uipc_socket.c revision 1.297 1 /* $NetBSD: uipc_socket.c,v 1.297 2021/09/29 02:47:22 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.297 2021/09/29 02:47:22 thorpej Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #include "opt_sctp.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/file.h>
90 #include <sys/filedesc.h>
91 #include <sys/kmem.h>
92 #include <sys/mbuf.h>
93 #include <sys/domain.h>
94 #include <sys/kernel.h>
95 #include <sys/protosw.h>
96 #include <sys/socket.h>
97 #include <sys/socketvar.h>
98 #include <sys/signalvar.h>
99 #include <sys/resourcevar.h>
100 #include <sys/uidinfo.h>
101 #include <sys/event.h>
102 #include <sys/poll.h>
103 #include <sys/kauth.h>
104 #include <sys/mutex.h>
105 #include <sys/condvar.h>
106 #include <sys/kthread.h>
107 #include <sys/compat_stub.h>
108
109 #include <compat/sys/time.h>
110 #include <compat/sys/socket.h>
111
112 #include <uvm/uvm_extern.h>
113 #include <uvm/uvm_loan.h>
114 #include <uvm/uvm_page.h>
115
116 #ifdef SCTP
117 #include <netinet/sctp_route.h>
118 #endif
119
120 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
121
122 extern const struct fileops socketops;
123
124 static int sooptions;
125 extern int somaxconn; /* patchable (XXX sysctl) */
126 int somaxconn = SOMAXCONN;
127 kmutex_t *softnet_lock;
128
129 #ifdef SOSEND_COUNTERS
130 #include <sys/device.h>
131
132 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
133 NULL, "sosend", "loan big");
134 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
135 NULL, "sosend", "copy big");
136 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
137 NULL, "sosend", "copy small");
138 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
139 NULL, "sosend", "kva limit");
140
141 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
142
143 EVCNT_ATTACH_STATIC(sosend_loan_big);
144 EVCNT_ATTACH_STATIC(sosend_copy_big);
145 EVCNT_ATTACH_STATIC(sosend_copy_small);
146 EVCNT_ATTACH_STATIC(sosend_kvalimit);
147 #else
148
149 #define SOSEND_COUNTER_INCR(ev) /* nothing */
150
151 #endif /* SOSEND_COUNTERS */
152
153 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
154 int sock_loan_thresh = -1;
155 #else
156 int sock_loan_thresh = 4096;
157 #endif
158
159 static kmutex_t so_pendfree_lock;
160 static struct mbuf *so_pendfree = NULL;
161
162 #ifndef SOMAXKVA
163 #define SOMAXKVA (16 * 1024 * 1024)
164 #endif
165 int somaxkva = SOMAXKVA;
166 static int socurkva;
167 static kcondvar_t socurkva_cv;
168
169 #ifndef SOFIXEDBUF
170 #define SOFIXEDBUF true
171 #endif
172 bool sofixedbuf = SOFIXEDBUF;
173
174 static kauth_listener_t socket_listener;
175
176 #define SOCK_LOAN_CHUNK 65536
177
178 static void sopendfree_thread(void *);
179 static kcondvar_t pendfree_thread_cv;
180 static lwp_t *sopendfree_lwp;
181
182 static void sysctl_kern_socket_setup(void);
183 static struct sysctllog *socket_sysctllog;
184
185 static vsize_t
186 sokvareserve(struct socket *so, vsize_t len)
187 {
188 int error;
189
190 mutex_enter(&so_pendfree_lock);
191 while (socurkva + len > somaxkva) {
192 SOSEND_COUNTER_INCR(&sosend_kvalimit);
193 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
194 if (error) {
195 len = 0;
196 break;
197 }
198 }
199 socurkva += len;
200 mutex_exit(&so_pendfree_lock);
201 return len;
202 }
203
204 static void
205 sokvaunreserve(vsize_t len)
206 {
207
208 mutex_enter(&so_pendfree_lock);
209 socurkva -= len;
210 cv_broadcast(&socurkva_cv);
211 mutex_exit(&so_pendfree_lock);
212 }
213
214 /*
215 * sokvaalloc: allocate kva for loan.
216 */
217 vaddr_t
218 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
219 {
220 vaddr_t lva;
221
222 if (sokvareserve(so, len) == 0)
223 return 0;
224
225 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
226 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
227 if (lva == 0) {
228 sokvaunreserve(len);
229 return 0;
230 }
231
232 return lva;
233 }
234
235 /*
236 * sokvafree: free kva for loan.
237 */
238 void
239 sokvafree(vaddr_t sva, vsize_t len)
240 {
241
242 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
243 sokvaunreserve(len);
244 }
245
246 static void
247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
248 {
249 vaddr_t sva, eva;
250 vsize_t len;
251 int npgs;
252
253 KASSERT(pgs != NULL);
254
255 eva = round_page((vaddr_t) buf + size);
256 sva = trunc_page((vaddr_t) buf);
257 len = eva - sva;
258 npgs = len >> PAGE_SHIFT;
259
260 pmap_kremove(sva, len);
261 pmap_update(pmap_kernel());
262 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
263 sokvafree(sva, len);
264 }
265
266 /*
267 * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
268 * so_pendfree_lock when freeing mbufs.
269 */
270 static void
271 sopendfree_thread(void *v)
272 {
273 struct mbuf *m, *next;
274 size_t rv;
275
276 mutex_enter(&so_pendfree_lock);
277
278 for (;;) {
279 rv = 0;
280 while (so_pendfree != NULL) {
281 m = so_pendfree;
282 so_pendfree = NULL;
283 mutex_exit(&so_pendfree_lock);
284
285 for (; m != NULL; m = next) {
286 next = m->m_next;
287 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
288 0);
289 KASSERT(m->m_ext.ext_refcnt == 0);
290
291 rv += m->m_ext.ext_size;
292 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
293 m->m_ext.ext_size);
294 pool_cache_put(mb_cache, m);
295 }
296
297 mutex_enter(&so_pendfree_lock);
298 }
299 if (rv)
300 cv_broadcast(&socurkva_cv);
301 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
302 }
303 panic("sopendfree_thread");
304 /* NOTREACHED */
305 }
306
307 void
308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
309 {
310
311 KASSERT(m != NULL);
312
313 /*
314 * postpone freeing mbuf.
315 *
316 * we can't do it in interrupt context
317 * because we need to put kva back to kernel_map.
318 */
319
320 mutex_enter(&so_pendfree_lock);
321 m->m_next = so_pendfree;
322 so_pendfree = m;
323 cv_signal(&pendfree_thread_cv);
324 mutex_exit(&so_pendfree_lock);
325 }
326
327 static long
328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
329 {
330 struct iovec *iov = uio->uio_iov;
331 vaddr_t sva, eva;
332 vsize_t len;
333 vaddr_t lva;
334 int npgs, error;
335 vaddr_t va;
336 int i;
337
338 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
339 return 0;
340
341 if (iov->iov_len < (size_t) space)
342 space = iov->iov_len;
343 if (space > SOCK_LOAN_CHUNK)
344 space = SOCK_LOAN_CHUNK;
345
346 eva = round_page((vaddr_t) iov->iov_base + space);
347 sva = trunc_page((vaddr_t) iov->iov_base);
348 len = eva - sva;
349 npgs = len >> PAGE_SHIFT;
350
351 KASSERT(npgs <= M_EXT_MAXPAGES);
352
353 lva = sokvaalloc(sva, len, so);
354 if (lva == 0)
355 return 0;
356
357 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
358 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
359 if (error) {
360 sokvafree(lva, len);
361 return 0;
362 }
363
364 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
365 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
366 VM_PROT_READ, 0);
367 pmap_update(pmap_kernel());
368
369 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
370
371 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
372 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
373
374 uio->uio_resid -= space;
375 /* uio_offset not updated, not set/used for write(2) */
376 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
377 uio->uio_iov->iov_len -= space;
378 if (uio->uio_iov->iov_len == 0) {
379 uio->uio_iov++;
380 uio->uio_iovcnt--;
381 }
382
383 return space;
384 }
385
386 static int
387 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
388 void *arg0, void *arg1, void *arg2, void *arg3)
389 {
390 int result;
391 enum kauth_network_req req;
392
393 result = KAUTH_RESULT_DEFER;
394 req = (enum kauth_network_req)(uintptr_t)arg0;
395
396 if ((action != KAUTH_NETWORK_SOCKET) &&
397 (action != KAUTH_NETWORK_BIND))
398 return result;
399
400 switch (req) {
401 case KAUTH_REQ_NETWORK_BIND_PORT:
402 result = KAUTH_RESULT_ALLOW;
403 break;
404
405 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
406 /* Normal users can only drop their own connections. */
407 struct socket *so = (struct socket *)arg1;
408
409 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
410 result = KAUTH_RESULT_ALLOW;
411
412 break;
413 }
414
415 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
416 /* We allow "raw" routing/bluetooth sockets to anyone. */
417 switch ((u_long)arg1) {
418 case PF_ROUTE:
419 case PF_OROUTE:
420 case PF_BLUETOOTH:
421 case PF_CAN:
422 result = KAUTH_RESULT_ALLOW;
423 break;
424 default:
425 /* Privileged, let secmodel handle this. */
426 if ((u_long)arg2 == SOCK_RAW)
427 break;
428 result = KAUTH_RESULT_ALLOW;
429 break;
430 }
431 break;
432
433 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
434 result = KAUTH_RESULT_ALLOW;
435
436 break;
437
438 default:
439 break;
440 }
441
442 return result;
443 }
444
445 void
446 soinit(void)
447 {
448
449 sysctl_kern_socket_setup();
450
451 #ifdef SCTP
452 /* Update the SCTP function hooks if necessary*/
453
454 vec_sctp_add_ip_address = sctp_add_ip_address;
455 vec_sctp_delete_ip_address = sctp_delete_ip_address;
456 #endif
457
458 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
459 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
460 cv_init(&socurkva_cv, "sokva");
461 cv_init(&pendfree_thread_cv, "sopendfr");
462 soinit2();
463
464 /* Set the initial adjusted socket buffer size. */
465 if (sb_max_set(sb_max))
466 panic("bad initial sb_max value: %lu", sb_max);
467
468 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
469 socket_listener_cb, NULL);
470 }
471
472 void
473 soinit1(void)
474 {
475 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
476 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
477 if (error)
478 panic("soinit1 %d", error);
479 }
480
481 /*
482 * socreate: create a new socket of the specified type and the protocol.
