uipc_socket.c revision 1.306 1 /* $NetBSD: uipc_socket.c,v 1.306 2023/10/13 18:50:39 ad Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2007, 2008, 2009, 2023 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.306 2023/10/13 18:50:39 ad Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #include "opt_sctp.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/file.h>
90 #include <sys/filedesc.h>
91 #include <sys/kmem.h>
92 #include <sys/mbuf.h>
93 #include <sys/domain.h>
94 #include <sys/kernel.h>
95 #include <sys/protosw.h>
96 #include <sys/socket.h>
97 #include <sys/socketvar.h>
98 #include <sys/signalvar.h>
99 #include <sys/resourcevar.h>
100 #include <sys/uidinfo.h>
101 #include <sys/event.h>
102 #include <sys/poll.h>
103 #include <sys/kauth.h>
104 #include <sys/mutex.h>
105 #include <sys/condvar.h>
106 #include <sys/kthread.h>
107 #include <sys/compat_stub.h>
108
109 #include <compat/sys/time.h>
110 #include <compat/sys/socket.h>
111
112 #include <uvm/uvm_extern.h>
113 #include <uvm/uvm_loan.h>
114 #include <uvm/uvm_page.h>
115
116 #ifdef SCTP
117 #include <netinet/sctp_route.h>
118 #endif
119
120 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
121
122 extern const struct fileops socketops;
123
124 static int sooptions;
125 extern int somaxconn; /* patchable (XXX sysctl) */
126 int somaxconn = SOMAXCONN;
127 kmutex_t *softnet_lock;
128
129 #ifdef SOSEND_COUNTERS
130 #include <sys/device.h>
131
132 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
133 NULL, "sosend", "loan big");
134 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
135 NULL, "sosend", "copy big");
136 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
137 NULL, "sosend", "copy small");
138 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
139 NULL, "sosend", "kva limit");
140
141 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
142
143 EVCNT_ATTACH_STATIC(sosend_loan_big);
144 EVCNT_ATTACH_STATIC(sosend_copy_big);
145 EVCNT_ATTACH_STATIC(sosend_copy_small);
146 EVCNT_ATTACH_STATIC(sosend_kvalimit);
147 #else
148
149 #define SOSEND_COUNTER_INCR(ev) /* nothing */
150
151 #endif /* SOSEND_COUNTERS */
152
153 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
154 int sock_loan_thresh = -1;
155 #else
156 int sock_loan_thresh = 4096;
157 #endif
158
159 static kmutex_t so_pendfree_lock;
160 static struct mbuf *so_pendfree = NULL;
161
162 #ifndef SOMAXKVA
163 #define SOMAXKVA (16 * 1024 * 1024)
164 #endif
165 int somaxkva = SOMAXKVA;
166 static int socurkva;
167 static kcondvar_t socurkva_cv;
168
169 #ifndef SOFIXEDBUF
170 #define SOFIXEDBUF true
171 #endif
172 bool sofixedbuf = SOFIXEDBUF;
173
174 static kauth_listener_t socket_listener;
175
176 #define SOCK_LOAN_CHUNK 65536
177
178 static void sopendfree_thread(void *);
179 static kcondvar_t pendfree_thread_cv;
180 static lwp_t *sopendfree_lwp;
181
182 static void sysctl_kern_socket_setup(void);
183 static struct sysctllog *socket_sysctllog;
184
185 static vsize_t
186 sokvareserve(struct socket *so, vsize_t len)
187 {
188 int error;
189
190 mutex_enter(&so_pendfree_lock);
191 while (socurkva + len > somaxkva) {
192 SOSEND_COUNTER_INCR(&sosend_kvalimit);
193 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
194 if (error) {
195 len = 0;
196 break;
197 }
198 }
199 socurkva += len;
200 mutex_exit(&so_pendfree_lock);
201 return len;
202 }
203
204 static void
205 sokvaunreserve(vsize_t len)
206 {
207
208 mutex_enter(&so_pendfree_lock);
209 socurkva -= len;
210 cv_broadcast(&socurkva_cv);
211 mutex_exit(&so_pendfree_lock);
212 }
213
214 /*
215 * sokvaalloc: allocate kva for loan.
216 */
217 vaddr_t
218 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
219 {
220 vaddr_t lva;
221
222 if (sokvareserve(so, len) == 0)
223 return 0;
224
225 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
226 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
227 if (lva == 0) {
228 sokvaunreserve(len);
229 return 0;
230 }
231
232 return lva;
233 }
234
235 /*
236 * sokvafree: free kva for loan.
237 */
238 void
239 sokvafree(vaddr_t sva, vsize_t len)
240 {
241
242 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
243 sokvaunreserve(len);
244 }
245
246 static void
247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
248 {
249 vaddr_t sva, eva;
250 vsize_t len;
251 int npgs;
252
253 KASSERT(pgs != NULL);
254
255 eva = round_page((vaddr_t) buf + size);
256 sva = trunc_page((vaddr_t) buf);
257 len = eva - sva;
258 npgs = len >> PAGE_SHIFT;
259
260 pmap_kremove(sva, len);
261 pmap_update(pmap_kernel());
262 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
263 sokvafree(sva, len);
264 }
265
266 /*
267 * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
268 * so_pendfree_lock when freeing mbufs.
269 */
270 static void
271 sopendfree_thread(void *v)
272 {
273 struct mbuf *m, *next;
274 size_t rv;
275
276 mutex_enter(&so_pendfree_lock);
277
278 for (;;) {
279 rv = 0;
280 while (so_pendfree != NULL) {
281 m = so_pendfree;
282 so_pendfree = NULL;
283 mutex_exit(&so_pendfree_lock);
284
285 for (; m != NULL; m = next) {
286 next = m->m_next;
287 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
288 0);
289 KASSERT(m->m_ext.ext_refcnt == 0);
290
291 rv += m->m_ext.ext_size;
292 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
293 m->m_ext.ext_size);
294 pool_cache_put(mb_cache, m);
295 }
296
297 mutex_enter(&so_pendfree_lock);
298 }
299 if (rv)
300 cv_broadcast(&socurkva_cv);
301 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
302 }
303 panic("sopendfree_thread");
304 /* NOTREACHED */
305 }
306
307 void
308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
309 {
310
311 KASSERT(m != NULL);
312
313 /*
314 * postpone freeing mbuf.
315 *
316 * we can't do it in interrupt context
317 * because we need to put kva back to kernel_map.
318 */
319
320 mutex_enter(&so_pendfree_lock);
321 m->m_next = so_pendfree;
322 so_pendfree = m;
323 cv_signal(&pendfree_thread_cv);
324 mutex_exit(&so_pendfree_lock);
325 }
326
327 static long
328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
329 {
330 struct iovec *iov = uio->uio_iov;
331 vaddr_t sva, eva;
332 vsize_t len;
333 vaddr_t lva;
334 int npgs, error;
335 vaddr_t va;
336 int i;
337
338 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
339 return 0;
340
341 if (iov->iov_len < (size_t) space)
342 space = iov->iov_len;
343 if (space > SOCK_LOAN_CHUNK)
344 space = SOCK_LOAN_CHUNK;
345
346 eva = round_page((vaddr_t) iov->iov_base + space);
347 sva = trunc_page((vaddr_t) iov->iov_base);
348 len = eva - sva;
349 npgs = len >> PAGE_SHIFT;
350
351 KASSERT(npgs <= M_EXT_MAXPAGES);
352
353 lva = sokvaalloc(sva, len, so);
354 if (lva == 0)
355 return 0;
356
357 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
358 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
359 if (error) {
360 sokvafree(lva, len);
361 return 0;
362 }
363
364 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
365 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
366 VM_PROT_READ, 0);
367 pmap_update(pmap_kernel());
368
369 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
370
371 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
372 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
373
374 uio->uio_resid -= space;
375 /* uio_offset not updated, not set/used for write(2) */
376 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
377 uio->uio_iov->iov_len -= space;
378 if (uio->uio_iov->iov_len == 0) {
379 uio->uio_iov++;
380 uio->uio_iovcnt--;
381 }
382
383 return space;
384 }
385
386 static int
387 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
388 void *arg0, void *arg1, void *arg2, void *arg3)
389 {
390 int result;
391 enum kauth_network_req req;
392
393 result = KAUTH_RESULT_DEFER;
394 req = (enum kauth_network_req)(uintptr_t)arg0;
395
396 if ((action != KAUTH_NETWORK_SOCKET) &&
397 (action != KAUTH_NETWORK_BIND))
398 return result;
399
400 switch (req) {
401 case KAUTH_REQ_NETWORK_BIND_PORT:
402 result = KAUTH_RESULT_ALLOW;
403 break;
404
405 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
406 /* Normal users can only drop their own connections. */
407 struct socket *so = (struct socket *)arg1;
408
409 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
410 result = KAUTH_RESULT_ALLOW;
411
412 break;
413 }
414
415 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
416 /* We allow "raw" routing/bluetooth sockets to anyone. */
417 switch ((u_long)arg1) {
418 case PF_ROUTE:
419 case PF_OROUTE:
420 case PF_BLUETOOTH:
421 case PF_CAN:
422 result = KAUTH_RESULT_ALLOW;
423 break;
424 default:
425 /* Privileged, let secmodel handle this. */
426 if ((u_long)arg2 == SOCK_RAW)
427 break;
428 result = KAUTH_RESULT_ALLOW;
429 break;
430 }
431 break;
432
433 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
434 result = KAUTH_RESULT_ALLOW;
435
436 break;
437
438 default:
439 break;
440 }
441
442 return result;
443 }
444
445 void
446 soinit(void)
447 {
448
449 sysctl_kern_socket_setup();
450
451 #ifdef SCTP
452 /* Update the SCTP function hooks if necessary*/
453
454 vec_sctp_add_ip_address = sctp_add_ip_address;
455 vec_sctp_delete_ip_address = sctp_delete_ip_address;
456 #endif
457
458 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
459 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
460 cv_init(&socurkva_cv, "sokva");
461 cv_init(&pendfree_thread_cv, "sopendfr");
462 soinit2();
463
464 /* Set the initial adjusted socket buffer size. */
465 if (sb_max_set(sb_max))
466 panic("bad initial sb_max value: %lu", sb_max);
467
468 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
469 socket_listener_cb, NULL);
470 }
471
472 void
473 soinit1(void)
474 {
475 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
476 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
477 if (error)
478 panic("soinit1 %d", error);
479 }
480
481 /*
482 * socreate: create a new socket of the specified type and the protocol.
