Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.307
      1 /*	$NetBSD: uipc_socket.c,v 1.307 2023/11/02 10:31:55 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2007, 2008, 2009, 2023 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.307 2023/11/02 10:31:55 martin Exp $");
     75 
     76 #ifdef _KERNEL_OPT
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_sock_counters.h"
     79 #include "opt_sosend_loan.h"
     80 #include "opt_mbuftrace.h"
     81 #include "opt_somaxkva.h"
     82 #include "opt_multiprocessor.h"	/* XXX */
     83 #include "opt_sctp.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/file.h>
     90 #include <sys/filedesc.h>
     91 #include <sys/kmem.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/domain.h>
     94 #include <sys/kernel.h>
     95 #include <sys/protosw.h>
     96 #include <sys/socket.h>
     97 #include <sys/socketvar.h>
     98 #include <sys/signalvar.h>
     99 #include <sys/resourcevar.h>
    100 #include <sys/uidinfo.h>
    101 #include <sys/event.h>
    102 #include <sys/poll.h>
    103 #include <sys/kauth.h>
    104 #include <sys/mutex.h>
    105 #include <sys/condvar.h>
    106 #include <sys/kthread.h>
    107 #include <sys/compat_stub.h>
    108 
    109 #include <compat/sys/time.h>
    110 #include <compat/sys/socket.h>
    111 
    112 #include <uvm/uvm_extern.h>
    113 #include <uvm/uvm_loan.h>
    114 #include <uvm/uvm_page.h>
    115 
    116 #ifdef SCTP
    117 #include <netinet/sctp_route.h>
    118 #endif
    119 
    120 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    121 
    122 extern const struct fileops socketops;
    123 
    124 static int	sooptions;
    125 extern int	somaxconn;			/* patchable (XXX sysctl) */
    126 int		somaxconn = SOMAXCONN;
    127 kmutex_t	*softnet_lock;
    128 
    129 #ifdef SOSEND_COUNTERS
    130 #include <sys/device.h>
    131 
    132 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    133     NULL, "sosend", "loan big");
    134 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    135     NULL, "sosend", "copy big");
    136 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    137     NULL, "sosend", "copy small");
    138 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    139     NULL, "sosend", "kva limit");
    140 
    141 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    142 
    143 EVCNT_ATTACH_STATIC(sosend_loan_big);
    144 EVCNT_ATTACH_STATIC(sosend_copy_big);
    145 EVCNT_ATTACH_STATIC(sosend_copy_small);
    146 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    147 #else
    148 
    149 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    150 
    151 #endif /* SOSEND_COUNTERS */
    152 
    153 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    154 int sock_loan_thresh = -1;
    155 #else
    156 int sock_loan_thresh = 4096;
    157 #endif
    158 
    159 static kmutex_t so_pendfree_lock;
    160 static struct mbuf *so_pendfree = NULL;
    161 
    162 #ifndef SOMAXKVA
    163 #define	SOMAXKVA (16 * 1024 * 1024)
    164 #endif
    165 int somaxkva = SOMAXKVA;
    166 static int socurkva;
    167 static kcondvar_t socurkva_cv;
    168 
    169 #ifndef SOFIXEDBUF
    170 #define SOFIXEDBUF true
    171 #endif
    172 bool sofixedbuf = SOFIXEDBUF;
    173 
    174 static kauth_listener_t socket_listener;
    175 
    176 #define	SOCK_LOAN_CHUNK		65536
    177 
    178 static void sopendfree_thread(void *);
    179 static kcondvar_t pendfree_thread_cv;
    180 static lwp_t *sopendfree_lwp;
    181 
    182 static void sysctl_kern_socket_setup(void);
    183 static struct sysctllog *socket_sysctllog;
    184 
    185 static vsize_t
    186 sokvareserve(struct socket *so, vsize_t len)
    187 {
    188 	int error;
    189 
    190 	mutex_enter(&so_pendfree_lock);
    191 	while (socurkva + len > somaxkva) {
    192 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    193 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    194 		if (error) {
    195 			len = 0;
    196 			break;
    197 		}
    198 	}
    199 	socurkva += len;
    200 	mutex_exit(&so_pendfree_lock);
    201 	return len;
    202 }
    203 
    204 static void
    205 sokvaunreserve(vsize_t len)
    206 {
    207 
    208 	mutex_enter(&so_pendfree_lock);
    209 	socurkva -= len;
    210 	cv_broadcast(&socurkva_cv);
    211 	mutex_exit(&so_pendfree_lock);
    212 }
    213 
    214 /*
    215  * sokvaalloc: allocate kva for loan.
    216  */
    217 vaddr_t
    218 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    219 {
    220 	vaddr_t lva;
    221 
    222 	if (sokvareserve(so, len) == 0)
    223 		return 0;
    224 
    225 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    226 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    227 	if (lva == 0) {
    228 		sokvaunreserve(len);
    229 		return 0;
    230 	}
    231 
    232 	return lva;
    233 }
    234 
    235 /*
    236  * sokvafree: free kva for loan.
    237  */
    238 void
    239 sokvafree(vaddr_t sva, vsize_t len)
    240 {
    241 
    242 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    243 	sokvaunreserve(len);
    244 }
    245 
    246 static void
    247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    248 {
    249 	vaddr_t sva, eva;
    250 	vsize_t len;
    251 	int npgs;
    252 
    253 	KASSERT(pgs != NULL);
    254 
    255 	eva = round_page((vaddr_t) buf + size);
    256 	sva = trunc_page((vaddr_t) buf);
    257 	len = eva - sva;
    258 	npgs = len >> PAGE_SHIFT;
    259 
    260 	pmap_kremove(sva, len);
    261 	pmap_update(pmap_kernel());
    262 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    263 	sokvafree(sva, len);
    264 }
    265 
    266 /*
    267  * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
    268  * so_pendfree_lock when freeing mbufs.
    269  */
    270 static void
    271 sopendfree_thread(void *v)
    272 {
    273 	struct mbuf *m, *next;
    274 	size_t rv;
    275 
    276 	mutex_enter(&so_pendfree_lock);
    277 
    278 	for (;;) {
    279 		rv = 0;
    280 		while (so_pendfree != NULL) {
    281 			m = so_pendfree;
    282 			so_pendfree = NULL;
    283 			mutex_exit(&so_pendfree_lock);
    284 
    285 			for (; m != NULL; m = next) {
    286 				next = m->m_next;
    287 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
    288 				    0);
    289 				KASSERT(m->m_ext.ext_refcnt == 0);
    290 
    291 				rv += m->m_ext.ext_size;
    292 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    293 				    m->m_ext.ext_size);
    294 				pool_cache_put(mb_cache, m);
    295 			}
    296 
    297 			mutex_enter(&so_pendfree_lock);
    298 		}
    299 		if (rv)
    300 			cv_broadcast(&socurkva_cv);
    301 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    302 	}
    303 	panic("sopendfree_thread");
    304 	/* NOTREACHED */
    305 }
    306 
    307 void
    308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    309 {
    310 
    311 	KASSERT(m != NULL);
    312 
    313 	/*
    314 	 * postpone freeing mbuf.
    315 	 *
    316 	 * we can't do it in interrupt context
    317 	 * because we need to put kva back to kernel_map.