483 *
484 * => Caller may specify another socket for lock sharing (must not be held).
485 * => Returns the new socket without lock held.
486 */
487 int
488 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
489 struct socket *lockso)
490 {
491 const struct protosw *prp;
492 struct socket *so;
493 uid_t uid;
494 int error;
495 kmutex_t *lock;
496
497 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
498 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
499 KAUTH_ARG(proto));
500 if (error != 0)
501 return error;
502
503 if (proto)
504 prp = pffindproto(dom, proto, type);
505 else
506 prp = pffindtype(dom, type);
507 if (prp == NULL) {
508 /* no support for domain */
509 if (pffinddomain(dom) == 0)
510 return EAFNOSUPPORT;
511 /* no support for socket type */
512 if (proto == 0 && type != 0)
513 return EPROTOTYPE;
514 return EPROTONOSUPPORT;
515 }
516 if (prp->pr_usrreqs == NULL)
517 return EPROTONOSUPPORT;
518 if (prp->pr_type != type)
519 return EPROTOTYPE;
520
521 so = soget(true);
522 so->so_type = type;
523 so->so_proto = prp;
524 so->so_send = sosend;
525 so->so_receive = soreceive;
526 so->so_options = sooptions;
527 #ifdef MBUFTRACE
528 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
529 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
530 so->so_mowner = &prp->pr_domain->dom_mowner;
531 #endif
532 uid = kauth_cred_geteuid(l->l_cred);
533 so->so_uidinfo = uid_find(uid);
534 so->so_egid = kauth_cred_getegid(l->l_cred);
535 so->so_cpid = l->l_proc->p_pid;
536
537 /*
538 * Lock assigned and taken during PCB attach, unless we share
539 * the lock with another socket, e.g. socketpair(2) case.
540 */
541 if (lockso) {
542 lock = lockso->so_lock;
543 so->so_lock = lock;
544 mutex_obj_hold(lock);
545 mutex_enter(lock);
546 }
547
548 /* Attach the PCB (returns with the socket lock held). */
549 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
550 KASSERT(solocked(so));
551
552 if (error) {
553 KASSERT(so->so_pcb == NULL);
554 so->so_state |= SS_NOFDREF;
555 sofree(so);
556 return error;
557 }
558 so->so_cred = kauth_cred_dup(l->l_cred);
559 sounlock(so);
560
561 *aso = so;
562 return 0;
563 }
564
565 /*
566 * fsocreate: create a socket and a file descriptor associated with it.
567 *
568 * => On success, write file descriptor to fdout and return zero.
569 * => On failure, return non-zero; *fdout will be undefined.
570 */
571 int
572 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
573 {
574 lwp_t *l = curlwp;
575 int error, fd, flags;
576 struct socket *so;
577 struct file *fp;
578
579 if ((error = fd_allocfile(&fp, &fd)) != 0) {
580 return error;
581 }
582 flags = type & SOCK_FLAGS_MASK;
583 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
584 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
585 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
586 fp->f_type = DTYPE_SOCKET;
587 fp->f_ops = &socketops;
588
589 type &= ~SOCK_FLAGS_MASK;
590 error = socreate(domain, &so, type, proto, l, NULL);
591 if (error) {
592 fd_abort(curproc, fp, fd);
593 return error;
594 }
595 if (flags & SOCK_NONBLOCK) {
596 so->so_state |= SS_NBIO;
597 }
598 fp->f_socket = so;
599 fd_affix(curproc, fp, fd);
600
601 if (sop != NULL) {
602 *sop = so;
603 }
604 *fdout = fd;
605 return error;
606 }
607
608 int
609 sofamily(const struct socket *so)
610 {
611 const struct protosw *pr;
612 const struct domain *dom;
613
614 if ((pr = so->so_proto) == NULL)
615 return AF_UNSPEC;
616 if ((dom = pr->pr_domain) == NULL)
617 return AF_UNSPEC;
618 return dom->dom_family;
619 }
620
621 int
622 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
623 {
624 int error;
625
626 solock(so);
627 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
628 sounlock(so);
629 return EAFNOSUPPORT;
630 }
631 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
632 sounlock(so);
633 return error;
634 }
635
636 int
637 solisten(struct socket *so, int backlog, struct lwp *l)
638 {
639 int error;
640 short oldopt, oldqlimit;
641
642 solock(so);
643 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
644 SS_ISDISCONNECTING)) != 0) {
645 sounlock(so);
646 return EINVAL;
647 }
648 oldopt = so->so_options;
649 oldqlimit = so->so_qlimit;
650 if (TAILQ_EMPTY(&so->so_q))
651 so->so_options |= SO_ACCEPTCONN;
652 if (backlog < 0)
653 backlog = 0;
654 so->so_qlimit = uimin(backlog, somaxconn);
655
656 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
657 if (error != 0) {
658 so->so_options = oldopt;
659 so->so_qlimit = oldqlimit;
660 sounlock(so);
661 return error;
662 }
663 sounlock(so);
664 return 0;
665 }
666
667 void
668 sofree(struct socket *so)
669 {
670 u_int refs;
671
672 KASSERT(solocked(so));
673
674 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
675 sounlock(so);
676 return;
677 }
678 if (so->so_head) {
679 /*
680 * We must not decommission a socket that's on the accept(2)
681 * queue. If we do, then accept(2) may hang after select(2)
682 * indicated that the listening socket was ready.
683 */
684 if (!soqremque(so, 0)) {
685 sounlock(so);
686 return;
687 }
688 }
689 if (so->so_rcv.sb_hiwat)
690 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
691 RLIM_INFINITY);
692 if (so->so_snd.sb_hiwat)
693 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
694 RLIM_INFINITY);
695 sbrelease(&so->so_snd, so);
696 KASSERT(!cv_has_waiters(&so->so_cv));
697 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
698 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
699 sorflush(so);
700 refs = so->so_aborting; /* XXX */
701 /* Remove acccept filter if one is present. */
702 if (so->so_accf != NULL)
703 (void)accept_filt_clear(so);
704 sounlock(so);
705 if (refs == 0) /* XXX */
706 soput(so);
707 }
708
709 /*
710 * soclose: close a socket on last file table reference removal.
711 * Initiate disconnect if connected. Free socket when disconnect complete.
712 */
713 int
714 soclose(struct socket *so)
715 {
716 struct socket *so2;
717 int error = 0;
718
719 solock(so);
720 if (so->so_options & SO_ACCEPTCONN) {
721 for (;;) {
722 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
723 KASSERT(solocked2(so, so2));
724 (void) soqremque(so2, 0);
725 /* soabort drops the lock. */
726 (void) soabort(so2);
727 solock(so);
728 continue;
729 }
730 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
731 KASSERT(solocked2(so, so2));
732 (void) soqremque(so2, 1);
733 /* soabort drops the lock. */
734 (void) soabort(so2);
735 solock(so);
736 continue;
737 }
738 break;
739 }
740 }
741 if (so->so_pcb == NULL)
742 goto discard;
743 if (so->so_state & SS_ISCONNECTED) {
744 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
745 error = sodisconnect(so);
746 if (error)
747 goto drop;
748 }
749 if (so->so_options & SO_LINGER) {
750 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
751 (SS_ISDISCONNECTING|SS_NBIO))
752 goto drop;
753 while (so->so_state & SS_ISCONNECTED) {
754 error = sowait(so, true, so->so_linger * hz);
755 if (error)
756 break;
757 }
758 }
759 }
760 drop:
761 if (so->so_pcb) {
762 KASSERT(solocked(so));
763 (*so->so_proto->pr_usrreqs->pr_detach)(so);
764 }
765 discard:
766 KASSERT((so->so_state & SS_NOFDREF) == 0);
767 kauth_cred_free(so->so_cred);
768 so->so_cred = NULL;
769 so->so_state |= SS_NOFDREF;
770 sofree(so);
771 return error;
772 }
773
774 /*
775 * Must be called with the socket locked.. Will return with it unlocked.