483 *
484 * => Caller may specify another socket for lock sharing (must not be held).
485 * => Returns the new socket without lock held.
486 */
487 int
488 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
489 struct socket *lockso)
490 {
491 const struct protosw *prp;
492 struct socket *so;
493 uid_t uid;
494 int error;
495 kmutex_t *lock;
496
497 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
498 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
499 KAUTH_ARG(proto));
500 if (error != 0)
501 return error;
502
503 if (proto)
504 prp = pffindproto(dom, proto, type);
505 else
506 prp = pffindtype(dom, type);
507 if (prp == NULL) {
508 /* no support for domain */
509 if (pffinddomain(dom) == 0)
510 return EAFNOSUPPORT;
511 /* no support for socket type */
512 if (proto == 0 && type != 0)
513 return EPROTOTYPE;
514 return EPROTONOSUPPORT;
515 }
516 if (prp->pr_usrreqs == NULL)
517 return EPROTONOSUPPORT;
518 if (prp->pr_type != type)
519 return EPROTOTYPE;
520
521 so = soget(true);
522 so->so_type = type;
523 so->so_proto = prp;
524 so->so_send = sosend;
525 so->so_receive = soreceive;
526 so->so_options = sooptions;
527 #ifdef MBUFTRACE
528 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
529 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
530 so->so_mowner = &prp->pr_domain->dom_mowner;
531 #endif
532 uid = kauth_cred_geteuid(l->l_cred);
533 so->so_uidinfo = uid_find(uid);
534 so->so_egid = kauth_cred_getegid(l->l_cred);
535 so->so_cpid = l->l_proc->p_pid;
536
537 /*
538 * Lock assigned and taken during PCB attach, unless we share
539 * the lock with another socket, e.g. socketpair(2) case.
540 */
541 if (lockso) {
542 /*
543 * lockso->so_lock should be stable at this point, so
544 * no need for atomic_load_*.
545 */
546 lock = lockso->so_lock;
547 so->so_lock = lock;
548 mutex_obj_hold(lock);
549 mutex_enter(lock);
550 }
551
552 /* Attach the PCB (returns with the socket lock held). */
553 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
554 KASSERT(solocked(so));
555
556 if (error) {
557 KASSERT(so->so_pcb == NULL);
558 so->so_state |= SS_NOFDREF;
559 sofree(so);
560 return error;
561 }
562 so->so_cred = kauth_cred_hold(l->l_cred);
563 sounlock(so);
564
565 *aso = so;
566 return 0;
567 }
568
569 /*
570 * fsocreate: create a socket and a file descriptor associated with it.
571 *
572 * => On success, write file descriptor to fdout and return zero.
573 * => On failure, return non-zero; *fdout will be undefined.
574 */
575 int
576 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
577 {
578 lwp_t *l = curlwp;
579 int error, fd, flags;
580 struct socket *so;
581 struct file *fp;
582
583 if ((error = fd_allocfile(&fp, &fd)) != 0) {
584 return error;
585 }
586 flags = type & SOCK_FLAGS_MASK;
587 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
588 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
589 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
590 fp->f_type = DTYPE_SOCKET;
591 fp->f_ops = &socketops;
592
593 type &= ~SOCK_FLAGS_MASK;
594 error = socreate(domain, &so, type, proto, l, NULL);
595 if (error) {
596 fd_abort(curproc, fp, fd);
597 return error;
598 }
599 if (flags & SOCK_NONBLOCK) {
600 so->so_state |= SS_NBIO;
601 }
602 fp->f_socket = so;
603 fd_affix(curproc, fp, fd);
604
605 if (sop != NULL) {
606 *sop = so;
607 }
608 *fdout = fd;
609 return error;
610 }
611
612 int
613 sofamily(const struct socket *so)
614 {
615 const struct protosw *pr;
616 const struct domain *dom;
617
618 if ((pr = so->so_proto) == NULL)
619 return AF_UNSPEC;
620 if ((dom = pr->pr_domain) == NULL)
621 return AF_UNSPEC;
622 return dom->dom_family;
623 }
624
625 int
626 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
627 {
628 int error;
629
630 solock(so);
631 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
632 sounlock(so);
633 return EAFNOSUPPORT;
634 }
635 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
636 sounlock(so);
637 return error;
638 }
639
640 int
641 solisten(struct socket *so, int backlog, struct lwp *l)
642 {
643 int error;
644 short oldopt, oldqlimit;
645
646 solock(so);
647 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
648 SS_ISDISCONNECTING)) != 0) {
649 sounlock(so);
650 return EINVAL;
651 }
652 oldopt = so->so_options;
653 oldqlimit = so->so_qlimit;
654 if (TAILQ_EMPTY(&so->so_q))
655 so->so_options |= SO_ACCEPTCONN;
656 if (backlog < 0)
657 backlog = 0;
658 so->so_qlimit = uimin(backlog, somaxconn);
659
660 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
661 if (error != 0) {
662 so->so_options = oldopt;
663 so->so_qlimit = oldqlimit;
664 sounlock(so);
665 return error;
666 }
667 sounlock(so);
668 return 0;
669 }
670
671 void
672 sofree(struct socket *so)
673 {
674 u_int refs;
675
676 KASSERT(solocked(so));
677
678 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
679 sounlock(so);
680 return;
681 }
682 if (so->so_head) {
683 /*
684 * We must not decommission a socket that's on the accept(2)
685 * queue. If we do, then accept(2) may hang after select(2)
686 * indicated that the listening socket was ready.
687 */
688 if (!soqremque(so, 0)) {
689 sounlock(so);
690 return;
691 }
692 }
693 if (so->so_rcv.sb_hiwat)
694 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
695 RLIM_INFINITY);
696 if (so->so_snd.sb_hiwat)
697 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
698 RLIM_INFINITY);
699 sbrelease(&so->so_snd, so);
700 KASSERT(!cv_has_waiters(&so->so_cv));
701 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
702 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
703 sorflush(so);
704 refs = so->so_aborting; /* XXX */
705 /* Remove accept filter if one is present. */
706 if (so->so_accf != NULL)
707 (void)accept_filt_clear(so);
708 sounlock(so);
709 if (refs == 0) /* XXX */
710 soput(so);
711 }
712
713 /*
714 * soclose: close a socket on last file table reference removal.
715 * Initiate disconnect if connected. Free socket when disconnect complete.
716 */
717 int
718 soclose(struct socket *so)
719 {
720 struct socket *so2;
721 int error = 0;
722
723 solock(so);
724 if (so->so_options & SO_ACCEPTCONN) {
725 for (;;) {
726 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
727 KASSERT(solocked2(so, so2));
728 (void) soqremque(so2, 0);
729 /* soabort drops the lock. */
730 (void) soabort(so2);
731 solock(so);
732 continue;
733 }
734 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
735 KASSERT(solocked2(so, so2));
736 (void) soqremque(so2, 1);
737 /* soabort drops the lock. */
738 (void) soabort(so2);
739 solock(so);
740 continue;
741 }
742 break;
743 }
744 }
745 if (so->so_pcb == NULL)
746 goto discard;
747 if (so->so_state & SS_ISCONNECTED) {
748 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
749 error = sodisconnect(so);
750 if (error)
751 goto drop;
752 }
753 if (so->so_options & SO_LINGER) {
754 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
755 (SS_ISDISCONNECTING|SS_NBIO))
756 goto drop;
757 while (so->so_state & SS_ISCONNECTED) {
758 error = sowait(so, true, so->so_linger * hz);
759 if (error)
760 break;
761 }
762 }
763 }
764 drop:
765 if (so->so_pcb) {
766 KASSERT(solocked(so));
767 (*so->so_proto->pr_usrreqs->pr_detach)(so);
768 }
769 discard:
770 KASSERT((so->so_state & SS_NOFDREF) == 0);
771 kauth_cred_free(so->so_cred);
772 so->so_cred = NULL;
773 so->so_state |= SS_NOFDREF;
774 sofree(so);
775 return error;
776 }
777
778 /*
779 * Must be called with the socket locked.. Will return with it unlocked.
