uipc_socket.c revision 1.302.4.1 1 /* $NetBSD: uipc_socket.c,v 1.302.4.1 2024/02/04 11:20:15 martin Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.302.4.1 2024/02/04 11:20:15 martin Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #include "opt_sctp.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/file.h>
90 #include <sys/filedesc.h>
91 #include <sys/kmem.h>
92 #include <sys/mbuf.h>
93 #include <sys/domain.h>
94 #include <sys/kernel.h>
95 #include <sys/protosw.h>
96 #include <sys/socket.h>
97 #include <sys/socketvar.h>
98 #include <sys/signalvar.h>
99 #include <sys/resourcevar.h>
100 #include <sys/uidinfo.h>
101 #include <sys/event.h>
102 #include <sys/poll.h>
103 #include <sys/kauth.h>
104 #include <sys/mutex.h>
105 #include <sys/condvar.h>
106 #include <sys/kthread.h>
107 #include <sys/compat_stub.h>
108
109 #include <compat/sys/time.h>
110 #include <compat/sys/socket.h>
111
112 #include <uvm/uvm_extern.h>
113 #include <uvm/uvm_loan.h>
114 #include <uvm/uvm_page.h>
115
116 #ifdef SCTP
117 #include <netinet/sctp_route.h>
118 #endif
119
120 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
121
122 extern const struct fileops socketops;
123
124 static int sooptions;
125 extern int somaxconn; /* patchable (XXX sysctl) */
126 int somaxconn = SOMAXCONN;
127 kmutex_t *softnet_lock;
128
129 #ifdef SOSEND_COUNTERS
130 #include <sys/device.h>
131
132 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
133 NULL, "sosend", "loan big");
134 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
135 NULL, "sosend", "copy big");
136 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
137 NULL, "sosend", "copy small");
138 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
139 NULL, "sosend", "kva limit");
140
141 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
142
143 EVCNT_ATTACH_STATIC(sosend_loan_big);
144 EVCNT_ATTACH_STATIC(sosend_copy_big);
145 EVCNT_ATTACH_STATIC(sosend_copy_small);
146 EVCNT_ATTACH_STATIC(sosend_kvalimit);
147 #else
148
149 #define SOSEND_COUNTER_INCR(ev) /* nothing */
150
151 #endif /* SOSEND_COUNTERS */
152
153 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
154 int sock_loan_thresh = -1;
155 #else
156 int sock_loan_thresh = 4096;
157 #endif
158
159 static kmutex_t so_pendfree_lock;
160 static struct mbuf *so_pendfree = NULL;
161
162 #ifndef SOMAXKVA
163 #define SOMAXKVA (16 * 1024 * 1024)
164 #endif
165 int somaxkva = SOMAXKVA;
166 static int socurkva;
167 static kcondvar_t socurkva_cv;
168
169 #ifndef SOFIXEDBUF
170 #define SOFIXEDBUF true
171 #endif
172 bool sofixedbuf = SOFIXEDBUF;
173
174 static kauth_listener_t socket_listener;
175
176 #define SOCK_LOAN_CHUNK 65536
177
178 static void sopendfree_thread(void *);
179 static kcondvar_t pendfree_thread_cv;
180 static lwp_t *sopendfree_lwp;
181
182 static void sysctl_kern_socket_setup(void);
183 static struct sysctllog *socket_sysctllog;
184
185 static vsize_t
186 sokvareserve(struct socket *so, vsize_t len)
187 {
188 int error;
189
190 mutex_enter(&so_pendfree_lock);
191 while (socurkva + len > somaxkva) {
192 SOSEND_COUNTER_INCR(&sosend_kvalimit);
193 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
194 if (error) {
195 len = 0;
196 break;
197 }
198 }
199 socurkva += len;
200 mutex_exit(&so_pendfree_lock);
201 return len;
202 }
203
204 static void
205 sokvaunreserve(vsize_t len)
206 {
207
208 mutex_enter(&so_pendfree_lock);
209 socurkva -= len;
210 cv_broadcast(&socurkva_cv);
211 mutex_exit(&so_pendfree_lock);
212 }
213
214 /*
215 * sokvaalloc: allocate kva for loan.
216 */
217 vaddr_t
218 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
219 {
220 vaddr_t lva;
221
222 if (sokvareserve(so, len) == 0)
223 return 0;
224
225 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
226 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
227 if (lva == 0) {
228 sokvaunreserve(len);
229 return 0;
230 }
231
232 return lva;
233 }
234
235 /*
236 * sokvafree: free kva for loan.
237 */
238 void
239 sokvafree(vaddr_t sva, vsize_t len)
240 {
241
242 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
243 sokvaunreserve(len);
244 }
245
246 static void
247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
248 {
249 vaddr_t sva, eva;
250 vsize_t len;
251 int npgs;
252
253 KASSERT(pgs != NULL);
254
255 eva = round_page((vaddr_t) buf + size);
256 sva = trunc_page((vaddr_t) buf);
257 len = eva - sva;
258 npgs = len >> PAGE_SHIFT;
259
260 pmap_kremove(sva, len);
261 pmap_update(pmap_kernel());
262 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
263 sokvafree(sva, len);
264 }
265
266 /*
267 * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
268 * so_pendfree_lock when freeing mbufs.
269 */
270 static void
271 sopendfree_thread(void *v)
272 {
273 struct mbuf *m, *next;
274 size_t rv;
275
276 mutex_enter(&so_pendfree_lock);
277
278 for (;;) {
279 rv = 0;
280 while (so_pendfree != NULL) {
281 m = so_pendfree;
282 so_pendfree = NULL;
283 mutex_exit(&so_pendfree_lock);
284
285 for (; m != NULL; m = next) {
286 next = m->m_next;
287 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
288 0);
289 KASSERT(m->m_ext.ext_refcnt == 0);
290
291 rv += m->m_ext.ext_size;
292 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
293 m->m_ext.ext_size);
294 pool_cache_put(mb_cache, m);
295 }
296
297 mutex_enter(&so_pendfree_lock);
298 }
299 if (rv)
300 cv_broadcast(&socurkva_cv);
301 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
302 }
303 panic("sopendfree_thread");
304 /* NOTREACHED */
305 }
306
307 void
308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
309 {
310
311 KASSERT(m != NULL);
312
313 /*
314 * postpone freeing mbuf.
315 *
316 * we can't do it in interrupt context
317 * because we need to put kva back to kernel_map.
318 */
319
320 mutex_enter(&so_pendfree_lock);
321 m->m_next = so_pendfree;
322 so_pendfree = m;
323 cv_signal(&pendfree_thread_cv);
324 mutex_exit(&so_pendfree_lock);
325 }
326
327 static long
328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
329 {
330 struct iovec *iov = uio->uio_iov;
331 vaddr_t sva, eva;
332 vsize_t len;
333 vaddr_t lva;
334 int npgs, error;
335 vaddr_t va;
336 int i;
337
338 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
339 return 0;
340
341 if (iov->iov_len < (size_t) space)
342 space = iov->iov_len;
343 if (space > SOCK_LOAN_CHUNK)
344 space = SOCK_LOAN_CHUNK;
345
346 eva = round_page((vaddr_t) iov->iov_base + space);
347 sva = trunc_page((vaddr_t) iov->iov_base);
348 len = eva - sva;
349 npgs = len >> PAGE_SHIFT;
350
351 KASSERT(npgs <= M_EXT_MAXPAGES);
352
353 lva = sokvaalloc(sva, len, so);
354 if (lva == 0)
355 return 0;
356
357 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
358 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
359 if (error) {
360 sokvafree(lva, len);
361 return 0;
362 }
363
364 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
365 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
366 VM_PROT_READ, 0);
367 pmap_update(pmap_kernel());
368
369 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
370
371 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
372 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
373
374 uio->uio_resid -= space;
375 /* uio_offset not updated, not set/used for write(2) */
376 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
377 uio->uio_iov->iov_len -= space;
378 if (uio->uio_iov->iov_len == 0) {
379 uio->uio_iov++;
380 uio->uio_iovcnt--;
381 }
382
383 return space;
384 }
385
386 static int
387 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
388 void *arg0, void *arg1, void *arg2, void *arg3)
389 {
390 int result;
391 enum kauth_network_req req;
392
393 result = KAUTH_RESULT_DEFER;
394 req = (enum kauth_network_req)(uintptr_t)arg0;
395
396 if ((action != KAUTH_NETWORK_SOCKET) &&
397 (action != KAUTH_NETWORK_BIND))
398 return result;
399
400 switch (req) {
401 case KAUTH_REQ_NETWORK_BIND_PORT:
402 result = KAUTH_RESULT_ALLOW;
403 break;
404
405 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
406 /* Normal users can only drop their own connections. */
407 struct socket *so = (struct socket *)arg1;
408
409 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
410 result = KAUTH_RESULT_ALLOW;
411
412 break;
413 }
414
415 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
416 /* We allow "raw" routing/bluetooth sockets to anyone. */
417 switch ((u_long)arg1) {
418 case PF_ROUTE:
419 case PF_OROUTE:
420 case PF_BLUETOOTH:
421 case PF_CAN:
422 result = KAUTH_RESULT_ALLOW;
423 break;
424 default:
425 /* Privileged, let secmodel handle this. */
426 if ((u_long)arg2 == SOCK_RAW)
427 break;
428 result = KAUTH_RESULT_ALLOW;
429 break;
430 }
431 break;
432
433 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
434 result = KAUTH_RESULT_ALLOW;
435
436 break;
437
438 default:
439 break;
440 }
441
442 return result;
443 }
444
445 void
446 soinit(void)
447 {
448
449 sysctl_kern_socket_setup();
450
451 #ifdef SCTP
452 /* Update the SCTP function hooks if necessary*/
453
454 vec_sctp_add_ip_address = sctp_add_ip_address;
455 vec_sctp_delete_ip_address = sctp_delete_ip_address;
456 #endif
457
458 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
459 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
460 cv_init(&socurkva_cv, "sokva");
461 cv_init(&pendfree_thread_cv, "sopendfr");
462 soinit2();
463
464 /* Set the initial adjusted socket buffer size. */
465 if (sb_max_set(sb_max))
466 panic("bad initial sb_max value: %lu", sb_max);
467
468 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
469 socket_listener_cb, NULL);
470 }
471
472 void
473 soinit1(void)
474 {
475 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
476 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
477 if (error)
478 panic("soinit1 %d", error);
479 }
480
481 /*
482 * socreate: create a new socket of the specified type and the protocol.