776 */
777 int
778 soabort(struct socket *so)
779 {
780 u_int refs;
781 int error;
782
783 KASSERT(solocked(so));
784 KASSERT(so->so_head == NULL);
785
786 so->so_aborting++; /* XXX */
787 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
788 refs = --so->so_aborting; /* XXX */
789 if (error || (refs == 0)) {
790 sofree(so);
791 } else {
792 sounlock(so);
793 }
794 return error;
795 }
796
797 int
798 soaccept(struct socket *so, struct sockaddr *nam)
799 {
800 int error;
801
802 KASSERT(solocked(so));
803 KASSERT((so->so_state & SS_NOFDREF) != 0);
804
805 so->so_state &= ~SS_NOFDREF;
806 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
807 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
808 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
809 else
810 error = ECONNABORTED;
811
812 return error;
813 }
814
815 int
816 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
817 {
818 int error;
819
820 KASSERT(solocked(so));
821
822 if (so->so_options & SO_ACCEPTCONN)
823 return EOPNOTSUPP;
824 /*
825 * If protocol is connection-based, can only connect once.
826 * Otherwise, if connected, try to disconnect first.
827 * This allows user to disconnect by connecting to, e.g.,
828 * a null address.
829 */
830 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
831 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
832 (error = sodisconnect(so)))) {
833 error = EISCONN;
834 } else {
835 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
836 return EAFNOSUPPORT;
837 }
838 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
839 }
840
841 return error;
842 }
843
844 int
845 soconnect2(struct socket *so1, struct socket *so2)
846 {
847 KASSERT(solocked2(so1, so2));
848
849 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
850 }
851
852 int
853 sodisconnect(struct socket *so)
854 {
855 int error;
856
857 KASSERT(solocked(so));
858
859 if ((so->so_state & SS_ISCONNECTED) == 0) {
860 error = ENOTCONN;
861 } else if (so->so_state & SS_ISDISCONNECTING) {
862 error = EALREADY;
863 } else {
864 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
865 }
866 return error;
867 }
868
869 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
870 /*
871 * Send on a socket.
872 * If send must go all at once and message is larger than
873 * send buffering, then hard error.
874 * Lock against other senders.
875 * If must go all at once and not enough room now, then
876 * inform user that this would block and do nothing.
877 * Otherwise, if nonblocking, send as much as possible.
878 * The data to be sent is described by "uio" if nonzero,
879 * otherwise by the mbuf chain "top" (which must be null
880 * if uio is not). Data provided in mbuf chain must be small
881 * enough to send all at once.
882 *
883 * Returns nonzero on error, timeout or signal; callers
884 * must check for short counts if EINTR/ERESTART are returned.
885 * Data and control buffers are freed on return.
886 */
887 int
888 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
889 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
890 {
891 struct mbuf **mp, *m;
892 long space, len, resid, clen, mlen;
893 int error, s, dontroute, atomic;
894 short wakeup_state = 0;
895
896 clen = 0;
897
898 /*
899 * solock() provides atomicity of access. splsoftnet() prevents
900 * protocol processing soft interrupts from interrupting us and
901 * blocking (expensive).
902 */
903 s = splsoftnet();
904 solock(so);
905 atomic = sosendallatonce(so) || top;
906 if (uio)
907 resid = uio->uio_resid;
908 else
909 resid = top->m_pkthdr.len;
910 /*
911 * In theory resid should be unsigned.
912 * However, space must be signed, as it might be less than 0
913 * if we over-committed, and we must use a signed comparison
914 * of space and resid. On the other hand, a negative resid
915 * causes us to loop sending 0-length segments to the protocol.
916 */
917 if (resid < 0) {
918 error = EINVAL;
919 goto out;
920 }
921 dontroute =
922 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
923 (so->so_proto->pr_flags & PR_ATOMIC);
924 l->l_ru.ru_msgsnd++;
925 if (control)
926 clen = control->m_len;
927 restart:
928 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
929 goto out;
930 do {
931 if (so->so_state & SS_CANTSENDMORE) {
932 error = EPIPE;
933 goto release;
934 }
935 if (so->so_error) {
936 error = so->so_error;
937 if ((flags & MSG_PEEK) == 0)
938 so->so_error = 0;
939 goto release;
940 }
941 if ((so->so_state & SS_ISCONNECTED) == 0) {
942 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
943 if (resid || clen == 0) {
944 error = ENOTCONN;
945 goto release;
946 }
947 } else if (addr == NULL) {
948 error = EDESTADDRREQ;
949 goto release;
950 }
951 }
952 space = sbspace(&so->so_snd);
953 if (flags & MSG_OOB)
954 space += 1024;
955 if ((atomic && resid > so->so_snd.sb_hiwat) ||
956 clen > so->so_snd.sb_hiwat) {
957 error = EMSGSIZE;
958 goto release;
959 }
960 if (space < resid + clen &&
961 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
962 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
963 error = EWOULDBLOCK;
964 goto release;
965 }
966 sbunlock(&so->so_snd);
967 if (wakeup_state & SS_RESTARTSYS) {
968 error = ERESTART;
969 goto out;
970 }
971 error = sbwait(&so->so_snd);
972 if (error)
973 goto out;
974 wakeup_state = so->so_state;
975 goto restart;
976 }
977 wakeup_state = 0;
978 mp = ⊤
979 space -= clen;
980 do {
981 if (uio == NULL) {
982 /*
983 * Data is prepackaged in "top".
984 */
985 resid = 0;
986 if (flags & MSG_EOR)
987 top->m_flags |= M_EOR;
988 } else do {
989 sounlock(so);
990 splx(s);
991 if (top == NULL) {
992 m = m_gethdr(M_WAIT, MT_DATA);
993 mlen = MHLEN;
994 m->m_pkthdr.len = 0;
995 m_reset_rcvif(m);
996 } else {
997 m = m_get(M_WAIT, MT_DATA);
998 mlen = MLEN;
999 }
1000 MCLAIM(m, so->so_snd.sb_mowner);
1001 if (sock_loan_thresh >= 0 &&
1002 uio->uio_iov->iov_len >= sock_loan_thresh &&
1003 space >= sock_loan_thresh &&
1004 (len = sosend_loan(so, uio, m,
1005 space)) != 0) {
1006 SOSEND_COUNTER_INCR(&sosend_loan_big);
1007 space -= len;
1008 goto have_data;
1009 }
1010 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1011 SOSEND_COUNTER_INCR(&sosend_copy_big);
1012 m_clget(m, M_DONTWAIT);
1013 if ((m->m_flags & M_EXT) == 0)
1014 goto nopages;
1015 mlen = MCLBYTES;
1016 if (atomic && top == 0) {
1017 len = lmin(MCLBYTES - max_hdr,
1018 resid);
1019 m->m_data += max_hdr;
1020 } else
1021 len = lmin(MCLBYTES, resid);
1022 space -= len;
1023 } else {
1024 nopages:
1025 SOSEND_COUNTER_INCR(&sosend_copy_small);
1026 len = lmin(lmin(mlen, resid), space);
1027 space -= len;
1028 /*
1029 * For datagram protocols, leave room
1030 * for protocol headers in first mbuf.
1031 */
1032 if (atomic && top == 0 && len < mlen)
1033 m_align(m, len);
1034 }
1035 error = uiomove(mtod(m, void *), (int)len, uio);
1036 have_data:
1037 resid = uio->uio_resid;
1038 m->m_len = len;
1039 *mp = m;
1040 top->m_pkthdr.len += len;
1041 s = splsoftnet();
1042 solock(so);
1043 if (error != 0)
1044 goto release;
1045 mp = &m->m_next;
1046 if (resid <= 0) {
1047 if (flags & MSG_EOR)
1048 top->m_flags |= M_EOR;
1049 break;
1050 }
1051 } while (space > 0 && atomic);
1052
1053 if (so->so_state & SS_CANTSENDMORE) {
1054 error = EPIPE;
1055 goto release;
1056 }
1057 if (dontroute)
1058 so->so_options |= SO_DONTROUTE;
1059 if (resid > 0)
1060 so->so_state |= SS_MORETOCOME;
1061 if (flags & MSG_OOB) {
1062 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1063 so, top, control);
1064 } else {
1065 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1066 top, addr, control, l);
1067 }
1068 if (dontroute)
1069 so->so_options &= ~SO_DONTROUTE;
1070 if (resid > 0)
1071 so->so_state &= ~SS_MORETOCOME;
1072 clen = 0;
1073 control = NULL;
1074 top = NULL;
1075 mp = ⊤
1076 if (error != 0)
1077 goto release;
1078 } while (resid && space > 0);
1079 } while (resid);
1080
1081 release:
1082 sbunlock(&so->so_snd);
1083 out:
1084 sounlock(so);
1085 splx(s);
1086 if (top)
1087 m_freem(top);
1088 if (control)
1089 m_freem(control);
1090 return error;
1091 }
1092
1093 /*
1094 * Following replacement or removal of the first mbuf on the first
1095 * mbuf chain of a socket buffer, push necessary state changes back
1096 * into the socket buffer so that other consumers see the values
1097 * consistently. 'nextrecord' is the caller's locally stored value of
1098 * the original value of sb->sb_mb->m_nextpkt which must be restored
1099 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1100 */
1101 static void
1102 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1103 {
1104
1105 KASSERT(solocked(sb->sb_so));
1106
1107 /*
1108 * First, update for the new value of nextrecord. If necessary,
1109 * make it the first record.
