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
699 sorflush(so);
700 refs = so->so_aborting; /* XXX */
701 /* Remove acccept filter if one is present. */
702 if (so->so_accf != NULL)
703 (void)accept_filt_clear(so);
704 sounlock(so);
705 if (refs == 0) /* XXX */
706 soput(so);
707 }
708
709 /*
710 * soclose: close a socket on last file table reference removal.
711 * Initiate disconnect if connected. Free socket when disconnect complete.
712 */
713 int
714 soclose(struct socket *so)
715 {
716 struct socket *so2;
717 int error = 0;
718
719 solock(so);
720 if (so->so_options & SO_ACCEPTCONN) {
721 for (;;) {
722 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
723 KASSERT(solocked2(so, so2));
724 (void) soqremque(so2, 0);
725 /* soabort drops the lock. */
726 (void) soabort(so2);
727 solock(so);
728 continue;
729 }
730 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
731 KASSERT(solocked2(so, so2));
732 (void) soqremque(so2, 1);
733 /* soabort drops the lock. */
734 (void) soabort(so2);
735 solock(so);
736 continue;
737 }
738 break;
739 }
740 }
741 if (so->so_pcb == NULL)
742 goto discard;
743 if (so->so_state & SS_ISCONNECTED) {
744 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
745 error = sodisconnect(so);
746 if (error)
747 goto drop;
748 }
749 if (so->so_options & SO_LINGER) {
750 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
751 (SS_ISDISCONNECTING|SS_NBIO))
752 goto drop;
753 while (so->so_state & SS_ISCONNECTED) {
754 error = sowait(so, true, so->so_linger * hz);
755 if (error)
756 break;
757 }
758 }
759 }
760 drop:
761 if (so->so_pcb) {
762 KASSERT(solocked(so));
763 (*so->so_proto->pr_usrreqs->pr_detach)(so);
764 }
765 discard:
766 KASSERT((so->so_state & SS_NOFDREF) == 0);
767 kauth_cred_free(so->so_cred);
768 so->so_cred = NULL;
769 so->so_state |= SS_NOFDREF;
770 sofree(so);
771 return error;
772 }
773
774 /*
775 * Must be called with the socket locked.. Will return with it unlocked.
776 */
777 int
778 soabort(struct socket *so)
779 {
780 u_int refs;
781 int error;
782
783 KASSERT(solocked(so));
784 KASSERT(so->so_head == NULL);
785
786 so->so_aborting++; /* XXX */
787 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
788 refs = --so->so_aborting; /* XXX */
789 if (error || (refs == 0)) {
790 sofree(so);
791 } else {
792 sounlock(so);
793 }
794 return error;
795 }
796
797 int
798 soaccept(struct socket *so, struct sockaddr *nam)
799 {
800 int error;
801
802 KASSERT(solocked(so));
803 KASSERT((so->so_state & SS_NOFDREF) != 0);
804
805 so->so_state &= ~SS_NOFDREF;
806 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
807 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
808 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
809 else
810 error = ECONNABORTED;
811
812 return error;
813 }
814
815 int
816 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
817 {
818 int error;
819
820 KASSERT(solocked(so));
821
822 if (so->so_options & SO_ACCEPTCONN)
823 return EOPNOTSUPP;
824 /*
825 * If protocol is connection-based, can only connect once.
826 * Otherwise, if connected, try to disconnect first.
827 * This allows user to disconnect by connecting to, e.g.,
828 * a null address.
829 */
830 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
831 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
832 (error = sodisconnect(so)))) {
833 error = EISCONN;
834 } else {
835 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
836 return EAFNOSUPPORT;
837 }
838 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
839 }
840
841 return error;
842 }
843
844 int
845 soconnect2(struct socket *so1, struct socket *so2)
846 {
847 KASSERT(solocked2(so1, so2));
848
849 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
850 }
851
852 int
853 sodisconnect(struct socket *so)
854 {
855 int error;
856
857 KASSERT(solocked(so));
858
859 if ((so->so_state & SS_ISCONNECTED) == 0) {
860 error = ENOTCONN;
861 } else if (so->so_state & SS_ISDISCONNECTING) {
862 error = EALREADY;
863 } else {
864 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
865 }
866 return error;
867 }
868
869 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
870 /*
871 * Send on a socket.
872 * If send must go all at once and message is larger than
873 * send buffering, then hard error.
874 * Lock against other senders.
875 * If must go all at once and not enough room now, then
876 * inform user that this would block and do nothing.
877 * Otherwise, if nonblocking, send as much as possible.
878 * The data to be sent is described by "uio" if nonzero,
879 * otherwise by the mbuf chain "top" (which must be null
880 * if uio is not). Data provided in mbuf chain must be small
881 * enough to send all at once.
882 *
883 * Returns nonzero on error, timeout or signal; callers
884 * must check for short counts if EINTR/ERESTART are returned.
885 * Data and control buffers are freed on return.
886 */
887 int
888 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
889 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
890 {
891 struct mbuf **mp, *m;
892 long space, len, resid, clen, mlen;
893 int error, s, dontroute, atomic;
894 short wakeup_state = 0;
895
896 clen = 0;
897
898 /*
899 * solock() provides atomicity of access. splsoftnet() prevents
900 * protocol processing soft interrupts from interrupting us and
901 * blocking (expensive).
902 */
903 s = splsoftnet();
904 solock(so);
905 atomic = sosendallatonce(so) || top;
906 if (uio)
907 resid = uio->uio_resid;
908 else
909 resid = top->m_pkthdr.len;
910 /*
911 * In theory resid should be unsigned.
912 * However, space must be signed, as it might be less than 0
913 * if we over-committed, and we must use a signed comparison
914 * of space and resid. On the other hand, a negative resid
915 * causes us to loop sending 0-length segments to the protocol.
916 */
917 if (resid < 0) {
918 error = EINVAL;
919 goto out;
920 }
921 dontroute =
922 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
923 (so->so_proto->pr_flags & PR_ATOMIC);
924 l->l_ru.ru_msgsnd++;
925 if (control)
926 clen = control->m_len;
927 restart:
928 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
929 goto out;
930 do {
931 if (so->so_state & SS_CANTSENDMORE) {
932 error = EPIPE;
933 goto release;
934 }
935 if (so->so_error) {
936 error = so->so_error;
937 if ((flags & MSG_PEEK) == 0)
938 so->so_error = 0;
939 goto release;
940 }
941 if ((so->so_state & SS_ISCONNECTED) == 0) {
942 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
943 if (resid || clen == 0) {
944 error = ENOTCONN;
945 goto release;
946 }
947 } else if (addr == NULL) {
948 error = EDESTADDRREQ;
949 goto release;
950 }
951 }
952 space = sbspace(&so->so_snd);
953 if (flags & MSG_OOB)
954 space += 1024;
955 if ((atomic && resid > so->so_snd.sb_hiwat) ||
956 clen > so->so_snd.sb_hiwat) {
957 error = EMSGSIZE;
958 goto release;
959 }
960 if (space < resid + clen &&
961 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
962 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
963 error = EWOULDBLOCK;
964 goto release;
965 }
966 sbunlock(&so->so_snd);
967 if (wakeup_state & SS_RESTARTSYS) {
968 error = ERESTART;
969 goto out;
970 }
971 error = sbwait(&so->so_snd);
972 if (error)
973 goto out;
974 wakeup_state = so->so_state;
975 goto restart;
976 }
977 wakeup_state = 0;
978 mp = ⊤
979 space -= clen;
980 do {
981 if (uio == NULL) {
982 /*
983 * Data is prepackaged in "top".