    318 	 */
    319 
    320 	mutex_enter(&so_pendfree_lock);
    321 	m->m_next = so_pendfree;
    322 	so_pendfree = m;
    323 	cv_signal(&pendfree_thread_cv);
    324 	mutex_exit(&so_pendfree_lock);
    325 }
    326 
    327 static long
    328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    329 {
    330 	struct iovec *iov = uio->uio_iov;
    331 	vaddr_t sva, eva;
    332 	vsize_t len;
    333 	vaddr_t lva;
    334 	int npgs, error;
    335 	vaddr_t va;
    336 	int i;
    337 
    338 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    339 		return 0;
    340 
    341 	if (iov->iov_len < (size_t) space)
    342 		space = iov->iov_len;
    343 	if (space > SOCK_LOAN_CHUNK)
    344 		space = SOCK_LOAN_CHUNK;
    345 
    346 	eva = round_page((vaddr_t) iov->iov_base + space);
    347 	sva = trunc_page((vaddr_t) iov->iov_base);
    348 	len = eva - sva;
    349 	npgs = len >> PAGE_SHIFT;
    350 
    351 	KASSERT(npgs <= M_EXT_MAXPAGES);
    352 
    353 	lva = sokvaalloc(sva, len, so);
    354 	if (lva == 0)
    355 		return 0;
    356 
    357 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    358 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    359 	if (error) {
    360 		sokvafree(lva, len);
    361 		return 0;
    362 	}
    363 
    364 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    365 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    366 		    VM_PROT_READ, 0);
    367 	pmap_update(pmap_kernel());
    368 
    369 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    370 
    371 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    372 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    373 
    374 	uio->uio_resid -= space;
    375 	/* uio_offset not updated, not set/used for write(2) */
    376 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    377 	uio->uio_iov->iov_len -= space;
    378 	if (uio->uio_iov->iov_len == 0) {
    379 		uio->uio_iov++;
    380 		uio->uio_iovcnt--;
    381 	}
    382 
    383 	return space;
    384 }
    385 
    386 static int
    387 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    388     void *arg0, void *arg1, void *arg2, void *arg3)
    389 {
    390 	int result;
    391 	enum kauth_network_req req;
    392 
    393 	result = KAUTH_RESULT_DEFER;
    394 	req = (enum kauth_network_req)(uintptr_t)arg0;
    395 
    396 	if ((action != KAUTH_NETWORK_SOCKET) &&
    397 	    (action != KAUTH_NETWORK_BIND))
    398 		return result;
    399 
    400 	switch (req) {
    401 	case KAUTH_REQ_NETWORK_BIND_PORT:
    402 		result = KAUTH_RESULT_ALLOW;
    403 		break;
    404 
    405 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    406 		/* Normal users can only drop their own connections. */
    407 		struct socket *so = (struct socket *)arg1;
    408 
    409 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    410 			result = KAUTH_RESULT_ALLOW;
    411 
    412 		break;
    413 		}
    414 
    415 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    416 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    417 		switch ((u_long)arg1) {
    418 		case PF_ROUTE:
    419 		case PF_OROUTE:
    420 		case PF_BLUETOOTH:
    421 		case PF_CAN:
    422 			result = KAUTH_RESULT_ALLOW;
    423 			break;
    424 		default:
    425 			/* Privileged, let secmodel handle this. */
    426 			if ((u_long)arg2 == SOCK_RAW)
    427 				break;
    428 			result = KAUTH_RESULT_ALLOW;
    429 			break;
    430 		}
    431 		break;
    432 
    433 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    434 		result = KAUTH_RESULT_ALLOW;
    435 
    436 		break;
    437 
    438 	default:
    439 		break;
    440 	}
    441 
    442 	return result;
    443 }
    444 
    445 void
    446 soinit(void)
    447 {
    448 
    449 	sysctl_kern_socket_setup();
    450 
    451 #ifdef SCTP
    452 	/* Update the SCTP function hooks if necessary*/
    453 
    454         vec_sctp_add_ip_address = sctp_add_ip_address;
    455         vec_sctp_delete_ip_address = sctp_delete_ip_address;
    456 #endif
    457 
    458 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    459 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    460 	cv_init(&socurkva_cv, "sokva");
    461 	cv_init(&pendfree_thread_cv, "sopendfr");
    462 	soinit2();
    463 
    464 	/* Set the initial adjusted socket buffer size. */
    465 	if (sb_max_set(sb_max))
    466 		panic("bad initial sb_max value: %lu", sb_max);
    467 
    468 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    469 	    socket_listener_cb, NULL);
    470 }
    471 
    472 void
    473 soinit1(void)
    474 {
    475 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    476 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    477 	if (error)
    478 		panic("soinit1 %d", error);
    479 }
    480 
    481 /*
    482  * socreate: create a new socket of the specified type and the protocol.
    483  *
    484  * => Caller may specify another socket for lock sharing (must not be held).
    485  * => Returns the new socket without lock held.
    486  */
    487 int
    488 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    489     struct socket *lockso)
    490 {
    491 	const struct protosw *prp;
    492 	struct socket *so;
    493 	uid_t uid;
    494 	int error;
    495 	kmutex_t *lock;
    496 
    497 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    498 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    499 	    KAUTH_ARG(proto));
    500 	if (error != 0)
    501 		return error;
    502 
    503 	if (proto)
    504 		prp = pffindproto(dom, proto, type);
    505 	else
    506 		prp = pffindtype(dom, type);
    507 	if (prp == NULL) {
    508 		/* no support for domain */
    509 		if (pffinddomain(dom) == 0)
    510 			return EAFNOSUPPORT;
    511 		/* no support for socket type */
    512 		if (proto == 0 && type != 0)
    513 			return EPROTOTYPE;
    514 		return EPROTONOSUPPORT;
    515 	}
    516 	if (prp->pr_usrreqs == NULL)
    517 		return EPROTONOSUPPORT;
    518 	if (prp->pr_type != type)
    519 		return EPROTOTYPE;
    520 
    521 	so = soget(true);
    522 	so->so_type = type;
    523 	so->so_proto = prp;
    524 	so->so_send = sosend;
    525 	so->so_receive = soreceive;
    526 	so->so_options = sooptions;
    527 #ifdef MBUFTRACE
    528 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    529 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    530 	so->so_mowner = &prp->pr_domain->dom_mowner;
    531 #endif
    532 	uid = kauth_cred_geteuid(l->l_cred);
    533 	so->so_uidinfo = uid_find(uid);
    534 	so->so_egid = kauth_cred_getegid(l->l_cred);
    535 	so->so_cpid = l->l_proc->p_pid;
    536 
    537 	/*
    538 	 * Lock assigned and taken during PCB attach, unless we share
    539 	 * the lock with another socket, e.g. socketpair(2) case.
    540 	 */
    541 	if (lockso) {
    542 		/*
    543 		 * lockso->so_lock should be stable at this point, so
    544 		 * no need for atomic_load_*.
    545 		 */
    546 		lock = lockso->so_lock;
    547 		so->so_lock = lock;
    548 		mutex_obj_hold(lock);
    549 		mutex_enter(lock);
    550 	}
    551 
    552 	/* Attach the PCB (returns with the socket lock held). */
    553 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    554 	KASSERT(solocked(so));
    555 
    556 	if (error) {
    557 		KASSERT(so->so_pcb == NULL);
    558 		so->so_state |= SS_NOFDREF;
    559 		sofree(so);
    560 		return error;
    561 	}
    562 	so->so_cred = kauth_cred_hold(l->l_cred);
    563 	sounlock(so);
    564 
    565 	*aso = so;
    566 	return 0;
    567 }
    568 
    569 /*
    570  * fsocreate: create a socket and a file descriptor associated with it.
    571  *
    572  * => On success, write file descriptor to fdout and return zero.
    573  * => On failure, return non-zero; *fdout will be undefined.
    574  */
    575 int
    576 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    577 {
    578 	lwp_t *l = curlwp;
    579 	int error, fd, flags;
    580 	struct socket *so;
    581 	struct file *fp;
    582 
    583 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    584 		return error;
    585 	}
    586 	flags = type & SOCK_FLAGS_MASK;
    587 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    588 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    589 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    590 	fp->f_type = DTYPE_SOCKET;
    591 	fp->f_ops = &socketops;
    592 
    593 	type &= ~SOCK_FLAGS_MASK;
    594 	error = socreate(domain, &so, type, proto, l, NULL);
    595 	if (error) {
    596 		fd_abort(curproc, fp, fd);
    597 		return error;
    598 	}
    599 	if (flags & SOCK_NONBLOCK) {
    600 		so->so_state |= SS_NBIO;
    601 	}
    602 	fp->f_socket = so;
    603 	fd_affix(curproc, fp, fd);
    604 
    605 	if (sop != NULL) {
    606 		*sop = so;
    607 	}
    608 	*fdout = fd;
    609 	return error;
    610 }
    611 
    612 int
    613 sofamily(const struct socket *so)
    614 {
    615 	const struct protosw *pr;
    616 	const struct domain *dom;
    617 
    618 	if ((pr = so->so_proto) == NULL)
    619 		return AF_UNSPEC;
    620 	if ((dom = pr->pr_domain) == NULL)
    621 		return AF_UNSPEC;
    622 	return dom->dom_family;
    623 }
    624 
    625 int
    626 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    627 {
    628 	int error;
    629 
    630 	solock(so);
    631 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    632 		sounlock(so);
    633 		return EAFNOSUPPORT;
    634 	}
    635 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    636 	sounlock(so);
    637 	return error;
    638 }
    639 
    640 int
    641 solisten(struct socket *so, int backlog, struct lwp *l)
    642 {
    643 	int error;
    644 	short oldopt, oldqlimit;
    645 
    646 	solock(so);
    647 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    648 	    SS_ISDISCONNECTING)) != 0) {
    649 		sounlock(so);
    650 		return EINVAL;
    651 	}
    652 	oldopt = so->so_options;
    653 	oldqlimit = so->so_qlimit;
    654 	if (TAILQ_EMPTY(&so->so_q))
    655 		so->so_options |= SO_ACCEPTCONN;
    656 	if (backlog < 0)
    657 		backlog = 0;
    658 	so->so_qlimit = uimin(backlog, somaxconn);
    659 
    660 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    661 	if (error != 0) {
    662 		so->so_options = oldopt;
    663 		so->so_qlimit = oldqlimit;
    664 		sounlock(so);
    665 		return error;
    666 	}
    667 	sounlock(so);
    668 	return 0;
    669 }
    670 
    671 void
    672 sofree(struct socket *so)
    673 {
    674 	u_int refs;
    675 
    676 	KASSERT(solocked(so));
    677 
    678 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    679 		sounlock(so);
    680 		return;
    681 	}
    682 	if (so->so_head) {
    683 		/*
    684 		 * We must not decommission a socket that's on the accept(2)
    685 		 * queue.  If we do, then accept(2) may hang after select(2)
    686 		 * indicated that the listening socket was ready.
    687 		 */
    688 		if (!soqremque(so, 0)) {
    689 			sounlock(so);
    690 			return;
    691 		}
    692 	}
    693 	if (so->so_rcv.sb_hiwat)
    694 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    695 		    RLIM_INFINITY);
    696 	if (so->so_snd.sb_hiwat)
    697 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    698 		    RLIM_INFINITY);
    699 	sbrelease(&so->so_snd, so);
    700 	KASSERT(!cv_has_waiters(&so->so_cv));
    701 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    702 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    703 	sorflush(so);
    704 	refs = so->so_aborting;	/* XXX */
    705 	/* Remove accept filter if one is present. */
    706 	if (so->so_accf != NULL)
    707 		(void)accept_filt_clear(so);
    708 	sounlock(so);
    709 	if (refs == 0)		/* XXX */
    710 		soput(so);
    711 }
    712 
    713 /*
    714  * soclose: close a socket on last file table reference removal.