1110 */
1111 if (sb->sb_mb != NULL)
1112 sb->sb_mb->m_nextpkt = nextrecord;
1113 else
1114 sb->sb_mb = nextrecord;
1115
1116 /*
1117 * Now update any dependent socket buffer fields to reflect
1118 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1119 * the addition of a second clause that takes care of the
1120 * case where sb_mb has been updated, but remains the last
1121 * record.
1122 */
1123 if (sb->sb_mb == NULL) {
1124 sb->sb_mbtail = NULL;
1125 sb->sb_lastrecord = NULL;
1126 } else if (sb->sb_mb->m_nextpkt == NULL)
1127 sb->sb_lastrecord = sb->sb_mb;
1128 }
1129
1130 /*
1131 * Implement receive operations on a socket.
1132 *
1133 * We depend on the way that records are added to the sockbuf by sbappend*. In
1134 * particular, each record (mbufs linked through m_next) must begin with an
1135 * address if the protocol so specifies, followed by an optional mbuf or mbufs
1136 * containing ancillary data, and then zero or more mbufs of data.
1137 *
1138 * In order to avoid blocking network interrupts for the entire time here, we
1139 * splx() while doing the actual copy to user space. Although the sockbuf is
1140 * locked, new data may still be appended, and thus we must maintain
1141 * consistency of the sockbuf during that time.
1142 *
1143 * The caller may receive the data as a single mbuf chain by supplying an mbuf
1144 * **mp0 for use in returning the chain. The uio is then used only for the
1145 * count in uio_resid.
1146 */
1147 int
1148 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1149 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1150 {
1151 struct lwp *l = curlwp;
1152 struct mbuf *m, **mp, *mt;
1153 size_t len, offset, moff, orig_resid;
1154 int atomic, flags, error, s, type;
1155 const struct protosw *pr;
1156 struct mbuf *nextrecord;
1157 int mbuf_removed = 0;
1158 const struct domain *dom;
1159 short wakeup_state = 0;
1160
1161 pr = so->so_proto;
1162 atomic = pr->pr_flags & PR_ATOMIC;
1163 dom = pr->pr_domain;
1164 mp = mp0;
1165 type = 0;
1166 orig_resid = uio->uio_resid;
1167
1168 if (paddr != NULL)
1169 *paddr = NULL;
1170 if (controlp != NULL)
1171 *controlp = NULL;
1172 if (flagsp != NULL)
1173 flags = *flagsp &~ MSG_EOR;
1174 else
1175 flags = 0;
1176
1177 if (flags & MSG_OOB) {
1178 m = m_get(M_WAIT, MT_DATA);
1179 solock(so);
1180 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1181 sounlock(so);
1182 if (error)
1183 goto bad;
1184 do {
1185 error = uiomove(mtod(m, void *),
1186 MIN(uio->uio_resid, m->m_len), uio);
1187 m = m_free(m);
1188 } while (uio->uio_resid > 0 && error == 0 && m);
1189 bad:
1190 if (m != NULL)
1191 m_freem(m);
1192 return error;
1193 }
1194 if (mp != NULL)
1195 *mp = NULL;
1196
1197 /*
1198 * solock() provides atomicity of access. splsoftnet() prevents
1199 * protocol processing soft interrupts from interrupting us and
1200 * blocking (expensive).
1201 */
1202 s = splsoftnet();
1203 solock(so);
1204 restart:
1205 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1206 sounlock(so);
1207 splx(s);
1208 return error;
1209 }
1210 m = so->so_rcv.sb_mb;
1211
1212 /*
1213 * If we have less data than requested, block awaiting more
1214 * (subject to any timeout) if:
1215 * 1. the current count is less than the low water mark,
1216 * 2. MSG_WAITALL is set, and it is possible to do the entire
1217 * receive operation at once if we block (resid <= hiwat), or
1218 * 3. MSG_DONTWAIT is not set.
1219 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1220 * we have to do the receive in sections, and thus risk returning
1221 * a short count if a timeout or signal occurs after we start.
1222 */
1223 if (m == NULL ||
1224 ((flags & MSG_DONTWAIT) == 0 &&
1225 so->so_rcv.sb_cc < uio->uio_resid &&
1226 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1227 ((flags & MSG_WAITALL) &&
1228 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1229 m->m_nextpkt == NULL && !atomic)) {
1230 #ifdef DIAGNOSTIC
1231 if (m == NULL && so->so_rcv.sb_cc)
1232 panic("receive 1");
1233 #endif
1234 if (so->so_error || so->so_rerror) {
1235 u_short *e;
1236 if (m != NULL)
1237 goto dontblock;
1238 e = so->so_error ? &so->so_error : &so->so_rerror;
1239 error = *e;
1240 if ((flags & MSG_PEEK) == 0)
1241 *e = 0;
1242 goto release;
1243 }
1244 if (so->so_state & SS_CANTRCVMORE) {
1245 if (m != NULL)
1246 goto dontblock;
1247 else
1248 goto release;
1249 }
1250 for (; m != NULL; m = m->m_next)
1251 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1252 m = so->so_rcv.sb_mb;
1253 goto dontblock;
1254 }
1255 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1256 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1257 error = ENOTCONN;
1258 goto release;
1259 }
1260 if (uio->uio_resid == 0)
1261 goto release;
1262 if ((so->so_state & SS_NBIO) ||
1263 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1264 error = EWOULDBLOCK;
1265 goto release;
1266 }
1267 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1268 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1269 sbunlock(&so->so_rcv);
1270 if (wakeup_state & SS_RESTARTSYS)
1271 error = ERESTART;
1272 else
1273 error = sbwait(&so->so_rcv);
1274 if (error != 0) {
1275 sounlock(so);
1276 splx(s);
1277 return error;
1278 }
1279 wakeup_state = so->so_state;
1280 goto restart;
1281 }
1282
1283 dontblock:
1284 /*
1285 * On entry here, m points to the first record of the socket buffer.
1286 * From this point onward, we maintain 'nextrecord' as a cache of the
1287 * pointer to the next record in the socket buffer. We must keep the
1288 * various socket buffer pointers and local stack versions of the
1289 * pointers in sync, pushing out modifications before dropping the
1290 * socket lock, and re-reading them when picking it up.
1291 *
1292 * Otherwise, we will race with the network stack appending new data
1293 * or records onto the socket buffer by using inconsistent/stale
1294 * versions of the field, possibly resulting in socket buffer
1295 * corruption.
1296 *
1297 * By holding the high-level sblock(), we prevent simultaneous
1298 * readers from pulling off the front of the socket buffer.
1299 */
1300 if (l != NULL)
1301 l->l_ru.ru_msgrcv++;
1302 KASSERT(m == so->so_rcv.sb_mb);
1303 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1304 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1305 nextrecord = m->m_nextpkt;
1306
1307 if (pr->pr_flags & PR_ADDR) {
1308 KASSERT(m->m_type == MT_SONAME);
1309 orig_resid = 0;
1310 if (flags & MSG_PEEK) {
1311 if (paddr)
1312 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1313 m = m->m_next;
1314 } else {
1315 sbfree(&so->so_rcv, m);
1316 mbuf_removed = 1;
1317 if (paddr != NULL) {
1318 *paddr = m;
1319 so->so_rcv.sb_mb = m->m_next;
1320 m->m_next = NULL;
1321 m = so->so_rcv.sb_mb;
1322 } else {
1323 m = so->so_rcv.sb_mb = m_free(m);
1324 }
1325 sbsync(&so->so_rcv, nextrecord);
1326 }
1327 }
1328
1329 if (pr->pr_flags & PR_ADDR_OPT) {
1330 /*
1331 * For SCTP we may be getting a whole message OR a partial
1332 * delivery.