780 */
781 int
782 soabort(struct socket *so)
783 {
784 u_int refs;
785 int error;
786
787 KASSERT(solocked(so));
788 KASSERT(so->so_head == NULL);
789
790 so->so_aborting++; /* XXX */
791 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
792 refs = --so->so_aborting; /* XXX */
793 if (error || (refs == 0)) {
794 sofree(so);
795 } else {
796 sounlock(so);
797 }
798 return error;
799 }
800
801 int
802 soaccept(struct socket *so, struct sockaddr *nam)
803 {
804 int error;
805
806 KASSERT(solocked(so));
807 KASSERT((so->so_state & SS_NOFDREF) != 0);
808
809 so->so_state &= ~SS_NOFDREF;
810 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
811 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
812 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
813 else
814 error = ECONNABORTED;
815
816 return error;
817 }
818
819 int
820 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
821 {
822 int error;
823
824 KASSERT(solocked(so));
825
826 if (so->so_options & SO_ACCEPTCONN)
827 return EOPNOTSUPP;
828 /*
829 * If protocol is connection-based, can only connect once.
830 * Otherwise, if connected, try to disconnect first.
831 * This allows user to disconnect by connecting to, e.g.,
832 * a null address.
833 */
834 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
835 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
836 (error = sodisconnect(so)))) {
837 error = EISCONN;
838 } else {
839 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
840 return EAFNOSUPPORT;
841 }
842 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
843 }
844
845 return error;
846 }
847
848 int
849 soconnect2(struct socket *so1, struct socket *so2)
850 {
851 KASSERT(solocked2(so1, so2));
852
853 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
854 }
855
856 int
857 sodisconnect(struct socket *so)
858 {
859 int error;
860
861 KASSERT(solocked(so));
862
863 if ((so->so_state & SS_ISCONNECTED) == 0) {
864 error = ENOTCONN;
865 } else if (so->so_state & SS_ISDISCONNECTING) {
866 error = EALREADY;
867 } else {
868 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
869 }
870 return error;
871 }
872
873 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
874 /*
875 * Send on a socket.
876 * If send must go all at once and message is larger than
877 * send buffering, then hard error.
878 * Lock against other senders.
879 * If must go all at once and not enough room now, then
880 * inform user that this would block and do nothing.
881 * Otherwise, if nonblocking, send as much as possible.
882 * The data to be sent is described by "uio" if nonzero,
883 * otherwise by the mbuf chain "top" (which must be null
884 * if uio is not). Data provided in mbuf chain must be small
885 * enough to send all at once.
886 *
887 * Returns nonzero on error, timeout or signal; callers
888 * must check for short counts if EINTR/ERESTART are returned.
889 * Data and control buffers are freed on return.
890 */
891 int
892 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
893 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
894 {
895 struct mbuf **mp, *m;
896 long space, len, resid, clen, mlen;
897 int error, s, dontroute, atomic;
898
899 clen = 0;
900
901 /*
902 * solock() provides atomicity of access. splsoftnet() prevents
903 * protocol processing soft interrupts from interrupting us and
904 * blocking (expensive).
905 */
906 s = splsoftnet();
907 solock(so);
908 atomic = sosendallatonce(so) || top;
909 if (uio)
910 resid = uio->uio_resid;
911 else
912 resid = top->m_pkthdr.len;
913 /*
914 * In theory resid should be unsigned.
915 * However, space must be signed, as it might be less than 0
916 * if we over-committed, and we must use a signed comparison
917 * of space and resid. On the other hand, a negative resid
918 * causes us to loop sending 0-length segments to the protocol.
919 */
920 if (resid < 0) {
921 error = EINVAL;
922 goto out;
923 }
924 dontroute =
925 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
926 (so->so_proto->pr_flags & PR_ATOMIC);
927 l->l_ru.ru_msgsnd++;
928 if (control)
929 clen = control->m_len;
930 restart:
931 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
932 goto out;
933 do {
934 if (so->so_state & SS_CANTSENDMORE) {
935 error = EPIPE;
936 goto release;
937 }
938 if (so->so_error) {
939 error = so->so_error;
940 if ((flags & MSG_PEEK) == 0)
941 so->so_error = 0;
942 goto release;
943 }
944 if ((so->so_state & SS_ISCONNECTED) == 0) {
945 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
946 if (resid || clen == 0) {
947 error = ENOTCONN;
948 goto release;
949 }
950 } else if (addr == NULL) {
951 error = EDESTADDRREQ;
952 goto release;
953 }
954 }
955 space = sbspace(&so->so_snd);
956 if (flags & MSG_OOB)
957 space += 1024;
958 if ((atomic && resid > so->so_snd.sb_hiwat) ||
959 clen > so->so_snd.sb_hiwat) {
960 error = EMSGSIZE;
961 goto release;
962 }
963 if (space < resid + clen &&
964 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
965 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
966 error = EWOULDBLOCK;
967 goto release;
968 }
969 sbunlock(&so->so_snd);
970 error = sbwait(&so->so_snd);
971 if (error)
972 goto out;
973 goto restart;
974 }
975 mp = ⊤
976 space -= clen;
977 do {
978 if (uio == NULL) {
979 /*
980 * Data is prepackaged in "top".
981 */
982 resid = 0;
983 if (flags & MSG_EOR)
984 top->m_flags |= M_EOR;
985 } else do {
986 sounlock(so);
987 splx(s);
988 if (top == NULL) {
989 m = m_gethdr(M_WAIT, MT_DATA);
990 mlen = MHLEN;
991 m->m_pkthdr.len = 0;
992 m_reset_rcvif(m);
993 } else {
994 m = m_get(M_WAIT, MT_DATA);
995 mlen = MLEN;
996 }
997 MCLAIM(m, so->so_snd.sb_mowner);
998 if (sock_loan_thresh >= 0 &&
999 uio->uio_iov->iov_len >= sock_loan_thresh &&
1000 space >= sock_loan_thresh &&
1001 (len = sosend_loan(so, uio, m,
1002 space)) != 0) {
1003 SOSEND_COUNTER_INCR(&sosend_loan_big);
1004 space -= len;
1005 goto have_data;
1006 }
1007 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1008 SOSEND_COUNTER_INCR(&sosend_copy_big);
1009 m_clget(m, M_DONTWAIT);
1010 if ((m->m_flags & M_EXT) == 0)
1011 goto nopages;
1012 mlen = MCLBYTES;
1013 if (atomic && top == 0) {
1014 len = lmin(MCLBYTES - max_hdr,
1015 resid);
1016 m->m_data += max_hdr;
1017 } else
1018 len = lmin(MCLBYTES, resid);
1019 space -= len;
1020 } else {
1021 nopages:
1022 SOSEND_COUNTER_INCR(&sosend_copy_small);
1023 len = lmin(lmin(mlen, resid), space);
1024 space -= len;
1025 /*
1026 * For datagram protocols, leave room
1027 * for protocol headers in first mbuf.
1028 */
1029 if (atomic && top == 0 && len < mlen)
1030 m_align(m, len);
1031 }
1032 error = uiomove(mtod(m, void *), (int)len, uio);
1033 have_data:
1034 resid = uio->uio_resid;
1035 m->m_len = len;
1036 *mp = m;
1037 top->m_pkthdr.len += len;
1038 s = splsoftnet();
1039 solock(so);
1040 if (error != 0)
1041 goto release;
1042 mp = &m->m_next;
1043 if (resid <= 0) {
1044 if (flags & MSG_EOR)
1045 top->m_flags |= M_EOR;
1046 break;
1047 }
1048 } while (space > 0 && atomic);
1049
1050 if (so->so_state & SS_CANTSENDMORE) {
1051 error = EPIPE;
1052 goto release;
1053 }
1054 if (dontroute)
1055 so->so_options |= SO_DONTROUTE;
1056 if (resid > 0)
1057 so->so_state |= SS_MORETOCOME;
1058 if (flags & MSG_OOB) {
1059 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1060 so, top, control);
1061 } else {
1062 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1063 top, addr, control, l);
1064 }
1065 if (dontroute)
1066 so->so_options &= ~SO_DONTROUTE;
1067 if (resid > 0)
1068 so->so_state &= ~SS_MORETOCOME;
1069 clen = 0;
1070 control = NULL;
1071 top = NULL;
1072 mp = ⊤
1073 if (error != 0)
1074 goto release;
1075 } while (resid && space > 0);
1076 } while (resid);
1077
1078 release:
1079 sbunlock(&so->so_snd);
1080 out:
1081 sounlock(so);
1082 splx(s);
1083 if (top)
1084 m_freem(top);
1085 if (control)
1086 m_freem(control);
1087 return error;
1088 }
1089
1090 /*
1091 * Following replacement or removal of the first mbuf on the first
1092 * mbuf chain of a socket buffer, push necessary state changes back
1093 * into the socket buffer so that other consumers see the values
1094 * consistently. 'nextrecord' is the caller's locally stored value of
1095 * the original value of sb->sb_mb->m_nextpkt which must be restored
1096 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1097 */
1098 static void
1099 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1100 {
1101
1102 KASSERT(solocked(sb->sb_so));
1103
1104 /*
1105 * First, update for the new value of nextrecord. If necessary,
1106 * make it the first record.