984 */
985 resid = 0;
986 if (flags & MSG_EOR)
987 top->m_flags |= M_EOR;
988 } else do {
989 sounlock(so);
990 splx(s);
991 if (top == NULL) {
992 m = m_gethdr(M_WAIT, MT_DATA);
993 mlen = MHLEN;
994 m->m_pkthdr.len = 0;
995 m_reset_rcvif(m);
996 } else {
997 m = m_get(M_WAIT, MT_DATA);
998 mlen = MLEN;
999 }
1000 MCLAIM(m, so->so_snd.sb_mowner);
1001 if (sock_loan_thresh >= 0 &&
1002 uio->uio_iov->iov_len >= sock_loan_thresh &&
1003 space >= sock_loan_thresh &&
1004 (len = sosend_loan(so, uio, m,
1005 space)) != 0) {
1006 SOSEND_COUNTER_INCR(&sosend_loan_big);
1007 space -= len;
1008 goto have_data;
1009 }
1010 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1011 SOSEND_COUNTER_INCR(&sosend_copy_big);
1012 m_clget(m, M_DONTWAIT);
1013 if ((m->m_flags & M_EXT) == 0)
1014 goto nopages;
1015 mlen = MCLBYTES;
1016 if (atomic && top == 0) {
1017 len = lmin(MCLBYTES - max_hdr,
1018 resid);
1019 m->m_data += max_hdr;
1020 } else
1021 len = lmin(MCLBYTES, resid);
1022 space -= len;
1023 } else {
1024 nopages:
1025 SOSEND_COUNTER_INCR(&sosend_copy_small);
1026 len = lmin(lmin(mlen, resid), space);
1027 space -= len;
1028 /*
1029 * For datagram protocols, leave room
1030 * for protocol headers in first mbuf.
1031 */
1032 if (atomic && top == 0 && len < mlen)
1033 m_align(m, len);
1034 }
1035 error = uiomove(mtod(m, void *), (int)len, uio);
1036 have_data:
1037 resid = uio->uio_resid;
1038 m->m_len = len;
1039 *mp = m;
1040 top->m_pkthdr.len += len;
1041 s = splsoftnet();
1042 solock(so);
1043 if (error != 0)
1044 goto release;
1045 mp = &m->m_next;
1046 if (resid <= 0) {
1047 if (flags & MSG_EOR)
1048 top->m_flags |= M_EOR;
1049 break;
1050 }
1051 } while (space > 0 && atomic);
1052
1053 if (so->so_state & SS_CANTSENDMORE) {
1054 error = EPIPE;
1055 goto release;
1056 }
1057 if (dontroute)
1058 so->so_options |= SO_DONTROUTE;
1059 if (resid > 0)
1060 so->so_state |= SS_MORETOCOME;
1061 if (flags & MSG_OOB) {
1062 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1063 so, top, control);
1064 } else {
1065 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1066 top, addr, control, l);
1067 }
1068 if (dontroute)
1069 so->so_options &= ~SO_DONTROUTE;
1070 if (resid > 0)
1071 so->so_state &= ~SS_MORETOCOME;
1072 clen = 0;
1073 control = NULL;
1074 top = NULL;
1075 mp = ⊤
1076 if (error != 0)
1077 goto release;
1078 } while (resid && space > 0);
1079 } while (resid);
1080
1081 release:
1082 sbunlock(&so->so_snd);
1083 out:
1084 sounlock(so);
1085 splx(s);
1086 if (top)
1087 m_freem(top);
1088 if (control)
1089 m_freem(control);
1090 return error;
1091 }
1092
1093 /*
1094 * Following replacement or removal of the first mbuf on the first
1095 * mbuf chain of a socket buffer, push necessary state changes back
1096 * into the socket buffer so that other consumers see the values
1097 * consistently. 'nextrecord' is the caller's locally stored value of
1098 * the original value of sb->sb_mb->m_nextpkt which must be restored
1099 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1100 */
1101 static void
1102 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1103 {
1104
1105 KASSERT(solocked(sb->sb_so));
1106
1107 /*
1108 * First, update for the new value of nextrecord. If necessary,
1109 * make it the first record.
1110 */
1111 if (sb->sb_mb != NULL)
1112 sb->sb_mb->m_nextpkt = nextrecord;
1113 else
1114 sb->sb_mb = nextrecord;
1115
1116 /*
1117 * Now update any dependent socket buffer fields to reflect
1118 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1119 * the addition of a second clause that takes care of the
1120 * case where sb_mb has been updated, but remains the last
1121 * record.
1122 */
1123 if (sb->sb_mb == NULL) {
1124 sb->sb_mbtail = NULL;
1125 sb->sb_lastrecord = NULL;
1126 } else if (sb->sb_mb->m_nextpkt == NULL)
1127 sb->sb_lastrecord = sb->sb_mb;
1128 }
1129
1130 /*
1131 * Implement receive operations on a socket.
1132 *
1133 * We depend on the way that records are added to the sockbuf by sbappend*. In
1134 * particular, each record (mbufs linked through m_next) must begin with an
1135 * address if the protocol so specifies, followed by an optional mbuf or mbufs
1136 * containing ancillary data, and then zero or more mbufs of data.
1137 *
1138 * In order to avoid blocking network interrupts for the entire time here, we
1139 * splx() while doing the actual copy to user space. Although the sockbuf is
1140 * locked, new data may still be appended, and thus we must maintain
1141 * consistency of the sockbuf during that time.
1142 *
1143 * The caller may receive the data as a single mbuf chain by supplying an mbuf
1144 * **mp0 for use in returning the chain. The uio is then used only for the
1145 * count in uio_resid.