483 *
484 * => Caller may specify another socket for lock sharing (must not be held).
485 * => Returns the new socket without lock held.
486 */
487 int
488 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
489 struct socket *lockso)
490 {
491 const struct protosw *prp;
492 struct socket *so;
493 uid_t uid;
494 int error;
495 kmutex_t *lock;
496
497 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
498 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
499 KAUTH_ARG(proto));
500 if (error != 0)
501 return error;
502
503 if (proto)
504 prp = pffindproto(dom, proto, type);
505 else
506 prp = pffindtype(dom, type);
507 if (prp == NULL) {
508 /* no support for domain */
509 if (pffinddomain(dom) == 0)
510 return EAFNOSUPPORT;
511 /* no support for socket type */
512 if (proto == 0 && type != 0)
513 return EPROTOTYPE;
514 return EPROTONOSUPPORT;
515 }
516 if (prp->pr_usrreqs == NULL)
517 return EPROTONOSUPPORT;
518 if (prp->pr_type != type)
519 return EPROTOTYPE;
520
521 so = soget(true);
522 so->so_type = type;
523 so->so_proto = prp;
524 so->so_send = sosend;
525 so->so_receive = soreceive;
526 so->so_options = sooptions;
527 #ifdef MBUFTRACE
528 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
529 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
530 so->so_mowner = &prp->pr_domain->dom_mowner;
531 #endif
532 uid = kauth_cred_geteuid(l->l_cred);
533 so->so_uidinfo = uid_find(uid);
534 so->so_egid = kauth_cred_getegid(l->l_cred);
535 so->so_cpid = l->l_proc->p_pid;
536
537 /*
538 * Lock assigned and taken during PCB attach, unless we share
539 * the lock with another socket, e.g. socketpair(2) case.
540 */
541 if (lockso) {
542 /*
543 * lockso->so_lock should be stable at this point, so
544 * no need for atomic_load_*.
545 */
546 lock = lockso->so_lock;
547 so->so_lock = lock;
548 mutex_obj_hold(lock);
549 mutex_enter(lock);
550 }
551
552 /* Attach the PCB (returns with the socket lock held). */
553 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
554 KASSERT(solocked(so));
555
556 if (error) {
557 KASSERT(so->so_pcb == NULL);
558 so->so_state |= SS_NOFDREF;
559 sofree(so);
560 return error;
561 }
562 so->so_cred = kauth_cred_dup(l->l_cred);
563 sounlock(so);
564
565 *aso = so;
566 return 0;
567 }
568
569 /*
570 * fsocreate: create a socket and a file descriptor associated with it.
571 * Returns the allocated file structure in *fpp, but the descriptor
572 * is not visible yet for the process.
573 * Caller is responsible for calling fd_affix() for the returned *fpp once
574 * it's socket initialization is finished successfully, or fd_abort() if it's
575 * initialization fails.
576 *
577 *
578 * => On success, write file descriptor to *fdout and *fpp and return zero.
579 * => On failure, return non-zero; *fdout and *fpp will be undefined.
580 */
581 int
582 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout,
583 file_t **fpp, struct socket *lockso)
584 {
585 lwp_t *l = curlwp;
586 int error, fd, flags;
587 struct socket *so;
588 file_t *fp;
589
590 flags = type & SOCK_FLAGS_MASK;
591 type &= ~SOCK_FLAGS_MASK;
592 error = socreate(domain, &so, type, proto, l, lockso);
593 if (error) {
594 return error;
595 }
596
597 if ((error = fd_allocfile(&fp, &fd)) != 0) {
598 soclose(so);
599 return error;
600 }
601 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
602 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
603 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
604 fp->f_type = DTYPE_SOCKET;
605 fp->f_ops = &socketops;
606 if (flags & SOCK_NONBLOCK) {
607 so->so_state |= SS_NBIO;
608 }
609 fp->f_socket = so;
610
611 if (sop != NULL) {
612 *sop = so;
613 }
614 *fdout = fd;
615 *fpp = fp;
616 return error;
617 }
618
619 int
620 sofamily(const struct socket *so)
621 {
622 const struct protosw *pr;
623 const struct domain *dom;
624
625 if ((pr = so->so_proto) == NULL)
626 return AF_UNSPEC;
627 if ((dom = pr->pr_domain) == NULL)
628 return AF_UNSPEC;
629 return dom->dom_family;
630 }
631
632 int
633 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
634 {
635 int error;
636
637 solock(so);
638 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
639 sounlock(so);
640 return EAFNOSUPPORT;
641 }
642 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
643 sounlock(so);
644 return error;
645 }
646
647 int
648 solisten(struct socket *so, int backlog, struct lwp *l)
649 {
650 int error;
651 short oldopt, oldqlimit;
652
653 solock(so);
654 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
655 SS_ISDISCONNECTING)) != 0) {
656 sounlock(so);
657 return EINVAL;
658 }
659 oldopt = so->so_options;
660 oldqlimit = so->so_qlimit;
661 if (TAILQ_EMPTY(&so->so_q))
662 so->so_options |= SO_ACCEPTCONN;
663 if (backlog < 0)
664 backlog = 0;
665 so->so_qlimit = uimin(backlog, somaxconn);
666
667 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
668 if (error != 0) {
669 so->so_options = oldopt;
670 so->so_qlimit = oldqlimit;
671 sounlock(so);
672 return error;
673 }
674 sounlock(so);
675 return 0;
676 }
677
678 void
679 sofree(struct socket *so)
680 {
681 u_int refs;
682
683 KASSERT(solocked(so));
684
685 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
686 sounlock(so);
687 return;
688 }
689 if (so->so_head) {
690 /*
691 * We must not decommission a socket that's on the accept(2)
692 * queue. If we do, then accept(2) may hang after select(2)
693 * indicated that the listening socket was ready.
694 */
695 if (!soqremque(so, 0)) {
696 sounlock(so);
697 return;
698 }
699 }
700 if (so->so_rcv.sb_hiwat)
701 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
702 RLIM_INFINITY);
703 if (so->so_snd.sb_hiwat)
704 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
705 RLIM_INFINITY);
706 sbrelease(&so->so_snd, so);
707 KASSERT(!cv_has_waiters(&so->so_cv));
708 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
709 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
710 sorflush(so);
711 refs = so->so_aborting; /* XXX */
712 /* Remove acccept filter if one is present. */
713 if (so->so_accf != NULL)
714 (void)accept_filt_clear(so);
715 sounlock(so);
716 if (refs == 0) /* XXX */
717 soput(so);
718 }
719
720 /*
721 * soclose: close a socket on last file table reference removal.
722 * Initiate disconnect if connected. Free socket when disconnect complete.
723 */
724 int
725 soclose(struct socket *so)
726 {
727 struct socket *so2;
728 int error = 0;
729
730 solock(so);
731 if (so->so_options & SO_ACCEPTCONN) {
732 for (;;) {
733 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
734 KASSERT(solocked2(so, so2));
735 (void) soqremque(so2, 0);
736 /* soabort drops the lock. */
737 (void) soabort(so2);
738 solock(so);
739 continue;
740 }
741 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
742 KASSERT(solocked2(so, so2));
743 (void) soqremque(so2, 1);
744 /* soabort drops the lock. */
745 (void) soabort(so2);
746 solock(so);
747 continue;
748 }
749 break;
750 }
751 }
752 if (so->so_pcb == NULL)
753 goto discard;
754 if (so->so_state & SS_ISCONNECTED) {
755 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
756 error = sodisconnect(so);
757 if (error)
758 goto drop;
759 }
760 if (so->so_options & SO_LINGER) {
761 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
762 (SS_ISDISCONNECTING|SS_NBIO))
763 goto drop;
764 while (so->so_state & SS_ISCONNECTED) {
765 error = sowait(so, true, so->so_linger * hz);
766 if (error)
767 break;
768 }
769 }
770 }
771 drop:
772 if (so->so_pcb) {
773 KASSERT(solocked(so));
774 (*so->so_proto->pr_usrreqs->pr_detach)(so);
775 }
776 discard:
777 KASSERT((so->so_state & SS_NOFDREF) == 0);
778 kauth_cred_free(so->so_cred);
779 so->so_cred = NULL;
780 so->so_state |= SS_NOFDREF;
781 sofree(so);
782 return error;
783 }
784
785 /*
786 * Must be called with the socket locked.. Will return with it unlocked.
