Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.306
      1 /*	$NetBSD: uipc_socket.c,v 1.306 2023/10/13 18:50:39 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2007, 2008, 2009, 2023 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.306 2023/10/13 18:50:39 ad Exp $");
     75 
     76 #ifdef _KERNEL_OPT
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_sock_counters.h"
     79 #include "opt_sosend_loan.h"
     80 #include "opt_mbuftrace.h"
     81 #include "opt_somaxkva.h"
     82 #include "opt_multiprocessor.h"	/* XXX */
     83 #include "opt_sctp.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/file.h>
     90 #include <sys/filedesc.h>
     91 #include <sys/kmem.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/domain.h>
     94 #include <sys/kernel.h>
     95 #include <sys/protosw.h>
     96 #include <sys/socket.h>
     97 #include <sys/socketvar.h>
     98 #include <sys/signalvar.h>
     99 #include <sys/resourcevar.h>
    100 #include <sys/uidinfo.h>
    101 #include <sys/event.h>
    102 #include <sys/poll.h>
    103 #include <sys/kauth.h>
    104 #include <sys/mutex.h>
    105 #include <sys/condvar.h>
    106 #include <sys/kthread.h>
    107 #include <sys/compat_stub.h>
    108 
    109 #include <compat/sys/time.h>
    110 #include <compat/sys/socket.h>
    111 
    112 #include <uvm/uvm_extern.h>
    113 #include <uvm/uvm_loan.h>
    114 #include <uvm/uvm_page.h>
    115 
    116 #ifdef SCTP
    117 #include <netinet/sctp_route.h>
    118 #endif
    119 
    120 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    121 
    122 extern const struct fileops socketops;
    123 
    124 static int	sooptions;
    125 extern int	somaxconn;			/* patchable (XXX sysctl) */
    126 int		somaxconn = SOMAXCONN;
    127 kmutex_t	*softnet_lock;
    128 
    129 #ifdef SOSEND_COUNTERS
    130 #include <sys/device.h>
    131 
    132 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    133     NULL, "sosend", "loan big");
    134 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    135     NULL, "sosend", "copy big");
    136 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    137     NULL, "sosend", "copy small");
    138 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    139     NULL, "sosend", "kva limit");
    140 
    141 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    142 
    143 EVCNT_ATTACH_STATIC(sosend_loan_big);
    144 EVCNT_ATTACH_STATIC(sosend_copy_big);
    145 EVCNT_ATTACH_STATIC(sosend_copy_small);
    146 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    147 #else
    148 
    149 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    150 
    151 #endif /* SOSEND_COUNTERS */
    152 
    153 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    154 int sock_loan_thresh = -1;
    155 #else
    156 int sock_loan_thresh = 4096;
    157 #endif
    158 
    159 static kmutex_t so_pendfree_lock;
    160 static struct mbuf *so_pendfree = NULL;
    161 
    162 #ifndef SOMAXKVA
    163 #define	SOMAXKVA (16 * 1024 * 1024)
    164 #endif
    165 int somaxkva = SOMAXKVA;
    166 static int socurkva;
    167 static kcondvar_t socurkva_cv;
    168 
    169 #ifndef SOFIXEDBUF
    170 #define SOFIXEDBUF true
    171 #endif
    172 bool sofixedbuf = SOFIXEDBUF;
    173 
    174 static kauth_listener_t socket_listener;
    175 
    176 #define	SOCK_LOAN_CHUNK		65536
    177 
    178 static void sopendfree_thread(void *);
    179 static kcondvar_t pendfree_thread_cv;
    180 static lwp_t *sopendfree_lwp;
    181 
    182 static void sysctl_kern_socket_setup(void);
    183 static struct sysctllog *socket_sysctllog;
    184 
    185 static vsize_t
    186 sokvareserve(struct socket *so, vsize_t len)
    187 {
    188 	int error;
    189 
    190 	mutex_enter(&so_pendfree_lock);
    191 	while (socurkva + len > somaxkva) {
    192 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    193 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    194 		if (error) {
    195 			len = 0;
    196 			break;
    197 		}
    198 	}
    199 	socurkva += len;
    200 	mutex_exit(&so_pendfree_lock);
    201 	return len;
    202 }
    203 
    204 static void
    205 sokvaunreserve(vsize_t len)
    206 {
    207 
    208 	mutex_enter(&so_pendfree_lock);
    209 	socurkva -= len;
    210 	cv_broadcast(&socurkva_cv);
    211 	mutex_exit(&so_pendfree_lock);
    212 }
    213 
    214 /*
    215  * sokvaalloc: allocate kva for loan.
    216  */
    217 vaddr_t
    218 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    219 {
    220 	vaddr_t lva;
    221 
    222 	if (sokvareserve(so, len) == 0)
    223 		return 0;
    224 
    225 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    226 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    227 	if (lva == 0) {
    228 		sokvaunreserve(len);
    229 		return 0;
    230 	}
    231 
    232 	return lva;
    233 }
    234 
    235 /*
    236  * sokvafree: free kva for loan.
    237  */
    238 void
    239 sokvafree(vaddr_t sva, vsize_t len)
    240 {
    241 
    242 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    243 	sokvaunreserve(len);
    244 }
    245 
    246 static void
    247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    248 {
    249 	vaddr_t sva, eva;
    250 	vsize_t len;
    251 	int npgs;
    252 
    253 	KASSERT(pgs != NULL);
    254 
    255 	eva = round_page((vaddr_t) buf + size);
    256 	sva = trunc_page((vaddr_t) buf);
    257 	len = eva - sva;
    258 	npgs = len >> PAGE_SHIFT;
    259 
    260 	pmap_kremove(sva, len);
    261 	pmap_update(pmap_kernel());
    262 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    263 	sokvafree(sva, len);
    264 }
    265 
    266 /*
    267  * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
    268  * so_pendfree_lock when freeing mbufs.
    269  */
    270 static void
    271 sopendfree_thread(void *v)
    272 {
    273 	struct mbuf *m, *next;
    274 	size_t rv;
    275 
    276 	mutex_enter(&so_pendfree_lock);
    277 
    278 	for (;;) {
    279 		rv = 0;
    280 		while (so_pendfree != NULL) {
    281 			m = so_pendfree;
    282 			so_pendfree = NULL;
    283 			mutex_exit(&so_pendfree_lock);
    284 
    285 			for (; m != NULL; m = next) {
    286 				next = m->m_next;
    287 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
    288 				    0);
    289 				KASSERT(m->m_ext.ext_refcnt == 0);
    290 
    291 				rv += m->m_ext.ext_size;
    292 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    293 				    m->m_ext.ext_size);
    294 				pool_cache_put(mb_cache, m);
    295 			}
    296 
    297 			mutex_enter(&so_pendfree_lock);
    298 		}
    299 		if (rv)
    300 			cv_broadcast(&socurkva_cv);
    301 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    302 	}
    303 	panic("sopendfree_thread");
    304 	/* NOTREACHED */
    305 }
    306 
    307 void
    308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    309 {
    310 
    311 	KASSERT(m != NULL);
    312 
    313 	/*
    314 	 * postpone freeing mbuf.
    315 	 *
    316 	 * we can't do it in interrupt context
    317 	 * because we need to put kva back to kernel_map.
    318 	 */
    319 
    320 	mutex_enter(&so_pendfree_lock);
    321 	m->m_next = so_pendfree;
    322 	so_pendfree = m;
    323 	cv_signal(&pendfree_thread_cv);
    324 	mutex_exit(&so_pendfree_lock);
    325 }
    326 
    327 static long
    328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    329 {
    330 	struct iovec *iov = uio->uio_iov;
    331 	vaddr_t sva, eva;
    332 	vsize_t len;
    333 	vaddr_t lva;
    334 	int npgs, error;
    335 	vaddr_t va;
    336 	int i;
    337 
    338 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    339 		return 0;
    340 
    341 	if (iov->iov_len < (size_t) space)
    342 		space = iov->iov_len;
    343 	if (space > SOCK_LOAN_CHUNK)
    344 		space = SOCK_LOAN_CHUNK;
    345 
    346 	eva = round_page((vaddr_t) iov->iov_base + space);
    347 	sva = trunc_page((vaddr_t) iov->iov_base);
    348 	len = eva - sva;
    349 	npgs = len >> PAGE_SHIFT;
    350 
    351 	KASSERT(npgs <= M_EXT_MAXPAGES);
    352 
    353 	lva = sokvaalloc(sva, len, so);
    354 	if (lva == 0)
    355 		return 0;
    356 
    357 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    358 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    359 	if (error) {
    360 		sokvafree(lva, len);
    361 		return 0;
    362 	}
    363 
    364 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    365 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    366 		    VM_PROT_READ, 0);
    367 	pmap_update(pmap_kernel());
    368 
    369 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    370 
    371 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    372 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    373 
    374 	uio->uio_resid -= space;
    375 	/* uio_offset not updated, not set/used for write(2) */
    376 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    377 	uio->uio_iov->iov_len -= space;
    378 	if (uio->uio_iov->iov_len == 0) {
    379 		uio->uio_iov++;
    380 		uio->uio_iovcnt--;
    381 	}
    382 
    383 	return space;
    384 }
    385 
    386 static int
    387 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    388     void *arg0, void *arg1, void *arg2, void *arg3)
    389 {
    390 	int result;
    391 	enum kauth_network_req req;
    392 
    393 	result = KAUTH_RESULT_DEFER;
    394 	req = (enum kauth_network_req)(uintptr_t)arg0;
    395 
    396 	if ((action != KAUTH_NETWORK_SOCKET) &&
    397 	    (action != KAUTH_NETWORK_BIND))
    398 		return result;
    399 
    400 	switch (req) {
    401 	case KAUTH_REQ_NETWORK_BIND_PORT:
    402 		result = KAUTH_RESULT_ALLOW;
    403 		break;
    404 
    405 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    406 		/* Normal users can only drop their own connections. */
    407 		struct socket *so = (struct socket *)arg1;
    408 
    409 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    410 			result = KAUTH_RESULT_ALLOW;
    411 
    412 		break;
    413 		}
    414 
    415 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    416 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    417 		switch ((u_long)arg1) {
    418 		case PF_ROUTE:
    419 		case PF_OROUTE:
    420 		case PF_BLUETOOTH:
    421 		case PF_CAN:
    422 			result = KAUTH_RESULT_ALLOW;
    423 			break;
    424 		default:
    425 			/* Privileged, let secmodel handle this. */
    426 			if ((u_long)arg2 == SOCK_RAW)
    427 				break;
    428 			result = KAUTH_RESULT_ALLOW;
    429 			break;
    430 		}
    431 		break;
    432 
    433 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    434 		result = KAUTH_RESULT_ALLOW;
    435 
    436 		break;
    437 
    438 	default:
    439 		break;
    440 	}
    441 
    442 	return result;
    443 }
    444 
    445 void
    446 soinit(void)
    447 {
    448 
    449 	sysctl_kern_socket_setup();
    450 
    451 #ifdef SCTP
    452 	/* Update the SCTP function hooks if necessary*/
    453 
    454         vec_sctp_add_ip_address = sctp_add_ip_address;
    455         vec_sctp_delete_ip_address = sctp_delete_ip_address;
    456 #endif
    457 
    458 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    459 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    460 	cv_init(&socurkva_cv, "sokva");
    461 	cv_init(&pendfree_thread_cv, "sopendfr");
    462 	soinit2();
    463 
    464 	/* Set the initial adjusted socket buffer size. */
    465 	if (sb_max_set(sb_max))
    466 		panic("bad initial sb_max value: %lu", sb_max);
    467 
    468 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    469 	    socket_listener_cb, NULL);
    470 }
    471 
    472 void
    473 soinit1(void)
    474 {
    475 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    476 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    477 	if (error)
    478 		panic("soinit1 %d", error);
    479 }
    480 
    481 /*
    482  * socreate: create a new socket of the specified type and the protocol.