1146 */
1147 int
1148 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1149 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1150 {
1151 struct lwp *l = curlwp;
1152 struct mbuf *m, **mp, *mt;
1153 size_t len, offset, moff, orig_resid;
1154 int atomic, flags, error, s, type;
1155 const struct protosw *pr;
1156 struct mbuf *nextrecord;
1157 int mbuf_removed = 0;
1158 const struct domain *dom;
1159 short wakeup_state = 0;
1160
1161 pr = so->so_proto;
1162 atomic = pr->pr_flags & PR_ATOMIC;
1163 dom = pr->pr_domain;
1164 mp = mp0;
1165 type = 0;
1166 orig_resid = uio->uio_resid;
1167
1168 if (paddr != NULL)
1169 *paddr = NULL;
1170 if (controlp != NULL)
1171 *controlp = NULL;
1172 if (flagsp != NULL)
1173 flags = *flagsp &~ MSG_EOR;
1174 else
1175 flags = 0;
1176
1177 if (flags & MSG_OOB) {
1178 m = m_get(M_WAIT, MT_DATA);
1179 solock(so);
1180 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1181 sounlock(so);
1182 if (error)
1183 goto bad;
1184 do {
1185 error = uiomove(mtod(m, void *),
1186 MIN(uio->uio_resid, m->m_len), uio);
1187 m = m_free(m);
1188 } while (uio->uio_resid > 0 && error == 0 && m);
1189 /* We consumed the oob data, no more oobmark. */
1190 so->so_oobmark = 0;
1191 so->so_state &= ~SS_RCVATMARK;
1192 bad:
1193 if (m != NULL)
1194 m_freem(m);
1195 return error;
1196 }
1197 if (mp != NULL)
1198 *mp = NULL;
1199
1200 /*
1201 * solock() provides atomicity of access. splsoftnet() prevents
1202 * protocol processing soft interrupts from interrupting us and
1203 * blocking (expensive).
1204 */
1205 s = splsoftnet();
1206 solock(so);
1207 restart:
1208 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1209 sounlock(so);
1210 splx(s);
1211 return error;
1212 }
1213 m = so->so_rcv.sb_mb;
1214
1215 /*
1216 * If we have less data than requested, block awaiting more
1217 * (subject to any timeout) if:
1218 * 1. the current count is less than the low water mark,
1219 * 2. MSG_WAITALL is set, and it is possible to do the entire
1220 * receive operation at once if we block (resid <= hiwat), or
1221 * 3. MSG_DONTWAIT is not set.
1222 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1223 * we have to do the receive in sections, and thus risk returning
1224 * a short count if a timeout or signal occurs after we start.
1225 */
1226 if (m == NULL ||
1227 ((flags & MSG_DONTWAIT) == 0 &&
1228 so->so_rcv.sb_cc < uio->uio_resid &&
1229 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1230 ((flags & MSG_WAITALL) &&
1231 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1232 m->m_nextpkt == NULL && !atomic)) {
1233 #ifdef DIAGNOSTIC
1234 if (m == NULL && so->so_rcv.sb_cc)
1235 panic("receive 1");
1236 #endif
1237 if (so->so_error || so->so_rerror) {
1238 u_short *e;
1239 if (m != NULL)
1240 goto dontblock;
1241 e = so->so_error ? &so->so_error : &so->so_rerror;
1242 error = *e;
1243 if ((flags & MSG_PEEK) == 0)
1244 *e = 0;
1245 goto release;
1246 }
1247 if (so->so_state & SS_CANTRCVMORE) {
1248 if (m != NULL)
1249 goto dontblock;
1250 else
1251 goto release;
1252 }
1253 for (; m != NULL; m = m->m_next)
1254 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1255 m = so->so_rcv.sb_mb;
1256 goto dontblock;
1257 }
1258 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1259 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1260 error = ENOTCONN;
1261 goto release;
1262 }
1263 if (uio->uio_resid == 0)
1264 goto release;
1265 if ((so->so_state & SS_NBIO) ||
1266 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1267 error = EWOULDBLOCK;
1268 goto release;
1269 }
1270 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1271 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1272 sbunlock(&so->so_rcv);
1273 if (wakeup_state & SS_RESTARTSYS)
1274 error = ERESTART;
1275 else
1276 error = sbwait(&so->so_rcv);
1277 if (error != 0) {
1278 sounlock(so);
1279 splx(s);
1280 return error;
1281 }
1282 wakeup_state = so->so_state;
1283 goto restart;
1284 }
1285
1286 dontblock:
1287 /*
1288 * On entry here, m points to the first record of the socket buffer.
1289 * From this point onward, we maintain 'nextrecord' as a cache of the
1290 * pointer to the next record in the socket buffer. We must keep the
1291 * various socket buffer pointers and local stack versions of the
1292 * pointers in sync, pushing out modifications before dropping the
1293 * socket lock, and re-reading them when picking it up.
1294 *
1295 * Otherwise, we will race with the network stack appending new data
1296 * or records onto the socket buffer by using inconsistent/stale
1297 * versions of the field, possibly resulting in socket buffer
1298 * corruption.
1299 *
1300 * By holding the high-level sblock(), we prevent simultaneous
1301 * readers from pulling off the front of the socket buffer.
1302 */
1303 if (l != NULL)
1304 l->l_ru.ru_msgrcv++;
1305 KASSERT(m == so->so_rcv.sb_mb);
1306 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1307 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1308 nextrecord = m->m_nextpkt;
1309
1310 if (pr->pr_flags & PR_ADDR) {
1311 KASSERT(m->m_type == MT_SONAME);
1312 orig_resid = 0;
1313 if (flags & MSG_PEEK) {
1314 if (paddr)
1315 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1316 m = m->m_next;
1317 } else {
1318 sbfree(&so->so_rcv, m);
1319 mbuf_removed = 1;
1320 if (paddr != NULL) {
1321 *paddr = m;
1322 so->so_rcv.sb_mb = m->m_next;
1323 m->m_next = NULL;
1324 m = so->so_rcv.sb_mb;
1325 } else {
1326 m = so->so_rcv.sb_mb = m_free(m);
1327 }
1328 sbsync(&so->so_rcv, nextrecord);
1329 }
1330 }
1331
1332 if (pr->pr_flags & PR_ADDR_OPT) {
1333 /*
1334 * For SCTP we may be getting a whole message OR a partial
1335 * delivery.
1336 */
1337 if (m->m_type == MT_SONAME) {
1338 orig_resid = 0;
1339 if (flags & MSG_PEEK) {
1340 if (paddr)
1341 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1342 m = m->m_next;
1343 } else {
1344 sbfree(&so->so_rcv, m);
1345 mbuf_removed = 1;
1346 if (paddr) {
1347 *paddr = m;
1348 so->so_rcv.sb_mb = m->m_next;
1349 m->m_next = 0;
1350 m = so->so_rcv.sb_mb;
1351 } else {
1352 m = so->so_rcv.sb_mb = m_free(m);
1353 }
1354 sbsync(&so->so_rcv, nextrecord);
1355 }
1356 }
1357 }
1358
1359 /*
1360 * Process one or more MT_CONTROL mbufs present before any data mbufs
1361 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1362 * just copy the data; if !MSG_PEEK, we call into the protocol to
1363 * perform externalization (or freeing if controlp == NULL).