787 */
788 int
789 soabort(struct socket *so)
790 {
791 u_int refs;
792 int error;
793
794 KASSERT(solocked(so));
795 KASSERT(so->so_head == NULL);
796
797 so->so_aborting++; /* XXX */
798 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
799 refs = --so->so_aborting; /* XXX */
800 if (error || (refs == 0)) {
801 sofree(so);
802 } else {
803 sounlock(so);
804 }
805 return error;
806 }
807
808 int
809 soaccept(struct socket *so, struct sockaddr *nam)
810 {
811 int error;
812
813 KASSERT(solocked(so));
814 KASSERT((so->so_state & SS_NOFDREF) != 0);
815
816 so->so_state &= ~SS_NOFDREF;
817 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
818 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
819 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
820 else
821 error = ECONNABORTED;
822
823 return error;
824 }
825
826 int
827 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
828 {
829 int error;
830
831 KASSERT(solocked(so));
832
833 if (so->so_options & SO_ACCEPTCONN)
834 return EOPNOTSUPP;
835 /*
836 * If protocol is connection-based, can only connect once.
837 * Otherwise, if connected, try to disconnect first.
838 * This allows user to disconnect by connecting to, e.g.,
839 * a null address.
840 */
841 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
842 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
843 (error = sodisconnect(so)))) {
844 error = EISCONN;
845 } else {
846 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
847 return EAFNOSUPPORT;
848 }
849 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
850 }
851
852 return error;
853 }
854
855 int
856 soconnect2(struct socket *so1, struct socket *so2)
857 {
858 KASSERT(solocked2(so1, so2));
859
860 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
861 }
862
863 int
864 sodisconnect(struct socket *so)
865 {
866 int error;
867
868 KASSERT(solocked(so));
869
870 if ((so->so_state & SS_ISCONNECTED) == 0) {
871 error = ENOTCONN;
872 } else if (so->so_state & SS_ISDISCONNECTING) {
873 error = EALREADY;
874 } else {
875 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
876 }
877 return error;
878 }
879
880 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
881 /*
882 * Send on a socket.
883 * If send must go all at once and message is larger than
884 * send buffering, then hard error.
885 * Lock against other senders.
886 * If must go all at once and not enough room now, then
887 * inform user that this would block and do nothing.
888 * Otherwise, if nonblocking, send as much as possible.
889 * The data to be sent is described by "uio" if nonzero,
890 * otherwise by the mbuf chain "top" (which must be null
891 * if uio is not). Data provided in mbuf chain must be small
892 * enough to send all at once.
893 *
894 * Returns nonzero on error, timeout or signal; callers
895 * must check for short counts if EINTR/ERESTART are returned.
896 * Data and control buffers are freed on return.
897 */
898 int
899 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
900 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
901 {
902 struct mbuf **mp, *m;
903 long space, len, resid, clen, mlen;
904 int error, s, dontroute, atomic;
905 short wakeup_state = 0;
906
907 clen = 0;
908
909 /*
910 * solock() provides atomicity of access. splsoftnet() prevents
911 * protocol processing soft interrupts from interrupting us and
912 * blocking (expensive).
913 */
914 s = splsoftnet();
915 solock(so);
916 atomic = sosendallatonce(so) || top;
917 if (uio)
918 resid = uio->uio_resid;
919 else
920 resid = top->m_pkthdr.len;
921 /*
922 * In theory resid should be unsigned.
923 * However, space must be signed, as it might be less than 0
924 * if we over-committed, and we must use a signed comparison
925 * of space and resid. On the other hand, a negative resid
926 * causes us to loop sending 0-length segments to the protocol.
927 */
928 if (resid < 0) {
929 error = EINVAL;
930 goto out;
931 }
932 dontroute =
933 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
934 (so->so_proto->pr_flags & PR_ATOMIC);
935 l->l_ru.ru_msgsnd++;
936 if (control)
937 clen = control->m_len;
938 restart:
939 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
940 goto out;
941 do {
942 if (so->so_state & SS_CANTSENDMORE) {
943 error = EPIPE;
944 goto release;
945 }
946 if (so->so_error) {
947 error = so->so_error;
948 if ((flags & MSG_PEEK) == 0)
949 so->so_error = 0;
950 goto release;
951 }
952 if ((so->so_state & SS_ISCONNECTED) == 0) {
953 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
954 if (resid || clen == 0) {
955 error = ENOTCONN;
956 goto release;
957 }
958 } else if (addr == NULL) {
959 error = EDESTADDRREQ;
960 goto release;
961 }
962 }
963 space = sbspace(&so->so_snd);
964 if (flags & MSG_OOB)
965 space += 1024;
966 if ((atomic && resid > so->so_snd.sb_hiwat) ||
967 clen > so->so_snd.sb_hiwat) {
968 error = EMSGSIZE;
969 goto release;
970 }
971 if (space < resid + clen &&
972 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
973 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
974 error = EWOULDBLOCK;
975 goto release;
976 }
977 sbunlock(&so->so_snd);
978 if (wakeup_state & SS_RESTARTSYS) {
979 error = ERESTART;
980 goto out;
981 }
982 error = sbwait(&so->so_snd);
983 if (error)
984 goto out;
985 wakeup_state = so->so_state;
986 goto restart;
987 }
988 wakeup_state = 0;
989 mp = ⊤
990 space -= clen;
991 do {
992 if (uio == NULL) {
993 /*
994 * Data is prepackaged in "top".
995 */
996 resid = 0;
997 if (flags & MSG_EOR)
998 top->m_flags |= M_EOR;
999 } else do {
1000 sounlock(so);
1001 splx(s);
1002 if (top == NULL) {
1003 m = m_gethdr(M_WAIT, MT_DATA);
1004 mlen = MHLEN;
1005 m->m_pkthdr.len = 0;
1006 m_reset_rcvif(m);
1007 } else {
1008 m = m_get(M_WAIT, MT_DATA);
1009 mlen = MLEN;
1010 }
1011 MCLAIM(m, so->so_snd.sb_mowner);
1012 if (sock_loan_thresh >= 0 &&
1013 uio->uio_iov->iov_len >= sock_loan_thresh &&
1014 space >= sock_loan_thresh &&
1015 (len = sosend_loan(so, uio, m,
1016 space)) != 0) {
1017 SOSEND_COUNTER_INCR(&sosend_loan_big);
1018 space -= len;
1019 goto have_data;
1020 }
1021 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1022 SOSEND_COUNTER_INCR(&sosend_copy_big);
1023 m_clget(m, M_DONTWAIT);
1024 if ((m->m_flags & M_EXT) == 0)
1025 goto nopages;
1026 mlen = MCLBYTES;
1027 if (atomic && top == 0) {
1028 len = lmin(MCLBYTES - max_hdr,
1029 resid);
1030 m->m_data += max_hdr;
1031 } else
1032 len = lmin(MCLBYTES, resid);
1033 space -= len;
1034 } else {
1035 nopages:
1036 SOSEND_COUNTER_INCR(&sosend_copy_small);
1037 len = lmin(lmin(mlen, resid), space);
1038 space -= len;
1039 /*
1040 * For datagram protocols, leave room
1041 * for protocol headers in first mbuf.
1042 */
1043 if (atomic && top == 0 && len < mlen)
1044 m_align(m, len);
1045 }
1046 error = uiomove(mtod(m, void *), (int)len, uio);
1047 have_data:
1048 resid = uio->uio_resid;
1049 m->m_len = len;
1050 *mp = m;
1051 top->m_pkthdr.len += len;
1052 s = splsoftnet();
1053 solock(so);
1054 if (error != 0)
1055 goto release;
1056 mp = &m->m_next;
1057 if (resid <= 0) {
1058 if (flags & MSG_EOR)
1059 top->m_flags |= M_EOR;
1060 break;
1061 }
1062 } while (space > 0 && atomic);
1063
1064 if (so->so_state & SS_CANTSENDMORE) {
1065 error = EPIPE;
1066 goto release;
1067 }
1068 if (dontroute)
1069 so->so_options |= SO_DONTROUTE;
1070 if (resid > 0)
1071 so->so_state |= SS_MORETOCOME;
1072 if (flags & MSG_OOB) {
1073 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1074 so, top, control);
1075 } else {
1076 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1077 top, addr, control, l);
1078 }
1079 if (dontroute)
1080 so->so_options &= ~SO_DONTROUTE;
1081 if (resid > 0)
1082 so->so_state &= ~SS_MORETOCOME;
1083 clen = 0;
1084 control = NULL;
1085 top = NULL;
1086 mp = ⊤
1087 if (error != 0)
1088 goto release;
1089 } while (resid && space > 0);
1090 } while (resid);
1091
1092 release:
1093 sbunlock(&so->so_snd);
1094 out:
1095 sounlock(so);
1096 splx(s);
1097 if (top)
1098 m_freem(top);
1099 if (control)
1100 m_freem(control);
1101 return error;
1102 }
1103
1104 /*
1105 * Following replacement or removal of the first mbuf on the first
1106 * mbuf chain of a socket buffer, push necessary state changes back
1107 * into the socket buffer so that other consumers see the values
1108 * consistently. 'nextrecord' is the caller's locally stored value of
1109 * the original value of sb->sb_mb->m_nextpkt which must be restored
1110 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1111 */
1112 static void
1113 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1114 {
1115
1116 KASSERT(solocked(sb->sb_so));
1117
1118 /*
1119 * First, update for the new value of nextrecord. If necessary,
1120 * make it the first record.