    483  *
    484  * => Caller may specify another socket for lock sharing (must not be held).
    485  * => Returns the new socket without lock held.
    486  */
    487 int
    488 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    489     struct socket *lockso)
    490 {
    491 	const struct protosw *prp;
    492 	struct socket *so;
    493 	uid_t uid;
    494 	int error;
    495 	kmutex_t *lock;
    496 
    497 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    498 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    499 	    KAUTH_ARG(proto));
    500 	if (error != 0)
    501 		return error;
    502 
    503 	if (proto)
    504 		prp = pffindproto(dom, proto, type);
    505 	else
    506 		prp = pffindtype(dom, type);
    507 	if (prp == NULL) {
    508 		/* no support for domain */
    509 		if (pffinddomain(dom) == 0)
    510 			return EAFNOSUPPORT;
    511 		/* no support for socket type */
    512 		if (proto == 0 && type != 0)
    513 			return EPROTOTYPE;
    514 		return EPROTONOSUPPORT;
    515 	}
    516 	if (prp->pr_usrreqs == NULL)
    517 		return EPROTONOSUPPORT;
    518 	if (prp->pr_type != type)
    519 		return EPROTOTYPE;
    520 
    521 	so = soget(true);
    522 	so->so_type = type;
    523 	so->so_proto = prp;
    524 	so->so_send = sosend;
    525 	so->so_receive = soreceive;
    526 	so->so_options = sooptions;
    527 #ifdef MBUFTRACE
    528 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    529 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    530 	so->so_mowner = &prp->pr_domain->dom_mowner;
    531 #endif
    532 	uid = kauth_cred_geteuid(l->l_cred);
    533 	so->so_uidinfo = uid_find(uid);
    534 	so->so_egid = kauth_cred_getegid(l->l_cred);
    535 	so->so_cpid = l->l_proc->p_pid;
    536 
    537 	/*
    538 	 * Lock assigned and taken during PCB attach, unless we share
    539 	 * the lock with another socket, e.g. socketpair(2) case.
    540 	 */
    541 	if (lockso) {
    542 		/*
    543 		 * lockso->so_lock should be stable at this point, so
    544 		 * no need for atomic_load_*.
    545 		 */
    546 		lock = lockso->so_lock;
    547 		so->so_lock = lock;
    548 		mutex_obj_hold(lock);
    549 		mutex_enter(lock);
    550 	}
    551 
    552 	/* Attach the PCB (returns with the socket lock held). */
    553 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    554 	KASSERT(solocked(so));
    555 
    556 	if (error) {
    557 		KASSERT(so->so_pcb == NULL);
    558 		so->so_state |= SS_NOFDREF;
    559 		sofree(so);
    560 		return error;
    561 	}
    562 	so->so_cred = kauth_cred_hold(l->l_cred);
    563 	sounlock(so);
    564 
    565 	*aso = so;
    566 	return 0;
    567 }
    568 
    569 /*
    570  * fsocreate: create a socket and a file descriptor associated with it.
    571  *
    572  * => On success, write file descriptor to fdout and return zero.
    573  * => On failure, return non-zero; *fdout will be undefined.
    574  */
    575 int
    576 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    577 {
    578 	lwp_t *l = curlwp;
    579 	int error, fd, flags;
    580 	struct socket *so;
    581 	struct file *fp;
    582 
    583 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    584 		return error;
    585 	}
    586 	flags = type & SOCK_FLAGS_MASK;
    587 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    588 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    589 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    590 	fp->f_type = DTYPE_SOCKET;
    591 	fp->f_ops = &socketops;
    592 
    593 	type &= ~SOCK_FLAGS_MASK;
    594 	error = socreate(domain, &so, type, proto, l, NULL);
    595 	if (error) {
    596 		fd_abort(curproc, fp, fd);
    597 		return error;
    598 	}
    599 	if (flags & SOCK_NONBLOCK) {
    600 		so->so_state |= SS_NBIO;
    601 	}
    602 	fp->f_socket = so;
    603 	fd_affix(curproc, fp, fd);
    604 
    605 	if (sop != NULL) {
    606 		*sop = so;
    607 	}
    608 	*fdout = fd;
    609 	return error;
    610 }
    611 
    612 int
    613 sofamily(const struct socket *so)
    614 {
    615 	const struct protosw *pr;
    616 	const struct domain *dom;
    617 
    618 	if ((pr = so->so_proto) == NULL)
    619 		return AF_UNSPEC;
    620 	if ((dom = pr->pr_domain) == NULL)
    621 		return AF_UNSPEC;
    622 	return dom->dom_family;
    623 }
    624 
    625 int
    626 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    627 {
    628 	int error;
    629 
    630 	solock(so);
    631 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    632 		sounlock(so);
    633 		return EAFNOSUPPORT;
    634 	}
    635 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    636 	sounlock(so);
    637 	return error;
    638 }
    639 
    640 int
    641 solisten(struct socket *so, int backlog, struct lwp *l)
    642 {
    643 	int error;
    644 	short oldopt, oldqlimit;
    645 
    646 	solock(so);
    647 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    648 	    SS_ISDISCONNECTING)) != 0) {
    649 		sounlock(so);
    650 		return EINVAL;
    651 	}
    652 	oldopt = so->so_options;
    653 	oldqlimit = so->so_qlimit;
    654 	if (TAILQ_EMPTY(&so->so_q))
    655 		so->so_options |= SO_ACCEPTCONN;
    656 	if (backlog < 0)
    657 		backlog = 0;
    658 	so->so_qlimit = uimin(backlog, somaxconn);
    659 
    660 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    661 	if (error != 0) {
    662 		so->so_options = oldopt;
    663 		so->so_qlimit = oldqlimit;
    664 		sounlock(so);
    665 		return error;
    666 	}
    667 	sounlock(so);
    668 	return 0;
    669 }
    670 
    671 void
    672 sofree(struct socket *so)
    673 {
    674 	u_int refs;
    675 
    676 	KASSERT(solocked(so));
    677 
    678 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    679 		sounlock(so);
    680 		return;
    681 	}
    682 	if (so->so_head) {
    683 		/*
    684 		 * We must not decommission a socket that's on the accept(2)
    685 		 * queue.  If we do, then accept(2) may hang after select(2)
    686 		 * indicated that the listening socket was ready.
    687 		 */
    688 		if (!soqremque(so, 0)) {
    689 			sounlock(so);
    690 			return;
    691 		}
    692 	}
    693 	if (so->so_rcv.sb_hiwat)
    694 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    695 		    RLIM_INFINITY);
    696 	if (so->so_snd.sb_hiwat)
    697 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    698 		    RLIM_INFINITY);
    699 	sbrelease(&so->so_snd, so);
    700 	KASSERT(!cv_has_waiters(&so->so_cv));
    701 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    702 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    703 	sorflush(so);
    704 	refs = so->so_aborting;	/* XXX */
    705 	/* Remove accept filter if one is present. */
    706 	if (so->so_accf != NULL)
    707 		(void)accept_filt_clear(so);
    708 	sounlock(so);
    709 	if (refs == 0)		/* XXX */
    710 		soput(so);
    711 }
    712 
    713 /*
    714  * soclose: close a socket on last file table reference removal.
    715  * Initiate disconnect if connected.  Free socket when disconnect complete.