    715  * Initiate disconnect if connected.  Free socket when disconnect complete.
    716  */
    717 int
    718 soclose(struct socket *so)
    719 {
    720 	struct socket *so2;
    721 	int error = 0;
    722 
    723 	solock(so);
    724 	if (so->so_options & SO_ACCEPTCONN) {
    725 		for (;;) {
    726 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    727 				KASSERT(solocked2(so, so2));
    728 				(void) soqremque(so2, 0);
    729 				/* soabort drops the lock. */
    730 				(void) soabort(so2);
    731 				solock(so);
    732 				continue;
    733 			}
    734 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    735 				KASSERT(solocked2(so, so2));
    736 				(void) soqremque(so2, 1);
    737 				/* soabort drops the lock. */
    738 				(void) soabort(so2);
    739 				solock(so);
    740 				continue;
    741 			}
    742 			break;
    743 		}
    744 	}
    745 	if (so->so_pcb == NULL)
    746 		goto discard;
    747 	if (so->so_state & SS_ISCONNECTED) {
    748 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    749 			error = sodisconnect(so);
    750 			if (error)
    751 				goto drop;
    752 		}
    753 		if (so->so_options & SO_LINGER) {
    754 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    755 			    (SS_ISDISCONNECTING|SS_NBIO))
    756 				goto drop;
    757 			while (so->so_state & SS_ISCONNECTED) {
    758 				error = sowait(so, true, so->so_linger * hz);
    759 				if (error)
    760 					break;
    761 			}
    762 		}
    763 	}
    764  drop:
    765 	if (so->so_pcb) {
    766 		KASSERT(solocked(so));
    767 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    768 	}
    769  discard:
    770 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    771 	kauth_cred_free(so->so_cred);
    772 	so->so_cred = NULL;
    773 	so->so_state |= SS_NOFDREF;
    774 	sofree(so);
    775 	return error;
    776 }
    777 
    778 /*
    779  * Must be called with the socket locked..  Will return with it unlocked.
    780  */
    781 int
    782 soabort(struct socket *so)
    783 {
    784 	u_int refs;
    785 	int error;
    786 
    787 	KASSERT(solocked(so));
    788 	KASSERT(so->so_head == NULL);
    789 
    790 	so->so_aborting++;		/* XXX */
    791 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    792 	refs = --so->so_aborting;	/* XXX */
    793 	if (error || (refs == 0)) {
    794 		sofree(so);
    795 	} else {
    796 		sounlock(so);
    797 	}
    798 	return error;
    799 }
    800 
    801 int
    802 soaccept(struct socket *so, struct sockaddr *nam)
    803 {
    804 	int error;
    805 
    806 	KASSERT(solocked(so));
    807 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    808 
    809 	so->so_state &= ~SS_NOFDREF;
    810 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    811 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    812 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    813 	else
    814 		error = ECONNABORTED;
    815 
    816 	return error;
    817 }
    818 
    819 int
    820 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    821 {
    822 	int error;
    823 
    824 	KASSERT(solocked(so));
    825 
    826 	if (so->so_options & SO_ACCEPTCONN)
    827 		return EOPNOTSUPP;
    828 	/*
    829 	 * If protocol is connection-based, can only connect once.
    830 	 * Otherwise, if connected, try to disconnect first.
    831 	 * This allows user to disconnect by connecting to, e.g.,
    832 	 * a null address.
    833 	 */
    834 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    835 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    836 	    (error = sodisconnect(so)))) {
    837 		error = EISCONN;
    838 	} else {
    839 		if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    840 			return EAFNOSUPPORT;
    841 		}
    842 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    843 	}
    844 
    845 	return error;
    846 }
    847 
    848 int
    849 soconnect2(struct socket *so1, struct socket *so2)
    850 {
    851 	KASSERT(solocked2(so1, so2));
    852 
    853 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    854 }
    855 
    856 int
    857 sodisconnect(struct socket *so)
    858 {
    859 	int error;
    860 
    861 	KASSERT(solocked(so));
    862 
    863 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    864 		error = ENOTCONN;
    865 	} else if (so->so_state & SS_ISDISCONNECTING) {
    866 		error = EALREADY;
    867 	} else {
    868 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    869 	}
    870 	return error;
    871 }
    872 
    873 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    874 /*
    875  * Send on a socket.
    876  * If send must go all at once and message is larger than
    877  * send buffering, then hard error.
    878  * Lock against other senders.
    879  * If must go all at once and not enough room now, then
    880  * inform user that this would block and do nothing.
    881  * Otherwise, if nonblocking, send as much as possible.
    882  * The data to be sent is described by "uio" if nonzero,
    883  * otherwise by the mbuf chain "top" (which must be null
    884  * if uio is not).  Data provided in mbuf chain must be small
    885  * enough to send all at once.
    886  *
    887  * Returns nonzero on error, timeout or signal; callers
    888  * must check for short counts if EINTR/ERESTART are returned.
    889  * Data and control buffers are freed on return.
    890  */
    891 int
    892 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
    893 	struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
    894 {
    895 	struct mbuf **mp, *m;
    896 	long space, len, resid, clen, mlen;
    897 	int error, s, dontroute, atomic;
    898 	short wakeup_state = 0;
    899 
    900 	clen = 0;
    901 
    902 	/*
    903 	 * solock() provides atomicity of access.  splsoftnet() prevents
    904 	 * protocol processing soft interrupts from interrupting us and
    905 	 * blocking (expensive).
    906 	 */
    907 	s = splsoftnet();
    908 	solock(so);
    909 	atomic = sosendallatonce(so) || top;
    910 	if (uio)
    911 		resid = uio->uio_resid;
    912 	else
    913 		resid = top->m_pkthdr.len;
    914 	/*
    915 	 * In theory resid should be unsigned.
    916 	 * However, space must be signed, as it might be less than 0
    917 	 * if we over-committed, and we must use a signed comparison
    918 	 * of space and resid.  On the other hand, a negative resid
    919 	 * causes us to loop sending 0-length segments to the protocol.
    920 	 */
    921 	if (resid < 0) {
    922 		error = EINVAL;
    923 		goto out;
    924 	}
    925 	dontroute =
    926 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    927 	    (so->so_proto->pr_flags & PR_ATOMIC);
    928 	l->l_ru.ru_msgsnd++;
    929 	if (control)
    930 		clen = control->m_len;
    931  restart:
    932 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    933 		goto out;
    934 	do {
    935 		if (so->so_state & SS_CANTSENDMORE) {
    936 			error = EPIPE;
    937 			goto release;
    938 		}
    939 		if (so->so_error) {
    940 			error = so->so_error;
    941 			if ((flags & MSG_PEEK) == 0)
    942 				so->so_error = 0;
    943 			goto release;
    944 		}
    945 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    946 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    947 				if (resid || clen == 0) {
    948 					error = ENOTCONN;
    949 					goto release;
    950 				}
    951 			} else if (addr == NULL) {
    952 				error = EDESTADDRREQ;
    953 				goto release;
    954 			}
    955 		}
    956 		space = sbspace(&so->so_snd);
    957 		if (flags & MSG_OOB)
    958 			space += 1024;
    959 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    960 		    clen > so->so_snd.sb_hiwat) {
    961 			error = EMSGSIZE;
    962 			goto release;
    963 		}
    964 		if (space < resid + clen &&
    965 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    966 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    967 				error = EWOULDBLOCK;
    968 				goto release;
    969 			}
    970 			sbunlock(&so->so_snd);
    971 			if (wakeup_state & SS_RESTARTSYS) {
    972 				error = ERESTART;
    973 				goto out;
    974 			}
    975 			error = sbwait(&so->so_snd);
    976 			if (error)
    977 				goto out;
    978 			wakeup_state = so->so_state;
    979 			goto restart;
    980 		}
    981 		wakeup_state = 0;
    982 		mp = &top;
    983 		space -= clen;
    984 		do {
    985 			if (uio == NULL) {
    986 				/*
    987 				 * Data is prepackaged in "top".
    988 				 */
    989 				resid = 0;
    990 				if (flags & MSG_EOR)
    991 					top->m_flags |= M_EOR;
    992 			} else do {
    993 				sounlock(so);
    994 				splx(s);
    995 				if (top == NULL) {
    996 					m = m_gethdr(M_WAIT, MT_DATA);
    997 					mlen = MHLEN;
    998 					m->m_pkthdr.len = 0;
    999 					m_reset_rcvif(m);
   1000 				} else {
   1001 					m = m_get(M_WAIT, MT_DATA);
   1002 					mlen = MLEN;
   1003 				}
   1004 				MCLAIM(m, so->so_snd.sb_mowner);
   1005 				if (sock_loan_thresh >= 0 &&
   1006 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1007 				    space >= sock_loan_thresh &&
   1008 				    (len = sosend_loan(so, uio, m,
   1009 						       space)) != 0) {
   1010 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1011 					space -= len;
   1012 					goto have_data;
   1013 				}
   1014 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1015 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1016 					m_clget(m, M_DONTWAIT);
   1017 					if ((m->m_flags & M_EXT) == 0)
   1018 						goto nopages;
   1019 					mlen = MCLBYTES;
   1020 					if (atomic && top == 0) {
   1021 						len = lmin(MCLBYTES - max_hdr,
   1022 						    resid);
   1023 						m->m_data += max_hdr;
   1024 					} else
   1025 						len = lmin(MCLBYTES, resid);
   1026 					space -= len;
   1027 				} else {
   1028  nopages:
   1029 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1030 					len = lmin(lmin(mlen, resid), space);
   1031 					space -= len;
   1032 					/*
   1033 					 * For datagram protocols, leave room
   1034 					 * for protocol headers in first mbuf.