1121 */
1122 if (sb->sb_mb != NULL)
1123 sb->sb_mb->m_nextpkt = nextrecord;
1124 else
1125 sb->sb_mb = nextrecord;
1126
1127 /*
1128 * Now update any dependent socket buffer fields to reflect
1129 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1130 * the addition of a second clause that takes care of the
1131 * case where sb_mb has been updated, but remains the last
1132 * record.
1133 */
1134 if (sb->sb_mb == NULL) {
1135 sb->sb_mbtail = NULL;
1136 sb->sb_lastrecord = NULL;
1137 } else if (sb->sb_mb->m_nextpkt == NULL)
1138 sb->sb_lastrecord = sb->sb_mb;
1139 }
1140
1141 /*
1142 * Implement receive operations on a socket.
1143 *
1144 * We depend on the way that records are added to the sockbuf by sbappend*. In
1145 * particular, each record (mbufs linked through m_next) must begin with an
1146 * address if the protocol so specifies, followed by an optional mbuf or mbufs
1147 * containing ancillary data, and then zero or more mbufs of data.
1148 *
1149 * In order to avoid blocking network interrupts for the entire time here, we
1150 * splx() while doing the actual copy to user space. Although the sockbuf is
1151 * locked, new data may still be appended, and thus we must maintain
1152 * consistency of the sockbuf during that time.
1153 *
1154 * The caller may receive the data as a single mbuf chain by supplying an mbuf
1155 * **mp0 for use in returning the chain. The uio is then used only for the
1156 * count in uio_resid.
1157 */
1158 int
1159 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1160 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1161 {
1162 struct lwp *l = curlwp;
1163 struct mbuf *m, **mp, *mt;
1164 size_t len, offset, moff, orig_resid;
1165 int atomic, flags, error, s, type;
1166 const struct protosw *pr;
1167 struct mbuf *nextrecord;
1168 int mbuf_removed = 0;
1169 const struct domain *dom;
1170 short wakeup_state = 0;
1171
1172 pr = so->so_proto;
1173 atomic = pr->pr_flags & PR_ATOMIC;
1174 dom = pr->pr_domain;
1175 mp = mp0;
1176 type = 0;
1177 orig_resid = uio->uio_resid;
1178
1179 if (paddr != NULL)
1180 *paddr = NULL;
1181 if (controlp != NULL)
1182 *controlp = NULL;
1183 if (flagsp != NULL)
1184 flags = *flagsp &~ MSG_EOR;
1185 else
1186 flags = 0;
1187
1188 if (flags & MSG_OOB) {
1189 m = m_get(M_WAIT, MT_DATA);
1190 solock(so);
1191 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1192 sounlock(so);
1193 if (error)
1194 goto bad;
1195 do {
1196 error = uiomove(mtod(m, void *),
1197 MIN(uio->uio_resid, m->m_len), uio);
1198 m = m_free(m);
1199 } while (uio->uio_resid > 0 && error == 0 && m);
1200 bad:
1201 if (m != NULL)
1202 m_freem(m);
1203 return error;
1204 }
1205 if (mp != NULL)
1206 *mp = NULL;
1207
1208 /*
1209 * solock() provides atomicity of access. splsoftnet() prevents
1210 * protocol processing soft interrupts from interrupting us and
1211 * blocking (expensive).
1212 */
1213 s = splsoftnet();
1214 solock(so);
1215 restart:
1216 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1217 sounlock(so);
1218 splx(s);
1219 return error;
1220 }
1221 m = so->so_rcv.sb_mb;
1222
1223 /*
1224 * If we have less data than requested, block awaiting more
1225 * (subject to any timeout) if:
1226 * 1. the current count is less than the low water mark,
1227 * 2. MSG_WAITALL is set, and it is possible to do the entire
1228 * receive operation at once if we block (resid <= hiwat), or
1229 * 3. MSG_DONTWAIT is not set.
1230 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1231 * we have to do the receive in sections, and thus risk returning
1232 * a short count if a timeout or signal occurs after we start.
1233 */
1234 if (m == NULL ||
1235 ((flags & MSG_DONTWAIT) == 0 &&
1236 so->so_rcv.sb_cc < uio->uio_resid &&
1237 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1238 ((flags & MSG_WAITALL) &&
1239 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1240 m->m_nextpkt == NULL && !atomic)) {
1241 #ifdef DIAGNOSTIC
1242 if (m == NULL && so->so_rcv.sb_cc)
1243 panic("receive 1");
1244 #endif
1245 if (so->so_error || so->so_rerror) {
1246 u_short *e;
1247 if (m != NULL)
1248 goto dontblock;
1249 e = so->so_error ? &so->so_error : &so->so_rerror;
1250 error = *e;
1251 if ((flags & MSG_PEEK) == 0)
1252 *e = 0;
1253 goto release;
1254 }
1255 if (so->so_state & SS_CANTRCVMORE) {
1256 if (m != NULL)
1257 goto dontblock;
1258 else
1259 goto release;
1260 }
1261 for (; m != NULL; m = m->m_next)
1262 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1263 m = so->so_rcv.sb_mb;
1264 goto dontblock;
1265 }
1266 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1267 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1268 error = ENOTCONN;
1269 goto release;
1270 }
1271 if (uio->uio_resid == 0)
1272 goto release;
1273 if ((so->so_state & SS_NBIO) ||
1274 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1275 error = EWOULDBLOCK;
1276 goto release;
1277 }
1278 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1279 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1280 sbunlock(&so->so_rcv);
1281 if (wakeup_state & SS_RESTARTSYS)
1282 error = ERESTART;
1283 else
1284 error = sbwait(&so->so_rcv);
1285 if (error != 0) {
1286 sounlock(so);
1287 splx(s);
1288 return error;
1289 }
1290 wakeup_state = so->so_state;
1291 goto restart;
1292 }
1293
1294 dontblock:
1295 /*
1296 * On entry here, m points to the first record of the socket buffer.
1297 * From this point onward, we maintain 'nextrecord' as a cache of the
1298 * pointer to the next record in the socket buffer. We must keep the
1299 * various socket buffer pointers and local stack versions of the
1300 * pointers in sync, pushing out modifications before dropping the
1301 * socket lock, and re-reading them when picking it up.
1302 *
1303 * Otherwise, we will race with the network stack appending new data
1304 * or records onto the socket buffer by using inconsistent/stale
1305 * versions of the field, possibly resulting in socket buffer
1306 * corruption.
1307 *
1308 * By holding the high-level sblock(), we prevent simultaneous
1309 * readers from pulling off the front of the socket buffer.
1310 */
1311 if (l != NULL)
1312 l->l_ru.ru_msgrcv++;
1313 KASSERT(m == so->so_rcv.sb_mb);
1314 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1315 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1316 nextrecord = m->m_nextpkt;
1317
1318 if (pr->pr_flags & PR_ADDR) {
1319 KASSERT(m->m_type == MT_SONAME);
1320 orig_resid = 0;
1321 if (flags & MSG_PEEK) {
1322 if (paddr)
1323 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1324 m = m->m_next;
1325 } else {
1326 sbfree(&so->so_rcv, m);
1327 mbuf_removed = 1;
1328 if (paddr != NULL) {
1329 *paddr = m;
1330 so->so_rcv.sb_mb = m->m_next;
1331 m->m_next = NULL;
1332 m = so->so_rcv.sb_mb;
1333 } else {
1334 m = so->so_rcv.sb_mb = m_free(m);
1335 }
1336 sbsync(&so->so_rcv, nextrecord);
1337 }
1338 }
1339
1340 if (pr->pr_flags & PR_ADDR_OPT) {
1341 /*
1342 * For SCTP we may be getting a whole message OR a partial
1343 * delivery.
1344 */
1345 if (m->m_type == MT_SONAME) {
1346 orig_resid = 0;
1347 if (flags & MSG_PEEK) {
1348 if (paddr)
1349 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1350 m = m->m_next;
1351 } else {
1352 sbfree(&so->so_rcv, m);
1353 mbuf_removed = 1;
1354 if (paddr) {
1355 *paddr = m;
1356 so->so_rcv.sb_mb = m->m_next;
1357 m->m_next = 0;
1358 m = so->so_rcv.sb_mb;
1359 } else {
1360 m = so->so_rcv.sb_mb = m_free(m);
1361 }
1362 sbsync(&so->so_rcv, nextrecord);
1363 }
1364 }
1365 }
1366
1367 /*
1368 * Process one or more MT_CONTROL mbufs present before any data mbufs
1369 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1370 * just copy the data; if !MSG_PEEK, we call into the protocol to
1371 * perform externalization (or freeing if controlp == NULL).