    716  */
    717 int
    718 soclose(struct socket *so)
    719 {
    720 	struct socket *so2;
    721 	int error = 0;
    722 
    723 	solock(so);
    724 	if (so->so_options & SO_ACCEPTCONN) {
    725 		for (;;) {
    726 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    727 				KASSERT(solocked2(so, so2));
    728 				(void) soqremque(so2, 0);
    729 				/* soabort drops the lock. */
    730 				(void) soabort(so2);
    731 				solock(so);
    732 				continue;
    733 			}
    734 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    735 				KASSERT(solocked2(so, so2));
    736 				(void) soqremque(so2, 1);
    737 				/* soabort drops the lock. */
    738 				(void) soabort(so2);
    739 				solock(so);
    740 				continue;
    741 			}
    742 			break;
    743 		}
    744 	}
    745 	if (so->so_pcb == NULL)
    746 		goto discard;
    747 	if (so->so_state & SS_ISCONNECTED) {
    748 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    749 			error = sodisconnect(so);
    750 			if (error)
    751 				goto drop;
    752 		}
    753 		if (so->so_options & SO_LINGER) {
    754 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    755 			    (SS_ISDISCONNECTING|SS_NBIO))
    756 				goto drop;
    757 			while (so->so_state & SS_ISCONNECTED) {
    758 				error = sowait(so, true, so->so_linger * hz);
    759 				if (error)
    760 					break;
    761 			}
    762 		}
    763 	}
    764  drop:
    765 	if (so->so_pcb) {
    766 		KASSERT(solocked(so));
    767 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    768 	}
    769  discard:
    770 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    771 	kauth_cred_free(so->so_cred);
    772 	so->so_cred = NULL;
    773 	so->so_state |= SS_NOFDREF;
    774 	sofree(so);
    775 	return error;
    776 }
    777 
    778 /*
    779  * Must be called with the socket locked..  Will return with it unlocked.
    780  */
    781 int
    782 soabort(struct socket *so)
    783 {
    784 	u_int refs;
    785 	int error;
    786 
    787 	KASSERT(solocked(so));
    788 	KASSERT(so->so_head == NULL);
    789 
    790 	so->so_aborting++;		/* XXX */
    791 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    792 	refs = --so->so_aborting;	/* XXX */
    793 	if (error || (refs == 0)) {
    794 		sofree(so);
    795 	} else {
    796 		sounlock(so);
    797 	}
    798 	return error;
    799 }
    800 
    801 int
    802 soaccept(struct socket *so, struct sockaddr *nam)
    803 {
    804 	int error;
    805 
    806 	KASSERT(solocked(so));
    807 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    808 
    809 	so->so_state &= ~SS_NOFDREF;
    810 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    811 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    812 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    813 	else
    814 		error = ECONNABORTED;
    815 
    816 	return error;
    817 }
    818 
    819 int
    820 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    821 {
    822 	int error;
    823 
    824 	KASSERT(solocked(so));
    825 
    826 	if (so->so_options & SO_ACCEPTCONN)
    827 		return EOPNOTSUPP;
    828 	/*
    829 	 * If protocol is connection-based, can only connect once.
    830 	 * Otherwise, if connected, try to disconnect first.
    831 	 * This allows user to disconnect by connecting to, e.g.,
    832 	 * a null address.
    833 	 */
    834 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    835 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    836 	    (error = sodisconnect(so)))) {
    837 		error = EISCONN;
    838 	} else {
    839 		if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    840 			return EAFNOSUPPORT;
    841 		}
    842 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    843 	}
    844 
    845 	return error;
    846 }
    847 
    848 int
    849 soconnect2(struct socket *so1, struct socket *so2)
    850 {
    851 	KASSERT(solocked2(so1, so2));
    852 
    853 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    854 }
    855 
    856 int
    857 sodisconnect(struct socket *so)
    858 {
    859 	int error;
    860 
    861 	KASSERT(solocked(so));
    862 
    863 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    864 		error = ENOTCONN;
    865 	} else if (so->so_state & SS_ISDISCONNECTING) {
    866 		error = EALREADY;
    867 	} else {
    868 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    869 	}
    870 	return error;
    871 }
    872 
    873 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    874 /*
    875  * Send on a socket.
    876  * If send must go all at once and message is larger than
    877  * send buffering, then hard error.
    878  * Lock against other senders.
    879  * If must go all at once and not enough room now, then
    880  * inform user that this would block and do nothing.
    881  * Otherwise, if nonblocking, send as much as possible.
    882  * The data to be sent is described by "uio" if nonzero,
    883  * otherwise by the mbuf chain "top" (which must be null
    884  * if uio is not).  Data provided in mbuf chain must be small
    885  * enough to send all at once.
    886  *
    887  * Returns nonzero on error, timeout or signal; callers
    888  * must check for short counts if EINTR/ERESTART are returned.
    889  * Data and control buffers are freed on return.
    890  */
    891 int
    892 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
    893 	struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
    894 {
    895 	struct mbuf **mp, *m;
    896 	long space, len, resid, clen, mlen;
    897 	int error, s, dontroute, atomic;
    898 
    899 	clen = 0;
    900 
    901 	/*
    902 	 * solock() provides atomicity of access.  splsoftnet() prevents
    903 	 * protocol processing soft interrupts from interrupting us and
    904 	 * blocking (expensive).
    905 	 */
    906 	s = splsoftnet();
    907 	solock(so);
    908 	atomic = sosendallatonce(so) || top;
    909 	if (uio)
    910 		resid = uio->uio_resid;
    911 	else
    912 		resid = top->m_pkthdr.len;
    913 	/*
    914 	 * In theory resid should be unsigned.
    915 	 * However, space must be signed, as it might be less than 0
    916 	 * if we over-committed, and we must use a signed comparison
    917 	 * of space and resid.  On the other hand, a negative resid
    918 	 * causes us to loop sending 0-length segments to the protocol.
    919 	 */
    920 	if (resid < 0) {
    921 		error = EINVAL;
    922 		goto out;
    923 	}
    924 	dontroute =
    925 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    926 	    (so->so_proto->pr_flags & PR_ATOMIC);
    927 	l->l_ru.ru_msgsnd++;
    928 	if (control)
    929 		clen = control->m_len;
    930  restart:
    931 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    932 		goto out;
    933 	do {
    934 		if (so->so_state & SS_CANTSENDMORE) {
    935 			error = EPIPE;
    936 			goto release;
    937 		}
    938 		if (so->so_error) {
    939 			error = so->so_error;
    940 			if ((flags & MSG_PEEK) == 0)
    941 				so->so_error = 0;
    942 			goto release;
    943 		}
    944 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    945 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    946 				if (resid || clen == 0) {
    947 					error = ENOTCONN;
    948 					goto release;
    949 				}
    950 			} else if (addr == NULL) {
    951 				error = EDESTADDRREQ;
    952 				goto release;
    953 			}
    954 		}
    955 		space = sbspace(&so->so_snd);
    956 		if (flags & MSG_OOB)
    957 			space += 1024;
    958 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    959 		    clen > so->so_snd.sb_hiwat) {
    960 			error = EMSGSIZE;
    961 			goto release;
    962 		}
    963 		if (space < resid + clen &&
    964 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    965 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    966 				error = EWOULDBLOCK;
    967 				goto release;
    968 			}
    969 			sbunlock(&so->so_snd);
    970 			error = sbwait(&so->so_snd);
    971 			if (error)
    972 				goto out;
    973 			goto restart;
    974 		}
    975 		mp = &top;
    976 		space -= clen;
    977 		do {
    978 			if (uio == NULL) {
    979 				/*
    980 				 * Data is prepackaged in "top".
    981 				 */
    982 				resid = 0;
    983 				if (flags & MSG_EOR)
    984 					top->m_flags |= M_EOR;
    985 			} else do {
    986 				sounlock(so);
    987 				splx(s);
    988 				if (top == NULL) {
    989 					m = m_gethdr(M_WAIT, MT_DATA);
    990 					mlen = MHLEN;
    991 					m->m_pkthdr.len = 0;
    992 					m_reset_rcvif(m);
    993 				} else {
    994 					m = m_get(M_WAIT, MT_DATA);
    995 					mlen = MLEN;
    996 				}
    997 				MCLAIM(m, so->so_snd.sb_mowner);
    998 				if (sock_loan_thresh >= 0 &&
    999 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1000 				    space >= sock_loan_thresh &&
   1001 				    (len = sosend_loan(so, uio, m,
   1002 						       space)) != 0) {
   1003 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1004 					space -= len;
   1005 					goto have_data;
   1006 				}
   1007 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1008 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1009 					m_clget(m, M_DONTWAIT);
   1010 					if ((m->m_flags & M_EXT) == 0)
   1011 						goto nopages;
   1012 					mlen = MCLBYTES;
   1013 					if (atomic && top == 0) {
   1014 						len = lmin(MCLBYTES - max_hdr,
   1015 						    resid);
   1016 						m->m_data += max_hdr;
   1017 					} else
   1018 						len = lmin(MCLBYTES, resid);
   1019 					space -= len;
   1020 				} else {
   1021  nopages:
   1022 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1023 					len = lmin(lmin(mlen, resid), space);
   1024 					space -= len;
   1025 					/*
   1026 					 * For datagram protocols, leave room
   1027 					 * for protocol headers in first mbuf.
   1028 					 */
   1029 					if (atomic && top == 0 && len < mlen)
   1030 						m_align(m, len);
   1031 				}
   1032 				error = uiomove(mtod(m, void *), (int)len, uio);
   1033  have_data:
   1034 				resid = uio->uio_resid;
   1035 				m->m_len = len;
   1036 				*mp = m;
   1037 				top->m_pkthdr.len += len;
   1038 				s = splsoftnet();
   1039 				solock(so);
   1040 				if (error != 0)
   1041 					goto release;
   1042 				mp = &m->m_next;
   1043 				if (resid <= 0) {
   1044 					if (flags & MSG_EOR)
   1045 						top->m_flags |= M_EOR;
   1046 					break;
   1047 				}
   1048 			} while (space > 0 && atomic);
   1049 
   1050 			if (so->so_state & SS_CANTSENDMORE) {
   1051 				error = EPIPE;
   1052 				goto release;
   1053 			}
   1054 			if (dontroute)
   1055 				so->so_options |= SO_DONTROUTE;
   1056 			if (resid > 0)
   1057 				so->so_state |= SS_MORETOCOME;
   1058 			if (flags & MSG_OOB) {
   1059 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
   1060 				    so, top, control);
   1061 			} else {
   1062 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1063 				    top, addr, control, l);
   1064 			}
   1065 			if (dontroute)
   1066 				so->so_options &= ~SO_DONTROUTE;
   1067 			if (resid > 0)
   1068 				so->so_state &= ~SS_MORETOCOME;
   1069 			clen = 0;
   1070 			control = NULL;
   1071 			top = NULL;
   1072 			mp = &top;
   1073 			if (error != 0)
   1074 				goto release;
   1075 		} while (resid && space > 0);
   1076 	} while (resid);
   1077 
   1078  release:
   1079 	sbunlock(&so->so_snd);
   1080  out:
   1081 	sounlock(so);
   1082 	splx(s);
   1083 	if (top)
   1084 		m_freem(top);
   1085 	if (control)
   1086 		m_freem(control);
   1087 	return error;
   1088 }
   1089 
   1090 /*
   1091  * Following replacement or removal of the first mbuf on the first
   1092  * mbuf chain of a socket buffer, push necessary state changes back
   1093  * into the socket buffer so that other consumers see the values
   1094  * consistently.  'nextrecord' is the caller's locally stored value of
   1095  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1096  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1097  */
   1098 static void
   1099 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1100 {
   1101 
   1102 	KASSERT(solocked(sb->sb_so));
   1103 
   1104 	/*
   1105 	 * First, update for the new value of nextrecord.  If necessary,
   1106 	 * make it the first record.