1364 */
1365 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1366 struct mbuf *cm = NULL, *cmn;
1367 struct mbuf **cme = &cm;
1368
1369 do {
1370 if (flags & MSG_PEEK) {
1371 if (controlp != NULL) {
1372 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1373 controlp = &(*controlp)->m_next;
1374 }
1375 m = m->m_next;
1376 } else {
1377 sbfree(&so->so_rcv, m);
1378 so->so_rcv.sb_mb = m->m_next;
1379 m->m_next = NULL;
1380 *cme = m;
1381 cme = &(*cme)->m_next;
1382 m = so->so_rcv.sb_mb;
1383 }
1384 } while (m != NULL && m->m_type == MT_CONTROL);
1385 if ((flags & MSG_PEEK) == 0)
1386 sbsync(&so->so_rcv, nextrecord);
1387
1388 for (; cm != NULL; cm = cmn) {
1389 cmn = cm->m_next;
1390 cm->m_next = NULL;
1391 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1392 if (controlp != NULL) {
1393 if (dom->dom_externalize != NULL &&
1394 type == SCM_RIGHTS) {
1395 sounlock(so);
1396 splx(s);
1397 error = (*dom->dom_externalize)(cm, l,
1398 (flags & MSG_CMSG_CLOEXEC) ?
1399 O_CLOEXEC : 0);
1400 s = splsoftnet();
1401 solock(so);
1402 }
1403 *controlp = cm;
1404 while (*controlp != NULL)
1405 controlp = &(*controlp)->m_next;
1406 } else {
1407 /*
1408 * Dispose of any SCM_RIGHTS message that went
1409 * through the read path rather than recv.
1410 */
1411 if (dom->dom_dispose != NULL &&
1412 type == SCM_RIGHTS) {
1413 sounlock(so);
1414 (*dom->dom_dispose)(cm);
1415 solock(so);
1416 }
1417 m_freem(cm);
1418 }
1419 }
1420 if (m != NULL)
1421 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1422 else
1423 nextrecord = so->so_rcv.sb_mb;
1424 orig_resid = 0;
1425 }
1426
1427 /* If m is non-NULL, we have some data to read. */
1428 if (__predict_true(m != NULL)) {
1429 type = m->m_type;
1430 if (type == MT_OOBDATA)
1431 flags |= MSG_OOB;
1432 }
1433 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1434 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1435
1436 moff = 0;
1437 offset = 0;
1438 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1439 /*
1440 * If the type of mbuf has changed, end the receive
1441 * operation and do a short read.
1442 */
1443 if (m->m_type == MT_OOBDATA) {
1444 if (type != MT_OOBDATA)
1445 break;
1446 } else if (type == MT_OOBDATA) {
1447 break;
1448 } else if (m->m_type == MT_CONTROL) {
1449 break;
1450 }
1451 #ifdef DIAGNOSTIC
1452 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1453 panic("%s: m_type=%d", __func__, m->m_type);
1454 }
1455 #endif
1456
1457 so->so_state &= ~SS_RCVATMARK;
1458 wakeup_state = 0;
1459 len = uio->uio_resid;
1460 if (so->so_oobmark && len > so->so_oobmark - offset)
1461 len = so->so_oobmark - offset;
1462 if (len > m->m_len - moff)
1463 len = m->m_len - moff;
1464
1465 /*
1466 * If mp is set, just pass back the mbufs.
1467 * Otherwise copy them out via the uio, then free.
1468 * Sockbuf must be consistent here (points to current mbuf,
1469 * it points to next record) when we drop priority;
1470 * we must note any additions to the sockbuf when we
1471 * block interrupts again.
1472 */
1473 if (mp == NULL) {
1474 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1475 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1476 sounlock(so);
1477 splx(s);
1478 error = uiomove(mtod(m, char *) + moff, len, uio);
1479 s = splsoftnet();
1480 solock(so);
1481 if (error != 0) {
1482 /*
1483 * If any part of the record has been removed
1484 * (such as the MT_SONAME mbuf, which will
1485 * happen when PR_ADDR, and thus also
1486 * PR_ATOMIC, is set), then drop the entire
1487 * record to maintain the atomicity of the
1488 * receive operation.
1489 *
1490 * This avoids a later panic("receive 1a")
1491 * when compiled with DIAGNOSTIC.
1492 */
1493 if (m && mbuf_removed && atomic)
1494 (void) sbdroprecord(&so->so_rcv);
1495
1496 goto release;
1497 }
1498 } else {
1499 uio->uio_resid -= len;
1500 }
1501
1502 if (len == m->m_len - moff) {
1503 if (m->m_flags & M_EOR)
1504 flags |= MSG_EOR;
1505 #ifdef SCTP
1506 if (m->m_flags & M_NOTIFICATION)
1507 flags |= MSG_NOTIFICATION;
1508 #endif
1509 if (flags & MSG_PEEK) {
1510 m = m->m_next;
1511 moff = 0;
1512 } else {
1513 nextrecord = m->m_nextpkt;
1514 sbfree(&so->so_rcv, m);
1515 if (mp) {
1516 *mp = m;
1517 mp = &m->m_next;
1518 so->so_rcv.sb_mb = m = m->m_next;
1519 *mp = NULL;
1520 } else {
1521 m = so->so_rcv.sb_mb = m_free(m);
1522 }
1523 /*
1524 * If m != NULL, we also know that
1525 * so->so_rcv.sb_mb != NULL.
1526 */
1527 KASSERT(so->so_rcv.sb_mb == m);
1528 if (m) {
1529 m->m_nextpkt = nextrecord;
1530 if (nextrecord == NULL)
1531 so->so_rcv.sb_lastrecord = m;
1532 } else {
1533 so->so_rcv.sb_mb = nextrecord;
1534 SB_EMPTY_FIXUP(&so->so_rcv);
1535 }
1536 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1537 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1538 }
1539 } else if (flags & MSG_PEEK) {
1540 moff += len;
1541 } else {
1542 if (mp != NULL) {
1543 mt = m_copym(m, 0, len, M_NOWAIT);
1544 if (__predict_false(mt == NULL)) {
1545 sounlock(so);
1546 mt = m_copym(m, 0, len, M_WAIT);
1547 solock(so);
1548 }
1549 *mp = mt;
1550 }
1551 m->m_data += len;
1552 m->m_len -= len;
1553 so->so_rcv.sb_cc -= len;
1554 }
1555
1556 if (so->so_oobmark) {
1557 if ((flags & MSG_PEEK) == 0) {
1558 so->so_oobmark -= len;
1559 if (so->so_oobmark == 0) {
1560 so->so_state |= SS_RCVATMARK;
1561 break;
1562 }
1563 } else {
1564 offset += len;
1565 if (offset == so->so_oobmark)
1566 break;
1567 }
1568 }
1569 if (flags & MSG_EOR)
1570 break;
1571
1572 /*
1573 * If the MSG_WAITALL flag is set (for non-atomic socket),
1574 * we must not quit until "uio->uio_resid == 0" or an error
1575 * termination. If a signal/timeout occurs, return
1576 * with a short count but without error.
1577 * Keep sockbuf locked against other readers.