   1035 					 */
   1036 					if (atomic && top == 0 && len < mlen)
   1037 						m_align(m, len);
   1038 				}
   1039 				error = uiomove(mtod(m, void *), (int)len, uio);
   1040  have_data:
   1041 				resid = uio->uio_resid;
   1042 				m->m_len = len;
   1043 				*mp = m;
   1044 				top->m_pkthdr.len += len;
   1045 				s = splsoftnet();
   1046 				solock(so);
   1047 				if (error != 0)
   1048 					goto release;
   1049 				mp = &m->m_next;
   1050 				if (resid <= 0) {
   1051 					if (flags & MSG_EOR)
   1052 						top->m_flags |= M_EOR;
   1053 					break;
   1054 				}
   1055 			} while (space > 0 && atomic);
   1056 
   1057 			if (so->so_state & SS_CANTSENDMORE) {
   1058 				error = EPIPE;
   1059 				goto release;
   1060 			}
   1061 			if (dontroute)
   1062 				so->so_options |= SO_DONTROUTE;
   1063 			if (resid > 0)
   1064 				so->so_state |= SS_MORETOCOME;
   1065 			if (flags & MSG_OOB) {
   1066 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
   1067 				    so, top, control);
   1068 			} else {
   1069 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1070 				    top, addr, control, l);
   1071 			}
   1072 			if (dontroute)
   1073 				so->so_options &= ~SO_DONTROUTE;
   1074 			if (resid > 0)
   1075 				so->so_state &= ~SS_MORETOCOME;
   1076 			clen = 0;
   1077 			control = NULL;
   1078 			top = NULL;
   1079 			mp = &top;
   1080 			if (error != 0)
   1081 				goto release;
   1082 		} while (resid && space > 0);
   1083 	} while (resid);
   1084 
   1085  release:
   1086 	sbunlock(&so->so_snd);
   1087  out:
   1088 	sounlock(so);
   1089 	splx(s);
   1090 	if (top)
   1091 		m_freem(top);
   1092 	if (control)
   1093 		m_freem(control);
   1094 	return error;
   1095 }
   1096 
   1097 /*
   1098  * Following replacement or removal of the first mbuf on the first
   1099  * mbuf chain of a socket buffer, push necessary state changes back
   1100  * into the socket buffer so that other consumers see the values
   1101  * consistently.  'nextrecord' is the caller's locally stored value of
   1102  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1103  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1104  */
   1105 static void
   1106 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1107 {
   1108 
   1109 	KASSERT(solocked(sb->sb_so));
   1110 
   1111 	/*
   1112 	 * First, update for the new value of nextrecord.  If necessary,
   1113 	 * make it the first record.
   1114 	 */
   1115 	if (sb->sb_mb != NULL)
   1116 		sb->sb_mb->m_nextpkt = nextrecord;
   1117 	else
   1118 		sb->sb_mb = nextrecord;
   1119 
   1120         /*
   1121          * Now update any dependent socket buffer fields to reflect
   1122          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1123          * the addition of a second clause that takes care of the
   1124          * case where sb_mb has been updated, but remains the last
   1125          * record.
   1126          */
   1127         if (sb->sb_mb == NULL) {
   1128                 sb->sb_mbtail = NULL;
   1129                 sb->sb_lastrecord = NULL;
   1130         } else if (sb->sb_mb->m_nextpkt == NULL)
   1131                 sb->sb_lastrecord = sb->sb_mb;
   1132 }
   1133 
   1134 /*
   1135  * Implement receive operations on a socket.
   1136  *
   1137  * We depend on the way that records are added to the sockbuf by sbappend*. In
   1138  * particular, each record (mbufs linked through m_next) must begin with an
   1139  * address if the protocol so specifies, followed by an optional mbuf or mbufs
   1140  * containing ancillary data, and then zero or more mbufs of data.
   1141  *
   1142  * In order to avoid blocking network interrupts for the entire time here, we
   1143  * splx() while doing the actual copy to user space. Although the sockbuf is
   1144  * locked, new data may still be appended, and thus we must maintain
   1145  * consistency of the sockbuf during that time.
   1146  *
   1147  * The caller may receive the data as a single mbuf chain by supplying an mbuf
   1148  * **mp0 for use in returning the chain. The uio is then used only for the
   1149  * count in uio_resid.
   1150  */
   1151 int
   1152 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1153     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1154 {
   1155 	struct lwp *l = curlwp;
   1156 	struct mbuf *m, **mp, *mt;
   1157 	size_t len, offset, moff, orig_resid;
   1158 	int atomic, flags, error, s, type;
   1159 	const struct protosw *pr;
   1160 	struct mbuf *nextrecord;
   1161 	int mbuf_removed = 0;
   1162 	const struct domain *dom;
   1163 	short wakeup_state = 0;
   1164 
   1165 	pr = so->so_proto;
   1166 	atomic = pr->pr_flags & PR_ATOMIC;
   1167 	dom = pr->pr_domain;
   1168 	mp = mp0;
   1169 	type = 0;
   1170 	orig_resid = uio->uio_resid;
   1171 
   1172 	if (paddr != NULL)
   1173 		*paddr = NULL;
   1174 	if (controlp != NULL)
   1175 		*controlp = NULL;
   1176 	if (flagsp != NULL)
   1177 		flags = *flagsp &~ MSG_EOR;
   1178 	else
   1179 		flags = 0;
   1180 
   1181 	if (flags & MSG_OOB) {
   1182 		m = m_get(M_WAIT, MT_DATA);
   1183 		solock(so);
   1184 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1185 		sounlock(so);
   1186 		if (error)
   1187 			goto bad;
   1188 		do {
   1189 			error = uiomove(mtod(m, void *),
   1190 			    MIN(uio->uio_resid, m->m_len), uio);
   1191 			m = m_free(m);
   1192 		} while (uio->uio_resid > 0 && error == 0 && m);
   1193 bad:
   1194 		if (m != NULL)
   1195 			m_freem(m);
   1196 		return error;
   1197 	}
   1198 	if (mp != NULL)
   1199 		*mp = NULL;
   1200 
   1201 	/*
   1202 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1203 	 * protocol processing soft interrupts from interrupting us and
   1204 	 * blocking (expensive).
   1205 	 */
   1206 	s = splsoftnet();
   1207 	solock(so);
   1208 restart:
   1209 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1210 		sounlock(so);
   1211 		splx(s);
   1212 		return error;
   1213 	}
   1214 	m = so->so_rcv.sb_mb;
   1215 
   1216 	/*
   1217 	 * If we have less data than requested, block awaiting more
   1218 	 * (subject to any timeout) if:
   1219 	 *   1. the current count is less than the low water mark,
   1220 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1221 	 *	receive operation at once if we block (resid <= hiwat), or
   1222 	 *   3. MSG_DONTWAIT is not set.
   1223 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1224 	 * we have to do the receive in sections, and thus risk returning
   1225 	 * a short count if a timeout or signal occurs after we start.
   1226 	 */
   1227 	if (m == NULL ||
   1228 	    ((flags & MSG_DONTWAIT) == 0 &&
   1229 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1230 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1231 	      ((flags & MSG_WAITALL) &&
   1232 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1233 	     m->m_nextpkt == NULL && !atomic)) {
   1234 #ifdef DIAGNOSTIC
   1235 		if (m == NULL && so->so_rcv.sb_cc)
   1236 			panic("receive 1");
   1237 #endif
   1238 		if (so->so_error || so->so_rerror) {
   1239 			u_short *e;
   1240 			if (m != NULL)
   1241 				goto dontblock;
   1242 			e = so->so_error ? &so->so_error : &so->so_rerror;
   1243 			error = *e;
   1244 			if ((flags & MSG_PEEK) == 0)
   1245 				*e = 0;
   1246 			goto release;
   1247 		}
   1248 		if (so->so_state & SS_CANTRCVMORE) {
   1249 			if (m != NULL)
   1250 				goto dontblock;
   1251 			else
   1252 				goto release;
   1253 		}
   1254 		for (; m != NULL; m = m->m_next)
   1255 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1256 				m = so->so_rcv.sb_mb;
   1257 				goto dontblock;
   1258 			}
   1259 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1260 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1261 			error = ENOTCONN;
   1262 			goto release;
   1263 		}
   1264 		if (uio->uio_resid == 0)
   1265 			goto release;
   1266 		if ((so->so_state & SS_NBIO) ||
   1267 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1268 			error = EWOULDBLOCK;
   1269 			goto release;
   1270 		}
   1271 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1272 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1273 		sbunlock(&so->so_rcv);
   1274 		if (wakeup_state & SS_RESTARTSYS)
   1275 			error = ERESTART;
   1276 		else
   1277 			error = sbwait(&so->so_rcv);
   1278 		if (error != 0) {
   1279 			sounlock(so);
   1280 			splx(s);
   1281 			return error;
   1282 		}
   1283 		wakeup_state = so->so_state;
   1284 		goto restart;
   1285 	}
   1286 
   1287 dontblock:
   1288 	/*
   1289 	 * On entry here, m points to the first record of the socket buffer.
   1290 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1291 	 * pointer to the next record in the socket buffer.  We must keep the
   1292 	 * various socket buffer pointers and local stack versions of the
   1293 	 * pointers in sync, pushing out modifications before dropping the
   1294 	 * socket lock, and re-reading them when picking it up.