1107 */
1108 if (sb->sb_mb != NULL)
1109 sb->sb_mb->m_nextpkt = nextrecord;
1110 else
1111 sb->sb_mb = nextrecord;
1112
1113 /*
1114 * Now update any dependent socket buffer fields to reflect
1115 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1116 * the addition of a second clause that takes care of the
1117 * case where sb_mb has been updated, but remains the last
1118 * record.
1119 */
1120 if (sb->sb_mb == NULL) {
1121 sb->sb_mbtail = NULL;
1122 sb->sb_lastrecord = NULL;
1123 } else if (sb->sb_mb->m_nextpkt == NULL)
1124 sb->sb_lastrecord = sb->sb_mb;
1125 }
1126
1127 /*
1128 * Implement receive operations on a socket.
1129 *
1130 * We depend on the way that records are added to the sockbuf by sbappend*. In
1131 * particular, each record (mbufs linked through m_next) must begin with an
1132 * address if the protocol so specifies, followed by an optional mbuf or mbufs
1133 * containing ancillary data, and then zero or more mbufs of data.
1134 *
1135 * In order to avoid blocking network interrupts for the entire time here, we
1136 * splx() while doing the actual copy to user space. Although the sockbuf is
1137 * locked, new data may still be appended, and thus we must maintain
1138 * consistency of the sockbuf during that time.
1139 *
1140 * The caller may receive the data as a single mbuf chain by supplying an mbuf
1141 * **mp0 for use in returning the chain. The uio is then used only for the
1142 * count in uio_resid.
1143 */
1144 int
1145 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1146 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1147 {
1148 struct lwp *l = curlwp;
1149 struct mbuf *m, **mp, *mt;
1150 size_t len, offset, moff, orig_resid;
1151 int atomic, flags, error, s, type;
1152 const struct protosw *pr;
1153 struct mbuf *nextrecord;
1154 int mbuf_removed = 0;
1155 const struct domain *dom;
1156
1157 pr = so->so_proto;
1158 atomic = pr->pr_flags & PR_ATOMIC;
1159 dom = pr->pr_domain;
1160 mp = mp0;
1161 type = 0;
1162 orig_resid = uio->uio_resid;
1163
1164 if (paddr != NULL)
1165 *paddr = NULL;
1166 if (controlp != NULL)
1167 *controlp = NULL;
1168 if (flagsp != NULL)
1169 flags = *flagsp &~ MSG_EOR;
1170 else
1171 flags = 0;
1172
1173 if (flags & MSG_OOB) {
1174 m = m_get(M_WAIT, MT_DATA);
1175 solock(so);
1176 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1177 sounlock(so);
1178 if (error)
1179 goto bad;
1180 do {
1181 error = uiomove(mtod(m, void *),
1182 MIN(uio->uio_resid, m->m_len), uio);
1183 m = m_free(m);
1184 } while (uio->uio_resid > 0 && error == 0 && m);
1185 bad:
1186 if (m != NULL)
1187 m_freem(m);
1188 return error;
1189 }
1190 if (mp != NULL)
1191 *mp = NULL;
1192
1193 /*
1194 * solock() provides atomicity of access. splsoftnet() prevents
1195 * protocol processing soft interrupts from interrupting us and
1196 * blocking (expensive).
1197 */
1198 s = splsoftnet();
1199 solock(so);
1200 restart:
1201 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1202 sounlock(so);
1203 splx(s);
1204 return error;
1205 }
1206 m = so->so_rcv.sb_mb;
1207
1208 /*
1209 * If we have less data than requested, block awaiting more
1210 * (subject to any timeout) if:
1211 * 1. the current count is less than the low water mark,
1212 * 2. MSG_WAITALL is set, and it is possible to do the entire
1213 * receive operation at once if we block (resid <= hiwat), or
1214 * 3. MSG_DONTWAIT is not set.
1215 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1216 * we have to do the receive in sections, and thus risk returning
1217 * a short count if a timeout or signal occurs after we start.
1218 */
1219 if (m == NULL ||
1220 ((flags & MSG_DONTWAIT) == 0 &&
1221 so->so_rcv.sb_cc < uio->uio_resid &&
1222 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1223 ((flags & MSG_WAITALL) &&
1224 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1225 m->m_nextpkt == NULL && !atomic)) {
1226 #ifdef DIAGNOSTIC
1227 if (m == NULL && so->so_rcv.sb_cc)
1228 panic("receive 1");
1229 #endif
1230 if (so->so_error || so->so_rerror) {
1231 u_short *e;
1232 if (m != NULL)
1233 goto dontblock;
1234 e = so->so_error ? &so->so_error : &so->so_rerror;
1235 error = *e;
1236 if ((flags & MSG_PEEK) == 0)
1237 *e = 0;
1238 goto release;
1239 }
1240 if (so->so_state & SS_CANTRCVMORE) {
1241 if (m != NULL)
1242 goto dontblock;
1243 else
1244 goto release;
1245 }
1246 for (; m != NULL; m = m->m_next)
1247 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1248 m = so->so_rcv.sb_mb;
1249 goto dontblock;
1250 }
1251 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1252 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1253 error = ENOTCONN;
1254 goto release;
1255 }
1256 if (uio->uio_resid == 0)
1257 goto release;
1258 if ((so->so_state & SS_NBIO) ||
1259 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1260 error = EWOULDBLOCK;
1261 goto release;
1262 }
1263 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1264 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1265 sbunlock(&so->so_rcv);
1266 error = sbwait(&so->so_rcv);
1267 if (error != 0) {
1268 sounlock(so);
1269 splx(s);
1270 return error;
1271 }
1272 goto restart;
1273 }
1274
1275 dontblock:
1276 /*
1277 * On entry here, m points to the first record of the socket buffer.
1278 * From this point onward, we maintain 'nextrecord' as a cache of the
1279 * pointer to the next record in the socket buffer. We must keep the
1280 * various socket buffer pointers and local stack versions of the
1281 * pointers in sync, pushing out modifications before dropping the
1282 * socket lock, and re-reading them when picking it up.
1283 *
1284 * Otherwise, we will race with the network stack appending new data
1285 * or records onto the socket buffer by using inconsistent/stale
1286 * versions of the field, possibly resulting in socket buffer
1287 * corruption.
1288 *
1289 * By holding the high-level sblock(), we prevent simultaneous
1290 * readers from pulling off the front of the socket buffer.
1291 */
1292 if (l != NULL)
1293 l->l_ru.ru_msgrcv++;
1294 KASSERT(m == so->so_rcv.sb_mb);
1295 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1296 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1297 nextrecord = m->m_nextpkt;
1298
1299 if (pr->pr_flags & PR_ADDR) {
1300 KASSERT(m->m_type == MT_SONAME);
1301 orig_resid = 0;
1302 if (flags & MSG_PEEK) {
1303 if (paddr)
1304 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1305 m = m->m_next;
1306 } else {
1307 sbfree(&so->so_rcv, m);
1308 mbuf_removed = 1;
1309 if (paddr != NULL) {
1310 *paddr = m;
1311 so->so_rcv.sb_mb = m->m_next;
1312 m->m_next = NULL;
1313 m = so->so_rcv.sb_mb;
1314 } else {
1315 m = so->so_rcv.sb_mb = m_free(m);
1316 }
1317 sbsync(&so->so_rcv, nextrecord);
1318 }
1319 }
1320
1321 if (pr->pr_flags & PR_ADDR_OPT) {
1322 /*
1323 * For SCTP we may be getting a whole message OR a partial
1324 * delivery.
1325 */
1326 if (m->m_type == MT_SONAME) {
1327 orig_resid = 0;
1328 if (flags & MSG_PEEK) {
1329 if (paddr)
1330 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1331 m = m->m_next;
1332 } else {
1333 sbfree(&so->so_rcv, m);
1334 mbuf_removed = 1;
1335 if (paddr) {
1336 *paddr = m;
1337 so->so_rcv.sb_mb = m->m_next;
1338 m->m_next = 0;
1339 m = so->so_rcv.sb_mb;
1340 } else {
1341 m = so->so_rcv.sb_mb = m_free(m);
1342 }
1343 sbsync(&so->so_rcv, nextrecord);
1344 }
1345 }
1346 }
1347
1348 /*
1349 * Process one or more MT_CONTROL mbufs present before any data mbufs
1350 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1351 * just copy the data; if !MSG_PEEK, we call into the protocol to
1352 * perform externalization (or freeing if controlp == NULL).