1333 */
1334 if (m->m_type == MT_SONAME) {
1335 orig_resid = 0;
1336 if (flags & MSG_PEEK) {
1337 if (paddr)
1338 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1339 m = m->m_next;
1340 } else {
1341 sbfree(&so->so_rcv, m);
1342 mbuf_removed = 1;
1343 if (paddr) {
1344 *paddr = m;
1345 so->so_rcv.sb_mb = m->m_next;
1346 m->m_next = 0;
1347 m = so->so_rcv.sb_mb;
1348 } else {
1349 m = so->so_rcv.sb_mb = m_free(m);
1350 }
1351 sbsync(&so->so_rcv, nextrecord);
1352 }
1353 }
1354 }
1355
1356 /*
1357 * Process one or more MT_CONTROL mbufs present before any data mbufs
1358 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1359 * just copy the data; if !MSG_PEEK, we call into the protocol to
1360 * perform externalization (or freeing if controlp == NULL).
1361 */
1362 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1363 struct mbuf *cm = NULL, *cmn;
1364 struct mbuf **cme = &cm;
1365
1366 do {
1367 if (flags & MSG_PEEK) {
1368 if (controlp != NULL) {
1369 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1370 controlp = &(*controlp)->m_next;
1371 }
1372 m = m->m_next;
1373 } else {
1374 sbfree(&so->so_rcv, m);
1375 so->so_rcv.sb_mb = m->m_next;
1376 m->m_next = NULL;
1377 *cme = m;
1378 cme = &(*cme)->m_next;
1379 m = so->so_rcv.sb_mb;
1380 }
1381 } while (m != NULL && m->m_type == MT_CONTROL);
1382 if ((flags & MSG_PEEK) == 0)
1383 sbsync(&so->so_rcv, nextrecord);
1384
1385 for (; cm != NULL; cm = cmn) {
1386 cmn = cm->m_next;
1387 cm->m_next = NULL;
1388 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1389 if (controlp != NULL) {
1390 if (dom->dom_externalize != NULL &&
1391 type == SCM_RIGHTS) {
1392 sounlock(so);
1393 splx(s);
1394 error = (*dom->dom_externalize)(cm, l,
1395 (flags & MSG_CMSG_CLOEXEC) ?
1396 O_CLOEXEC : 0);
1397 s = splsoftnet();
1398 solock(so);
1399 }
1400 *controlp = cm;
1401 while (*controlp != NULL)
1402 controlp = &(*controlp)->m_next;
1403 } else {
1404 /*
1405 * Dispose of any SCM_RIGHTS message that went
1406 * through the read path rather than recv.
1407 */
1408 if (dom->dom_dispose != NULL &&
1409 type == SCM_RIGHTS) {
1410 sounlock(so);
1411 (*dom->dom_dispose)(cm);
1412 solock(so);
1413 }
1414 m_freem(cm);
1415 }
1416 }
1417 if (m != NULL)
1418 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1419 else
1420 nextrecord = so->so_rcv.sb_mb;
1421 orig_resid = 0;
1422 }
1423
1424 /* If m is non-NULL, we have some data to read. */
1425 if (__predict_true(m != NULL)) {
1426 type = m->m_type;
1427 if (type == MT_OOBDATA)
1428 flags |= MSG_OOB;
1429 }
1430 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1431 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1432
1433 moff = 0;
1434 offset = 0;
1435 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1436 /*
1437 * If the type of mbuf has changed, end the receive
1438 * operation and do a short read.
1439 */
1440 if (m->m_type == MT_OOBDATA) {
1441 if (type != MT_OOBDATA)
1442 break;
1443 } else if (type == MT_OOBDATA) {
1444 break;
1445 } else if (m->m_type == MT_CONTROL) {
1446 break;
1447 }
1448 #ifdef DIAGNOSTIC
1449 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1450 panic("%s: m_type=%d", __func__, m->m_type);
1451 }
1452 #endif
1453
1454 so->so_state &= ~SS_RCVATMARK;
1455 wakeup_state = 0;
1456 len = uio->uio_resid;
1457 if (so->so_oobmark && len > so->so_oobmark - offset)
1458 len = so->so_oobmark - offset;
1459 if (len > m->m_len - moff)
1460 len = m->m_len - moff;
1461
1462 /*
1463 * If mp is set, just pass back the mbufs.
1464 * Otherwise copy them out via the uio, then free.
1465 * Sockbuf must be consistent here (points to current mbuf,
1466 * it points to next record) when we drop priority;
1467 * we must note any additions to the sockbuf when we
1468 * block interrupts again.
1469 */
1470 if (mp == NULL) {
1471 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1472 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1473 sounlock(so);
1474 splx(s);
1475 error = uiomove(mtod(m, char *) + moff, len, uio);
1476 s = splsoftnet();
1477 solock(so);
1478 if (error != 0) {
1479 /*
1480 * If any part of the record has been removed
1481 * (such as the MT_SONAME mbuf, which will
1482 * happen when PR_ADDR, and thus also
1483 * PR_ATOMIC, is set), then drop the entire
1484 * record to maintain the atomicity of the
1485 * receive operation.
1486 *
1487 * This avoids a later panic("receive 1a")
1488 * when compiled with DIAGNOSTIC.
1489 */
1490 if (m && mbuf_removed && atomic)
1491 (void) sbdroprecord(&so->so_rcv);
1492
1493 goto release;
1494 }
1495 } else {
1496 uio->uio_resid -= len;
1497 }
1498
1499 if (len == m->m_len - moff) {
1500 if (m->m_flags & M_EOR)
1501 flags |= MSG_EOR;
1502 #ifdef SCTP
1503 if (m->m_flags & M_NOTIFICATION)
1504 flags |= MSG_NOTIFICATION;
1505 #endif
1506 if (flags & MSG_PEEK) {
1507 m = m->m_next;
1508 moff = 0;
1509 } else {
1510 nextrecord = m->m_nextpkt;
1511 sbfree(&so->so_rcv, m);
1512 if (mp) {
1513 *mp = m;
1514 mp = &m->m_next;
1515 so->so_rcv.sb_mb = m = m->m_next;
1516 *mp = NULL;
1517 } else {
1518 m = so->so_rcv.sb_mb = m_free(m);
1519 }
1520 /*
1521 * If m != NULL, we also know that
1522 * so->so_rcv.sb_mb != NULL.
1523 */
1524 KASSERT(so->so_rcv.sb_mb == m);
1525 if (m) {
1526 m->m_nextpkt = nextrecord;
1527 if (nextrecord == NULL)
1528 so->so_rcv.sb_lastrecord = m;
1529 } else {
1530 so->so_rcv.sb_mb = nextrecord;
1531 SB_EMPTY_FIXUP(&so->so_rcv);
1532 }
1533 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1534 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1535 }
1536 } else if (flags & MSG_PEEK) {
1537 moff += len;
1538 } else {
1539 if (mp != NULL) {
1540 mt = m_copym(m, 0, len, M_NOWAIT);
1541 if (__predict_false(mt == NULL)) {
1542 sounlock(so);
1543 mt = m_copym(m, 0, len, M_WAIT);
1544 solock(so);
1545 }
1546 *mp = mt;
1547 }
1548 m->m_data += len;
1549 m->m_len -= len;
1550 so->so_rcv.sb_cc -= len;
1551 }
1552
1553 if (so->so_oobmark) {
1554 if ((flags & MSG_PEEK) == 0) {
1555 so->so_oobmark -= len;
1556 if (so->so_oobmark == 0) {
1557 so->so_state |= SS_RCVATMARK;
1558 break;
1559 }
1560 } else {
1561 offset += len;
1562 if (offset == so->so_oobmark)
1563 break;
1564 }
1565 } else {
1566 so->so_state &= ~SS_POLLRDBAND;
1567 }
1568 if (flags & MSG_EOR)
1569 break;
1570
1571 /*
1572 * If the MSG_WAITALL flag is set (for non-atomic socket),
1573 * we must not quit until "uio->uio_resid == 0" or an error
1574 * termination. If a signal/timeout occurs, return
1575 * with a short count but without error.
1576 * Keep sockbuf locked against other readers.
1577 */
1578 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1579 !sosendallatonce(so) && !nextrecord) {
1580 if (so->so_error || so->so_rerror ||
1581 so->so_state & SS_CANTRCVMORE)
1582 break;
1583 /*
1584 * If we are peeking and the socket receive buffer is
1585 * full, stop since we can't get more data to peek at.
1586 */
1587 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1588 break;
1589 /*
1590 * If we've drained the socket buffer, tell the
1591 * protocol in case it needs to do something to
1592 * get it filled again.
1593 */
1594 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1595 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1596 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1597 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1598 if (wakeup_state & SS_RESTARTSYS)
1599 error = ERESTART;
1600 else
1601 error = sbwait(&so->so_rcv);
1602 if (error != 0) {
1603 sbunlock(&so->so_rcv);
1604 sounlock(so);
1605 splx(s);
1606 return 0;
1607 }
1608 if ((m = so->so_rcv.sb_mb) != NULL)
1609 nextrecord = m->m_nextpkt;
1610 wakeup_state = so->so_state;
1611 }
1612 }
1613
1614 if (m && atomic) {
1615 flags |= MSG_TRUNC;
1616 if ((flags & MSG_PEEK) == 0)
1617 (void) sbdroprecord(&so->so_rcv);
1618 }
1619 if ((flags & MSG_PEEK) == 0) {
1620 if (m == NULL) {
1621 /*
1622 * First part is an inline SB_EMPTY_FIXUP(). Second
1623 * part makes sure sb_lastrecord is up-to-date if
1624 * there is still data in the socket buffer.