1578 */
1579 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1580 !sosendallatonce(so) && !nextrecord) {
1581 if (so->so_error || so->so_rerror ||
1582 so->so_state & SS_CANTRCVMORE)
1583 break;
1584 /*
1585 * If we are peeking and the socket receive buffer is
1586 * full, stop since we can't get more data to peek at.
1587 */
1588 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1589 break;
1590 /*
1591 * If we've drained the socket buffer, tell the
1592 * protocol in case it needs to do something to
1593 * get it filled again.
1594 */
1595 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1596 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1597 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1598 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1599 if (wakeup_state & SS_RESTARTSYS)
1600 error = ERESTART;
1601 else
1602 error = sbwait(&so->so_rcv);
1603 if (error != 0) {
1604 sbunlock(&so->so_rcv);
1605 sounlock(so);
1606 splx(s);
1607 return 0;
1608 }
1609 if ((m = so->so_rcv.sb_mb) != NULL)
1610 nextrecord = m->m_nextpkt;
1611 wakeup_state = so->so_state;
1612 }
1613 }
1614
1615 if (m && atomic) {
1616 flags |= MSG_TRUNC;
1617 if ((flags & MSG_PEEK) == 0)
1618 (void) sbdroprecord(&so->so_rcv);
1619 }
1620 if ((flags & MSG_PEEK) == 0) {
1621 if (m == NULL) {
1622 /*
1623 * First part is an inline SB_EMPTY_FIXUP(). Second
1624 * part makes sure sb_lastrecord is up-to-date if
1625 * there is still data in the socket buffer.
1626 */
1627 so->so_rcv.sb_mb = nextrecord;
1628 if (so->so_rcv.sb_mb == NULL) {
1629 so->so_rcv.sb_mbtail = NULL;
1630 so->so_rcv.sb_lastrecord = NULL;
1631 } else if (nextrecord->m_nextpkt == NULL)
1632 so->so_rcv.sb_lastrecord = nextrecord;
1633 }
1634 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1635 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1636 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1637 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1638 }
1639 if (orig_resid == uio->uio_resid && orig_resid &&
1640 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1641 sbunlock(&so->so_rcv);
1642 goto restart;
1643 }
1644
1645 if (flagsp != NULL)
1646 *flagsp |= flags;
1647 release:
1648 sbunlock(&so->so_rcv);
1649 sounlock(so);
1650 splx(s);
1651 return error;
1652 }
1653
1654 int
1655 soshutdown(struct socket *so, int how)
1656 {
1657 const struct protosw *pr;
1658 int error;
1659
1660 KASSERT(solocked(so));
1661
1662 pr = so->so_proto;
1663 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1664 return EINVAL;
1665
1666 if (how == SHUT_RD || how == SHUT_RDWR) {
1667 sorflush(so);
1668 error = 0;
1669 }
1670 if (how == SHUT_WR || how == SHUT_RDWR)
1671 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1672
1673 return error;
1674 }
1675
1676 void
1677 sorestart(struct socket *so)
1678 {
1679 /*
1680 * An application has called close() on an fd on which another
1681 * of its threads has called a socket system call.
1682 * Mark this and wake everyone up, and code that would block again
1683 * instead returns ERESTART.
1684 * On system call re-entry the fd is validated and EBADF returned.
1685 * Any other fd will block again on the 2nd syscall.
1686 */
1687 solock(so);
1688 so->so_state |= SS_RESTARTSYS;
1689 cv_broadcast(&so->so_cv);
1690 cv_broadcast(&so->so_snd.sb_cv);
1691 cv_broadcast(&so->so_rcv.sb_cv);
1692 sounlock(so);
1693 }
1694
1695 void
1696 sorflush(struct socket *so)
1697 {
1698 struct sockbuf *sb, asb;
1699 const struct protosw *pr;
1700
1701 KASSERT(solocked(so));
1702
1703 sb = &so->so_rcv;
1704 pr = so->so_proto;
1705 socantrcvmore(so);
1706 sb->sb_flags |= SB_NOINTR;
1707 (void )sblock(sb, M_WAITOK);
1708 sbunlock(sb);
1709 asb = *sb;
1710 /*
1711 * Clear most of the sockbuf structure, but leave some of the
1712 * fields valid.
1713 */
1714 memset(&sb->sb_startzero, 0,
1715 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1716 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1717 sounlock(so);
1718 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1719 solock(so);
1720 }
1721 sbrelease(&asb, so);
1722 }
1723
1724 /*
1725 * internal set SOL_SOCKET options
1726 */
1727 static int
1728 sosetopt1(struct socket *so, const struct sockopt *sopt)
1729 {
1730 int error, opt;
1731 int optval = 0; /* XXX: gcc */
1732 struct linger l;
1733 struct timeval tv;
1734
1735 opt = sopt->sopt_name;
1736
1737 switch (opt) {
1738
1739 case SO_ACCEPTFILTER:
1740 error = accept_filt_setopt(so, sopt);
1741 KASSERT(solocked(so));
1742 break;
1743
1744 case SO_LINGER:
1745 error = sockopt_get(sopt, &l, sizeof(l));
1746 solock(so);
1747 if (error)
1748 break;
1749 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1750 l.l_linger > (INT_MAX / hz)) {
1751 error = EDOM;
1752 break;
1753 }
1754 so->so_linger = l.l_linger;
1755 if (l.l_onoff)
1756 so->so_options |= SO_LINGER;
1757 else
1758 so->so_options &= ~SO_LINGER;
1759 break;
1760
1761 case SO_DEBUG:
1762 case SO_KEEPALIVE:
1763 case SO_DONTROUTE:
1764 case SO_USELOOPBACK:
1765 case SO_BROADCAST:
1766 case SO_REUSEADDR:
1767 case SO_REUSEPORT:
1768 case SO_OOBINLINE:
1769 case SO_TIMESTAMP:
1770 case SO_NOSIGPIPE:
1771 case SO_RERROR:
1772 error = sockopt_getint(sopt, &optval);
1773 solock(so);
1774 if (error)
1775 break;
1776 if (optval)
1777 so->so_options |= opt;
1778 else
1779 so->so_options &= ~opt;
1780 break;
1781
1782 case SO_SNDBUF:
1783 case SO_RCVBUF:
1784 case SO_SNDLOWAT:
1785 case SO_RCVLOWAT:
1786 error = sockopt_getint(sopt, &optval);
1787 solock(so);
1788 if (error)
1789 break;
1790
1791 /*
1792 * Values < 1 make no sense for any of these
1793 * options, so disallow them.
1794 */
1795 if (optval < 1) {
1796 error = EINVAL;
1797 break;
1798 }
1799
1800 switch (opt) {
1801 case SO_SNDBUF:
1802 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1803 error = ENOBUFS;
1804 break;
1805 }
1806 if (sofixedbuf)
1807 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1808 break;
1809
1810 case SO_RCVBUF:
1811 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1812 error = ENOBUFS;
1813 break;
1814 }
1815 if (sofixedbuf)
1816 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1817 break;
1818
1819 /*
1820 * Make sure the low-water is never greater than
1821 * the high-water.