1353 */
1354 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1355 struct mbuf *cm = NULL, *cmn;
1356 struct mbuf **cme = &cm;
1357
1358 do {
1359 if (flags & MSG_PEEK) {
1360 if (controlp != NULL) {
1361 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1362 controlp = (*controlp == NULL ? NULL :
1363 &(*controlp)->m_next);
1364 }
1365 m = m->m_next;
1366 } else {
1367 sbfree(&so->so_rcv, m);
1368 so->so_rcv.sb_mb = m->m_next;
1369 m->m_next = NULL;
1370 *cme = m;
1371 cme = &(*cme)->m_next;
1372 m = so->so_rcv.sb_mb;
1373 }
1374 } while (m != NULL && m->m_type == MT_CONTROL);
1375 if ((flags & MSG_PEEK) == 0)
1376 sbsync(&so->so_rcv, nextrecord);
1377
1378 for (; cm != NULL; cm = cmn) {
1379 cmn = cm->m_next;
1380 cm->m_next = NULL;
1381 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1382 if (controlp != NULL) {
1383 if (dom->dom_externalize != NULL &&
1384 type == SCM_RIGHTS) {
1385 sounlock(so);
1386 splx(s);
1387 error = (*dom->dom_externalize)(cm, l,
1388 (flags & MSG_CMSG_CLOEXEC) ?
1389 O_CLOEXEC : 0);
1390 s = splsoftnet();
1391 solock(so);
1392 }
1393 *controlp = cm;
1394 while (*controlp != NULL)
1395 controlp = &(*controlp)->m_next;
1396 } else {
1397 /*
1398 * Dispose of any SCM_RIGHTS message that went
1399 * through the read path rather than recv.
1400 */
1401 if (dom->dom_dispose != NULL &&
1402 type == SCM_RIGHTS) {
1403 sounlock(so);
1404 (*dom->dom_dispose)(cm);
1405 solock(so);
1406 }
1407 m_freem(cm);
1408 }
1409 }
1410 if (m != NULL)
1411 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1412 else
1413 nextrecord = so->so_rcv.sb_mb;
1414 orig_resid = 0;
1415 }
1416
1417 /* If m is non-NULL, we have some data to read. */
1418 if (__predict_true(m != NULL)) {
1419 type = m->m_type;
1420 if (type == MT_OOBDATA)
1421 flags |= MSG_OOB;
1422 }
1423 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1424 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1425
1426 moff = 0;
1427 offset = 0;
1428 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1429 /*
1430 * If the type of mbuf has changed, end the receive
1431 * operation and do a short read.
1432 */
1433 if (m->m_type == MT_OOBDATA) {
1434 if (type != MT_OOBDATA)
1435 break;
1436 } else if (type == MT_OOBDATA) {
1437 break;
1438 } else if (m->m_type == MT_CONTROL) {
1439 break;
1440 }
1441 #ifdef DIAGNOSTIC
1442 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1443 panic("%s: m_type=%d", __func__, m->m_type);
1444 }
1445 #endif
1446
1447 so->so_state &= ~SS_RCVATMARK;
1448 len = uio->uio_resid;
1449 if (so->so_oobmark && len > so->so_oobmark - offset)
1450 len = so->so_oobmark - offset;
1451 if (len > m->m_len - moff)
1452 len = m->m_len - moff;
1453
1454 /*
1455 * If mp is set, just pass back the mbufs.
1456 * Otherwise copy them out via the uio, then free.
1457 * Sockbuf must be consistent here (points to current mbuf,
1458 * it points to next record) when we drop priority;
1459 * we must note any additions to the sockbuf when we
1460 * block interrupts again.
1461 */
1462 if (mp == NULL) {
1463 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1464 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1465 sounlock(so);
1466 splx(s);
1467 error = uiomove(mtod(m, char *) + moff, len, uio);
1468 s = splsoftnet();
1469 solock(so);
1470 if (error != 0) {
1471 /*
1472 * If any part of the record has been removed
1473 * (such as the MT_SONAME mbuf, which will
1474 * happen when PR_ADDR, and thus also
1475 * PR_ATOMIC, is set), then drop the entire
1476 * record to maintain the atomicity of the
1477 * receive operation.
1478 *
1479 * This avoids a later panic("receive 1a")
1480 * when compiled with DIAGNOSTIC.
1481 */
1482 if (m && mbuf_removed && atomic)
1483 (void) sbdroprecord(&so->so_rcv);
1484
1485 goto release;
1486 }
1487 } else {
1488 uio->uio_resid -= len;
1489 }
1490
1491 if (len == m->m_len - moff) {
1492 if (m->m_flags & M_EOR)
1493 flags |= MSG_EOR;
1494 #ifdef SCTP
1495 if (m->m_flags & M_NOTIFICATION)
1496 flags |= MSG_NOTIFICATION;
1497 #endif
1498 if (flags & MSG_PEEK) {
1499 m = m->m_next;
1500 moff = 0;
1501 } else {
1502 nextrecord = m->m_nextpkt;
1503 sbfree(&so->so_rcv, m);
1504 if (mp) {
1505 *mp = m;
1506 mp = &m->m_next;
1507 so->so_rcv.sb_mb = m = m->m_next;
1508 *mp = NULL;
1509 } else {
1510 m = so->so_rcv.sb_mb = m_free(m);
1511 }
1512 /*
1513 * If m != NULL, we also know that
1514 * so->so_rcv.sb_mb != NULL.
1515 */
1516 KASSERT(so->so_rcv.sb_mb == m);
1517 if (m) {
1518 m->m_nextpkt = nextrecord;
1519 if (nextrecord == NULL)
1520 so->so_rcv.sb_lastrecord = m;
1521 } else {
1522 so->so_rcv.sb_mb = nextrecord;
1523 SB_EMPTY_FIXUP(&so->so_rcv);
1524 }
1525 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1526 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1527 }
1528 } else if (flags & MSG_PEEK) {
1529 moff += len;
1530 } else {
1531 if (mp != NULL) {
1532 mt = m_copym(m, 0, len, M_NOWAIT);
1533 if (__predict_false(mt == NULL)) {
1534 sounlock(so);
1535 mt = m_copym(m, 0, len, M_WAIT);
1536 solock(so);
1537 }
1538 *mp = mt;
1539 }
1540 m->m_data += len;
1541 m->m_len -= len;
1542 so->so_rcv.sb_cc -= len;
1543 }
1544
1545 if (so->so_oobmark) {
1546 if ((flags & MSG_PEEK) == 0) {
1547 so->so_oobmark -= len;
1548 if (so->so_oobmark == 0) {
1549 so->so_state |= SS_RCVATMARK;
1550 break;
1551 }
1552 } else {
1553 offset += len;
1554 if (offset == so->so_oobmark)
1555 break;
1556 }
1557 } else {
1558 so->so_state &= ~SS_POLLRDBAND;
1559 }
1560 if (flags & MSG_EOR)
1561 break;
1562
1563 /*
1564 * If the MSG_WAITALL flag is set (for non-atomic socket),
1565 * we must not quit until "uio->uio_resid == 0" or an error
1566 * termination. If a signal/timeout occurs, return
1567 * with a short count but without error.
1568 * Keep sockbuf locked against other readers.
1569 */
1570 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1571 !sosendallatonce(so) && !nextrecord) {
1572 if (so->so_error || so->so_rerror ||
1573 so->so_state & SS_CANTRCVMORE)
1574 break;
1575 /*
1576 * If we are peeking and the socket receive buffer is
1577 * full, stop since we can't get more data to peek at.
1578 */
1579 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1580 break;
1581 /*
1582 * If we've drained the socket buffer, tell the
1583 * protocol in case it needs to do something to
1584 * get it filled again.
1585 */
1586 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1587 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1588 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1589 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1590 error = sbwait(&so->so_rcv);
1591 if (error != 0) {
1592 sbunlock(&so->so_rcv);
1593 sounlock(so);
1594 splx(s);
1595 return 0;
1596 }
1597 if ((m = so->so_rcv.sb_mb) != NULL)
1598 nextrecord = m->m_nextpkt;
1599 }
1600 }
1601
1602 if (m && atomic) {
1603 flags |= MSG_TRUNC;
1604 if ((flags & MSG_PEEK) == 0)
1605 (void) sbdroprecord(&so->so_rcv);
1606 }
1607 if ((flags & MSG_PEEK) == 0) {
1608 if (m == NULL) {
1609 /*
1610 * First part is an inline SB_EMPTY_FIXUP(). Second
1611 * part makes sure sb_lastrecord is up-to-date if
1612 * there is still data in the socket buffer.