   1107 	 */
   1108 	if (sb->sb_mb != NULL)
   1109 		sb->sb_mb->m_nextpkt = nextrecord;
   1110 	else
   1111 		sb->sb_mb = nextrecord;
   1112 
   1113         /*
   1114          * Now update any dependent socket buffer fields to reflect
   1115          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1116          * the addition of a second clause that takes care of the
   1117          * case where sb_mb has been updated, but remains the last
   1118          * record.
   1119          */
   1120         if (sb->sb_mb == NULL) {
   1121                 sb->sb_mbtail = NULL;
   1122                 sb->sb_lastrecord = NULL;
   1123         } else if (sb->sb_mb->m_nextpkt == NULL)
   1124                 sb->sb_lastrecord = sb->sb_mb;
   1125 }
   1126 
   1127 /*
   1128  * Implement receive operations on a socket.
   1129  *
   1130  * We depend on the way that records are added to the sockbuf by sbappend*. In
   1131  * particular, each record (mbufs linked through m_next) must begin with an
   1132  * address if the protocol so specifies, followed by an optional mbuf or mbufs
   1133  * containing ancillary data, and then zero or more mbufs of data.
   1134  *
   1135  * In order to avoid blocking network interrupts for the entire time here, we
   1136  * splx() while doing the actual copy to user space. Although the sockbuf is
   1137  * locked, new data may still be appended, and thus we must maintain
   1138  * consistency of the sockbuf during that time.
   1139  *
   1140  * The caller may receive the data as a single mbuf chain by supplying an mbuf
   1141  * **mp0 for use in returning the chain. The uio is then used only for the
   1142  * count in uio_resid.
   1143  */
   1144 int
   1145 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1146     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1147 {
   1148 	struct lwp *l = curlwp;
   1149 	struct mbuf *m, **mp, *mt;
   1150 	size_t len, offset, moff, orig_resid;
   1151 	int atomic, flags, error, s, type;
   1152 	const struct protosw *pr;
   1153 	struct mbuf *nextrecord;
   1154 	int mbuf_removed = 0;
   1155 	const struct domain *dom;
   1156 
   1157 	pr = so->so_proto;
   1158 	atomic = pr->pr_flags & PR_ATOMIC;
   1159 	dom = pr->pr_domain;
   1160 	mp = mp0;
   1161 	type = 0;
   1162 	orig_resid = uio->uio_resid;
   1163 
   1164 	if (paddr != NULL)
   1165 		*paddr = NULL;
   1166 	if (controlp != NULL)
   1167 		*controlp = NULL;
   1168 	if (flagsp != NULL)
   1169 		flags = *flagsp &~ MSG_EOR;
   1170 	else
   1171 		flags = 0;
   1172 
   1173 	if (flags & MSG_OOB) {
   1174 		m = m_get(M_WAIT, MT_DATA);
   1175 		solock(so);
   1176 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1177 		sounlock(so);
   1178 		if (error)
   1179 			goto bad;
   1180 		do {
   1181 			error = uiomove(mtod(m, void *),
   1182 			    MIN(uio->uio_resid, m->m_len), uio);
   1183 			m = m_free(m);
   1184 		} while (uio->uio_resid > 0 && error == 0 && m);
   1185 bad:
   1186 		if (m != NULL)
   1187 			m_freem(m);
   1188 		return error;
   1189 	}
   1190 	if (mp != NULL)
   1191 		*mp = NULL;
   1192 
   1193 	/*
   1194 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1195 	 * protocol processing soft interrupts from interrupting us and
   1196 	 * blocking (expensive).
   1197 	 */
   1198 	s = splsoftnet();
   1199 	solock(so);
   1200 restart:
   1201 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1202 		sounlock(so);
   1203 		splx(s);
   1204 		return error;
   1205 	}
   1206 	m = so->so_rcv.sb_mb;
   1207 
   1208 	/*
   1209 	 * If we have less data than requested, block awaiting more
   1210 	 * (subject to any timeout) if:
   1211 	 *   1. the current count is less than the low water mark,
   1212 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1213 	 *	receive operation at once if we block (resid <= hiwat), or
   1214 	 *   3. MSG_DONTWAIT is not set.
   1215 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1216 	 * we have to do the receive in sections, and thus risk returning
   1217 	 * a short count if a timeout or signal occurs after we start.
   1218 	 */
   1219 	if (m == NULL ||
   1220 	    ((flags & MSG_DONTWAIT) == 0 &&
   1221 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1222 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1223 	      ((flags & MSG_WAITALL) &&
   1224 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1225 	     m->m_nextpkt == NULL && !atomic)) {
   1226 #ifdef DIAGNOSTIC
   1227 		if (m == NULL && so->so_rcv.sb_cc)
   1228 			panic("receive 1");
   1229 #endif
   1230 		if (so->so_error || so->so_rerror) {
   1231 			u_short *e;
   1232 			if (m != NULL)
   1233 				goto dontblock;
   1234 			e = so->so_error ? &so->so_error : &so->so_rerror;
   1235 			error = *e;
   1236 			if ((flags & MSG_PEEK) == 0)
   1237 				*e = 0;
   1238 			goto release;
   1239 		}
   1240 		if (so->so_state & SS_CANTRCVMORE) {
   1241 			if (m != NULL)
   1242 				goto dontblock;
   1243 			else
   1244 				goto release;
   1245 		}
   1246 		for (; m != NULL; m = m->m_next)
   1247 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1248 				m = so->so_rcv.sb_mb;
   1249 				goto dontblock;
   1250 			}
   1251 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1252 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1253 			error = ENOTCONN;
   1254 			goto release;
   1255 		}
   1256 		if (uio->uio_resid == 0)
   1257 			goto release;
   1258 		if ((so->so_state & SS_NBIO) ||
   1259 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1260 			error = EWOULDBLOCK;
   1261 			goto release;
   1262 		}
   1263 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1264 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1265 		sbunlock(&so->so_rcv);
   1266 		error = sbwait(&so->so_rcv);
   1267 		if (error != 0) {
   1268 			sounlock(so);
   1269 			splx(s);
   1270 			return error;
   1271 		}
   1272 		goto restart;
   1273 	}
   1274 
   1275 dontblock:
   1276 	/*
   1277 	 * On entry here, m points to the first record of the socket buffer.
   1278 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1279 	 * pointer to the next record in the socket buffer.  We must keep the
   1280 	 * various socket buffer pointers and local stack versions of the
   1281 	 * pointers in sync, pushing out modifications before dropping the
   1282 	 * socket lock, and re-reading them when picking it up.
   1283 	 *
   1284 	 * Otherwise, we will race with the network stack appending new data
   1285 	 * or records onto the socket buffer by using inconsistent/stale
   1286 	 * versions of the field, possibly resulting in socket buffer
   1287 	 * corruption.
   1288 	 *
   1289 	 * By holding the high-level sblock(), we prevent simultaneous
   1290 	 * readers from pulling off the front of the socket buffer.
   1291 	 */
   1292 	if (l != NULL)
   1293 		l->l_ru.ru_msgrcv++;
   1294 	KASSERT(m == so->so_rcv.sb_mb);
   1295 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1296 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1297 	nextrecord = m->m_nextpkt;
   1298 
   1299 	if (pr->pr_flags & PR_ADDR) {
   1300 		KASSERT(m->m_type == MT_SONAME);
   1301 		orig_resid = 0;
   1302 		if (flags & MSG_PEEK) {
   1303 			if (paddr)
   1304 				*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1305 			m = m->m_next;
   1306 		} else {
   1307 			sbfree(&so->so_rcv, m);
   1308 			mbuf_removed = 1;
   1309 			if (paddr != NULL) {
   1310 				*paddr = m;
   1311 				so->so_rcv.sb_mb = m->m_next;
   1312 				m->m_next = NULL;
   1313 				m = so->so_rcv.sb_mb;
   1314 			} else {
   1315 				m = so->so_rcv.sb_mb = m_free(m);
   1316 			}
   1317 			sbsync(&so->so_rcv, nextrecord);
   1318 		}
   1319 	}
   1320 
   1321 	if (pr->pr_flags & PR_ADDR_OPT) {
   1322 		/*
   1323 		 * For SCTP we may be getting a whole message OR a partial
   1324 		 * delivery.
   1325 		 */
   1326 		if (m->m_type == MT_SONAME) {
   1327 			orig_resid = 0;
   1328 			if (flags & MSG_PEEK) {
   1329 				if (paddr)
   1330 					*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1331 				m = m->m_next;
   1332 			} else {
   1333 				sbfree(&so->so_rcv, m);
   1334 				mbuf_removed = 1;
   1335 				if (paddr) {
   1336 					*paddr = m;
   1337 					so->so_rcv.sb_mb = m->m_next;
   1338 					m->m_next = 0;
   1339 					m = so->so_rcv.sb_mb;
   1340 				} else {
   1341 					m = so->so_rcv.sb_mb = m_free(m);
   1342 				}
   1343 				sbsync(&so->so_rcv, nextrecord);
   1344 			}
   1345 		}
   1346 	}
   1347 
   1348 	/*
   1349 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1350 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1351 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1352 	 * perform externalization (or freeing if controlp == NULL).