   1295 	 *
   1296 	 * Otherwise, we will race with the network stack appending new data
   1297 	 * or records onto the socket buffer by using inconsistent/stale
   1298 	 * versions of the field, possibly resulting in socket buffer
   1299 	 * corruption.
   1300 	 *
   1301 	 * By holding the high-level sblock(), we prevent simultaneous
   1302 	 * readers from pulling off the front of the socket buffer.
   1303 	 */
   1304 	if (l != NULL)
   1305 		l->l_ru.ru_msgrcv++;
   1306 	KASSERT(m == so->so_rcv.sb_mb);
   1307 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1308 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1309 	nextrecord = m->m_nextpkt;
   1310 
   1311 	if (pr->pr_flags & PR_ADDR) {
   1312 		KASSERT(m->m_type == MT_SONAME);
   1313 		orig_resid = 0;
   1314 		if (flags & MSG_PEEK) {
   1315 			if (paddr)
   1316 				*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1317 			m = m->m_next;
   1318 		} else {
   1319 			sbfree(&so->so_rcv, m);
   1320 			mbuf_removed = 1;
   1321 			if (paddr != NULL) {
   1322 				*paddr = m;
   1323 				so->so_rcv.sb_mb = m->m_next;
   1324 				m->m_next = NULL;
   1325 				m = so->so_rcv.sb_mb;
   1326 			} else {
   1327 				m = so->so_rcv.sb_mb = m_free(m);
   1328 			}
   1329 			sbsync(&so->so_rcv, nextrecord);
   1330 		}
   1331 	}
   1332 
   1333 	if (pr->pr_flags & PR_ADDR_OPT) {
   1334 		/*
   1335 		 * For SCTP we may be getting a whole message OR a partial
   1336 		 * delivery.
   1337 		 */
   1338 		if (m->m_type == MT_SONAME) {
   1339 			orig_resid = 0;
   1340 			if (flags & MSG_PEEK) {
   1341 				if (paddr)
   1342 					*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1343 				m = m->m_next;
   1344 			} else {
   1345 				sbfree(&so->so_rcv, m);
   1346 				mbuf_removed = 1;
   1347 				if (paddr) {
   1348 					*paddr = m;
   1349 					so->so_rcv.sb_mb = m->m_next;
   1350 					m->m_next = 0;
   1351 					m = so->so_rcv.sb_mb;
   1352 				} else {
   1353 					m = so->so_rcv.sb_mb = m_free(m);
   1354 				}
   1355 				sbsync(&so->so_rcv, nextrecord);
   1356 			}
   1357 		}
   1358 	}
   1359 
   1360 	/*
   1361 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1362 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1363 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1364 	 * perform externalization (or freeing if controlp == NULL).
   1365 	 */
   1366 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1367 		struct mbuf *cm = NULL, *cmn;
   1368 		struct mbuf **cme = &cm;
   1369 
   1370 		do {
   1371 			if (flags & MSG_PEEK) {
   1372 				if (controlp != NULL) {
   1373 					*controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1374 					controlp = (*controlp == NULL ? NULL :
   1375 					    &(*controlp)->m_next);
   1376 				}
   1377 				m = m->m_next;
   1378 			} else {
   1379 				sbfree(&so->so_rcv, m);
   1380 				so->so_rcv.sb_mb = m->m_next;
   1381 				m->m_next = NULL;
   1382 				*cme = m;
   1383 				cme = &(*cme)->m_next;
   1384 				m = so->so_rcv.sb_mb;
   1385 			}
   1386 		} while (m != NULL && m->m_type == MT_CONTROL);
   1387 		if ((flags & MSG_PEEK) == 0)
   1388 			sbsync(&so->so_rcv, nextrecord);
   1389 
   1390 		for (; cm != NULL; cm = cmn) {
   1391 			cmn = cm->m_next;
   1392 			cm->m_next = NULL;
   1393 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1394 			if (controlp != NULL) {
   1395 				if (dom->dom_externalize != NULL &&
   1396 				    type == SCM_RIGHTS) {
   1397 					sounlock(so);
   1398 					splx(s);
   1399 					error = (*dom->dom_externalize)(cm, l,
   1400 					    (flags & MSG_CMSG_CLOEXEC) ?
   1401 					    O_CLOEXEC : 0);
   1402 					s = splsoftnet();
   1403 					solock(so);
   1404 				}
   1405 				*controlp = cm;
   1406 				while (*controlp != NULL)
   1407 					controlp = &(*controlp)->m_next;
   1408 			} else {
   1409 				/*
   1410 				 * Dispose of any SCM_RIGHTS message that went
   1411 				 * through the read path rather than recv.
   1412 				 */
   1413 				if (dom->dom_dispose != NULL &&
   1414 				    type == SCM_RIGHTS) {
   1415 					sounlock(so);
   1416 					(*dom->dom_dispose)(cm);
   1417 					solock(so);
   1418 				}
   1419 				m_freem(cm);
   1420 			}
   1421 		}
   1422 		if (m != NULL)
   1423 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1424 		else
   1425 			nextrecord = so->so_rcv.sb_mb;
   1426 		orig_resid = 0;
   1427 	}
   1428 
   1429 	/* If m is non-NULL, we have some data to read. */
   1430 	if (__predict_true(m != NULL)) {
   1431 		type = m->m_type;
   1432 		if (type == MT_OOBDATA)
   1433 			flags |= MSG_OOB;
   1434 	}
   1435 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1436 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1437 
   1438 	moff = 0;
   1439 	offset = 0;
   1440 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1441 		/*
   1442 		 * If the type of mbuf has changed, end the receive
   1443 		 * operation and do a short read.
   1444 		 */
   1445 		if (m->m_type == MT_OOBDATA) {
   1446 			if (type != MT_OOBDATA)
   1447 				break;
   1448 		} else if (type == MT_OOBDATA) {
   1449 			break;
   1450 		} else if (m->m_type == MT_CONTROL) {
   1451 			break;
   1452 		}
   1453 #ifdef DIAGNOSTIC
   1454 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
   1455 			panic("%s: m_type=%d", __func__, m->m_type);
   1456 		}
   1457 #endif
   1458 
   1459 		so->so_state &= ~SS_RCVATMARK;
   1460 		wakeup_state = 0;
   1461 		len = uio->uio_resid;
   1462 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1463 			len = so->so_oobmark - offset;
   1464 		if (len > m->m_len - moff)
   1465 			len = m->m_len - moff;
   1466 
   1467 		/*
   1468 		 * If mp is set, just pass back the mbufs.
   1469 		 * Otherwise copy them out via the uio, then free.
   1470 		 * Sockbuf must be consistent here (points to current mbuf,
   1471 		 * it points to next record) when we drop priority;
   1472 		 * we must note any additions to the sockbuf when we
   1473 		 * block interrupts again.
   1474 		 */
   1475 		if (mp == NULL) {
   1476 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1477 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1478 			sounlock(so);
   1479 			splx(s);
   1480 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1481 			s = splsoftnet();
   1482 			solock(so);
   1483 			if (error != 0) {
   1484 				/*
   1485 				 * If any part of the record has been removed
   1486 				 * (such as the MT_SONAME mbuf, which will
   1487 				 * happen when PR_ADDR, and thus also
   1488 				 * PR_ATOMIC, is set), then drop the entire
   1489 				 * record to maintain the atomicity of the
   1490 				 * receive operation.
   1491 				 *
   1492 				 * This avoids a later panic("receive 1a")
   1493 				 * when compiled with DIAGNOSTIC.
   1494 				 */
   1495 				if (m && mbuf_removed && atomic)
   1496 					(void) sbdroprecord(&so->so_rcv);
   1497 
   1498 				goto release;
   1499 			}
   1500 		} else {
   1501 			uio->uio_resid -= len;
   1502 		}
   1503 
   1504 		if (len == m->m_len - moff) {
   1505 			if (m->m_flags & M_EOR)
   1506 				flags |= MSG_EOR;
   1507 #ifdef SCTP
   1508 			if (m->m_flags & M_NOTIFICATION)
   1509 				flags |= MSG_NOTIFICATION;
   1510 #endif
   1511 			if (flags & MSG_PEEK) {
   1512 				m = m->m_next;
   1513 				moff = 0;
   1514 			} else {
   1515 				nextrecord = m->m_nextpkt;
   1516 				sbfree(&so->so_rcv, m);
   1517 				if (mp) {
   1518 					*mp = m;
   1519 					mp = &m->m_next;
   1520 					so->so_rcv.sb_mb = m = m->m_next;
   1521 					*mp = NULL;
   1522 				} else {
   1523 					m = so->so_rcv.sb_mb = m_free(m);
   1524 				}
   1525 				/*
   1526 				 * If m != NULL, we also know that
   1527 				 * so->so_rcv.sb_mb != NULL.