1372 */
1373 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1374 struct mbuf *cm = NULL, *cmn;
1375 struct mbuf **cme = &cm;
1376
1377 do {
1378 if (flags & MSG_PEEK) {
1379 if (controlp != NULL) {
1380 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1381 controlp = (*controlp == NULL ? NULL :
1382 &(*controlp)->m_next);
1383 }
1384 m = m->m_next;
1385 } else {
1386 sbfree(&so->so_rcv, m);
1387 so->so_rcv.sb_mb = m->m_next;
1388 m->m_next = NULL;
1389 *cme = m;
1390 cme = &(*cme)->m_next;
1391 m = so->so_rcv.sb_mb;
1392 }
1393 } while (m != NULL && m->m_type == MT_CONTROL);
1394 if ((flags & MSG_PEEK) == 0)
1395 sbsync(&so->so_rcv, nextrecord);
1396
1397 for (; cm != NULL; cm = cmn) {
1398 cmn = cm->m_next;
1399 cm->m_next = NULL;
1400 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1401 if (controlp != NULL) {
1402 if (dom->dom_externalize != NULL &&
1403 type == SCM_RIGHTS) {
1404 sounlock(so);
1405 splx(s);
1406 error = (*dom->dom_externalize)(cm, l,
1407 (flags & MSG_CMSG_CLOEXEC) ?
1408 O_CLOEXEC : 0);
1409 s = splsoftnet();
1410 solock(so);
1411 }
1412 *controlp = cm;
1413 while (*controlp != NULL)
1414 controlp = &(*controlp)->m_next;
1415 } else {
1416 /*
1417 * Dispose of any SCM_RIGHTS message that went
1418 * through the read path rather than recv.
1419 */
1420 if (dom->dom_dispose != NULL &&
1421 type == SCM_RIGHTS) {
1422 sounlock(so);
1423 (*dom->dom_dispose)(cm);
1424 solock(so);
1425 }
1426 m_freem(cm);
1427 }
1428 }
1429 if (m != NULL)
1430 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1431 else
1432 nextrecord = so->so_rcv.sb_mb;
1433 orig_resid = 0;
1434 }
1435
1436 /* If m is non-NULL, we have some data to read. */
1437 if (__predict_true(m != NULL)) {
1438 type = m->m_type;
1439 if (type == MT_OOBDATA)
1440 flags |= MSG_OOB;
1441 }
1442 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1443 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1444
1445 moff = 0;
1446 offset = 0;
1447 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1448 /*
1449 * If the type of mbuf has changed, end the receive
1450 * operation and do a short read.
1451 */
1452 if (m->m_type == MT_OOBDATA) {
1453 if (type != MT_OOBDATA)
1454 break;
1455 } else if (type == MT_OOBDATA) {
1456 break;
1457 } else if (m->m_type == MT_CONTROL) {
1458 break;
1459 }
1460 #ifdef DIAGNOSTIC
1461 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1462 panic("%s: m_type=%d", __func__, m->m_type);
1463 }
1464 #endif
1465
1466 so->so_state &= ~SS_RCVATMARK;
1467 wakeup_state = 0;
1468 len = uio->uio_resid;
1469 if (so->so_oobmark && len > so->so_oobmark - offset)
1470 len = so->so_oobmark - offset;
1471 if (len > m->m_len - moff)
1472 len = m->m_len - moff;
1473
1474 /*
1475 * If mp is set, just pass back the mbufs.
1476 * Otherwise copy them out via the uio, then free.
1477 * Sockbuf must be consistent here (points to current mbuf,
1478 * it points to next record) when we drop priority;
1479 * we must note any additions to the sockbuf when we
1480 * block interrupts again.
1481 */
1482 if (mp == NULL) {
1483 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1484 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1485 sounlock(so);
1486 splx(s);
1487 error = uiomove(mtod(m, char *) + moff, len, uio);
1488 s = splsoftnet();
1489 solock(so);
1490 if (error != 0) {
1491 /*
1492 * If any part of the record has been removed
1493 * (such as the MT_SONAME mbuf, which will
1494 * happen when PR_ADDR, and thus also
1495 * PR_ATOMIC, is set), then drop the entire
1496 * record to maintain the atomicity of the
1497 * receive operation.
1498 *
1499 * This avoids a later panic("receive 1a")
1500 * when compiled with DIAGNOSTIC.
1501 */
1502 if (m && mbuf_removed && atomic)
1503 (void) sbdroprecord(&so->so_rcv);
1504
1505 goto release;
1506 }
1507 } else {
1508 uio->uio_resid -= len;
1509 }
1510
1511 if (len == m->m_len - moff) {
1512 if (m->m_flags & M_EOR)
1513 flags |= MSG_EOR;
1514 #ifdef SCTP
1515 if (m->m_flags & M_NOTIFICATION)
1516 flags |= MSG_NOTIFICATION;
1517 #endif
1518 if (flags & MSG_PEEK) {
1519 m = m->m_next;
1520 moff = 0;
1521 } else {
1522 nextrecord = m->m_nextpkt;
1523 sbfree(&so->so_rcv, m);
1524 if (mp) {
1525 *mp = m;
1526 mp = &m->m_next;
1527 so->so_rcv.sb_mb = m = m->m_next;
1528 *mp = NULL;
1529 } else {
1530 m = so->so_rcv.sb_mb = m_free(m);
1531 }
1532 /*
1533 * If m != NULL, we also know that
1534 * so->so_rcv.sb_mb != NULL.
1535 */
1536 KASSERT(so->so_rcv.sb_mb == m);
1537 if (m) {
1538 m->m_nextpkt = nextrecord;
1539 if (nextrecord == NULL)
1540 so->so_rcv.sb_lastrecord = m;
1541 } else {
1542 so->so_rcv.sb_mb = nextrecord;
1543 SB_EMPTY_FIXUP(&so->so_rcv);
1544 }
1545 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1546 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1547 }
1548 } else if (flags & MSG_PEEK) {
1549 moff += len;
1550 } else {
1551 if (mp != NULL) {
1552 mt = m_copym(m, 0, len, M_NOWAIT);
1553 if (__predict_false(mt == NULL)) {
1554 sounlock(so);
1555 mt = m_copym(m, 0, len, M_WAIT);
1556 solock(so);
1557 }
1558 *mp = mt;
1559 }
1560 m->m_data += len;
1561 m->m_len -= len;
1562 so->so_rcv.sb_cc -= len;
1563 }
1564
1565 if (so->so_oobmark) {
1566 if ((flags & MSG_PEEK) == 0) {
1567 so->so_oobmark -= len;
1568 if (so->so_oobmark == 0) {
1569 so->so_state |= SS_RCVATMARK;
1570 break;
1571 }
1572 } else {
1573 offset += len;
1574 if (offset == so->so_oobmark)
1575 break;
1576 }
1577 } else {
1578 so->so_state &= ~SS_POLLRDBAND;
1579 }
1580 if (flags & MSG_EOR)
1581 break;
1582
1583 /*
1584 * If the MSG_WAITALL flag is set (for non-atomic socket),
1585 * we must not quit until "uio->uio_resid == 0" or an error
1586 * termination. If a signal/timeout occurs, return
1587 * with a short count but without error.
1588 * Keep sockbuf locked against other readers.
1589 */
1590 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1591 !sosendallatonce(so) && !nextrecord) {
1592 if (so->so_error || so->so_rerror ||
1593 so->so_state & SS_CANTRCVMORE)
1594 break;
1595 /*
1596 * If we are peeking and the socket receive buffer is
1597 * full, stop since we can't get more data to peek at.
1598 */
1599 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1600 break;
1601 /*
1602 * If we've drained the socket buffer, tell the
1603 * protocol in case it needs to do something to
1604 * get it filled again.
1605 */
1606 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1607 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1608 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1609 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1610 if (wakeup_state & SS_RESTARTSYS)
1611 error = ERESTART;
1612 else
1613 error = sbwait(&so->so_rcv);
1614 if (error != 0) {
1615 sbunlock(&so->so_rcv);
1616 sounlock(so);
1617 splx(s);
1618 return 0;
1619 }
1620 if ((m = so->so_rcv.sb_mb) != NULL)
1621 nextrecord = m->m_nextpkt;
1622 wakeup_state = so->so_state;
1623 }
1624 }
1625
1626 if (m && atomic) {
1627 flags |= MSG_TRUNC;
1628 if ((flags & MSG_PEEK) == 0)
1629 (void) sbdroprecord(&so->so_rcv);
1630 }
1631 if ((flags & MSG_PEEK) == 0) {
1632 if (m == NULL) {
1633 /*
1634 * First part is an inline SB_EMPTY_FIXUP(). Second
1635 * part makes sure sb_lastrecord is up-to-date if
1636 * there is still data in the socket buffer.