   1353 	 */
   1354 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1355 		struct mbuf *cm = NULL, *cmn;
   1356 		struct mbuf **cme = &cm;
   1357 
   1358 		do {
   1359 			if (flags & MSG_PEEK) {
   1360 				if (controlp != NULL) {
   1361 					*controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1362 					controlp = (*controlp == NULL ? NULL :
   1363 					    &(*controlp)->m_next);
   1364 				}
   1365 				m = m->m_next;
   1366 			} else {
   1367 				sbfree(&so->so_rcv, m);
   1368 				so->so_rcv.sb_mb = m->m_next;
   1369 				m->m_next = NULL;
   1370 				*cme = m;
   1371 				cme = &(*cme)->m_next;
   1372 				m = so->so_rcv.sb_mb;
   1373 			}
   1374 		} while (m != NULL && m->m_type == MT_CONTROL);
   1375 		if ((flags & MSG_PEEK) == 0)
   1376 			sbsync(&so->so_rcv, nextrecord);
   1377 
   1378 		for (; cm != NULL; cm = cmn) {
   1379 			cmn = cm->m_next;
   1380 			cm->m_next = NULL;
   1381 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1382 			if (controlp != NULL) {
   1383 				if (dom->dom_externalize != NULL &&
   1384 				    type == SCM_RIGHTS) {
   1385 					sounlock(so);
   1386 					splx(s);
   1387 					error = (*dom->dom_externalize)(cm, l,
   1388 					    (flags & MSG_CMSG_CLOEXEC) ?
   1389 					    O_CLOEXEC : 0);
   1390 					s = splsoftnet();
   1391 					solock(so);
   1392 				}
   1393 				*controlp = cm;
   1394 				while (*controlp != NULL)
   1395 					controlp = &(*controlp)->m_next;
   1396 			} else {
   1397 				/*
   1398 				 * Dispose of any SCM_RIGHTS message that went
   1399 				 * through the read path rather than recv.
   1400 				 */
   1401 				if (dom->dom_dispose != NULL &&
   1402 				    type == SCM_RIGHTS) {
   1403 					sounlock(so);
   1404 					(*dom->dom_dispose)(cm);
   1405 					solock(so);
   1406 				}
   1407 				m_freem(cm);
   1408 			}
   1409 		}
   1410 		if (m != NULL)
   1411 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1412 		else
   1413 			nextrecord = so->so_rcv.sb_mb;
   1414 		orig_resid = 0;
   1415 	}
   1416 
   1417 	/* If m is non-NULL, we have some data to read. */
   1418 	if (__predict_true(m != NULL)) {
   1419 		type = m->m_type;
   1420 		if (type == MT_OOBDATA)
   1421 			flags |= MSG_OOB;
   1422 	}
   1423 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1424 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1425 
   1426 	moff = 0;
   1427 	offset = 0;
   1428 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1429 		/*
   1430 		 * If the type of mbuf has changed, end the receive
   1431 		 * operation and do a short read.
   1432 		 */
   1433 		if (m->m_type == MT_OOBDATA) {
   1434 			if (type != MT_OOBDATA)
   1435 				break;
   1436 		} else if (type == MT_OOBDATA) {
   1437 			break;
   1438 		} else if (m->m_type == MT_CONTROL) {
   1439 			break;
   1440 		}
   1441 #ifdef DIAGNOSTIC
   1442 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
   1443 			panic("%s: m_type=%d", __func__, m->m_type);
   1444 		}
   1445 #endif
   1446 
   1447 		so->so_state &= ~SS_RCVATMARK;
   1448 		len = uio->uio_resid;
   1449 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1450 			len = so->so_oobmark - offset;
   1451 		if (len > m->m_len - moff)
   1452 			len = m->m_len - moff;
   1453 
   1454 		/*
   1455 		 * If mp is set, just pass back the mbufs.
   1456 		 * Otherwise copy them out via the uio, then free.
   1457 		 * Sockbuf must be consistent here (points to current mbuf,
   1458 		 * it points to next record) when we drop priority;
   1459 		 * we must note any additions to the sockbuf when we
   1460 		 * block interrupts again.
   1461 		 */
   1462 		if (mp == NULL) {
   1463 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1464 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1465 			sounlock(so);
   1466 			splx(s);
   1467 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1468 			s = splsoftnet();
   1469 			solock(so);
   1470 			if (error != 0) {
   1471 				/*
   1472 				 * If any part of the record has been removed
   1473 				 * (such as the MT_SONAME mbuf, which will
   1474 				 * happen when PR_ADDR, and thus also
   1475 				 * PR_ATOMIC, is set), then drop the entire
   1476 				 * record to maintain the atomicity of the
   1477 				 * receive operation.
   1478 				 *
   1479 				 * This avoids a later panic("receive 1a")
   1480 				 * when compiled with DIAGNOSTIC.
   1481 				 */
   1482 				if (m && mbuf_removed && atomic)
   1483 					(void) sbdroprecord(&so->so_rcv);
   1484 
   1485 				goto release;
   1486 			}
   1487 		} else {
   1488 			uio->uio_resid -= len;
   1489 		}
   1490 
   1491 		if (len == m->m_len - moff) {
   1492 			if (m->m_flags & M_EOR)
   1493 				flags |= MSG_EOR;
   1494 #ifdef SCTP
   1495 			if (m->m_flags & M_NOTIFICATION)
   1496 				flags |= MSG_NOTIFICATION;
   1497 #endif
   1498 			if (flags & MSG_PEEK) {
   1499 				m = m->m_next;
   1500 				moff = 0;
   1501 			} else {
   1502 				nextrecord = m->m_nextpkt;
   1503 				sbfree(&so->so_rcv, m);
   1504 				if (mp) {
   1505 					*mp = m;
   1506 					mp = &m->m_next;
   1507 					so->so_rcv.sb_mb = m = m->m_next;
   1508 					*mp = NULL;
   1509 				} else {
   1510 					m = so->so_rcv.sb_mb = m_free(m);
   1511 				}
   1512 				/*
   1513 				 * If m != NULL, we also know that
   1514 				 * so->so_rcv.sb_mb != NULL.
   1515 				 */
   1516 				KASSERT(so->so_rcv.sb_mb == m);
   1517 				if (m) {
   1518 					m->m_nextpkt = nextrecord;
   1519 					if (nextrecord == NULL)
   1520 						so->so_rcv.sb_lastrecord = m;
   1521 				} else {
   1522 					so->so_rcv.sb_mb = nextrecord;
   1523 					SB_EMPTY_FIXUP(&so->so_rcv);
   1524 				}
   1525 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1526 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1527 			}
   1528 		} else if (flags & MSG_PEEK) {
   1529 			moff += len;
   1530 		} else {
   1531 			if (mp != NULL) {
   1532 				mt = m_copym(m, 0, len, M_NOWAIT);
   1533 				if (__predict_false(mt == NULL)) {
   1534 					sounlock(so);
   1535 					mt = m_copym(m, 0, len, M_WAIT);
   1536 					solock(so);
   1537 				}
   1538 				*mp = mt;
   1539 			}
   1540 			m->m_data += len;
   1541 			m->m_len -= len;
   1542 			so->so_rcv.sb_cc -= len;
   1543 		}
   1544 
   1545 		if (so->so_oobmark) {
   1546 			if ((flags & MSG_PEEK) == 0) {
   1547 				so->so_oobmark -= len;
   1548 				if (so->so_oobmark == 0) {
   1549 					so->so_state |= SS_RCVATMARK;
   1550 					break;
   1551 				}
   1552 			} else {
   1553 				offset += len;
   1554 				if (offset == so->so_oobmark)
   1555 					break;
   1556 			}
   1557 		} else {
   1558 			so->so_state &= ~SS_POLLRDBAND;
   1559 		}
   1560 		if (flags & MSG_EOR)
   1561 			break;
   1562 
   1563 		/*
   1564 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1565 		 * we must not quit until "uio->uio_resid == 0" or an error
   1566 		 * termination.  If a signal/timeout occurs, return
   1567 		 * with a short count but without error.
   1568 		 * Keep sockbuf locked against other readers.
   1569 		 */
   1570 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1571 		    !sosendallatonce(so) && !nextrecord) {
   1572 			if (so->so_error || so->so_rerror ||
   1573 			    so->so_state & SS_CANTRCVMORE)
   1574 				break;
   1575 			/*
   1576 			 * If we are peeking and the socket receive buffer is
   1577 			 * full, stop since we can't get more data to peek at.
   1578 			 */
   1579 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1580 				break;
   1581 			/*
   1582 			 * If we've drained the socket buffer, tell the
   1583 			 * protocol in case it needs to do something to
   1584 			 * get it filled again.
   1585 			 */
   1586 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1587 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1588 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1589 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1590 			error = sbwait(&so->so_rcv);
   1591 			if (error != 0) {
   1592 				sbunlock(&so->so_rcv);
   1593 				sounlock(so);
   1594 				splx(s);
   1595 				return 0;
   1596 			}
   1597 			if ((m = so->so_rcv.sb_mb) != NULL)
   1598 				nextrecord = m->m_nextpkt;
   1599 		}
   1600 	}
   1601 
   1602 	if (m && atomic) {
   1603 		flags |= MSG_TRUNC;
   1604 		if ((flags & MSG_PEEK) == 0)
   1605 			(void) sbdroprecord(&so->so_rcv);
   1606 	}
   1607 	if ((flags & MSG_PEEK) == 0) {
   1608 		if (m == NULL) {
   1609 			/*
   1610 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1611 			 * part makes sure sb_lastrecord is up-to-date if
   1612 			 * there is still data in the socket buffer.