   1528 				 */
   1529 				KASSERT(so->so_rcv.sb_mb == m);
   1530 				if (m) {
   1531 					m->m_nextpkt = nextrecord;
   1532 					if (nextrecord == NULL)
   1533 						so->so_rcv.sb_lastrecord = m;
   1534 				} else {
   1535 					so->so_rcv.sb_mb = nextrecord;
   1536 					SB_EMPTY_FIXUP(&so->so_rcv);
   1537 				}
   1538 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1539 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1540 			}
   1541 		} else if (flags & MSG_PEEK) {
   1542 			moff += len;
   1543 		} else {
   1544 			if (mp != NULL) {
   1545 				mt = m_copym(m, 0, len, M_NOWAIT);
   1546 				if (__predict_false(mt == NULL)) {
   1547 					sounlock(so);
   1548 					mt = m_copym(m, 0, len, M_WAIT);
   1549 					solock(so);
   1550 				}
   1551 				*mp = mt;
   1552 			}
   1553 			m->m_data += len;
   1554 			m->m_len -= len;
   1555 			so->so_rcv.sb_cc -= len;
   1556 		}
   1557 
   1558 		if (so->so_oobmark) {
   1559 			if ((flags & MSG_PEEK) == 0) {
   1560 				so->so_oobmark -= len;
   1561 				if (so->so_oobmark == 0) {
   1562 					so->so_state |= SS_RCVATMARK;
   1563 					break;
   1564 				}
   1565 			} else {
   1566 				offset += len;
   1567 				if (offset == so->so_oobmark)
   1568 					break;
   1569 			}
   1570 		} else {
   1571 			so->so_state &= ~SS_POLLRDBAND;
   1572 		}
   1573 		if (flags & MSG_EOR)
   1574 			break;
   1575 
   1576 		/*
   1577 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1578 		 * we must not quit until "uio->uio_resid == 0" or an error
   1579 		 * termination.  If a signal/timeout occurs, return
   1580 		 * with a short count but without error.
   1581 		 * Keep sockbuf locked against other readers.
   1582 		 */
   1583 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1584 		    !sosendallatonce(so) && !nextrecord) {
   1585 			if (so->so_error || so->so_rerror ||
   1586 			    so->so_state & SS_CANTRCVMORE)
   1587 				break;
   1588 			/*
   1589 			 * If we are peeking and the socket receive buffer is
   1590 			 * full, stop since we can't get more data to peek at.
   1591 			 */
   1592 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1593 				break;
   1594 			/*
   1595 			 * If we've drained the socket buffer, tell the
   1596 			 * protocol in case it needs to do something to
   1597 			 * get it filled again.
   1598 			 */
   1599 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1600 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1601 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1602 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1603 			if (wakeup_state & SS_RESTARTSYS)
   1604 				error = ERESTART;
   1605 			else
   1606 				error = sbwait(&so->so_rcv);
   1607 			if (error != 0) {
   1608 				sbunlock(&so->so_rcv);
   1609 				sounlock(so);
   1610 				splx(s);
   1611 				return 0;
   1612 			}
   1613 			if ((m = so->so_rcv.sb_mb) != NULL)
   1614 				nextrecord = m->m_nextpkt;
   1615 			wakeup_state = so->so_state;
   1616 		}
   1617 	}
   1618 
   1619 	if (m && atomic) {
   1620 		flags |= MSG_TRUNC;
   1621 		if ((flags & MSG_PEEK) == 0)
   1622 			(void) sbdroprecord(&so->so_rcv);
   1623 	}
   1624 	if ((flags & MSG_PEEK) == 0) {
   1625 		if (m == NULL) {
   1626 			/*
   1627 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1628 			 * part makes sure sb_lastrecord is up-to-date if
   1629 			 * there is still data in the socket buffer.
   1630 			 */
   1631 			so->so_rcv.sb_mb = nextrecord;
   1632 			if (so->so_rcv.sb_mb == NULL) {
   1633 				so->so_rcv.sb_mbtail = NULL;
   1634 				so->so_rcv.sb_lastrecord = NULL;
   1635 			} else if (nextrecord->m_nextpkt == NULL)
   1636 				so->so_rcv.sb_lastrecord = nextrecord;
   1637 		}
   1638 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1639 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1640 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1641 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1642 	}
   1643 	if (orig_resid == uio->uio_resid && orig_resid &&
   1644 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1645 		sbunlock(&so->so_rcv);
   1646 		goto restart;
   1647 	}
   1648 
   1649 	if (flagsp != NULL)
   1650 		*flagsp |= flags;
   1651 release:
   1652 	sbunlock(&so->so_rcv);
   1653 	sounlock(so);
   1654 	splx(s);
   1655 	return error;
   1656 }
   1657 
   1658 int
   1659 soshutdown(struct socket *so, int how)
   1660 {
   1661 	const struct protosw *pr;
   1662 	int error;
   1663 
   1664 	KASSERT(solocked(so));
   1665 
   1666 	pr = so->so_proto;
   1667 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1668 		return EINVAL;
   1669 
   1670 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1671 		sorflush(so);
   1672 		error = 0;
   1673 	}
   1674 	if (how == SHUT_WR || how == SHUT_RDWR)
   1675 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1676 
   1677 	return error;
   1678 }
   1679 
   1680 void
   1681 sorestart(struct socket *so)
   1682 {
   1683 	/*
   1684 	 * An application has called close() on an fd on which another
   1685 	 * of its threads has called a socket system call.
   1686 	 * Mark this and wake everyone up, and code that would block again
   1687 	 * instead returns ERESTART.
   1688 	 * On system call re-entry the fd is validated and EBADF returned.
   1689 	 * Any other fd will block again on the 2nd syscall.
   1690 	 */
   1691 	solock(so);
   1692 	so->so_state |= SS_RESTARTSYS;
   1693 	cv_broadcast(&so->so_cv);
   1694 	cv_broadcast(&so->so_snd.sb_cv);
   1695 	cv_broadcast(&so->so_rcv.sb_cv);
   1696 	sounlock(so);
   1697 }
   1698 
   1699 void
   1700 sorflush(struct socket *so)
   1701 {
   1702 	struct sockbuf *sb, asb;
   1703 	const struct protosw *pr;
   1704 
   1705 	KASSERT(solocked(so));
   1706 
   1707 	sb = &so->so_rcv;
   1708 	pr = so->so_proto;
   1709 	socantrcvmore(so);
   1710 	sb->sb_flags |= SB_NOINTR;
   1711 	(void )sblock(sb, M_WAITOK);
   1712 	sbunlock(sb);
   1713 	asb = *sb;
   1714 	/*
   1715 	 * Clear most of the sockbuf structure, but leave some of the
   1716 	 * fields valid.
   1717 	 */
   1718 	memset(&sb->sb_startzero, 0,
   1719 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1720 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1721 		sounlock(so);
   1722 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1723 		solock(so);
   1724 	}
   1725 	sbrelease(&asb, so);
   1726 }
   1727 
   1728 /*
   1729  * internal set SOL_SOCKET options
   1730  */
   1731 static int
   1732 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1733 {
   1734 	int error, opt;
   1735 	int optval = 0; /* XXX: gcc */
   1736 	struct linger l;
   1737 	struct timeval tv;
   1738 
   1739 	opt = sopt->sopt_name;
   1740 
   1741 	switch (opt) {
   1742 
   1743 	case SO_ACCEPTFILTER:
   1744 		error = accept_filt_setopt(so, sopt);
   1745 		KASSERT(solocked(so));
   1746 		break;
   1747 
   1748 	case SO_LINGER:
   1749 		error = sockopt_get(sopt, &l, sizeof(l));
   1750 		solock(so);
   1751 		if (error)
   1752 			break;
   1753 		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1754 		    l.l_linger > (INT_MAX / hz)) {
   1755 			error = EDOM;
   1756 			break;
   1757 		}
   1758 		so->so_linger = l.l_linger;
   1759 		if (l.l_onoff)
   1760 			so->so_options |= SO_LINGER;
   1761 		else
   1762 			so->so_options &= ~SO_LINGER;
   1763 		break;
   1764 
   1765 	case SO_DEBUG:
   1766 	case SO_KEEPALIVE:
   1767 	case SO_DONTROUTE:
   1768 	case SO_USELOOPBACK:
   1769 	case SO_BROADCAST:
   1770 	case SO_REUSEADDR:
   1771 	case SO_REUSEPORT:
   1772 	case SO_OOBINLINE:
   1773 	case SO_TIMESTAMP:
   1774 	case SO_NOSIGPIPE:
   1775 	case SO_RERROR:
   1776 		error = sockopt_getint(sopt, &optval);
   1777 		solock(so);
   1778 		if (error)
   1779 			break;
   1780 		if (optval)
   1781 			so->so_options |= opt;
   1782 		else
   1783 			so->so_options &= ~opt;
   1784 		break;
   1785 
   1786 	case SO_SNDBUF:
   1787 	case SO_RCVBUF:
   1788 	case SO_SNDLOWAT:
   1789 	case SO_RCVLOWAT:
   1790 		error = sockopt_getint(sopt, &optval);
   1791 		solock(so);
   1792 		if (error)
   1793 			break;
   1794 
   1795 		/*
   1796 		 * Values < 1 make no sense for any of these
   1797 		 * options, so disallow them.
   1798 		 */
   1799 		if (optval < 1) {
   1800 			error = EINVAL;
   1801 			break;
   1802 		}
   1803 
   1804 		switch (opt) {
   1805 		case SO_SNDBUF:
   1806 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1807 				error = ENOBUFS;
   1808 				break;
   1809 			}
   1810 			if (sofixedbuf)
   1811 				so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1812 			break;
   1813 
   1814 		case SO_RCVBUF:
   1815 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1816 				error = ENOBUFS;
   1817 				break;
   1818 			}
   1819 			if (sofixedbuf)
   1820 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1821 			break;
   1822 
   1823 		/*
   1824 		 * Make sure the low-water is never greater than
   1825 		 * the high-water.