1613 */
1614 so->so_rcv.sb_mb = nextrecord;
1615 if (so->so_rcv.sb_mb == NULL) {
1616 so->so_rcv.sb_mbtail = NULL;
1617 so->so_rcv.sb_lastrecord = NULL;
1618 } else if (nextrecord->m_nextpkt == NULL)
1619 so->so_rcv.sb_lastrecord = nextrecord;
1620 }
1621 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1622 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1623 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1624 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1625 }
1626 if (orig_resid == uio->uio_resid && orig_resid &&
1627 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1628 sbunlock(&so->so_rcv);
1629 goto restart;
1630 }
1631
1632 if (flagsp != NULL)
1633 *flagsp |= flags;
1634 release:
1635 sbunlock(&so->so_rcv);
1636 sounlock(so);
1637 splx(s);
1638 return error;
1639 }
1640
1641 int
1642 soshutdown(struct socket *so, int how)
1643 {
1644 const struct protosw *pr;
1645 int error;
1646
1647 KASSERT(solocked(so));
1648
1649 pr = so->so_proto;
1650 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1651 return EINVAL;
1652
1653 if (how == SHUT_RD || how == SHUT_RDWR) {
1654 sorflush(so);
1655 error = 0;
1656 }
1657 if (how == SHUT_WR || how == SHUT_RDWR)
1658 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1659
1660 return error;
1661 }
1662
1663 void
1664 sorestart(struct socket *so)
1665 {
1666
1667 /*
1668 * An application has called close() on an fd on which another
1669 * of its threads has called a socket system call.
1670 * Mark this and wake everyone up, and code that would block again
1671 * instead returns ERESTART.
1672 * On system call re-entry the fd is validated and EBADF returned.
1673 * Any other fd will block again on the 2nd syscall.
1674 */
1675 solock(so);
1676 cv_fdrestart(&so->so_cv);
1677 cv_fdrestart(&so->so_snd.sb_cv);
1678 cv_fdrestart(&so->so_rcv.sb_cv);
1679 sounlock(so);
1680 }
1681
1682 void
1683 sorflush(struct socket *so)
1684 {
1685 struct sockbuf *sb, asb;
1686 const struct protosw *pr;
1687
1688 KASSERT(solocked(so));
1689
1690 sb = &so->so_rcv;
1691 pr = so->so_proto;
1692 socantrcvmore(so);
1693 sb->sb_flags |= SB_NOINTR;
1694 (void )sblock(sb, M_WAITOK);
1695 sbunlock(sb);
1696 asb = *sb;
1697 /*
1698 * Clear most of the sockbuf structure, but leave some of the
1699 * fields valid.
1700 */
1701 memset(&sb->sb_startzero, 0,
1702 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1703 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1704 sounlock(so);
1705 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1706 solock(so);
1707 }
1708 sbrelease(&asb, so);
1709 }
1710
1711 /*
1712 * internal set SOL_SOCKET options
1713 */
1714 static int
1715 sosetopt1(struct socket *so, const struct sockopt *sopt)
1716 {
1717 int error, opt;
1718 int optval = 0; /* XXX: gcc */
1719 struct linger l;
1720 struct timeval tv;
1721
1722 opt = sopt->sopt_name;
1723
1724 switch (opt) {
1725
1726 case SO_ACCEPTFILTER:
1727 error = accept_filt_setopt(so, sopt);
1728 KASSERT(solocked(so));
1729 break;
1730
1731 case SO_LINGER:
1732 error = sockopt_get(sopt, &l, sizeof(l));
1733 solock(so);
1734 if (error)
1735 break;
1736 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1737 l.l_linger > (INT_MAX / hz)) {
1738 error = EDOM;
1739 break;
1740 }
1741 so->so_linger = l.l_linger;
1742 if (l.l_onoff)
1743 so->so_options |= SO_LINGER;
1744 else
1745 so->so_options &= ~SO_LINGER;
1746 break;
1747
1748 case SO_DEBUG:
1749 case SO_KEEPALIVE:
1750 case SO_DONTROUTE:
1751 case SO_USELOOPBACK:
1752 case SO_BROADCAST:
1753 case SO_REUSEADDR:
1754 case SO_REUSEPORT:
1755 case SO_OOBINLINE:
1756 case SO_TIMESTAMP:
1757 case SO_NOSIGPIPE:
1758 case SO_RERROR:
1759 error = sockopt_getint(sopt, &optval);
1760 solock(so);
1761 if (error)
1762 break;
1763 if (optval)
1764 so->so_options |= opt;
1765 else
1766 so->so_options &= ~opt;
1767 break;
1768
1769 case SO_SNDBUF:
1770 case SO_RCVBUF:
1771 case SO_SNDLOWAT:
1772 case SO_RCVLOWAT:
1773 error = sockopt_getint(sopt, &optval);
1774 solock(so);
1775 if (error)
1776 break;
1777
1778 /*
1779 * Values < 1 make no sense for any of these
1780 * options, so disallow them.
1781 */
1782 if (optval < 1) {
1783 error = EINVAL;
1784 break;
1785 }
1786
1787 switch (opt) {
1788 case SO_SNDBUF:
1789 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1790 error = ENOBUFS;
1791 break;
1792 }
1793 if (sofixedbuf)
1794 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1795 break;
1796
1797 case SO_RCVBUF:
1798 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1799 error = ENOBUFS;
1800 break;
1801 }
1802 if (sofixedbuf)
1803 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1804 break;
1805
1806 /*
1807 * Make sure the low-water is never greater than
1808 * the high-water.
1809 */
1810 case SO_SNDLOWAT:
1811 if (optval > so->so_snd.sb_hiwat)
1812 optval = so->so_snd.sb_hiwat;
1813
1814 so->so_snd.sb_lowat = optval;
1815 break;
1816
1817 case SO_RCVLOWAT:
1818 if (optval > so->so_rcv.sb_hiwat)
1819 optval = so->so_rcv.sb_hiwat;
1820
1821 so->so_rcv.sb_lowat = optval;
1822 break;
1823 }
1824 break;
1825
1826 case SO_SNDTIMEO:
1827 case SO_RCVTIMEO:
1828 solock(so);
1829 error = sockopt_get(sopt, &tv, sizeof(tv));
1830 if (error)
1831 break;
1832
1833 if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1834 error = EDOM;
1835 break;
1836 }
1837 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1838 error = EDOM;
1839 break;
1840 }
1841
1842 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1843 if (optval == 0 && tv.tv_usec != 0)
1844 optval = 1;
1845
1846 switch (opt) {
1847 case SO_SNDTIMEO:
1848 so->so_snd.sb_timeo = optval;
1849 break;
1850 case SO_RCVTIMEO:
1851 so->so_rcv.sb_timeo = optval;
1852 break;
1853 }
1854 break;
1855
1856 default:
1857 MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
1858 (opt, so, sopt), enosys(), error);
1859 if (error == ENOSYS || error == EPASSTHROUGH) {
1860 solock(so);
1861 error = ENOPROTOOPT;
1862 }
1863 break;
1864 }
1865 KASSERT(solocked(so));
1866 return error;
1867 }
1868
1869 int
1870 sosetopt(struct socket *so, struct sockopt *sopt)
1871 {
1872 int error, prerr;
1873
1874 if (sopt->sopt_level == SOL_SOCKET) {
1875 error = sosetopt1(so, sopt);
1876 KASSERT(solocked(so));
1877 } else {
1878 error = ENOPROTOOPT;
1879 solock(so);
1880 }
1881
1882 if ((error == 0 || error == ENOPROTOOPT) &&
1883 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1884 /* give the protocol stack a shot */
1885 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1886 if (prerr == 0)
1887 error = 0;
1888 else if (prerr != ENOPROTOOPT)
1889 error = prerr;
1890 }
1891 sounlock(so);
1892 return error;
1893 }
1894
1895 /*
1896 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1897 */
1898 int
1899 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1900 const void *val, size_t valsize)
1901 {
1902 struct sockopt sopt;
1903 int error;
1904
1905 KASSERT(valsize == 0 || val != NULL);
1906
1907 sockopt_init(&sopt, level, name, valsize);
1908 sockopt_set(&sopt, val, valsize);
1909
1910 error = sosetopt(so, &sopt);
1911
1912 sockopt_destroy(&sopt);
1913
1914 return error;
1915 }
1916
1917 /*
1918 * internal get SOL_SOCKET options
1919 */
1920 static int
1921 sogetopt1(struct socket *so, struct sockopt *sopt)
1922 {
1923 int error, optval, opt;
1924 struct linger l;
1925 struct timeval tv;
1926
1927 switch ((opt = sopt->sopt_name)) {
1928
1929 case SO_ACCEPTFILTER:
1930 error = accept_filt_getopt(so, sopt);
1931 break;
1932
1933 case SO_LINGER:
1934 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1935 l.l_linger = so->so_linger;
1936
1937 error = sockopt_set(sopt, &l, sizeof(l));
1938 break;
1939
1940 case SO_USELOOPBACK:
1941 case SO_DONTROUTE:
1942 case SO_DEBUG:
1943 case SO_KEEPALIVE:
1944 case SO_REUSEADDR:
1945 case SO_REUSEPORT:
1946 case SO_BROADCAST:
1947 case SO_OOBINLINE:
1948 case SO_TIMESTAMP:
1949 case SO_NOSIGPIPE:
1950 case SO_RERROR:
1951 case SO_ACCEPTCONN:
1952 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1953 break;
1954
1955 case SO_TYPE:
1956 error = sockopt_setint(sopt, so->so_type);
1957 break;
1958
1959 case SO_ERROR:
1960 if (so->so_error == 0) {
1961 so->so_error = so->so_rerror;
1962 so->so_rerror = 0;
1963 }
1964 error = sockopt_setint(sopt, so->so_error);
1965 so->so_error = 0;
1966 break;
1967
1968 case SO_SNDBUF:
1969 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1970 break;
1971
1972 case SO_RCVBUF:
1973 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1974 break;
1975
1976 case SO_SNDLOWAT:
1977 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1978 break;
1979
1980 case SO_RCVLOWAT:
1981 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1982 break;
1983
1984 case SO_SNDTIMEO:
1985 case SO_RCVTIMEO:
1986 optval = (opt == SO_SNDTIMEO ?