1625 */
1626 so->so_rcv.sb_mb = nextrecord;
1627 if (so->so_rcv.sb_mb == NULL) {
1628 so->so_rcv.sb_mbtail = NULL;
1629 so->so_rcv.sb_lastrecord = NULL;
1630 } else if (nextrecord->m_nextpkt == NULL)
1631 so->so_rcv.sb_lastrecord = nextrecord;
1632 }
1633 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1634 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1635 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1636 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1637 }
1638 if (orig_resid == uio->uio_resid && orig_resid &&
1639 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1640 sbunlock(&so->so_rcv);
1641 goto restart;
1642 }
1643
1644 if (flagsp != NULL)
1645 *flagsp |= flags;
1646 release:
1647 sbunlock(&so->so_rcv);
1648 sounlock(so);
1649 splx(s);
1650 return error;
1651 }
1652
1653 int
1654 soshutdown(struct socket *so, int how)
1655 {
1656 const struct protosw *pr;
1657 int error;
1658
1659 KASSERT(solocked(so));
1660
1661 pr = so->so_proto;
1662 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1663 return EINVAL;
1664
1665 if (how == SHUT_RD || how == SHUT_RDWR) {
1666 sorflush(so);
1667 error = 0;
1668 }
1669 if (how == SHUT_WR || how == SHUT_RDWR)
1670 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1671
1672 return error;
1673 }
1674
1675 void
1676 sorestart(struct socket *so)
1677 {
1678 /*
1679 * An application has called close() on an fd on which another
1680 * of its threads has called a socket system call.
1681 * Mark this and wake everyone up, and code that would block again
1682 * instead returns ERESTART.
1683 * On system call re-entry the fd is validated and EBADF returned.
1684 * Any other fd will block again on the 2nd syscall.
1685 */
1686 solock(so);
1687 so->so_state |= SS_RESTARTSYS;
1688 cv_broadcast(&so->so_cv);
1689 cv_broadcast(&so->so_snd.sb_cv);
1690 cv_broadcast(&so->so_rcv.sb_cv);
1691 sounlock(so);
1692 }
1693
1694 void
1695 sorflush(struct socket *so)
1696 {
1697 struct sockbuf *sb, asb;
1698 const struct protosw *pr;
1699
1700 KASSERT(solocked(so));
1701
1702 sb = &so->so_rcv;
1703 pr = so->so_proto;
1704 socantrcvmore(so);
1705 sb->sb_flags |= SB_NOINTR;
1706 (void )sblock(sb, M_WAITOK);
1707 sbunlock(sb);
1708 asb = *sb;
1709 /*
1710 * Clear most of the sockbuf structure, but leave some of the
1711 * fields valid.
1712 */
1713 memset(&sb->sb_startzero, 0,
1714 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1715 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1716 sounlock(so);
1717 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1718 solock(so);
1719 }
1720 sbrelease(&asb, so);
1721 }
1722
1723 /*
1724 * internal set SOL_SOCKET options
1725 */
1726 static int
1727 sosetopt1(struct socket *so, const struct sockopt *sopt)
1728 {
1729 int error, opt;
1730 int optval = 0; /* XXX: gcc */
1731 struct linger l;
1732 struct timeval tv;
1733
1734 opt = sopt->sopt_name;
1735
1736 switch (opt) {
1737
1738 case SO_ACCEPTFILTER:
1739 error = accept_filt_setopt(so, sopt);
1740 KASSERT(solocked(so));
1741 break;
1742
1743 case SO_LINGER:
1744 error = sockopt_get(sopt, &l, sizeof(l));
1745 solock(so);
1746 if (error)
1747 break;
1748 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1749 l.l_linger > (INT_MAX / hz)) {
1750 error = EDOM;
1751 break;
1752 }
1753 so->so_linger = l.l_linger;
1754 if (l.l_onoff)
1755 so->so_options |= SO_LINGER;
1756 else
1757 so->so_options &= ~SO_LINGER;
1758 break;
1759
1760 case SO_DEBUG:
1761 case SO_KEEPALIVE:
1762 case SO_DONTROUTE:
1763 case SO_USELOOPBACK:
1764 case SO_BROADCAST:
1765 case SO_REUSEADDR:
1766 case SO_REUSEPORT:
1767 case SO_OOBINLINE:
1768 case SO_TIMESTAMP:
1769 case SO_NOSIGPIPE:
1770 case SO_RERROR:
1771 error = sockopt_getint(sopt, &optval);
1772 solock(so);
1773 if (error)
1774 break;
1775 if (optval)
1776 so->so_options |= opt;
1777 else
1778 so->so_options &= ~opt;
1779 break;
1780
1781 case SO_SNDBUF:
1782 case SO_RCVBUF:
1783 case SO_SNDLOWAT:
1784 case SO_RCVLOWAT:
1785 error = sockopt_getint(sopt, &optval);
1786 solock(so);
1787 if (error)
1788 break;
1789
1790 /*
1791 * Values < 1 make no sense for any of these
1792 * options, so disallow them.
1793 */
1794 if (optval < 1) {
1795 error = EINVAL;
1796 break;
1797 }
1798
1799 switch (opt) {
1800 case SO_SNDBUF:
1801 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1802 error = ENOBUFS;
1803 break;
1804 }
1805 if (sofixedbuf)
1806 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1807 break;
1808
1809 case SO_RCVBUF:
1810 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1811 error = ENOBUFS;
1812 break;
1813 }
1814 if (sofixedbuf)
1815 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1816 break;
1817
1818 /*
1819 * Make sure the low-water is never greater than
1820 * the high-water.
1821 */
1822 case SO_SNDLOWAT:
1823 if (optval > so->so_snd.sb_hiwat)
1824 optval = so->so_snd.sb_hiwat;
1825
1826 so->so_snd.sb_lowat = optval;
1827 break;
1828
1829 case SO_RCVLOWAT:
1830 if (optval > so->so_rcv.sb_hiwat)
1831 optval = so->so_rcv.sb_hiwat;
1832
1833 so->so_rcv.sb_lowat = optval;
1834 break;
1835 }
1836 break;
1837
1838 case SO_SNDTIMEO:
1839 case SO_RCVTIMEO:
1840 solock(so);
1841 error = sockopt_get(sopt, &tv, sizeof(tv));
1842 if (error)
1843 break;
1844
1845 if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1846 error = EDOM;
1847 break;
1848 }
1849 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1850 error = EDOM;
1851 break;
1852 }
1853
1854 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1855 if (optval == 0 && tv.tv_usec != 0)
1856 optval = 1;
1857
1858 switch (opt) {
1859 case SO_SNDTIMEO:
1860 so->so_snd.sb_timeo = optval;
1861 break;
1862 case SO_RCVTIMEO:
1863 so->so_rcv.sb_timeo = optval;
1864 break;
1865 }
1866 break;
1867
1868 default:
1869 MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
1870 (opt, so, sopt), enosys(), error);
1871 if (error == ENOSYS || error == EPASSTHROUGH) {
1872 solock(so);
1873 error = ENOPROTOOPT;
1874 }
1875 break;
1876 }
1877 KASSERT(solocked(so));
1878 return error;
1879 }
1880
1881 int
1882 sosetopt(struct socket *so, struct sockopt *sopt)
1883 {
1884 int error, prerr;
1885
1886 if (sopt->sopt_level == SOL_SOCKET) {
1887 error = sosetopt1(so, sopt);
1888 KASSERT(solocked(so));
1889 } else {
1890 error = ENOPROTOOPT;
1891 solock(so);
1892 }
1893
1894 if ((error == 0 || error == ENOPROTOOPT) &&
1895 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1896 /* give the protocol stack a shot */
1897 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1898 if (prerr == 0)
1899 error = 0;
1900 else if (prerr != ENOPROTOOPT)
1901 error = prerr;
1902 }
1903 sounlock(so);
1904 return error;
1905 }
1906
1907 /*
1908 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1909 */
1910 int
1911 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1912 const void *val, size_t valsize)
1913 {
1914 struct sockopt sopt;
1915 int error;
1916
1917 KASSERT(valsize == 0 || val != NULL);
1918
1919 sockopt_init(&sopt, level, name, valsize);
1920 sockopt_set(&sopt, val, valsize);
1921
1922 error = sosetopt(so, &sopt);
1923
1924 sockopt_destroy(&sopt);
1925
1926 return error;
1927 }
1928
1929 /*
1930 * internal get SOL_SOCKET options
1931 */
1932 static int
1933 sogetopt1(struct socket *so, struct sockopt *sopt)
1934 {
1935 int error, optval, opt;
1936 struct linger l;
1937 struct timeval tv;
1938
1939 switch ((opt = sopt->sopt_name)) {
1940
1941 case SO_ACCEPTFILTER:
1942 error = accept_filt_getopt(so, sopt);
1943 break;
1944
1945 case SO_LINGER:
1946 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1947 l.l_linger = so->so_linger;
1948
1949 error = sockopt_set(sopt, &l, sizeof(l));
1950 break;
1951
1952 case SO_USELOOPBACK:
1953 case SO_DONTROUTE:
1954 case SO_DEBUG:
1955 case SO_KEEPALIVE:
1956 case SO_REUSEADDR:
1957 case SO_REUSEPORT:
1958 case SO_BROADCAST:
1959 case SO_OOBINLINE:
1960 case SO_TIMESTAMP:
1961 case SO_NOSIGPIPE:
1962 case SO_RERROR:
1963 case SO_ACCEPTCONN:
1964 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1965 break;
1966
1967 case SO_TYPE:
1968 error = sockopt_setint(sopt, so->so_type);
1969 break;
1970
1971 case SO_ERROR:
1972 if (so->so_error == 0) {
1973 so->so_error = so->so_rerror;
1974 so->so_rerror = 0;
1975 }
1976 error = sockopt_setint(sopt, so->so_error);
1977 so->so_error = 0;
1978 break;
1979
1980 case SO_SNDBUF:
1981 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1982 break;
1983
1984 case SO_RCVBUF:
1985 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1986 break;
1987
1988 case SO_SNDLOWAT:
1989 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1990 break;
1991
1992 case SO_RCVLOWAT:
1993 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1994 break;
1995
1996 case SO_SNDTIMEO:
1997 case SO_RCVTIMEO:
1998 optval = (opt == SO_SNDTIMEO ?