   1826 		 */
   1827 		case SO_SNDLOWAT:
   1828 			if (optval > so->so_snd.sb_hiwat)
   1829 				optval = so->so_snd.sb_hiwat;
   1830 
   1831 			so->so_snd.sb_lowat = optval;
   1832 			break;
   1833 
   1834 		case SO_RCVLOWAT:
   1835 			if (optval > so->so_rcv.sb_hiwat)
   1836 				optval = so->so_rcv.sb_hiwat;
   1837 
   1838 			so->so_rcv.sb_lowat = optval;
   1839 			break;
   1840 		}
   1841 		break;
   1842 
   1843 	case SO_SNDTIMEO:
   1844 	case SO_RCVTIMEO:
   1845 		solock(so);
   1846 		error = sockopt_get(sopt, &tv, sizeof(tv));
   1847 		if (error)
   1848 			break;
   1849 
   1850 		if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
   1851 			error = EDOM;
   1852 			break;
   1853 		}
   1854 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1855 			error = EDOM;
   1856 			break;
   1857 		}
   1858 
   1859 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1860 		if (optval == 0 && tv.tv_usec != 0)
   1861 			optval = 1;
   1862 
   1863 		switch (opt) {
   1864 		case SO_SNDTIMEO:
   1865 			so->so_snd.sb_timeo = optval;
   1866 			break;
   1867 		case SO_RCVTIMEO:
   1868 			so->so_rcv.sb_timeo = optval;
   1869 			break;
   1870 		}
   1871 		break;
   1872 
   1873 	default:
   1874 		MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
   1875 		    (opt, so, sopt), enosys(), error);
   1876 		if (error == ENOSYS || error == EPASSTHROUGH) {
   1877 			solock(so);
   1878 			error = ENOPROTOOPT;
   1879 		}
   1880 		break;
   1881 	}
   1882 	KASSERT(solocked(so));
   1883 	return error;
   1884 }
   1885 
   1886 int
   1887 sosetopt(struct socket *so, struct sockopt *sopt)
   1888 {
   1889 	int error, prerr;
   1890 
   1891 	if (sopt->sopt_level == SOL_SOCKET) {
   1892 		error = sosetopt1(so, sopt);
   1893 		KASSERT(solocked(so));
   1894 	} else {
   1895 		error = ENOPROTOOPT;
   1896 		solock(so);
   1897 	}
   1898 
   1899 	if ((error == 0 || error == ENOPROTOOPT) &&
   1900 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1901 		/* give the protocol stack a shot */
   1902 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1903 		if (prerr == 0)
   1904 			error = 0;
   1905 		else if (prerr != ENOPROTOOPT)
   1906 			error = prerr;
   1907 	}
   1908 	sounlock(so);
   1909 	return error;
   1910 }
   1911 
   1912 /*
   1913  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1914  */
   1915 int
   1916 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1917     const void *val, size_t valsize)
   1918 {
   1919 	struct sockopt sopt;
   1920 	int error;
   1921 
   1922 	KASSERT(valsize == 0 || val != NULL);
   1923 
   1924 	sockopt_init(&sopt, level, name, valsize);
   1925 	sockopt_set(&sopt, val, valsize);
   1926 
   1927 	error = sosetopt(so, &sopt);
   1928 
   1929 	sockopt_destroy(&sopt);
   1930 
   1931 	return error;
   1932 }
   1933 
   1934 /*
   1935  * internal get SOL_SOCKET options
   1936  */
   1937 static int
   1938 sogetopt1(struct socket *so, struct sockopt *sopt)
   1939 {
   1940 	int error, optval, opt;
   1941 	struct linger l;
   1942 	struct timeval tv;
   1943 
   1944 	switch ((opt = sopt->sopt_name)) {
   1945 
   1946 	case SO_ACCEPTFILTER:
   1947 		error = accept_filt_getopt(so, sopt);
   1948 		break;
   1949 
   1950 	case SO_LINGER:
   1951 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1952 		l.l_linger = so->so_linger;
   1953 
   1954 		error = sockopt_set(sopt, &l, sizeof(l));
   1955 		break;
   1956 
   1957 	case SO_USELOOPBACK:
   1958 	case SO_DONTROUTE:
   1959 	case SO_DEBUG:
   1960 	case SO_KEEPALIVE:
   1961 	case SO_REUSEADDR:
   1962 	case SO_REUSEPORT:
   1963 	case SO_BROADCAST:
   1964 	case SO_OOBINLINE:
   1965 	case SO_TIMESTAMP:
   1966 	case SO_NOSIGPIPE:
   1967 	case SO_RERROR:
   1968 	case SO_ACCEPTCONN:
   1969 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1970 		break;
   1971 
   1972 	case SO_TYPE:
   1973 		error = sockopt_setint(sopt, so->so_type);
   1974 		break;
   1975 
   1976 	case SO_ERROR:
   1977 		if (so->so_error == 0) {
   1978 			so->so_error = so->so_rerror;
   1979 			so->so_rerror = 0;
   1980 		}
   1981 		error = sockopt_setint(sopt, so->so_error);
   1982 		so->so_error = 0;
   1983 		break;
   1984 
   1985 	case SO_SNDBUF:
   1986 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1987 		break;
   1988 
   1989 	case SO_RCVBUF:
   1990 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1991 		break;
   1992 
   1993 	case SO_SNDLOWAT:
   1994 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1995 		break;
   1996 
   1997 	case SO_RCVLOWAT:
   1998 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1999 		break;
   2000 
   2001 	case SO_SNDTIMEO:
   2002 	case SO_RCVTIMEO:
   2003 		optval = (opt == SO_SNDTIMEO ?
   2004 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   2005 
   2006 		memset(&tv, 0, sizeof(tv));
   2007 		tv.tv_sec = optval / hz;
   2008 		tv.tv_usec = (optval % hz) * tick;
   2009 
   2010 		error = sockopt_set(sopt, &tv, sizeof(tv));
   2011 		break;
   2012 
   2013 	case SO_OVERFLOWED:
   2014 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   2015 		break;
   2016 
   2017 	default:
   2018 		MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
   2019 		    (opt, so, sopt), enosys(), error);
   2020 		if (error)
   2021 			error = ENOPROTOOPT;
   2022 		break;
   2023 	}
   2024 
   2025 	return error;
   2026 }
   2027 
   2028 int
   2029 sogetopt(struct socket *so, struct sockopt *sopt)
   2030 {
   2031 	int error;
   2032 
   2033 	solock(so);
   2034 	if (sopt->sopt_level != SOL_SOCKET) {
   2035 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2036 			error = ((*so->so_proto->pr_ctloutput)
   2037 			    (PRCO_GETOPT, so, sopt));
   2038 		} else
   2039 			error = (ENOPROTOOPT);
   2040 	} else {
   2041 		error = sogetopt1(so, sopt);
   2042 	}
   2043 	sounlock(so);
   2044 	return error;
   2045 }
   2046 
   2047 /*
   2048  * alloc sockopt data buffer buffer
   2049  *	- will be released at destroy
   2050  */
   2051 static int
   2052 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2053 {
   2054 	void *data;
   2055 
   2056 	KASSERT(sopt->sopt_size == 0);
   2057 
   2058 	if (len > sizeof(sopt->sopt_buf)) {
   2059 		data = kmem_zalloc(len, kmflag);
   2060 		if (data == NULL)
   2061 			return ENOMEM;
   2062 		sopt->sopt_data = data;
   2063 	} else
   2064 		sopt->sopt_data = sopt->sopt_buf;
   2065 
   2066 	sopt->sopt_size = len;
   2067 	return 0;
   2068 }
   2069 
   2070 /*
   2071  * initialise sockopt storage
   2072  *	- MAY sleep during allocation
   2073  */
   2074 void
   2075 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2076 {
   2077 
   2078 	memset(sopt, 0, sizeof(*sopt));
   2079 
   2080 	sopt->sopt_level = level;
   2081 	sopt->sopt_name = name;
   2082 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2083 }
   2084 
   2085 /*
   2086  * destroy sockopt storage
   2087  *	- will release any held memory references
   2088  */
   2089 void
   2090 sockopt_destroy(struct sockopt *sopt)
   2091 {
   2092 
   2093 	if (sopt->sopt_data != sopt->sopt_buf)
   2094 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2095 
   2096 	memset(sopt, 0, sizeof(*sopt));
   2097 }
   2098 
   2099 /*
   2100  * set sockopt value
   2101  *	- value is copied into sockopt
   2102  *	- memory is allocated when necessary, will not sleep
   2103  */
   2104 int
   2105 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2106 {
   2107 	int error;
   2108 
   2109 	if (sopt->sopt_size == 0) {
   2110 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2111 		if (error)
   2112 			return error;
   2113 	}
   2114 
   2115 	sopt->sopt_retsize = MIN(sopt->sopt_size, len);
   2116 	if (sopt->sopt_retsize > 0) {
   2117 		memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
   2118 	}
   2119 
   2120 	return 0;
   2121 }
   2122 
   2123 /*
   2124  * common case of set sockopt integer value
   2125  */
   2126 int
   2127 sockopt_setint(struct sockopt *sopt, int val)
   2128 {
   2129 
   2130 	return sockopt_set(sopt, &val, sizeof(int));
   2131 }
   2132 
   2133 /*
   2134  * get sockopt value
   2135  *	- correct size must be given
   2136  */
   2137 int
   2138 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2139 {