1987 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1988
1989 memset(&tv, 0, sizeof(tv));
1990 tv.tv_sec = optval / hz;
1991 tv.tv_usec = (optval % hz) * tick;
1992
1993 error = sockopt_set(sopt, &tv, sizeof(tv));
1994 break;
1995
1996 case SO_OVERFLOWED:
1997 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1998 break;
1999
2000 default:
2001 MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
2002 (opt, so, sopt), enosys(), error);
2003 if (error)
2004 error = ENOPROTOOPT;
2005 break;
2006 }
2007
2008 return error;
2009 }
2010
2011 int
2012 sogetopt(struct socket *so, struct sockopt *sopt)
2013 {
2014 int error;
2015
2016 solock(so);
2017 if (sopt->sopt_level != SOL_SOCKET) {
2018 if (so->so_proto && so->so_proto->pr_ctloutput) {
2019 error = ((*so->so_proto->pr_ctloutput)
2020 (PRCO_GETOPT, so, sopt));
2021 } else
2022 error = (ENOPROTOOPT);
2023 } else {
2024 error = sogetopt1(so, sopt);
2025 }
2026 sounlock(so);
2027 return error;
2028 }
2029
2030 /*
2031 * alloc sockopt data buffer buffer
2032 * - will be released at destroy
2033 */
2034 static int
2035 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2036 {
2037 void *data;
2038
2039 KASSERT(sopt->sopt_size == 0);
2040
2041 if (len > sizeof(sopt->sopt_buf)) {
2042 data = kmem_zalloc(len, kmflag);
2043 if (data == NULL)
2044 return ENOMEM;
2045 sopt->sopt_data = data;
2046 } else
2047 sopt->sopt_data = sopt->sopt_buf;
2048
2049 sopt->sopt_size = len;
2050 return 0;
2051 }
2052
2053 /*
2054 * initialise sockopt storage
2055 * - MAY sleep during allocation
2056 */
2057 void
2058 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2059 {
2060
2061 memset(sopt, 0, sizeof(*sopt));
2062
2063 sopt->sopt_level = level;
2064 sopt->sopt_name = name;
2065 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2066 }
2067
2068 /*
2069 * destroy sockopt storage
2070 * - will release any held memory references
2071 */
2072 void
2073 sockopt_destroy(struct sockopt *sopt)
2074 {
2075
2076 if (sopt->sopt_data != sopt->sopt_buf)
2077 kmem_free(sopt->sopt_data, sopt->sopt_size);
2078
2079 memset(sopt, 0, sizeof(*sopt));
2080 }
2081
2082 /*
2083 * set sockopt value
2084 * - value is copied into sockopt
2085 * - memory is allocated when necessary, will not sleep
2086 */
2087 int
2088 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2089 {
2090 int error;
2091
2092 if (sopt->sopt_size == 0) {
2093 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2094 if (error)
2095 return error;
2096 }
2097
2098 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2099 if (sopt->sopt_retsize > 0) {
2100 memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
2101 }
2102
2103 return 0;
2104 }
2105
2106 /*
2107 * common case of set sockopt integer value
2108 */
2109 int
2110 sockopt_setint(struct sockopt *sopt, int val)
2111 {
2112
2113 return sockopt_set(sopt, &val, sizeof(int));
2114 }
2115
2116 /*
2117 * get sockopt value
2118 * - correct size must be given
2119 */
2120 int
2121 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2122 {
2123
2124 if (sopt->sopt_size != len)
2125 return EINVAL;
2126
2127 memcpy(buf, sopt->sopt_data, len);
2128 return 0;
2129 }
2130
2131 /*
2132 * common case of get sockopt integer value
2133 */
2134 int
2135 sockopt_getint(const struct sockopt *sopt, int *valp)
2136 {
2137
2138 return sockopt_get(sopt, valp, sizeof(int));
2139 }
2140
2141 /*
2142 * set sockopt value from mbuf
2143 * - ONLY for legacy code
2144 * - mbuf is released by sockopt
2145 * - will not sleep
2146 */
2147 int
2148 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2149 {
2150 size_t len;
2151 int error;
2152
2153 len = m_length(m);
2154
2155 if (sopt->sopt_size == 0) {
2156 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2157 if (error)
2158 return error;
2159 }
2160
2161 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2162 m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
2163 m_freem(m);
2164
2165 return 0;
2166 }
2167
2168 /*
2169 * get sockopt value into mbuf
2170 * - ONLY for legacy code
2171 * - mbuf to be released by the caller
2172 * - will not sleep
2173 */
2174 struct mbuf *
2175 sockopt_getmbuf(const struct sockopt *sopt)
2176 {
2177 struct mbuf *m;
2178
2179 if (sopt->sopt_size > MCLBYTES)
2180 return NULL;
2181
2182 m = m_get(M_DONTWAIT, MT_SOOPTS);
2183 if (m == NULL)
2184 return NULL;
2185
2186 if (sopt->sopt_size > MLEN) {
2187 MCLGET(m, M_DONTWAIT);
2188 if ((m->m_flags & M_EXT) == 0) {
2189 m_free(m);
2190 return NULL;
2191 }
2192 }
2193
2194 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2195 m->m_len = sopt->sopt_size;
2196
2197 return m;
2198 }
2199
2200 void
2201 sohasoutofband(struct socket *so)
2202 {
2203
2204 so->so_state |= SS_POLLRDBAND;
2205 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2206 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2207 }
2208
2209 static void
2210 filt_sordetach(struct knote *kn)
2211 {
2212 struct socket *so;
2213
2214 so = ((file_t *)kn->kn_obj)->f_socket;
2215 solock(so);
2216 if (selremove_knote(&so->so_rcv.sb_sel, kn))
2217 so->so_rcv.sb_flags &= ~SB_KNOTE;
2218 sounlock(so);
2219 }
2220
2221 /*ARGSUSED*/
2222 static int
2223 filt_soread(struct knote *kn, long hint)
2224 {
2225 struct socket *so;
2226 int rv;
2227
2228 so = ((file_t *)kn->kn_obj)->f_socket;
2229 if (hint != NOTE_SUBMIT)
2230 solock(so);
2231 kn->kn_data = so->so_rcv.sb_cc;
2232 if (so->so_state & SS_CANTRCVMORE) {
2233 knote_set_eof(kn, 0);
2234 kn->kn_fflags = so->so_error;
2235 rv = 1;
2236 } else if (so->so_error || so->so_rerror)
2237 rv = 1;
2238 else if (kn->kn_sfflags & NOTE_LOWAT)
2239 rv = (kn->kn_data >= kn->kn_sdata);
2240 else
2241 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2242 if (hint != NOTE_SUBMIT)
2243 sounlock(so);
2244 return rv;
2245 }
2246
2247 static void
2248 filt_sowdetach(struct knote *kn)
2249 {
2250 struct socket *so;
2251
2252 so = ((file_t *)kn->kn_obj)->f_socket;
2253 solock(so);
2254 if (selremove_knote(&so->so_snd.sb_sel, kn))
2255 so->so_snd.sb_flags &= ~SB_KNOTE;
2256 sounlock(so);
2257 }
2258
2259 /*ARGSUSED*/
2260 static int
2261 filt_sowrite(struct knote *kn, long hint)
2262 {
2263 struct socket *so;
2264 int rv;
2265
2266 so = ((file_t *)kn->kn_obj)->f_socket;
2267 if (hint != NOTE_SUBMIT)
2268 solock(so);
2269 kn->kn_data = sbspace(&so->so_snd);
2270 if (so->so_state & SS_CANTSENDMORE) {
2271 knote_set_eof(kn, 0);
2272 kn->kn_fflags = so->so_error;
2273 rv = 1;
2274 } else if (so->so_error)
2275 rv = 1;
2276 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2277 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2278 rv = 0;
2279 else if (kn->kn_sfflags & NOTE_LOWAT)
2280 rv = (kn->kn_data >= kn->kn_sdata);
2281 else
2282 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2283 if (hint != NOTE_SUBMIT)
2284 sounlock(so);
2285 return rv;
2286 }
2287
2288 static int
2289 filt_soempty(struct knote *kn, long hint)
2290 {
2291 struct socket *so;
2292 int rv;
2293
2294 so = ((file_t *)kn->kn_obj)->f_socket;
2295 if (hint != NOTE_SUBMIT)
2296 solock(so);
2297 rv = (kn->kn_data = sbused(&so->so_snd)) == 0 ||
2298 (so->so_options & SO_ACCEPTCONN) != 0;
2299 if (hint != NOTE_SUBMIT)
2300 sounlock(so);
2301 return rv;
2302 }
2303
2304 /*ARGSUSED*/
2305 static int
2306 filt_solisten(struct knote *kn, long hint)
2307 {
2308 struct socket *so;
2309 int rv;
2310
2311 so = ((file_t *)kn->kn_obj)->f_socket;
2312
2313 /*
2314 * Set kn_data to number of incoming connections, not
2315 * counting partial (incomplete) connections.