1999 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2000
2001 memset(&tv, 0, sizeof(tv));
2002 tv.tv_sec = optval / hz;
2003 tv.tv_usec = (optval % hz) * tick;
2004
2005 error = sockopt_set(sopt, &tv, sizeof(tv));
2006 break;
2007
2008 case SO_OVERFLOWED:
2009 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2010 break;
2011
2012 default:
2013 MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
2014 (opt, so, sopt), enosys(), error);
2015 if (error)
2016 error = ENOPROTOOPT;
2017 break;
2018 }
2019
2020 return error;
2021 }
2022
2023 int
2024 sogetopt(struct socket *so, struct sockopt *sopt)
2025 {
2026 int error;
2027
2028 solock(so);
2029 if (sopt->sopt_level != SOL_SOCKET) {
2030 if (so->so_proto && so->so_proto->pr_ctloutput) {
2031 error = ((*so->so_proto->pr_ctloutput)
2032 (PRCO_GETOPT, so, sopt));
2033 } else
2034 error = (ENOPROTOOPT);
2035 } else {
2036 error = sogetopt1(so, sopt);
2037 }
2038 sounlock(so);
2039 return error;
2040 }
2041
2042 /*
2043 * alloc sockopt data buffer buffer
2044 * - will be released at destroy
2045 */
2046 static int
2047 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2048 {
2049 void *data;
2050
2051 KASSERT(sopt->sopt_size == 0);
2052
2053 if (len > sizeof(sopt->sopt_buf)) {
2054 data = kmem_zalloc(len, kmflag);
2055 if (data == NULL)
2056 return ENOMEM;
2057 sopt->sopt_data = data;
2058 } else
2059 sopt->sopt_data = sopt->sopt_buf;
2060
2061 sopt->sopt_size = len;
2062 return 0;
2063 }
2064
2065 /*
2066 * initialise sockopt storage
2067 * - MAY sleep during allocation
2068 */
2069 void
2070 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2071 {
2072
2073 memset(sopt, 0, sizeof(*sopt));
2074
2075 sopt->sopt_level = level;
2076 sopt->sopt_name = name;
2077 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2078 }
2079
2080 /*
2081 * destroy sockopt storage
2082 * - will release any held memory references
2083 */
2084 void
2085 sockopt_destroy(struct sockopt *sopt)
2086 {
2087
2088 if (sopt->sopt_data != sopt->sopt_buf)
2089 kmem_free(sopt->sopt_data, sopt->sopt_size);
2090
2091 memset(sopt, 0, sizeof(*sopt));
2092 }
2093
2094 /*
2095 * set sockopt value
2096 * - value is copied into sockopt
2097 * - memory is allocated when necessary, will not sleep
2098 */
2099 int
2100 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2101 {
2102 int error;
2103
2104 if (sopt->sopt_size == 0) {
2105 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2106 if (error)
2107 return error;
2108 }
2109
2110 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2111 if (sopt->sopt_retsize > 0) {
2112 memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
2113 }
2114
2115 return 0;
2116 }
2117
2118 /*
2119 * common case of set sockopt integer value
2120 */
2121 int
2122 sockopt_setint(struct sockopt *sopt, int val)
2123 {
2124
2125 return sockopt_set(sopt, &val, sizeof(int));
2126 }
2127
2128 /*
2129 * get sockopt value
2130 * - correct size must be given
2131 */
2132 int
2133 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2134 {
2135
2136 if (sopt->sopt_size != len)
2137 return EINVAL;
2138
2139 memcpy(buf, sopt->sopt_data, len);
2140 return 0;
2141 }
2142
2143 /*
2144 * common case of get sockopt integer value
2145 */
2146 int
2147 sockopt_getint(const struct sockopt *sopt, int *valp)
2148 {
2149
2150 return sockopt_get(sopt, valp, sizeof(int));
2151 }
2152
2153 /*
2154 * set sockopt value from mbuf
2155 * - ONLY for legacy code
2156 * - mbuf is released by sockopt
2157 * - will not sleep
2158 */
2159 int
2160 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2161 {
2162 size_t len;
2163 int error;
2164
2165 len = m_length(m);
2166
2167 if (sopt->sopt_size == 0) {
2168 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2169 if (error)
2170 return error;
2171 }
2172
2173 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2174 m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
2175 m_freem(m);
2176
2177 return 0;
2178 }
2179
2180 /*
2181 * get sockopt value into mbuf
2182 * - ONLY for legacy code
2183 * - mbuf to be released by the caller
2184 * - will not sleep
2185 */
2186 struct mbuf *
2187 sockopt_getmbuf(const struct sockopt *sopt)
2188 {
2189 struct mbuf *m;
2190
2191 if (sopt->sopt_size > MCLBYTES)
2192 return NULL;
2193
2194 m = m_get(M_DONTWAIT, MT_SOOPTS);
2195 if (m == NULL)
2196 return NULL;
2197
2198 if (sopt->sopt_size > MLEN) {
2199 MCLGET(m, M_DONTWAIT);
2200 if ((m->m_flags & M_EXT) == 0) {
2201 m_free(m);
2202 return NULL;
2203 }
2204 }
2205
2206 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2207 m->m_len = sopt->sopt_size;
2208
2209 return m;
2210 }
2211
2212 void
2213 sohasoutofband(struct socket *so)
2214 {
2215
2216 so->so_state |= SS_POLLRDBAND;
2217 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2218 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2219 }
2220
2221 static void
2222 filt_sordetach(struct knote *kn)
2223 {
2224 struct socket *so;
2225
2226 so = ((file_t *)kn->kn_obj)->f_socket;
2227 solock(so);
2228 if (selremove_knote(&so->so_rcv.sb_sel, kn))
2229 so->so_rcv.sb_flags &= ~SB_KNOTE;
2230 sounlock(so);
2231 }
2232
2233 /*ARGSUSED*/
2234 static int
2235 filt_soread(struct knote *kn, long hint)
2236 {
2237 struct socket *so;
2238 int rv;
2239
2240 so = ((file_t *)kn->kn_obj)->f_socket;
2241 if (hint != NOTE_SUBMIT)
2242 solock(so);
2243 kn->kn_data = so->so_rcv.sb_cc;
2244 if (so->so_state & SS_CANTRCVMORE) {
2245 kn->kn_flags |= EV_EOF;
2246 kn->kn_fflags = so->so_error;
2247 rv = 1;
2248 } else if (so->so_error || so->so_rerror)
2249 rv = 1;
2250 else if (kn->kn_sfflags & NOTE_LOWAT)
2251 rv = (kn->kn_data >= kn->kn_sdata);
2252 else
2253 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2254 if (hint != NOTE_SUBMIT)
2255 sounlock(so);
2256 return rv;
2257 }
2258
2259 static void
2260 filt_sowdetach(struct knote *kn)
2261 {
2262 struct socket *so;
2263
2264 so = ((file_t *)kn->kn_obj)->f_socket;
2265 solock(so);
2266 if (selremove_knote(&so->so_snd.sb_sel, kn))
2267 so->so_snd.sb_flags &= ~SB_KNOTE;
2268 sounlock(so);
2269 }
2270
2271 /*ARGSUSED*/
2272 static int
2273 filt_sowrite(struct knote *kn, long hint)
2274 {
2275 struct socket *so;
2276 int rv;
2277
2278 so = ((file_t *)kn->kn_obj)->f_socket;
2279 if (hint != NOTE_SUBMIT)
2280 solock(so);
2281 kn->kn_data = sbspace(&so->so_snd);
2282 if (so->so_state & SS_CANTSENDMORE) {
2283 kn->kn_flags |= EV_EOF;
2284 kn->kn_fflags = so->so_error;
2285 rv = 1;
2286 } else if (so->so_error)
2287 rv = 1;
2288 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2289 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2290 rv = 0;
2291 else if (kn->kn_sfflags & NOTE_LOWAT)
2292 rv = (kn->kn_data >= kn->kn_sdata);
2293 else
2294 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2295 if (hint != NOTE_SUBMIT)
2296 sounlock(so);
2297 return rv;
2298 }
2299
2300 /*ARGSUSED*/
2301 static int
2302 filt_solisten(struct knote *kn, long hint)
2303 {
2304 struct socket *so;
2305 int rv;
2306
2307 so = ((file_t *)kn->kn_obj)->f_socket;
2308
2309 /*
2310 * Set kn_data to number of incoming connections, not
2311 * counting partial (incomplete) connections.