1637 */
1638 so->so_rcv.sb_mb = nextrecord;
1639 if (so->so_rcv.sb_mb == NULL) {
1640 so->so_rcv.sb_mbtail = NULL;
1641 so->so_rcv.sb_lastrecord = NULL;
1642 } else if (nextrecord->m_nextpkt == NULL)
1643 so->so_rcv.sb_lastrecord = nextrecord;
1644 }
1645 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1646 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1647 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1648 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1649 }
1650 if (orig_resid == uio->uio_resid && orig_resid &&
1651 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1652 sbunlock(&so->so_rcv);
1653 goto restart;
1654 }
1655
1656 if (flagsp != NULL)
1657 *flagsp |= flags;
1658 release:
1659 sbunlock(&so->so_rcv);
1660 sounlock(so);
1661 splx(s);
1662 return error;
1663 }
1664
1665 int
1666 soshutdown(struct socket *so, int how)
1667 {
1668 const struct protosw *pr;
1669 int error;
1670
1671 KASSERT(solocked(so));
1672
1673 pr = so->so_proto;
1674 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1675 return EINVAL;
1676
1677 if (how == SHUT_RD || how == SHUT_RDWR) {
1678 sorflush(so);
1679 error = 0;
1680 }
1681 if (how == SHUT_WR || how == SHUT_RDWR)
1682 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1683
1684 return error;
1685 }
1686
1687 void
1688 sorestart(struct socket *so)
1689 {
1690 /*
1691 * An application has called close() on an fd on which another
1692 * of its threads has called a socket system call.
1693 * Mark this and wake everyone up, and code that would block again
1694 * instead returns ERESTART.
1695 * On system call re-entry the fd is validated and EBADF returned.
1696 * Any other fd will block again on the 2nd syscall.
1697 */
1698 solock(so);
1699 so->so_state |= SS_RESTARTSYS;
1700 cv_broadcast(&so->so_cv);
1701 cv_broadcast(&so->so_snd.sb_cv);
1702 cv_broadcast(&so->so_rcv.sb_cv);
1703 sounlock(so);
1704 }
1705
1706 void
1707 sorflush(struct socket *so)
1708 {
1709 struct sockbuf *sb, asb;
1710 const struct protosw *pr;
1711
1712 KASSERT(solocked(so));
1713
1714 sb = &so->so_rcv;
1715 pr = so->so_proto;
1716 socantrcvmore(so);
1717 sb->sb_flags |= SB_NOINTR;
1718 (void )sblock(sb, M_WAITOK);
1719 sbunlock(sb);
1720 asb = *sb;
1721 /*
1722 * Clear most of the sockbuf structure, but leave some of the
1723 * fields valid.
1724 */
1725 memset(&sb->sb_startzero, 0,
1726 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1727 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1728 sounlock(so);
1729 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1730 solock(so);
1731 }
1732 sbrelease(&asb, so);
1733 }
1734
1735 /*
1736 * internal set SOL_SOCKET options
1737 */
1738 static int
1739 sosetopt1(struct socket *so, const struct sockopt *sopt)
1740 {
1741 int error, opt;
1742 int optval = 0; /* XXX: gcc */
1743 struct linger l;
1744 struct timeval tv;
1745
1746 opt = sopt->sopt_name;
1747
1748 switch (opt) {
1749
1750 case SO_ACCEPTFILTER:
1751 error = accept_filt_setopt(so, sopt);
1752 KASSERT(solocked(so));
1753 break;
1754
1755 case SO_LINGER:
1756 error = sockopt_get(sopt, &l, sizeof(l));
1757 solock(so);
1758 if (error)
1759 break;
1760 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1761 l.l_linger > (INT_MAX / hz)) {
1762 error = EDOM;
1763 break;
1764 }
1765 so->so_linger = l.l_linger;
1766 if (l.l_onoff)
1767 so->so_options |= SO_LINGER;
1768 else
1769 so->so_options &= ~SO_LINGER;
1770 break;
1771
1772 case SO_DEBUG:
1773 case SO_KEEPALIVE:
1774 case SO_DONTROUTE:
1775 case SO_USELOOPBACK:
1776 case SO_BROADCAST:
1777 case SO_REUSEADDR:
1778 case SO_REUSEPORT:
1779 case SO_OOBINLINE:
1780 case SO_TIMESTAMP:
1781 case SO_NOSIGPIPE:
1782 case SO_RERROR:
1783 error = sockopt_getint(sopt, &optval);
1784 solock(so);
1785 if (error)
1786 break;
1787 if (optval)
1788 so->so_options |= opt;
1789 else
1790 so->so_options &= ~opt;
1791 break;
1792
1793 case SO_SNDBUF:
1794 case SO_RCVBUF:
1795 case SO_SNDLOWAT:
1796 case SO_RCVLOWAT:
1797 error = sockopt_getint(sopt, &optval);
1798 solock(so);
1799 if (error)
1800 break;
1801
1802 /*
1803 * Values < 1 make no sense for any of these
1804 * options, so disallow them.
1805 */
1806 if (optval < 1) {
1807 error = EINVAL;
1808 break;
1809 }
1810
1811 switch (opt) {
1812 case SO_SNDBUF:
1813 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1814 error = ENOBUFS;
1815 break;
1816 }
1817 if (sofixedbuf)
1818 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1819 break;
1820
1821 case SO_RCVBUF:
1822 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1823 error = ENOBUFS;
1824 break;
1825 }
1826 if (sofixedbuf)
1827 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1828 break;
1829
1830 /*
1831 * Make sure the low-water is never greater than
1832 * the high-water.
1833 */
1834 case SO_SNDLOWAT:
1835 if (optval > so->so_snd.sb_hiwat)
1836 optval = so->so_snd.sb_hiwat;
1837
1838 so->so_snd.sb_lowat = optval;
1839 break;
1840
1841 case SO_RCVLOWAT:
1842 if (optval > so->so_rcv.sb_hiwat)
1843 optval = so->so_rcv.sb_hiwat;
1844
1845 so->so_rcv.sb_lowat = optval;
1846 break;
1847 }
1848 break;
1849
1850 case SO_SNDTIMEO:
1851 case SO_RCVTIMEO:
1852 solock(so);
1853 error = sockopt_get(sopt, &tv, sizeof(tv));
1854 if (error)
1855 break;
1856
1857 if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1858 error = EDOM;
1859 break;
1860 }
1861 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1862 error = EDOM;
1863 break;
1864 }
1865
1866 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1867 if (optval == 0 && tv.tv_usec != 0)
1868 optval = 1;
1869
1870 switch (opt) {
1871 case SO_SNDTIMEO:
1872 so->so_snd.sb_timeo = optval;
1873 break;
1874 case SO_RCVTIMEO:
1875 so->so_rcv.sb_timeo = optval;
1876 break;
1877 }
1878 break;
1879
1880 default:
1881 MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
1882 (opt, so, sopt), enosys(), error);
1883 if (error == ENOSYS || error == EPASSTHROUGH) {
1884 solock(so);
1885 error = ENOPROTOOPT;
1886 }
1887 break;
1888 }
1889 KASSERT(solocked(so));
1890 return error;
1891 }
1892
1893 int
1894 sosetopt(struct socket *so, struct sockopt *sopt)
1895 {
1896 int error, prerr;
1897
1898 if (sopt->sopt_level == SOL_SOCKET) {
1899 error = sosetopt1(so, sopt);
1900 KASSERT(solocked(so));
1901 } else {
1902 error = ENOPROTOOPT;
1903 solock(so);
1904 }
1905
1906 if ((error == 0 || error == ENOPROTOOPT) &&
1907 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1908 /* give the protocol stack a shot */
1909 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1910 if (prerr == 0)
1911 error = 0;
1912 else if (prerr != ENOPROTOOPT)
1913 error = prerr;
1914 }
1915 sounlock(so);
1916 return error;
1917 }
1918
1919 /*
1920 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1921 */
1922 int
1923 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1924 const void *val, size_t valsize)
1925 {
1926 struct sockopt sopt;
1927 int error;
1928
1929 KASSERT(valsize == 0 || val != NULL);
1930
1931 sockopt_init(&sopt, level, name, valsize);
1932 sockopt_set(&sopt, val, valsize);
1933
1934 error = sosetopt(so, &sopt);
1935
1936 sockopt_destroy(&sopt);
1937
1938 return error;
1939 }
1940
1941 /*
1942 * internal get SOL_SOCKET options
1943 */
1944 static int
1945 sogetopt1(struct socket *so, struct sockopt *sopt)
1946 {
1947 int error, optval, opt;
1948 struct linger l;
1949 struct timeval tv;
1950
1951 switch ((opt = sopt->sopt_name)) {
1952
1953 case SO_ACCEPTFILTER:
1954 error = accept_filt_getopt(so, sopt);
1955 break;
1956
1957 case SO_LINGER:
1958 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1959 l.l_linger = so->so_linger;
1960
1961 error = sockopt_set(sopt, &l, sizeof(l));
1962 break;
1963
1964 case SO_USELOOPBACK:
1965 case SO_DONTROUTE:
1966 case SO_DEBUG:
1967 case SO_KEEPALIVE:
1968 case SO_REUSEADDR:
1969 case SO_REUSEPORT:
1970 case SO_BROADCAST:
1971 case SO_OOBINLINE:
1972 case SO_TIMESTAMP:
1973 case SO_NOSIGPIPE:
1974 case SO_RERROR:
1975 case SO_ACCEPTCONN:
1976 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1977 break;
1978
1979 case SO_TYPE:
1980 error = sockopt_setint(sopt, so->so_type);
1981 break;
1982
1983 case SO_ERROR:
1984 if (so->so_error == 0) {
1985 so->so_error = so->so_rerror;
1986 so->so_rerror = 0;
1987 }
1988 error = sockopt_setint(sopt, so->so_error);
1989 so->so_error = 0;
1990 break;
1991
1992 case SO_SNDBUF:
1993 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1994 break;
1995
1996 case SO_RCVBUF:
1997 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1998 break;
1999
2000 case SO_SNDLOWAT:
2001 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
2002 break;
2003
2004 case SO_RCVLOWAT:
2005 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
2006 break;
2007
2008 case SO_SNDTIMEO:
2009 case SO_RCVTIMEO:
2010 optval = (opt == SO_SNDTIMEO ?