1822 */
1823 case SO_SNDLOWAT:
1824 if (optval > so->so_snd.sb_hiwat)
1825 optval = so->so_snd.sb_hiwat;
1826
1827 so->so_snd.sb_lowat = optval;
1828 break;
1829
1830 case SO_RCVLOWAT:
1831 if (optval > so->so_rcv.sb_hiwat)
1832 optval = so->so_rcv.sb_hiwat;
1833
1834 so->so_rcv.sb_lowat = optval;
1835 break;
1836 }
1837 break;
1838
1839 case SO_SNDTIMEO:
1840 case SO_RCVTIMEO:
1841 solock(so);
1842 error = sockopt_get(sopt, &tv, sizeof(tv));
1843 if (error)
1844 break;
1845
1846 if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1847 error = EDOM;
1848 break;
1849 }
1850 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1851 error = EDOM;
1852 break;
1853 }
1854
1855 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1856 if (optval == 0 && tv.tv_usec != 0)
1857 optval = 1;
1858
1859 switch (opt) {
1860 case SO_SNDTIMEO:
1861 so->so_snd.sb_timeo = optval;
1862 break;
1863 case SO_RCVTIMEO:
1864 so->so_rcv.sb_timeo = optval;
1865 break;
1866 }
1867 break;
1868
1869 default:
1870 MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
1871 (opt, so, sopt), enosys(), error);
1872 if (error == ENOSYS || error == EPASSTHROUGH) {
1873 solock(so);
1874 error = ENOPROTOOPT;
1875 }
1876 break;
1877 }
1878 KASSERT(solocked(so));
1879 return error;
1880 }
1881
1882 int
1883 sosetopt(struct socket *so, struct sockopt *sopt)
1884 {
1885 int error, prerr;
1886
1887 if (sopt->sopt_level == SOL_SOCKET) {
1888 error = sosetopt1(so, sopt);
1889 KASSERT(solocked(so));
1890 } else {
1891 error = ENOPROTOOPT;
1892 solock(so);
1893 }
1894
1895 if ((error == 0 || error == ENOPROTOOPT) &&
1896 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1897 /* give the protocol stack a shot */
1898 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1899 if (prerr == 0)
1900 error = 0;
1901 else if (prerr != ENOPROTOOPT)
1902 error = prerr;
1903 }
1904 sounlock(so);
1905 return error;
1906 }
1907
1908 /*
1909 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1910 */
1911 int
1912 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1913 const void *val, size_t valsize)
1914 {
1915 struct sockopt sopt;
1916 int error;
1917
1918 KASSERT(valsize == 0 || val != NULL);
1919
1920 sockopt_init(&sopt, level, name, valsize);
1921 sockopt_set(&sopt, val, valsize);
1922
1923 error = sosetopt(so, &sopt);
1924
1925 sockopt_destroy(&sopt);
1926
1927 return error;
1928 }
1929
1930 /*
1931 * internal get SOL_SOCKET options
1932 */
1933 static int
1934 sogetopt1(struct socket *so, struct sockopt *sopt)
1935 {
1936 int error, optval, opt;
1937 struct linger l;
1938 struct timeval tv;
1939
1940 switch ((opt = sopt->sopt_name)) {
1941
1942 case SO_ACCEPTFILTER:
1943 error = accept_filt_getopt(so, sopt);
1944 break;
1945
1946 case SO_LINGER:
1947 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1948 l.l_linger = so->so_linger;
1949
1950 error = sockopt_set(sopt, &l, sizeof(l));
1951 break;
1952
1953 case SO_USELOOPBACK:
1954 case SO_DONTROUTE:
1955 case SO_DEBUG:
1956 case SO_KEEPALIVE:
1957 case SO_REUSEADDR:
1958 case SO_REUSEPORT:
1959 case SO_BROADCAST:
1960 case SO_OOBINLINE:
1961 case SO_TIMESTAMP:
1962 case SO_NOSIGPIPE:
1963 case SO_RERROR:
1964 case SO_ACCEPTCONN:
1965 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1966 break;
1967
1968 case SO_TYPE:
1969 error = sockopt_setint(sopt, so->so_type);
1970 break;
1971
1972 case SO_ERROR:
1973 if (so->so_error == 0) {
1974 so->so_error = so->so_rerror;
1975 so->so_rerror = 0;
1976 }
1977 error = sockopt_setint(sopt, so->so_error);
1978 so->so_error = 0;
1979 break;
1980
1981 case SO_SNDBUF:
1982 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1983 break;
1984
1985 case SO_RCVBUF:
1986 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1987 break;
1988
1989 case SO_SNDLOWAT:
1990 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1991 break;
1992
1993 case SO_RCVLOWAT:
1994 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1995 break;
1996
1997 case SO_SNDTIMEO:
1998 case SO_RCVTIMEO:
1999 optval = (opt == SO_SNDTIMEO ?