   1613 			 */
   1614 			so->so_rcv.sb_mb = nextrecord;
   1615 			if (so->so_rcv.sb_mb == NULL) {
   1616 				so->so_rcv.sb_mbtail = NULL;
   1617 				so->so_rcv.sb_lastrecord = NULL;
   1618 			} else if (nextrecord->m_nextpkt == NULL)
   1619 				so->so_rcv.sb_lastrecord = nextrecord;
   1620 		}
   1621 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1622 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1623 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1624 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1625 	}
   1626 	if (orig_resid == uio->uio_resid && orig_resid &&
   1627 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1628 		sbunlock(&so->so_rcv);
   1629 		goto restart;
   1630 	}
   1631 
   1632 	if (flagsp != NULL)
   1633 		*flagsp |= flags;
   1634 release:
   1635 	sbunlock(&so->so_rcv);
   1636 	sounlock(so);
   1637 	splx(s);
   1638 	return error;
   1639 }
   1640 
   1641 int
   1642 soshutdown(struct socket *so, int how)
   1643 {
   1644 	const struct protosw *pr;
   1645 	int error;
   1646 
   1647 	KASSERT(solocked(so));
   1648 
   1649 	pr = so->so_proto;
   1650 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1651 		return EINVAL;
   1652 
   1653 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1654 		sorflush(so);
   1655 		error = 0;
   1656 	}
   1657 	if (how == SHUT_WR || how == SHUT_RDWR)
   1658 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1659 
   1660 	return error;
   1661 }
   1662 
   1663 void
   1664 sorestart(struct socket *so)
   1665 {
   1666 
   1667 	/*
   1668 	 * An application has called close() on an fd on which another
   1669 	 * of its threads has called a socket system call.
   1670 	 * Mark this and wake everyone up, and code that would block again
   1671 	 * instead returns ERESTART.
   1672 	 * On system call re-entry the fd is validated and EBADF returned.
   1673 	 * Any other fd will block again on the 2nd syscall.
   1674 	 */
   1675 	solock(so);
   1676 	cv_fdrestart(&so->so_cv);
   1677 	cv_fdrestart(&so->so_snd.sb_cv);
   1678 	cv_fdrestart(&so->so_rcv.sb_cv);
   1679 	sounlock(so);
   1680 }
   1681 
   1682 void
   1683 sorflush(struct socket *so)
   1684 {
   1685 	struct sockbuf *sb, asb;
   1686 	const struct protosw *pr;
   1687 
   1688 	KASSERT(solocked(so));
   1689 
   1690 	sb = &so->so_rcv;
   1691 	pr = so->so_proto;
   1692 	socantrcvmore(so);
   1693 	sb->sb_flags |= SB_NOINTR;
   1694 	(void )sblock(sb, M_WAITOK);
   1695 	sbunlock(sb);
   1696 	asb = *sb;
   1697 	/*
   1698 	 * Clear most of the sockbuf structure, but leave some of the
   1699 	 * fields valid.
   1700 	 */
   1701 	memset(&sb->sb_startzero, 0,
   1702 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1703 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1704 		sounlock(so);
   1705 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1706 		solock(so);
   1707 	}
   1708 	sbrelease(&asb, so);
   1709 }
   1710 
   1711 /*
   1712  * internal set SOL_SOCKET options
   1713  */
   1714 static int
   1715 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1716 {
   1717 	int error, opt;
   1718 	int optval = 0; /* XXX: gcc */
   1719 	struct linger l;
   1720 	struct timeval tv;
   1721 
   1722 	opt = sopt->sopt_name;
   1723 
   1724 	switch (opt) {
   1725 
   1726 	case SO_ACCEPTFILTER:
   1727 		error = accept_filt_setopt(so, sopt);
   1728 		KASSERT(solocked(so));
   1729 		break;
   1730 
   1731 	case SO_LINGER:
   1732 		error = sockopt_get(sopt, &l, sizeof(l));
   1733 		solock(so);
   1734 		if (error)
   1735 			break;
   1736 		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1737 		    l.l_linger > (INT_MAX / hz)) {
   1738 			error = EDOM;
   1739 			break;
   1740 		}
   1741 		so->so_linger = l.l_linger;
   1742 		if (l.l_onoff)
   1743 			so->so_options |= SO_LINGER;
   1744 		else
   1745 			so->so_options &= ~SO_LINGER;
   1746 		break;
   1747 
   1748 	case SO_DEBUG:
   1749 	case SO_KEEPALIVE:
   1750 	case SO_DONTROUTE:
   1751 	case SO_USELOOPBACK:
   1752 	case SO_BROADCAST:
   1753 	case SO_REUSEADDR:
   1754 	case SO_REUSEPORT:
   1755 	case SO_OOBINLINE:
   1756 	case SO_TIMESTAMP:
   1757 	case SO_NOSIGPIPE:
   1758 	case SO_RERROR:
   1759 		error = sockopt_getint(sopt, &optval);
   1760 		solock(so);
   1761 		if (error)
   1762 			break;
   1763 		if (optval)
   1764 			so->so_options |= opt;
   1765 		else
   1766 			so->so_options &= ~opt;
   1767 		break;
   1768 
   1769 	case SO_SNDBUF:
   1770 	case SO_RCVBUF:
   1771 	case SO_SNDLOWAT:
   1772 	case SO_RCVLOWAT:
   1773 		error = sockopt_getint(sopt, &optval);
   1774 		solock(so);
   1775 		if (error)
   1776 			break;
   1777 
   1778 		/*
   1779 		 * Values < 1 make no sense for any of these
   1780 		 * options, so disallow them.
   1781 		 */
   1782 		if (optval < 1) {
   1783 			error = EINVAL;
   1784 			break;
   1785 		}
   1786 
   1787 		switch (opt) {
   1788 		case SO_SNDBUF:
   1789 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1790 				error = ENOBUFS;
   1791 				break;
   1792 			}
   1793 			if (sofixedbuf)
   1794 				so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1795 			break;
   1796 
   1797 		case SO_RCVBUF:
   1798 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1799 				error = ENOBUFS;
   1800 				break;
   1801 			}
   1802 			if (sofixedbuf)
   1803 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1804 			break;
   1805 
   1806 		/*
   1807 		 * Make sure the low-water is never greater than
   1808 		 * the high-water.
   1809 		 */
   1810 		case SO_SNDLOWAT:
   1811 			if (optval > so->so_snd.sb_hiwat)
   1812 				optval = so->so_snd.sb_hiwat;
   1813 
   1814 			so->so_snd.sb_lowat = optval;
   1815 			break;
   1816 
   1817 		case SO_RCVLOWAT:
   1818 			if (optval > so->so_rcv.sb_hiwat)
   1819 				optval = so->so_rcv.sb_hiwat;
   1820 
   1821 			so->so_rcv.sb_lowat = optval;
   1822 			break;
   1823 		}
   1824 		break;
   1825 
   1826 	case SO_SNDTIMEO:
   1827 	case SO_RCVTIMEO:
   1828 		solock(so);
   1829 		error = sockopt_get(sopt, &tv, sizeof(tv));
   1830 		if (error)
   1831 			break;
   1832 
   1833 		if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
   1834 			error = EDOM;
   1835 			break;
   1836 		}
   1837 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1838 			error = EDOM;
   1839 			break;
   1840 		}
   1841 
   1842 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1843 		if (optval == 0 && tv.tv_usec != 0)
   1844 			optval = 1;
   1845 
   1846 		switch (opt) {
   1847 		case SO_SNDTIMEO:
   1848 			so->so_snd.sb_timeo = optval;
   1849 			break;
   1850 		case SO_RCVTIMEO:
   1851 			so->so_rcv.sb_timeo = optval;
   1852 			break;
   1853 		}
   1854 		break;
   1855 
   1856 	default:
   1857 		MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
   1858 		    (opt, so, sopt), enosys(), error);
   1859 		if (error == ENOSYS || error == EPASSTHROUGH) {
   1860 			solock(so);
   1861 			error = ENOPROTOOPT;
   1862 		}
   1863 		break;
   1864 	}
   1865 	KASSERT(solocked(so));
   1866 	return error;
   1867 }
   1868 
   1869 int
   1870 sosetopt(struct socket *so, struct sockopt *sopt)
   1871 {
   1872 	int error, prerr;
   1873 
   1874 	if (sopt->sopt_level == SOL_SOCKET) {
   1875 		error = sosetopt1(so, sopt);
   1876 		KASSERT(solocked(so));
   1877 	} else {
   1878 		error = ENOPROTOOPT;
   1879 		solock(so);
   1880 	}
   1881 
   1882 	if ((error == 0 || error == ENOPROTOOPT) &&
   1883 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1884 		/* give the protocol stack a shot */
   1885 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1886 		if (prerr == 0)
   1887 			error = 0;
   1888 		else if (prerr != ENOPROTOOPT)
   1889 			error = prerr;
   1890 	}
   1891 	sounlock(so);
   1892 	return error;
   1893 }
   1894 
   1895 /*
   1896  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1897  */
   1898 int
   1899 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1900     const void *val, size_t valsize)
   1901 {
   1902 	struct sockopt sopt;
   1903 	int error;
   1904 
   1905 	KASSERT(valsize == 0 || val != NULL);
   1906 
   1907 	sockopt_init(&sopt, level, name, valsize);
   1908 	sockopt_set(&sopt, val, valsize);
   1909 
   1910 	error = sosetopt(so, &sopt);
   1911 
   1912 	sockopt_destroy(&sopt);
   1913 
   1914 	return error;
   1915 }
   1916 
   1917 /*
   1918  * internal get SOL_SOCKET options
   1919  */
   1920 static int
   1921 sogetopt1(struct socket *so, struct sockopt *sopt)
   1922 {
   1923 	int error, optval, opt;
   1924 	struct linger l;
   1925 	struct timeval tv;
   1926 
   1927 	switch ((opt = sopt->sopt_name)) {
   1928 
   1929 	case SO_ACCEPTFILTER:
   1930 		error = accept_filt_getopt(so, sopt);
   1931 		break;
   1932 
   1933 	case SO_LINGER:
   1934 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1935 		l.l_linger = so->so_linger;
   1936 
   1937 		error = sockopt_set(sopt, &l, sizeof(l));
   1938 		break;
   1939 
   1940 	case SO_USELOOPBACK:
   1941 	case SO_DONTROUTE:
   1942 	case SO_DEBUG:
   1943 	case SO_KEEPALIVE:
   1944 	case SO_REUSEADDR:
   1945 	case SO_REUSEPORT:
   1946 	case SO_BROADCAST:
   1947 	case SO_OOBINLINE:
   1948 	case SO_TIMESTAMP:
   1949 	case SO_NOSIGPIPE:
   1950 	case SO_RERROR:
   1951 	case SO_ACCEPTCONN:
   1952 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1953 		break;
   1954 
   1955 	case SO_TYPE:
   1956 		error = sockopt_setint(sopt, so->so_type);
   1957 		break;
   1958 
   1959 	case SO_ERROR:
   1960 		if (so->so_error == 0) {
   1961 			so->so_error = so->so_rerror;
   1962 			so->so_rerror = 0;
   1963 		}
   1964 		error = sockopt_setint(sopt, so->so_error);
   1965 		so->so_error = 0;
   1966 		break;
   1967 
   1968 	case SO_SNDBUF:
   1969 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1970 		break;
   1971 
   1972 	case SO_RCVBUF:
   1973 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1974 		break;
   1975 
   1976 	case SO_SNDLOWAT:
   1977 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1978 		break;
   1979 
   1980 	case SO_RCVLOWAT:
   1981 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1982 		break;
   1983 
   1984 	case SO_SNDTIMEO:
   1985 	case SO_RCVTIMEO:
   1986 		optval = (opt == SO_SNDTIMEO ?