2011 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2012
2013 memset(&tv, 0, sizeof(tv));
2014 tv.tv_sec = optval / hz;
2015 tv.tv_usec = (optval % hz) * tick;
2016
2017 error = sockopt_set(sopt, &tv, sizeof(tv));
2018 break;
2019
2020 case SO_OVERFLOWED:
2021 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2022 break;
2023
2024 default:
2025 MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
2026 (opt, so, sopt), enosys(), error);
2027 if (error)
2028 error = ENOPROTOOPT;
2029 break;
2030 }
2031
2032 return error;
2033 }
2034
2035 int
2036 sogetopt(struct socket *so, struct sockopt *sopt)
2037 {
2038 int error;
2039
2040 solock(so);
2041 if (sopt->sopt_level != SOL_SOCKET) {
2042 if (so->so_proto && so->so_proto->pr_ctloutput) {
2043 error = ((*so->so_proto->pr_ctloutput)
2044 (PRCO_GETOPT, so, sopt));
2045 } else
2046 error = (ENOPROTOOPT);
2047 } else {
2048 error = sogetopt1(so, sopt);
2049 }
2050 sounlock(so);
2051 return error;
2052 }
2053
2054 /*
2055 * alloc sockopt data buffer buffer
2056 * - will be released at destroy
2057 */
2058 static int
2059 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2060 {
2061 void *data;
2062
2063 KASSERT(sopt->sopt_size == 0);
2064
2065 if (len > sizeof(sopt->sopt_buf)) {
2066 data = kmem_zalloc(len, kmflag);
2067 if (data == NULL)
2068 return ENOMEM;
2069 sopt->sopt_data = data;
2070 } else
2071 sopt->sopt_data = sopt->sopt_buf;
2072
2073 sopt->sopt_size = len;
2074 return 0;
2075 }
2076
2077 /*
2078 * initialise sockopt storage
2079 * - MAY sleep during allocation
2080 */
2081 void
2082 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2083 {
2084
2085 memset(sopt, 0, sizeof(*sopt));
2086
2087 sopt->sopt_level = level;
2088 sopt->sopt_name = name;
2089 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2090 }
2091
2092 /*
2093 * destroy sockopt storage
2094 * - will release any held memory references
2095 */
2096 void
2097 sockopt_destroy(struct sockopt *sopt)
2098 {
2099
2100 if (sopt->sopt_data != sopt->sopt_buf)
2101 kmem_free(sopt->sopt_data, sopt->sopt_size);
2102
2103 memset(sopt, 0, sizeof(*sopt));
2104 }
2105
2106 /*
2107 * set sockopt value
2108 * - value is copied into sockopt
2109 * - memory is allocated when necessary, will not sleep
2110 */
2111 int
2112 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2113 {
2114 int error;
2115
2116 if (sopt->sopt_size == 0) {
2117 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2118 if (error)
2119 return error;
2120 }
2121
2122 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2123 if (sopt->sopt_retsize > 0) {
2124 memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
2125 }
2126
2127 return 0;
2128 }
2129
2130 /*
2131 * common case of set sockopt integer value
2132 */
2133 int
2134 sockopt_setint(struct sockopt *sopt, int val)
2135 {
2136
2137 return sockopt_set(sopt, &val, sizeof(int));
2138 }
2139
2140 /*
2141 * get sockopt value
2142 * - correct size must be given
2143 */
2144 int
2145 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2146 {
2147
2148 if (sopt->sopt_size != len)
2149 return EINVAL;
2150
2151 memcpy(buf, sopt->sopt_data, len);
2152 return 0;
2153 }
2154
2155 /*
2156 * common case of get sockopt integer value
2157 */
2158 int
2159 sockopt_getint(const struct sockopt *sopt, int *valp)
2160 {
2161
2162 return sockopt_get(sopt, valp, sizeof(int));
2163 }
2164
2165 /*
2166 * set sockopt value from mbuf
2167 * - ONLY for legacy code
2168 * - mbuf is released by sockopt
2169 * - will not sleep
2170 */
2171 int
2172 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2173 {
2174 size_t len;
2175 int error;
2176
2177 len = m_length(m);
2178
2179 if (sopt->sopt_size == 0) {
2180 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2181 if (error)
2182 return error;
2183 }
2184
2185 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2186 m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
2187 m_freem(m);
2188
2189 return 0;
2190 }
2191
2192 /*
2193 * get sockopt value into mbuf
2194 * - ONLY for legacy code
2195 * - mbuf to be released by the caller
2196 * - will not sleep
2197 */
2198 struct mbuf *
2199 sockopt_getmbuf(const struct sockopt *sopt)
2200 {
2201 struct mbuf *m;
2202
2203 if (sopt->sopt_size > MCLBYTES)
2204 return NULL;
2205
2206 m = m_get(M_DONTWAIT, MT_SOOPTS);
2207 if (m == NULL)
2208 return NULL;
2209
2210 if (sopt->sopt_size > MLEN) {
2211 MCLGET(m, M_DONTWAIT);
2212 if ((m->m_flags & M_EXT) == 0) {
2213 m_free(m);
2214 return NULL;
2215 }
2216 }
2217
2218 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2219 m->m_len = sopt->sopt_size;
2220
2221 return m;
2222 }
2223
2224 void
2225 sohasoutofband(struct socket *so)
2226 {
2227
2228 so->so_state |= SS_POLLRDBAND;
2229 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2230 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2231 }
2232
2233 static void
2234 filt_sordetach(struct knote *kn)
2235 {
2236 struct socket *so;
2237
2238 so = ((file_t *)kn->kn_obj)->f_socket;
2239 solock(so);
2240 if (selremove_knote(&so->so_rcv.sb_sel, kn))
2241 so->so_rcv.sb_flags &= ~SB_KNOTE;
2242 sounlock(so);
2243 }
2244
2245 /*ARGSUSED*/
2246 static int
2247 filt_soread(struct knote *kn, long hint)
2248 {
2249 struct socket *so;
2250 int rv;
2251
2252 so = ((file_t *)kn->kn_obj)->f_socket;
2253 if (hint != NOTE_SUBMIT)
2254 solock(so);
2255 kn->kn_data = so->so_rcv.sb_cc;
2256 if (so->so_state & SS_CANTRCVMORE) {
2257 knote_set_eof(kn, 0);
2258 kn->kn_fflags = so->so_error;
2259 rv = 1;
2260 } else if (so->so_error || so->so_rerror)
2261 rv = 1;
2262 else if (kn->kn_sfflags & NOTE_LOWAT)
2263 rv = (kn->kn_data >= kn->kn_sdata);
2264 else
2265 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2266 if (hint != NOTE_SUBMIT)
2267 sounlock(so);
2268 return rv;
2269 }
2270
2271 static void
2272 filt_sowdetach(struct knote *kn)
2273 {
2274 struct socket *so;
2275
2276 so = ((file_t *)kn->kn_obj)->f_socket;
2277 solock(so);
2278 if (selremove_knote(&so->so_snd.sb_sel, kn))
2279 so->so_snd.sb_flags &= ~SB_KNOTE;
2280 sounlock(so);
2281 }
2282
2283 /*ARGSUSED*/
2284 static int
2285 filt_sowrite(struct knote *kn, long hint)
2286 {
2287 struct socket *so;
2288 int rv;
2289
2290 so = ((file_t *)kn->kn_obj)->f_socket;
2291 if (hint != NOTE_SUBMIT)
2292 solock(so);
2293 kn->kn_data = sbspace(&so->so_snd);
2294 if (so->so_state & SS_CANTSENDMORE) {
2295 knote_set_eof(kn, 0);
2296 kn->kn_fflags = so->so_error;
2297 rv = 1;
2298 } else if (so->so_error)
2299 rv = 1;
2300 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2301 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2302 rv = 0;
2303 else if (kn->kn_sfflags & NOTE_LOWAT)
2304 rv = (kn->kn_data >= kn->kn_sdata);
2305 else
2306 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2307 if (hint != NOTE_SUBMIT)
2308 sounlock(so);
2309 return rv;
2310 }
2311
2312 static int
2313 filt_soempty(struct knote *kn, long hint)
2314 {
2315 struct socket *so;
2316 int rv;
2317
2318 so = ((file_t *)kn->kn_obj)->f_socket;
2319 if (hint != NOTE_SUBMIT)
2320 solock(so);
2321 rv = (kn->kn_data = sbused(&so->so_snd)) == 0 ||
2322 (so->so_options & SO_ACCEPTCONN) != 0;
2323 if (hint != NOTE_SUBMIT)
2324 sounlock(so);
2325 return rv;
2326 }
2327
2328 /*ARGSUSED*/
2329 static int
2330 filt_solisten(struct knote *kn, long hint)
2331 {
2332 struct socket *so;
2333 int rv;
2334
2335 so = ((file_t *)kn->kn_obj)->f_socket;
2336
2337 /*
2338 * Set kn_data to number of incoming connections, not
2339 * counting partial (incomplete) connections.