2000 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2001
2002 memset(&tv, 0, sizeof(tv));
2003 tv.tv_sec = optval / hz;
2004 tv.tv_usec = (optval % hz) * tick;
2005
2006 error = sockopt_set(sopt, &tv, sizeof(tv));
2007 break;
2008
2009 case SO_OVERFLOWED:
2010 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2011 break;
2012
2013 default:
2014 MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
2015 (opt, so, sopt), enosys(), error);
2016 if (error)
2017 error = ENOPROTOOPT;
2018 break;
2019 }
2020
2021 return error;
2022 }
2023
2024 int
2025 sogetopt(struct socket *so, struct sockopt *sopt)
2026 {
2027 int error;
2028
2029 solock(so);
2030 if (sopt->sopt_level != SOL_SOCKET) {
2031 if (so->so_proto && so->so_proto->pr_ctloutput) {
2032 error = ((*so->so_proto->pr_ctloutput)
2033 (PRCO_GETOPT, so, sopt));
2034 } else
2035 error = (ENOPROTOOPT);
2036 } else {
2037 error = sogetopt1(so, sopt);
2038 }
2039 sounlock(so);
2040 return error;
2041 }
2042
2043 /*
2044 * alloc sockopt data buffer buffer
2045 * - will be released at destroy
2046 */
2047 static int
2048 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2049 {
2050 void *data;
2051
2052 KASSERT(sopt->sopt_size == 0);
2053
2054 if (len > sizeof(sopt->sopt_buf)) {
2055 data = kmem_zalloc(len, kmflag);
2056 if (data == NULL)
2057 return ENOMEM;
2058 sopt->sopt_data = data;
2059 } else
2060 sopt->sopt_data = sopt->sopt_buf;
2061
2062 sopt->sopt_size = len;
2063 return 0;
2064 }
2065
2066 /*
2067 * initialise sockopt storage
2068 * - MAY sleep during allocation
2069 */
2070 void
2071 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2072 {
2073
2074 memset(sopt, 0, sizeof(*sopt));
2075
2076 sopt->sopt_level = level;
2077 sopt->sopt_name = name;
2078 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2079 }
2080
2081 /*
2082 * destroy sockopt storage
2083 * - will release any held memory references
2084 */
2085 void
2086 sockopt_destroy(struct sockopt *sopt)
2087 {
2088
2089 if (sopt->sopt_data != sopt->sopt_buf)
2090 kmem_free(sopt->sopt_data, sopt->sopt_size);
2091
2092 memset(sopt, 0, sizeof(*sopt));
2093 }
2094
2095 /*
2096 * set sockopt value
2097 * - value is copied into sockopt
2098 * - memory is allocated when necessary, will not sleep
2099 */
2100 int
2101 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2102 {
2103 int error;
2104
2105 if (sopt->sopt_size == 0) {
2106 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2107 if (error)
2108 return error;
2109 }
2110
2111 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2112 if (sopt->sopt_retsize > 0) {
2113 memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
2114 }
2115
2116 return 0;
2117 }
2118
2119 /*
2120 * common case of set sockopt integer value
2121 */
2122 int
2123 sockopt_setint(struct sockopt *sopt, int val)
2124 {
2125
2126 return sockopt_set(sopt, &val, sizeof(int));
2127 }
2128
2129 /*
2130 * get sockopt value
2131 * - correct size must be given
2132 */
2133 int
2134 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2135 {
2136
2137 if (sopt->sopt_size != len)
2138 return EINVAL;
2139
2140 memcpy(buf, sopt->sopt_data, len);
2141 return 0;
2142 }
2143
2144 /*
2145 * common case of get sockopt integer value
2146 */
2147 int
2148 sockopt_getint(const struct sockopt *sopt, int *valp)
2149 {
2150
2151 return sockopt_get(sopt, valp, sizeof(int));
2152 }
2153
2154 /*
2155 * set sockopt value from mbuf
2156 * - ONLY for legacy code
2157 * - mbuf is released by sockopt
2158 * - will not sleep
2159 */
2160 int
2161 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2162 {
2163 size_t len;
2164 int error;
2165
2166 len = m_length(m);
2167
2168 if (sopt->sopt_size == 0) {
2169 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2170 if (error)
2171 return error;
2172 }
2173
2174 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2175 m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
2176 m_freem(m);
2177
2178 return 0;
2179 }
2180
2181 /*
2182 * get sockopt value into mbuf
2183 * - ONLY for legacy code
2184 * - mbuf to be released by the caller
2185 * - will not sleep
2186 */
2187 struct mbuf *
2188 sockopt_getmbuf(const struct sockopt *sopt)
2189 {
2190 struct mbuf *m;
2191
2192 if (sopt->sopt_size > MCLBYTES)
2193 return NULL;
2194
2195 m = m_get(M_DONTWAIT, MT_SOOPTS);
2196 if (m == NULL)
2197 return NULL;
2198
2199 if (sopt->sopt_size > MLEN) {
2200 MCLGET(m, M_DONTWAIT);
2201 if ((m->m_flags & M_EXT) == 0) {
2202 m_free(m);
2203 return NULL;
2204 }
2205 }
2206
2207 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2208 m->m_len = sopt->sopt_size;
2209
2210 return m;
2211 }
2212
2213 void
2214 sohasoutofband(struct socket *so)
2215 {
2216
2217 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2218 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2219 }
2220
2221 static void
2222 filt_sordetach(struct knote *kn)
2223 {
2224 struct socket *so;
2225
2226 so = ((file_t *)kn->kn_obj)->f_socket;
2227 solock(so);
2228 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2229 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2230 so->so_rcv.sb_flags &= ~SB_KNOTE;
2231 sounlock(so);
2232 }
2233
2234 /*ARGSUSED*/
2235 static int
2236 filt_soread(struct knote *kn, long hint)
2237 {
2238 struct socket *so;
2239 int rv;
2240
2241 so = ((file_t *)kn->kn_obj)->f_socket;
2242 if (hint != NOTE_SUBMIT)
2243 solock(so);
2244 kn->kn_data = so->so_rcv.sb_cc;
2245 if (so->so_state & SS_CANTRCVMORE) {
2246 kn->kn_flags |= EV_EOF;
2247 kn->kn_fflags = so->so_error;
2248 rv = 1;
2249 } else if (so->so_error || so->so_rerror)
2250 rv = 1;
2251 else if (kn->kn_sfflags & NOTE_LOWAT)
2252 rv = (kn->kn_data >= kn->kn_sdata);
2253 else
2254 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2255 if (hint != NOTE_SUBMIT)
2256 sounlock(so);
2257 return rv;
2258 }
2259
2260 static void
2261 filt_sowdetach(struct knote *kn)
2262 {
2263 struct socket *so;
2264
2265 so = ((file_t *)kn->kn_obj)->f_socket;
2266 solock(so);
2267 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2268 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2269 so->so_snd.sb_flags &= ~SB_KNOTE;
2270 sounlock(so);
2271 }
2272
2273 /*ARGSUSED*/
2274 static int
2275 filt_sowrite(struct knote *kn, long hint)
2276 {
2277 struct socket *so;
2278 int rv;
2279
2280 so = ((file_t *)kn->kn_obj)->f_socket;
2281 if (hint != NOTE_SUBMIT)
2282 solock(so);
2283 kn->kn_data = sbspace(&so->so_snd);
2284 if (so->so_state & SS_CANTSENDMORE) {
2285 kn->kn_flags |= EV_EOF;
2286 kn->kn_fflags = so->so_error;
2287 rv = 1;
2288 } else if (so->so_error)
2289 rv = 1;
2290 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2291 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2292 rv = 0;
2293 else if (kn->kn_sfflags & NOTE_LOWAT)
2294 rv = (kn->kn_data >= kn->kn_sdata);
2295 else
2296 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2297 if (hint != NOTE_SUBMIT)
2298 sounlock(so);
2299 return rv;
2300 }
2301
2302 /*ARGSUSED*/
2303 static int
2304 filt_solisten(struct knote *kn, long hint)
2305 {
2306 struct socket *so;
2307 int rv;
2308
2309 so = ((file_t *)kn->kn_obj)->f_socket;
2310
2311 /*
2312 * Set kn_data to number of incoming connections, not
2313 * counting partial (incomplete) connections.