2312 */
2313 if (hint != NOTE_SUBMIT)
2314 solock(so);
2315 kn->kn_data = so->so_qlen;
2316 rv = (kn->kn_data > 0);
2317 if (hint != NOTE_SUBMIT)
2318 sounlock(so);
2319 return rv;
2320 }
2321
2322 static const struct filterops solisten_filtops = {
2323 .f_flags = FILTEROP_ISFD,
2324 .f_attach = NULL,
2325 .f_detach = filt_sordetach,
2326 .f_event = filt_solisten,
2327 };
2328
2329 static const struct filterops soread_filtops = {
2330 .f_flags = FILTEROP_ISFD,
2331 .f_attach = NULL,
2332 .f_detach = filt_sordetach,
2333 .f_event = filt_soread,
2334 };
2335
2336 static const struct filterops sowrite_filtops = {
2337 .f_flags = FILTEROP_ISFD,
2338 .f_attach = NULL,
2339 .f_detach = filt_sowdetach,
2340 .f_event = filt_sowrite,
2341 };
2342
2343 int
2344 soo_kqfilter(struct file *fp, struct knote *kn)
2345 {
2346 struct socket *so;
2347 struct sockbuf *sb;
2348
2349 so = ((file_t *)kn->kn_obj)->f_socket;
2350 solock(so);
2351 switch (kn->kn_filter) {
2352 case EVFILT_READ:
2353 if (so->so_options & SO_ACCEPTCONN)
2354 kn->kn_fop = &solisten_filtops;
2355 else
2356 kn->kn_fop = &soread_filtops;
2357 sb = &so->so_rcv;
2358 break;
2359 case EVFILT_WRITE:
2360 kn->kn_fop = &sowrite_filtops;
2361 sb = &so->so_snd;
2362 break;
2363 default:
2364 sounlock(so);
2365 return EINVAL;
2366 }
2367 selrecord_knote(&sb->sb_sel, kn);
2368 sb->sb_flags |= SB_KNOTE;
2369 sounlock(so);
2370 return 0;
2371 }
2372
2373 static int
2374 sodopoll(struct socket *so, int events)
2375 {
2376 int revents;
2377
2378 revents = 0;
2379
2380 if (events & (POLLIN | POLLRDNORM))
2381 if (soreadable(so))
2382 revents |= events & (POLLIN | POLLRDNORM);
2383
2384 if (events & (POLLOUT | POLLWRNORM))
2385 if (sowritable(so))
2386 revents |= events & (POLLOUT | POLLWRNORM);
2387
2388 if (events & (POLLPRI | POLLRDBAND))
2389 if (so->so_state & SS_POLLRDBAND)
2390 revents |= events & (POLLPRI | POLLRDBAND);
2391
2392 return revents;
2393 }
2394
2395 int
2396 sopoll(struct socket *so, int events)
2397 {
2398 int revents = 0;
2399
2400 #ifndef DIAGNOSTIC
2401 /*
2402 * Do a quick, unlocked check in expectation that the socket
2403 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2404 * as the solocked() assertions will fail.
2405 */
2406 if ((revents = sodopoll(so, events)) != 0)
2407 return revents;
2408 #endif
2409
2410 solock(so);
2411 if ((revents = sodopoll(so, events)) == 0) {
2412 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2413 selrecord(curlwp, &so->so_rcv.sb_sel);
2414 so->so_rcv.sb_flags |= SB_NOTIFY;
2415 }
2416
2417 if (events & (POLLOUT | POLLWRNORM)) {
2418 selrecord(curlwp, &so->so_snd.sb_sel);
2419 so->so_snd.sb_flags |= SB_NOTIFY;
2420 }
2421 }
2422 sounlock(so);
2423
2424 return revents;
2425 }
2426
2427 struct mbuf **
2428 sbsavetimestamp(int opt, struct mbuf **mp)
2429 {
2430 struct timeval tv;
2431 int error;
2432
2433 memset(&tv, 0, sizeof(tv));
2434 microtime(&tv);
2435
2436 MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, &mp), enosys(), error);
2437 if (error == 0)
2438 return mp;
2439
2440 if (opt & SO_TIMESTAMP) {
2441 *mp = sbcreatecontrol(&tv, sizeof(tv),
2442 SCM_TIMESTAMP, SOL_SOCKET);
2443 if (*mp)
2444 mp = &(*mp)->m_next;
2445 }
2446 return mp;
2447 }
2448
2449
2450 #include <sys/sysctl.h>
2451
2452 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2453 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2454
2455 /*
2456 * sysctl helper routine for kern.somaxkva. ensures that the given
2457 * value is not too small.
2458 * (XXX should we maybe make sure it's not too large as well?)
2459 */
2460 static int
2461 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2462 {
2463 int error, new_somaxkva;
2464 struct sysctlnode node;
2465
2466 new_somaxkva = somaxkva;
2467 node = *rnode;
2468 node.sysctl_data = &new_somaxkva;
2469 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2470 if (error || newp == NULL)
2471 return error;
2472
2473 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2474 return EINVAL;
2475
2476 mutex_enter(&so_pendfree_lock);
2477 somaxkva = new_somaxkva;
2478 cv_broadcast(&socurkva_cv);
2479 mutex_exit(&so_pendfree_lock);
2480
2481 return error;
2482 }
2483
2484 /*
2485 * sysctl helper routine for kern.sbmax. Basically just ensures that
2486 * any new value is not too small.
2487 */
2488 static int
2489 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2490 {
2491 int error, new_sbmax;
2492 struct sysctlnode node;
2493
2494 new_sbmax = sb_max;
2495 node = *rnode;
2496 node.sysctl_data = &new_sbmax;
2497 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2498 if (error || newp == NULL)
2499 return error;
2500
2501 KERNEL_LOCK(1, NULL);
2502 error = sb_max_set(new_sbmax);
2503 KERNEL_UNLOCK_ONE(NULL);
2504
2505 return error;
2506 }
2507
2508 /*
2509 * sysctl helper routine for kern.sooptions. Ensures that only allowed
2510 * options can be set.
2511 */
2512 static int
2513 sysctl_kern_sooptions(SYSCTLFN_ARGS)
2514 {
2515 int error, new_options;
2516 struct sysctlnode node;
2517
2518 new_options = sooptions;
2519 node = *rnode;
2520 node.sysctl_data = &new_options;
2521 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2522 if (error || newp == NULL)
2523 return error;
2524
2525 if (new_options & ~SO_DEFOPTS)
2526 return EINVAL;
2527
2528 sooptions = new_options;
2529
2530 return 0;
2531 }
2532
2533 static void
2534 sysctl_kern_socket_setup(void)
2535 {
2536
2537 KASSERT(socket_sysctllog == NULL);
2538
2539 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2540 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2541 CTLTYPE_INT, "somaxkva",
2542 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2543 "used for socket buffers"),
2544 sysctl_kern_somaxkva, 0, NULL, 0,
2545 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2546
2547 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2548 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2549 CTLTYPE_BOOL, "sofixedbuf",
2550 SYSCTL_DESCR("Prevent scaling of fixed socket buffers"),
2551 NULL, 0, &sofixedbuf, 0,
2552 CTL_KERN, KERN_SOFIXEDBUF, CTL_EOL);
2553
2554 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2555 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2556 CTLTYPE_INT, "sbmax",
2557 SYSCTL_DESCR("Maximum socket buffer size"),
2558 sysctl_kern_sbmax, 0, NULL, 0,
2559 CTL_KERN, KERN_SBMAX, CTL_EOL);
2560
2561 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2562 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2563 CTLTYPE_INT, "sooptions",
2564 SYSCTL_DESCR("Default socket options"),
2565 sysctl_kern_sooptions, 0, NULL, 0,
2566 CTL_KERN, CTL_CREATE, CTL_EOL);
2567 }
2568