   1987 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1988 
   1989 		memset(&tv, 0, sizeof(tv));
   1990 		tv.tv_sec = optval / hz;
   1991 		tv.tv_usec = (optval % hz) * tick;
   1992 
   1993 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1994 		break;
   1995 
   1996 	case SO_OVERFLOWED:
   1997 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1998 		break;
   1999 
   2000 	default:
   2001 		MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
   2002 		    (opt, so, sopt), enosys(), error);
   2003 		if (error)
   2004 			error = ENOPROTOOPT;
   2005 		break;
   2006 	}
   2007 
   2008 	return error;
   2009 }
   2010 
   2011 int
   2012 sogetopt(struct socket *so, struct sockopt *sopt)
   2013 {
   2014 	int error;
   2015 
   2016 	solock(so);
   2017 	if (sopt->sopt_level != SOL_SOCKET) {
   2018 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2019 			error = ((*so->so_proto->pr_ctloutput)
   2020 			    (PRCO_GETOPT, so, sopt));
   2021 		} else
   2022 			error = (ENOPROTOOPT);
   2023 	} else {
   2024 		error = sogetopt1(so, sopt);
   2025 	}
   2026 	sounlock(so);
   2027 	return error;
   2028 }
   2029 
   2030 /*
   2031  * alloc sockopt data buffer buffer
   2032  *	- will be released at destroy
   2033  */
   2034 static int
   2035 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2036 {
   2037 	void *data;
   2038 
   2039 	KASSERT(sopt->sopt_size == 0);
   2040 
   2041 	if (len > sizeof(sopt->sopt_buf)) {
   2042 		data = kmem_zalloc(len, kmflag);
   2043 		if (data == NULL)
   2044 			return ENOMEM;
   2045 		sopt->sopt_data = data;
   2046 	} else
   2047 		sopt->sopt_data = sopt->sopt_buf;
   2048 
   2049 	sopt->sopt_size = len;
   2050 	return 0;
   2051 }
   2052 
   2053 /*
   2054  * initialise sockopt storage
   2055  *	- MAY sleep during allocation
   2056  */
   2057 void
   2058 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2059 {
   2060 
   2061 	memset(sopt, 0, sizeof(*sopt));
   2062 
   2063 	sopt->sopt_level = level;
   2064 	sopt->sopt_name = name;
   2065 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2066 }
   2067 
   2068 /*
   2069  * destroy sockopt storage
   2070  *	- will release any held memory references
   2071  */
   2072 void
   2073 sockopt_destroy(struct sockopt *sopt)
   2074 {
   2075 
   2076 	if (sopt->sopt_data != sopt->sopt_buf)
   2077 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2078 
   2079 	memset(sopt, 0, sizeof(*sopt));
   2080 }
   2081 
   2082 /*
   2083  * set sockopt value
   2084  *	- value is copied into sockopt
   2085  *	- memory is allocated when necessary, will not sleep
   2086  */
   2087 int
   2088 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2089 {
   2090 	int error;
   2091 
   2092 	if (sopt->sopt_size == 0) {
   2093 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2094 		if (error)
   2095 			return error;
   2096 	}
   2097 
   2098 	sopt->sopt_retsize = MIN(sopt->sopt_size, len);
   2099 	if (sopt->sopt_retsize > 0) {
   2100 		memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
   2101 	}
   2102 
   2103 	return 0;
   2104 }
   2105 
   2106 /*
   2107  * common case of set sockopt integer value
   2108  */
   2109 int
   2110 sockopt_setint(struct sockopt *sopt, int val)
   2111 {
   2112 
   2113 	return sockopt_set(sopt, &val, sizeof(int));
   2114 }
   2115 
   2116 /*
   2117  * get sockopt value
   2118  *	- correct size must be given
   2119  */
   2120 int
   2121 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2122 {
   2123 
   2124 	if (sopt->sopt_size != len)
   2125 		return EINVAL;
   2126 
   2127 	memcpy(buf, sopt->sopt_data, len);
   2128 	return 0;
   2129 }
   2130 
   2131 /*
   2132  * common case of get sockopt integer value
   2133  */
   2134 int
   2135 sockopt_getint(const struct sockopt *sopt, int *valp)
   2136 {
   2137 
   2138 	return sockopt_get(sopt, valp, sizeof(int));
   2139 }
   2140 
   2141 /*
   2142  * set sockopt value from mbuf
   2143  *	- ONLY for legacy code
   2144  *	- mbuf is released by sockopt
   2145  *	- will not sleep
   2146  */
   2147 int
   2148 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2149 {
   2150 	size_t len;
   2151 	int error;
   2152 
   2153 	len = m_length(m);
   2154 
   2155 	if (sopt->sopt_size == 0) {
   2156 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2157 		if (error)
   2158 			return error;
   2159 	}
   2160 
   2161 	sopt->sopt_retsize = MIN(sopt->sopt_size, len);
   2162 	m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
   2163 	m_freem(m);
   2164 
   2165 	return 0;
   2166 }
   2167 
   2168 /*
   2169  * get sockopt value into mbuf
   2170  *	- ONLY for legacy code
   2171  *	- mbuf to be released by the caller
   2172  *	- will not sleep
   2173  */
   2174 struct mbuf *
   2175 sockopt_getmbuf(const struct sockopt *sopt)
   2176 {
   2177 	struct mbuf *m;
   2178 
   2179 	if (sopt->sopt_size > MCLBYTES)
   2180 		return NULL;
   2181 
   2182 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2183 	if (m == NULL)
   2184 		return NULL;
   2185 
   2186 	if (sopt->sopt_size > MLEN) {
   2187 		MCLGET(m, M_DONTWAIT);
   2188 		if ((m->m_flags & M_EXT) == 0) {
   2189 			m_free(m);
   2190 			return NULL;
   2191 		}
   2192 	}
   2193 
   2194 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2195 	m->m_len = sopt->sopt_size;
   2196 
   2197 	return m;
   2198 }
   2199 
   2200 void
   2201 sohasoutofband(struct socket *so)
   2202 {
   2203 
   2204 	so->so_state |= SS_POLLRDBAND;
   2205 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2206 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2207 }
   2208 
   2209 static void
   2210 filt_sordetach(struct knote *kn)
   2211 {
   2212 	struct socket *so;
   2213 
   2214 	so = ((file_t *)kn->kn_obj)->f_socket;
   2215 	solock(so);
   2216 	if (selremove_knote(&so->so_rcv.sb_sel, kn))
   2217 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2218 	sounlock(so);
   2219 }
   2220 
   2221 /*ARGSUSED*/
   2222 static int
   2223 filt_soread(struct knote *kn, long hint)
   2224 {
   2225 	struct socket *so;
   2226 	int rv;
   2227 
   2228 	so = ((file_t *)kn->kn_obj)->f_socket;
   2229 	if (hint != NOTE_SUBMIT)
   2230 		solock(so);
   2231 	kn->kn_data = so->so_rcv.sb_cc;
   2232 	if (so->so_state & SS_CANTRCVMORE) {
   2233 		knote_set_eof(kn, 0);
   2234 		kn->kn_fflags = so->so_error;
   2235 		rv = 1;
   2236 	} else if (so->so_error || so->so_rerror)
   2237 		rv = 1;
   2238 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2239 		rv = (kn->kn_data >= kn->kn_sdata);
   2240 	else
   2241 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2242 	if (hint != NOTE_SUBMIT)
   2243 		sounlock(so);
   2244 	return rv;
   2245 }
   2246 
   2247 static void
   2248 filt_sowdetach(struct knote *kn)
   2249 {
   2250 	struct socket *so;
   2251 
   2252 	so = ((file_t *)kn->kn_obj)->f_socket;
   2253 	solock(so);
   2254 	if (selremove_knote(&so->so_snd.sb_sel, kn))
   2255 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2256 	sounlock(so);
   2257 }
   2258 
   2259 /*ARGSUSED*/
   2260 static int
   2261 filt_sowrite(struct knote *kn, long hint)
   2262 {
   2263 	struct socket *so;
   2264 	int rv;
   2265 
   2266 	so = ((file_t *)kn->kn_obj)->f_socket;
   2267 	if (hint != NOTE_SUBMIT)
   2268 		solock(so);
   2269 	kn->kn_data = sbspace(&so->so_snd);
   2270 	if (so->so_state & SS_CANTSENDMORE) {
   2271 		knote_set_eof(kn, 0);
   2272 		kn->kn_fflags = so->so_error;
   2273 		rv = 1;
   2274 	} else if (so->so_error)
   2275 		rv = 1;
   2276 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2277 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2278 		rv = 0;
   2279 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2280 		rv = (kn->kn_data >= kn->kn_sdata);
   2281 	else
   2282 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2283 	if (hint != NOTE_SUBMIT)
   2284 		sounlock(so);
   2285 	return rv;
   2286 }
   2287 
   2288 static int
   2289 filt_soempty(struct knote *kn, long hint)
   2290 {
   2291 	struct socket *so;
   2292 	int rv;
   2293 
   2294 	so = ((file_t *)kn->kn_obj)->f_socket;
   2295 	if (hint != NOTE_SUBMIT)
   2296 		solock(so);
   2297 	rv = (kn->kn_data = sbused(&so->so_snd)) == 0 ||
   2298 	     (so->so_options & SO_ACCEPTCONN) != 0;
   2299 	if (hint != NOTE_SUBMIT)
   2300 		sounlock(so);
   2301 	return rv;
   2302 }
   2303 
   2304 /*ARGSUSED*/
   2305 static int
   2306 filt_solisten(struct knote *kn, long hint)
   2307 {
   2308 	struct socket *so;
   2309 	int rv;
   2310 
   2311 	so = ((file_t *)kn->kn_obj)->f_socket;
   2312 
   2313 	/*
   2314 	 * Set kn_data to number of incoming connections, not
   2315 	 * counting partial (incomplete) connections.