2314 */
2315 if (hint != NOTE_SUBMIT)
2316 solock(so);
2317 kn->kn_data = so->so_qlen;
2318 rv = (kn->kn_data > 0);
2319 if (hint != NOTE_SUBMIT)
2320 sounlock(so);
2321 return rv;
2322 }
2323
2324 static const struct filterops solisten_filtops = {
2325 .f_isfd = 1,
2326 .f_attach = NULL,
2327 .f_detach = filt_sordetach,
2328 .f_event = filt_solisten,
2329 };
2330
2331 static const struct filterops soread_filtops = {
2332 .f_isfd = 1,
2333 .f_attach = NULL,
2334 .f_detach = filt_sordetach,
2335 .f_event = filt_soread,
2336 };
2337
2338 static const struct filterops sowrite_filtops = {
2339 .f_isfd = 1,
2340 .f_attach = NULL,
2341 .f_detach = filt_sowdetach,
2342 .f_event = filt_sowrite,
2343 };
2344
2345 int
2346 soo_kqfilter(struct file *fp, struct knote *kn)
2347 {
2348 struct socket *so;
2349 struct sockbuf *sb;
2350
2351 so = ((file_t *)kn->kn_obj)->f_socket;
2352 solock(so);
2353 switch (kn->kn_filter) {
2354 case EVFILT_READ:
2355 if (so->so_options & SO_ACCEPTCONN)
2356 kn->kn_fop = &solisten_filtops;
2357 else
2358 kn->kn_fop = &soread_filtops;
2359 sb = &so->so_rcv;
2360 break;
2361 case EVFILT_WRITE:
2362 kn->kn_fop = &sowrite_filtops;
2363 sb = &so->so_snd;
2364 break;
2365 default:
2366 sounlock(so);
2367 return EINVAL;
2368 }
2369 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2370 sb->sb_flags |= SB_KNOTE;
2371 sounlock(so);
2372 return 0;
2373 }
2374
2375 static int
2376 sodopoll(struct socket *so, int events)
2377 {
2378 int revents;
2379
2380 revents = 0;
2381
2382 if (events & (POLLIN | POLLRDNORM))
2383 if (soreadable(so))
2384 revents |= events & (POLLIN | POLLRDNORM);
2385
2386 if (events & (POLLOUT | POLLWRNORM))
2387 if (sowritable(so))
2388 revents |= events & (POLLOUT | POLLWRNORM);
2389
2390 if (events & (POLLPRI | POLLRDBAND))
2391 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2392 revents |= events & (POLLPRI | POLLRDBAND);
2393
2394 return revents;
2395 }
2396
2397 int
2398 sopoll(struct socket *so, int events)
2399 {
2400 int revents = 0;
2401
2402 #ifndef DIAGNOSTIC
2403 /*
2404 * Do a quick, unlocked check in expectation that the socket
2405 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2406 * as the solocked() assertions will fail.
2407 */
2408 if ((revents = sodopoll(so, events)) != 0)
2409 return revents;
2410 #endif
2411
2412 solock(so);
2413 if ((revents = sodopoll(so, events)) == 0) {
2414 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2415 selrecord(curlwp, &so->so_rcv.sb_sel);
2416 so->so_rcv.sb_flags |= SB_NOTIFY;
2417 }
2418
2419 if (events & (POLLOUT | POLLWRNORM)) {
2420 selrecord(curlwp, &so->so_snd.sb_sel);
2421 so->so_snd.sb_flags |= SB_NOTIFY;
2422 }
2423 }
2424 sounlock(so);
2425
2426 return revents;
2427 }
2428
2429 struct mbuf **
2430 sbsavetimestamp(int opt, struct mbuf **mp)
2431 {
2432 struct timeval tv;
2433 int error;
2434
2435 microtime(&tv);
2436
2437 MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, &mp), enosys(), error);
2438 if (error == 0)
2439 return mp;
2440
2441 if (opt & SO_TIMESTAMP) {
2442 *mp = sbcreatecontrol(&tv, sizeof(tv),
2443 SCM_TIMESTAMP, SOL_SOCKET);
2444 if (*mp)
2445 mp = &(*mp)->m_next;
2446 }
2447 return mp;
2448 }
2449
2450
2451 #include <sys/sysctl.h>
2452
2453 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2454 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2455
2456 /*
2457 * sysctl helper routine for kern.somaxkva. ensures that the given
2458 * value is not too small.
2459 * (XXX should we maybe make sure it's not too large as well?)
2460 */
2461 static int
2462 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2463 {
2464 int error, new_somaxkva;
2465 struct sysctlnode node;
2466
2467 new_somaxkva = somaxkva;
2468 node = *rnode;
2469 node.sysctl_data = &new_somaxkva;
2470 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2471 if (error || newp == NULL)
2472 return error;
2473
2474 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2475 return EINVAL;
2476
2477 mutex_enter(&so_pendfree_lock);
2478 somaxkva = new_somaxkva;
2479 cv_broadcast(&socurkva_cv);
2480 mutex_exit(&so_pendfree_lock);
2481
2482 return error;
2483 }
2484
2485 /*
2486 * sysctl helper routine for kern.sbmax. Basically just ensures that
2487 * any new value is not too small.
2488 */
2489 static int
2490 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2491 {
2492 int error, new_sbmax;
2493 struct sysctlnode node;
2494
2495 new_sbmax = sb_max;
2496 node = *rnode;
2497 node.sysctl_data = &new_sbmax;
2498 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2499 if (error || newp == NULL)
2500 return error;
2501
2502 KERNEL_LOCK(1, NULL);
2503 error = sb_max_set(new_sbmax);
2504 KERNEL_UNLOCK_ONE(NULL);
2505
2506 return error;
2507 }
2508
2509 /*
2510 * sysctl helper routine for kern.sooptions. Ensures that only allowed
2511 * options can be set.
2512 */
2513 static int
2514 sysctl_kern_sooptions(SYSCTLFN_ARGS)
2515 {
2516 int error, new_options;
2517 struct sysctlnode node;
2518
2519 new_options = sooptions;
2520 node = *rnode;
2521 node.sysctl_data = &new_options;
2522 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2523 if (error || newp == NULL)
2524 return error;
2525
2526 if (new_options & ~SO_DEFOPTS)
2527 return EINVAL;
2528
2529 sooptions = new_options;
2530
2531 return 0;
2532 }
2533
2534 static void
2535 sysctl_kern_socket_setup(void)
2536 {
2537
2538 KASSERT(socket_sysctllog == NULL);
2539
2540 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2541 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2542 CTLTYPE_INT, "somaxkva",
2543 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2544 "used for socket buffers"),
2545 sysctl_kern_somaxkva, 0, NULL, 0,
2546 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2547
2548 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2549 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2550 CTLTYPE_BOOL, "sofixedbuf",
2551 SYSCTL_DESCR("Prevent scaling of fixed socket buffers"),
2552 NULL, 0, &sofixedbuf, 0,
2553 CTL_KERN, KERN_SOFIXEDBUF, CTL_EOL);
2554
2555 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2556 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2557 CTLTYPE_INT, "sbmax",
2558 SYSCTL_DESCR("Maximum socket buffer size"),
2559 sysctl_kern_sbmax, 0, NULL, 0,
2560 CTL_KERN, KERN_SBMAX, CTL_EOL);
2561
2562 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2563 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2564 CTLTYPE_INT, "sooptions",
2565 SYSCTL_DESCR("Default socket options"),
2566 sysctl_kern_sooptions, 0, NULL, 0,
2567 CTL_KERN, CTL_CREATE, CTL_EOL);
2568 }
2569