2316 */
2317 if (hint != NOTE_SUBMIT)
2318 solock(so);
2319 kn->kn_data = so->so_qlen;
2320 rv = (kn->kn_data > 0);
2321 if (hint != NOTE_SUBMIT)
2322 sounlock(so);
2323 return rv;
2324 }
2325
2326 static const struct filterops solisten_filtops = {
2327 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2328 .f_attach = NULL,
2329 .f_detach = filt_sordetach,
2330 .f_event = filt_solisten,
2331 };
2332
2333 static const struct filterops soread_filtops = {
2334 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2335 .f_attach = NULL,
2336 .f_detach = filt_sordetach,
2337 .f_event = filt_soread,
2338 };
2339
2340 static const struct filterops sowrite_filtops = {
2341 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2342 .f_attach = NULL,
2343 .f_detach = filt_sowdetach,
2344 .f_event = filt_sowrite,
2345 };
2346
2347 static const struct filterops soempty_filtops = {
2348 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2349 .f_attach = NULL,
2350 .f_detach = filt_sowdetach,
2351 .f_event = filt_soempty,
2352 };
2353
2354 int
2355 soo_kqfilter(struct file *fp, struct knote *kn)
2356 {
2357 struct socket *so;
2358 struct sockbuf *sb;
2359
2360 so = ((file_t *)kn->kn_obj)->f_socket;
2361 solock(so);
2362 switch (kn->kn_filter) {
2363 case EVFILT_READ:
2364 if (so->so_options & SO_ACCEPTCONN)
2365 kn->kn_fop = &solisten_filtops;
2366 else
2367 kn->kn_fop = &soread_filtops;
2368 sb = &so->so_rcv;
2369 break;
2370 case EVFILT_WRITE:
2371 kn->kn_fop = &sowrite_filtops;
2372 sb = &so->so_snd;
2373 break;
2374 case EVFILT_EMPTY:
2375 kn->kn_fop = &soempty_filtops;
2376 sb = &so->so_snd;
2377 break;
2378 default:
2379 sounlock(so);
2380 return EINVAL;
2381 }
2382 selrecord_knote(&sb->sb_sel, kn);
2383 sb->sb_flags |= SB_KNOTE;
2384 sounlock(so);
2385 return 0;
2386 }
2387
2388 static int
2389 sodopoll(struct socket *so, int events)
2390 {
2391 int revents;
2392
2393 revents = 0;
2394
2395 if (events & (POLLIN | POLLRDNORM))
2396 if (soreadable(so))
2397 revents |= events & (POLLIN | POLLRDNORM);
2398
2399 if (events & (POLLOUT | POLLWRNORM))
2400 if (sowritable(so))
2401 revents |= events & (POLLOUT | POLLWRNORM);
2402
2403 if (events & (POLLPRI | POLLRDBAND))
2404 if (so->so_state & SS_POLLRDBAND)
2405 revents |= events & (POLLPRI | POLLRDBAND);
2406
2407 return revents;
2408 }
2409
2410 int
2411 sopoll(struct socket *so, int events)
2412 {
2413 int revents = 0;
2414
2415 #ifndef DIAGNOSTIC
2416 /*
2417 * Do a quick, unlocked check in expectation that the socket
2418 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2419 * as the solocked() assertions will fail.
2420 */
2421 if ((revents = sodopoll(so, events)) != 0)
2422 return revents;
2423 #endif
2424
2425 solock(so);
2426 if ((revents = sodopoll(so, events)) == 0) {
2427 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2428 selrecord(curlwp, &so->so_rcv.sb_sel);
2429 so->so_rcv.sb_flags |= SB_NOTIFY;
2430 }
2431
2432 if (events & (POLLOUT | POLLWRNORM)) {
2433 selrecord(curlwp, &so->so_snd.sb_sel);
2434 so->so_snd.sb_flags |= SB_NOTIFY;
2435 }
2436 }
2437 sounlock(so);
2438
2439 return revents;
2440 }
2441
2442 struct mbuf **
2443 sbsavetimestamp(int opt, struct mbuf **mp)
2444 {
2445 struct timeval tv;
2446 int error;
2447
2448 memset(&tv, 0, sizeof(tv));
2449 microtime(&tv);
2450
2451 MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, &mp), enosys(), error);
2452 if (error == 0)
2453 return mp;
2454
2455 if (opt & SO_TIMESTAMP) {
2456 *mp = sbcreatecontrol(&tv, sizeof(tv),
2457 SCM_TIMESTAMP, SOL_SOCKET);
2458 if (*mp)
2459 mp = &(*mp)->m_next;
2460 }
2461 return mp;
2462 }
2463
2464
2465 #include <sys/sysctl.h>
2466
2467 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2468 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2469
2470 /*
2471 * sysctl helper routine for kern.somaxkva. ensures that the given
2472 * value is not too small.
2473 * (XXX should we maybe make sure it's not too large as well?)
2474 */
2475 static int
2476 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2477 {
2478 int error, new_somaxkva;
2479 struct sysctlnode node;
2480
2481 new_somaxkva = somaxkva;
2482 node = *rnode;
2483 node.sysctl_data = &new_somaxkva;
2484 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2485 if (error || newp == NULL)
2486 return error;
2487
2488 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2489 return EINVAL;
2490
2491 mutex_enter(&so_pendfree_lock);
2492 somaxkva = new_somaxkva;
2493 cv_broadcast(&socurkva_cv);
2494 mutex_exit(&so_pendfree_lock);
2495
2496 return error;
2497 }
2498
2499 /*
2500 * sysctl helper routine for kern.sbmax. Basically just ensures that
2501 * any new value is not too small.
2502 */
2503 static int
2504 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2505 {
2506 int error, new_sbmax;
2507 struct sysctlnode node;
2508
2509 new_sbmax = sb_max;
2510 node = *rnode;
2511 node.sysctl_data = &new_sbmax;
2512 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2513 if (error || newp == NULL)
2514 return error;
2515
2516 KERNEL_LOCK(1, NULL);
2517 error = sb_max_set(new_sbmax);
2518 KERNEL_UNLOCK_ONE(NULL);
2519
2520 return error;
2521 }
2522
2523 /*
2524 * sysctl helper routine for kern.sooptions. Ensures that only allowed
2525 * options can be set.
2526 */
2527 static int
2528 sysctl_kern_sooptions(SYSCTLFN_ARGS)
2529 {
2530 int error, new_options;
2531 struct sysctlnode node;
2532
2533 new_options = sooptions;
2534 node = *rnode;
2535 node.sysctl_data = &new_options;
2536 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2537 if (error || newp == NULL)
2538 return error;
2539
2540 if (new_options & ~SO_DEFOPTS)
2541 return EINVAL;
2542
2543 sooptions = new_options;
2544
2545 return 0;
2546 }
2547
2548 static void
2549 sysctl_kern_socket_setup(void)
2550 {
2551
2552 KASSERT(socket_sysctllog == NULL);
2553
2554 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2555 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2556 CTLTYPE_INT, "somaxkva",
2557 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2558 "used for socket buffers"),
2559 sysctl_kern_somaxkva, 0, NULL, 0,
2560 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2561
2562 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2563 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2564 CTLTYPE_BOOL, "sofixedbuf",
2565 SYSCTL_DESCR("Prevent scaling of fixed socket buffers"),
2566 NULL, 0, &sofixedbuf, 0,
2567 CTL_KERN, KERN_SOFIXEDBUF, CTL_EOL);
2568
2569 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2570 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2571 CTLTYPE_INT, "sbmax",
2572 SYSCTL_DESCR("Maximum socket buffer size"),
2573 sysctl_kern_sbmax, 0, NULL, 0,
2574 CTL_KERN, KERN_SBMAX, CTL_EOL);
2575
2576 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2577 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2578 CTLTYPE_INT, "sooptions",
2579 SYSCTL_DESCR("Default socket options"),
2580 sysctl_kern_sooptions, 0, NULL, 0,
2581 CTL_KERN, CTL_CREATE, CTL_EOL);
2582 }
2583