2340 */
2341 if (hint != NOTE_SUBMIT)
2342 solock(so);
2343 kn->kn_data = so->so_qlen;
2344 rv = (kn->kn_data > 0);
2345 if (hint != NOTE_SUBMIT)
2346 sounlock(so);
2347 return rv;
2348 }
2349
2350 static const struct filterops solisten_filtops = {
2351 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2352 .f_attach = NULL,
2353 .f_detach = filt_sordetach,
2354 .f_event = filt_solisten,
2355 };
2356
2357 static const struct filterops soread_filtops = {
2358 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2359 .f_attach = NULL,
2360 .f_detach = filt_sordetach,
2361 .f_event = filt_soread,
2362 };
2363
2364 static const struct filterops sowrite_filtops = {
2365 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2366 .f_attach = NULL,
2367 .f_detach = filt_sowdetach,
2368 .f_event = filt_sowrite,
2369 };
2370
2371 static const struct filterops soempty_filtops = {
2372 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2373 .f_attach = NULL,
2374 .f_detach = filt_sowdetach,
2375 .f_event = filt_soempty,
2376 };
2377
2378 int
2379 soo_kqfilter(struct file *fp, struct knote *kn)
2380 {
2381 struct socket *so;
2382 struct sockbuf *sb;
2383
2384 so = ((file_t *)kn->kn_obj)->f_socket;
2385 solock(so);
2386 switch (kn->kn_filter) {
2387 case EVFILT_READ:
2388 if (so->so_options & SO_ACCEPTCONN)
2389 kn->kn_fop = &solisten_filtops;
2390 else
2391 kn->kn_fop = &soread_filtops;
2392 sb = &so->so_rcv;
2393 break;
2394 case EVFILT_WRITE:
2395 kn->kn_fop = &sowrite_filtops;
2396 sb = &so->so_snd;
2397 break;
2398 case EVFILT_EMPTY:
2399 kn->kn_fop = &soempty_filtops;
2400 sb = &so->so_snd;
2401 break;
2402 default:
2403 sounlock(so);
2404 return EINVAL;
2405 }
2406 selrecord_knote(&sb->sb_sel, kn);
2407 sb->sb_flags |= SB_KNOTE;
2408 sounlock(so);
2409 return 0;
2410 }
2411
2412 static int
2413 sodopoll(struct socket *so, int events)
2414 {
2415 int revents;
2416
2417 revents = 0;
2418
2419 if (events & (POLLIN | POLLRDNORM))
2420 if (soreadable(so))
2421 revents |= events & (POLLIN | POLLRDNORM);
2422
2423 if (events & (POLLOUT | POLLWRNORM))
2424 if (sowritable(so))
2425 revents |= events & (POLLOUT | POLLWRNORM);
2426
2427 if (events & (POLLPRI | POLLRDBAND))
2428 if (so->so_state & SS_POLLRDBAND)
2429 revents |= events & (POLLPRI | POLLRDBAND);
2430
2431 return revents;
2432 }
2433
2434 int
2435 sopoll(struct socket *so, int events)
2436 {
2437 int revents = 0;
2438
2439 #ifndef DIAGNOSTIC
2440 /*
2441 * Do a quick, unlocked check in expectation that the socket
2442 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2443 * as the solocked() assertions will fail.
2444 */
2445 if ((revents = sodopoll(so, events)) != 0)
2446 return revents;
2447 #endif
2448
2449 solock(so);
2450 if ((revents = sodopoll(so, events)) == 0) {
2451 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2452 selrecord(curlwp, &so->so_rcv.sb_sel);
2453 so->so_rcv.sb_flags |= SB_NOTIFY;
2454 }
2455
2456 if (events & (POLLOUT | POLLWRNORM)) {
2457 selrecord(curlwp, &so->so_snd.sb_sel);
2458 so->so_snd.sb_flags |= SB_NOTIFY;
2459 }
2460 }
2461 sounlock(so);
2462
2463 return revents;
2464 }
2465
2466 struct mbuf **
2467 sbsavetimestamp(int opt, struct mbuf **mp)
2468 {
2469 struct timeval tv;
2470 int error;
2471
2472 memset(&tv, 0, sizeof(tv));
2473 microtime(&tv);
2474
2475 MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, &mp), enosys(), error);
2476 if (error == 0)
2477 return mp;
2478
2479 if (opt & SO_TIMESTAMP) {
2480 *mp = sbcreatecontrol(&tv, sizeof(tv),
2481 SCM_TIMESTAMP, SOL_SOCKET);
2482 if (*mp)
2483 mp = &(*mp)->m_next;
2484 }
2485 return mp;
2486 }
2487
2488
2489 #include <sys/sysctl.h>
2490
2491 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2492 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2493
2494 /*
2495 * sysctl helper routine for kern.somaxkva. ensures that the given
2496 * value is not too small.
2497 * (XXX should we maybe make sure it's not too large as well?)
2498 */
2499 static int
2500 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2501 {
2502 int error, new_somaxkva;
2503 struct sysctlnode node;
2504
2505 new_somaxkva = somaxkva;
2506 node = *rnode;
2507 node.sysctl_data = &new_somaxkva;
2508 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2509 if (error || newp == NULL)
2510 return error;
2511
2512 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2513 return EINVAL;
2514
2515 mutex_enter(&so_pendfree_lock);
2516 somaxkva = new_somaxkva;
2517 cv_broadcast(&socurkva_cv);
2518 mutex_exit(&so_pendfree_lock);
2519
2520 return error;
2521 }
2522
2523 /*
2524 * sysctl helper routine for kern.sbmax. Basically just ensures that
2525 * any new value is not too small.
2526 */
2527 static int
2528 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2529 {
2530 int error, new_sbmax;
2531 struct sysctlnode node;
2532
2533 new_sbmax = sb_max;
2534 node = *rnode;
2535 node.sysctl_data = &new_sbmax;
2536 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2537 if (error || newp == NULL)
2538 return error;
2539
2540 KERNEL_LOCK(1, NULL);
2541 error = sb_max_set(new_sbmax);
2542 KERNEL_UNLOCK_ONE(NULL);
2543
2544 return error;
2545 }
2546
2547 /*
2548 * sysctl helper routine for kern.sooptions. Ensures that only allowed
2549 * options can be set.
2550 */
2551 static int
2552 sysctl_kern_sooptions(SYSCTLFN_ARGS)
2553 {
2554 int error, new_options;
2555 struct sysctlnode node;
2556
2557 new_options = sooptions;
2558 node = *rnode;
2559 node.sysctl_data = &new_options;
2560 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2561 if (error || newp == NULL)
2562 return error;
2563
2564 if (new_options & ~SO_DEFOPTS)
2565 return EINVAL;
2566
2567 sooptions = new_options;
2568
2569 return 0;
2570 }
2571
2572 static void
2573 sysctl_kern_socket_setup(void)
2574 {
2575
2576 KASSERT(socket_sysctllog == NULL);
2577
2578 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2579 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2580 CTLTYPE_INT, "somaxkva",
2581 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2582 "used for socket buffers"),
2583 sysctl_kern_somaxkva, 0, NULL, 0,
2584 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2585
2586 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2587 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2588 CTLTYPE_BOOL, "sofixedbuf",
2589 SYSCTL_DESCR("Prevent scaling of fixed socket buffers"),
2590 NULL, 0, &sofixedbuf, 0,
2591 CTL_KERN, KERN_SOFIXEDBUF, CTL_EOL);
2592
2593 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2594 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2595 CTLTYPE_INT, "sbmax",
2596 SYSCTL_DESCR("Maximum socket buffer size"),
2597 sysctl_kern_sbmax, 0, NULL, 0,
2598 CTL_KERN, KERN_SBMAX, CTL_EOL);
2599
2600 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2601 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2602 CTLTYPE_INT, "sooptions",
2603 SYSCTL_DESCR("Default socket options"),
2604 sysctl_kern_sooptions, 0, NULL, 0,
2605 CTL_KERN, CTL_CREATE, CTL_EOL);
2606 }
2607