   2316 	 */
   2317 	if (hint != NOTE_SUBMIT)
   2318 		solock(so);
   2319 	kn->kn_data = so->so_qlen;
   2320 	rv = (kn->kn_data > 0);
   2321 	if (hint != NOTE_SUBMIT)
   2322 		sounlock(so);
   2323 	return rv;
   2324 }
   2325 
   2326 static const struct filterops solisten_filtops = {
   2327 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   2328 	.f_attach = NULL,
   2329 	.f_detach = filt_sordetach,
   2330 	.f_event = filt_solisten,
   2331 };
   2332 
   2333 static const struct filterops soread_filtops = {
   2334 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   2335 	.f_attach = NULL,
   2336 	.f_detach = filt_sordetach,
   2337 	.f_event = filt_soread,
   2338 };
   2339 
   2340 static const struct filterops sowrite_filtops = {
   2341 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   2342 	.f_attach = NULL,
   2343 	.f_detach = filt_sowdetach,
   2344 	.f_event = filt_sowrite,
   2345 };
   2346 
   2347 static const struct filterops soempty_filtops = {
   2348 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   2349 	.f_attach = NULL,
   2350 	.f_detach = filt_sowdetach,
   2351 	.f_event = filt_soempty,
   2352 };
   2353 
   2354 int
   2355 soo_kqfilter(struct file *fp, struct knote *kn)
   2356 {
   2357 	struct socket *so;
   2358 	struct sockbuf *sb;
   2359 
   2360 	so = ((file_t *)kn->kn_obj)->f_socket;
   2361 	solock(so);
   2362 	switch (kn->kn_filter) {
   2363 	case EVFILT_READ:
   2364 		if (so->so_options & SO_ACCEPTCONN)
   2365 			kn->kn_fop = &solisten_filtops;
   2366 		else
   2367 			kn->kn_fop = &soread_filtops;
   2368 		sb = &so->so_rcv;
   2369 		break;
   2370 	case EVFILT_WRITE:
   2371 		kn->kn_fop = &sowrite_filtops;
   2372 		sb = &so->so_snd;
   2373 		break;
   2374 	case EVFILT_EMPTY:
   2375 		kn->kn_fop = &soempty_filtops;
   2376 		sb = &so->so_snd;
   2377 		break;
   2378 	default:
   2379 		sounlock(so);
   2380 		return EINVAL;
   2381 	}
   2382 	selrecord_knote(&sb->sb_sel, kn);
   2383 	sb->sb_flags |= SB_KNOTE;
   2384 	sounlock(so);
   2385 	return 0;
   2386 }
   2387 
   2388 static int
   2389 sodopoll(struct socket *so, int events)
   2390 {
   2391 	int revents;
   2392 
   2393 	revents = 0;
   2394 
   2395 	if (events & (POLLIN | POLLRDNORM))
   2396 		if (soreadable(so))
   2397 			revents |= events & (POLLIN | POLLRDNORM);
   2398 
   2399 	if (events & (POLLOUT | POLLWRNORM))
   2400 		if (sowritable(so))
   2401 			revents |= events & (POLLOUT | POLLWRNORM);
   2402 
   2403 	if (events & (POLLPRI | POLLRDBAND))
   2404 		if (so->so_state & SS_POLLRDBAND)
   2405 			revents |= events & (POLLPRI | POLLRDBAND);
   2406 
   2407 	return revents;
   2408 }
   2409 
   2410 int
   2411 sopoll(struct socket *so, int events)
   2412 {
   2413 	int revents = 0;
   2414 
   2415 #ifndef DIAGNOSTIC
   2416 	/*
   2417 	 * Do a quick, unlocked check in expectation that the socket
   2418 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2419 	 * as the solocked() assertions will fail.
   2420 	 */
   2421 	if ((revents = sodopoll(so, events)) != 0)
   2422 		return revents;
   2423 #endif
   2424 
   2425 	solock(so);
   2426 	if ((revents = sodopoll(so, events)) == 0) {
   2427 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2428 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2429 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2430 		}
   2431 
   2432 		if (events & (POLLOUT | POLLWRNORM)) {
   2433 			selrecord(curlwp, &so->so_snd.sb_sel);
   2434 			so->so_snd.sb_flags |= SB_NOTIFY;
   2435 		}
   2436 	}
   2437 	sounlock(so);
   2438 
   2439 	return revents;
   2440 }
   2441 
   2442 struct mbuf **
   2443 sbsavetimestamp(int opt, struct mbuf **mp)
   2444 {
   2445 	struct timeval tv;
   2446 	int error;
   2447 
   2448 	memset(&tv, 0, sizeof(tv));
   2449 	microtime(&tv);
   2450 
   2451 	MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, &mp), enosys(), error);
   2452 	if (error == 0)
   2453 		return mp;
   2454 
   2455 	if (opt & SO_TIMESTAMP) {
   2456 		*mp = sbcreatecontrol(&tv, sizeof(tv),
   2457 		    SCM_TIMESTAMP, SOL_SOCKET);
   2458 		if (*mp)
   2459 			mp = &(*mp)->m_next;
   2460 	}
   2461 	return mp;
   2462 }
   2463 
   2464 
   2465 #include <sys/sysctl.h>
   2466 
   2467 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2468 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2469 
   2470 /*
   2471  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2472  * value is not too small.
   2473  * (XXX should we maybe make sure it's not too large as well?)
   2474  */
   2475 static int
   2476 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2477 {
   2478 	int error, new_somaxkva;
   2479 	struct sysctlnode node;
   2480 
   2481 	new_somaxkva = somaxkva;
   2482 	node = *rnode;
   2483 	node.sysctl_data = &new_somaxkva;
   2484 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2485 	if (error || newp == NULL)
   2486 		return error;
   2487 
   2488 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2489 		return EINVAL;
   2490 
   2491 	mutex_enter(&so_pendfree_lock);
   2492 	somaxkva = new_somaxkva;
   2493 	cv_broadcast(&socurkva_cv);
   2494 	mutex_exit(&so_pendfree_lock);
   2495 
   2496 	return error;
   2497 }
   2498 
   2499 /*
   2500  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2501  * any new value is not too small.
   2502  */
   2503 static int
   2504 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2505 {
   2506 	int error, new_sbmax;
   2507 	struct sysctlnode node;
   2508 
   2509 	new_sbmax = sb_max;
   2510 	node = *rnode;
   2511 	node.sysctl_data = &new_sbmax;
   2512 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2513 	if (error || newp == NULL)
   2514 		return error;
   2515 
   2516 	KERNEL_LOCK(1, NULL);
   2517 	error = sb_max_set(new_sbmax);
   2518 	KERNEL_UNLOCK_ONE(NULL);
   2519 
   2520 	return error;
   2521 }
   2522 
   2523 /*
   2524  * sysctl helper routine for kern.sooptions. Ensures that only allowed
   2525  * options can be set.
   2526  */
   2527 static int
   2528 sysctl_kern_sooptions(SYSCTLFN_ARGS)
   2529 {
   2530 	int error, new_options;
   2531 	struct sysctlnode node;
   2532 
   2533 	new_options = sooptions;
   2534 	node = *rnode;
   2535 	node.sysctl_data = &new_options;
   2536 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2537 	if (error || newp == NULL)
   2538 		return error;
   2539 
   2540 	if (new_options & ~SO_DEFOPTS)
   2541 		return EINVAL;
   2542 
   2543 	sooptions = new_options;
   2544 
   2545 	return 0;
   2546 }
   2547 
   2548 static void
   2549 sysctl_kern_socket_setup(void)
   2550 {
   2551 
   2552 	KASSERT(socket_sysctllog == NULL);
   2553 
   2554 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2555 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2556 		       CTLTYPE_INT, "somaxkva",
   2557 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2558 		                    "used for socket buffers"),
   2559 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2560 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2561 
   2562 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2563 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2564 		       CTLTYPE_BOOL, "sofixedbuf",
   2565 		       SYSCTL_DESCR("Prevent scaling of fixed socket buffers"),
   2566 		       NULL, 0, &sofixedbuf, 0,
   2567 		       CTL_KERN, KERN_SOFIXEDBUF, CTL_EOL);
   2568 
   2569 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2570 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2571 		       CTLTYPE_INT, "sbmax",
   2572 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2573 		       sysctl_kern_sbmax, 0, NULL, 0,
   2574 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2575 
   2576 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2577 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2578 		       CTLTYPE_INT, "sooptions",
   2579 		       SYSCTL_DESCR("Default socket options"),
   2580 		       sysctl_kern_sooptions, 0, NULL, 0,
   2581 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   2582 }
   2583