   2140 
   2141 	if (sopt->sopt_size != len)
   2142 		return EINVAL;
   2143 
   2144 	memcpy(buf, sopt->sopt_data, len);
   2145 	return 0;
   2146 }
   2147 
   2148 /*
   2149  * common case of get sockopt integer value
   2150  */
   2151 int
   2152 sockopt_getint(const struct sockopt *sopt, int *valp)
   2153 {
   2154 
   2155 	return sockopt_get(sopt, valp, sizeof(int));
   2156 }
   2157 
   2158 /*
   2159  * set sockopt value from mbuf
   2160  *	- ONLY for legacy code
   2161  *	- mbuf is released by sockopt
   2162  *	- will not sleep
   2163  */
   2164 int
   2165 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2166 {
   2167 	size_t len;
   2168 	int error;
   2169 
   2170 	len = m_length(m);
   2171 
   2172 	if (sopt->sopt_size == 0) {
   2173 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2174 		if (error)
   2175 			return error;
   2176 	}
   2177 
   2178 	sopt->sopt_retsize = MIN(sopt->sopt_size, len);
   2179 	m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
   2180 	m_freem(m);
   2181 
   2182 	return 0;
   2183 }
   2184 
   2185 /*
   2186  * get sockopt value into mbuf
   2187  *	- ONLY for legacy code
   2188  *	- mbuf to be released by the caller
   2189  *	- will not sleep
   2190  */
   2191 struct mbuf *
   2192 sockopt_getmbuf(const struct sockopt *sopt)
   2193 {
   2194 	struct mbuf *m;
   2195 
   2196 	if (sopt->sopt_size > MCLBYTES)
   2197 		return NULL;
   2198 
   2199 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2200 	if (m == NULL)
   2201 		return NULL;
   2202 
   2203 	if (sopt->sopt_size > MLEN) {
   2204 		MCLGET(m, M_DONTWAIT);
   2205 		if ((m->m_flags & M_EXT) == 0) {
   2206 			m_free(m);
   2207 			return NULL;
   2208 		}
   2209 	}
   2210 
   2211 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2212 	m->m_len = sopt->sopt_size;
   2213 
   2214 	return m;
   2215 }
   2216 
   2217 void
   2218 sohasoutofband(struct socket *so)
   2219 {
   2220 
   2221 	so->so_state |= SS_POLLRDBAND;
   2222 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2223 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2224 }
   2225 
   2226 static void
   2227 filt_sordetach(struct knote *kn)
   2228 {
   2229 	struct socket *so;
   2230 
   2231 	so = ((file_t *)kn->kn_obj)->f_socket;
   2232 	solock(so);
   2233 	if (selremove_knote(&so->so_rcv.sb_sel, kn))
   2234 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2235 	sounlock(so);
   2236 }
   2237 
   2238 /*ARGSUSED*/
   2239 static int
   2240 filt_soread(struct knote *kn, long hint)
   2241 {
   2242 	struct socket *so;
   2243 	int rv;
   2244 
   2245 	so = ((file_t *)kn->kn_obj)->f_socket;
   2246 	if (hint != NOTE_SUBMIT)
   2247 		solock(so);
   2248 	kn->kn_data = so->so_rcv.sb_cc;
   2249 	if (so->so_state & SS_CANTRCVMORE) {
   2250 		knote_set_eof(kn, 0);
   2251 		kn->kn_fflags = so->so_error;
   2252 		rv = 1;
   2253 	} else if (so->so_error || so->so_rerror)
   2254 		rv = 1;
   2255 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2256 		rv = (kn->kn_data >= kn->kn_sdata);
   2257 	else
   2258 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2259 	if (hint != NOTE_SUBMIT)
   2260 		sounlock(so);
   2261 	return rv;
   2262 }
   2263 
   2264 static void
   2265 filt_sowdetach(struct knote *kn)
   2266 {
   2267 	struct socket *so;
   2268 
   2269 	so = ((file_t *)kn->kn_obj)->f_socket;
   2270 	solock(so);
   2271 	if (selremove_knote(&so->so_snd.sb_sel, kn))
   2272 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2273 	sounlock(so);
   2274 }
   2275 
   2276 /*ARGSUSED*/
   2277 static int
   2278 filt_sowrite(struct knote *kn, long hint)
   2279 {
   2280 	struct socket *so;
   2281 	int rv;
   2282 
   2283 	so = ((file_t *)kn->kn_obj)->f_socket;
   2284 	if (hint != NOTE_SUBMIT)
   2285 		solock(so);
   2286 	kn->kn_data = sbspace(&so->so_snd);
   2287 	if (so->so_state & SS_CANTSENDMORE) {
   2288 		knote_set_eof(kn, 0);
   2289 		kn->kn_fflags = so->so_error;
   2290 		rv = 1;
   2291 	} else if (so->so_error)
   2292 		rv = 1;
   2293 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2294 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2295 		rv = 0;
   2296 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2297 		rv = (kn->kn_data >= kn->kn_sdata);
   2298 	else
   2299 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2300 	if (hint != NOTE_SUBMIT)
   2301 		sounlock(so);
   2302 	return rv;
   2303 }
   2304 
   2305 static int
   2306 filt_soempty(struct knote *kn, long hint)
   2307 {
   2308 	struct socket *so;
   2309 	int rv;
   2310 
   2311 	so = ((file_t *)kn->kn_obj)->f_socket;
   2312 	if (hint != NOTE_SUBMIT)
   2313 		solock(so);
   2314 	rv = (kn->kn_data = sbused(&so->so_snd)) == 0 ||
   2315 	     (so->so_options & SO_ACCEPTCONN) != 0;
   2316 	if (hint != NOTE_SUBMIT)
   2317 		sounlock(so);
   2318 	return rv;
   2319 }
   2320 
   2321 /*ARGSUSED*/
   2322 static int
   2323 filt_solisten(struct knote *kn, long hint)
   2324 {
   2325 	struct socket *so;
   2326 	int rv;
   2327 
   2328 	so = ((file_t *)kn->kn_obj)->f_socket;
   2329 
   2330 	/*
   2331 	 * Set kn_data to number of incoming connections, not
   2332 	 * counting partial (incomplete) connections.
   2333 	 */
   2334 	if (hint != NOTE_SUBMIT)
   2335 		solock(so);
   2336 	kn->kn_data = so->so_qlen;
   2337 	rv = (kn->kn_data > 0);
   2338 	if (hint != NOTE_SUBMIT)
   2339 		sounlock(so);
   2340 	return rv;
   2341 }
   2342 
   2343 static const struct filterops solisten_filtops = {
   2344 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   2345 	.f_attach = NULL,
   2346 	.f_detach = filt_sordetach,
   2347 	.f_event = filt_solisten,
   2348 };
   2349 
   2350 static const struct filterops soread_filtops = {
   2351 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   2352 	.f_attach = NULL,
   2353 	.f_detach = filt_sordetach,
   2354 	.f_event = filt_soread,
   2355 };
   2356 
   2357 static const struct filterops sowrite_filtops = {
   2358 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   2359 	.f_attach = NULL,
   2360 	.f_detach = filt_sowdetach,
   2361 	.f_event = filt_sowrite,
   2362 };
   2363 
   2364 static const struct filterops soempty_filtops = {
   2365 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   2366 	.f_attach = NULL,
   2367 	.f_detach = filt_sowdetach,
   2368 	.f_event = filt_soempty,
   2369 };
   2370 
   2371 int
   2372 soo_kqfilter(struct file *fp, struct knote *kn)
   2373 {
   2374 	struct socket *so;
   2375 	struct sockbuf *sb;
   2376 
   2377 	so = ((file_t *)kn->kn_obj)->f_socket;
   2378 	solock(so);
   2379 	switch (kn->kn_filter) {
   2380 	case EVFILT_READ:
   2381 		if (so->so_options & SO_ACCEPTCONN)
   2382 			kn->kn_fop = &solisten_filtops;
   2383 		else
   2384 			kn->kn_fop = &soread_filtops;
   2385 		sb = &so->so_rcv;
   2386 		break;
   2387 	case EVFILT_WRITE:
   2388 		kn->kn_fop = &sowrite_filtops;
   2389 		sb = &so->so_snd;
   2390 		break;
   2391 	case EVFILT_EMPTY:
   2392 		kn->kn_fop = &soempty_filtops;
   2393 		sb = &so->so_snd;
   2394 		break;
   2395 	default:
   2396 		sounlock(so);
   2397 		return EINVAL;
   2398 	}
   2399 	selrecord_knote(&sb->sb_sel, kn);
   2400 	sb->sb_flags |= SB_KNOTE;
   2401 	sounlock(so);
   2402 	return 0;
   2403 }
   2404 
   2405 static int
   2406 sodopoll(struct socket *so, int events)
   2407 {
   2408 	int revents;
   2409 
   2410 	revents = 0;
   2411 
   2412 	if (events & (POLLIN | POLLRDNORM))
   2413 		if (soreadable(so))
   2414 			revents |= events & (POLLIN | POLLRDNORM);
   2415 
   2416 	if (events & (POLLOUT | POLLWRNORM))
   2417 		if (sowritable(so))
   2418 			revents |= events & (POLLOUT | POLLWRNORM);
   2419 
   2420 	if (events & (POLLPRI | POLLRDBAND))
   2421 		if (so->so_state & SS_POLLRDBAND)
   2422 			revents |= events & (POLLPRI | POLLRDBAND);
   2423 
   2424 	return revents;
   2425 }
   2426 
   2427 int
   2428 sopoll(struct socket *so, int events)
   2429 {
   2430 	int revents = 0;
   2431 
   2432 #ifndef DIAGNOSTIC
   2433 	/*
   2434 	 * Do a quick, unlocked check in expectation that the socket
   2435 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2436 	 * as the solocked() assertions will fail.
   2437 	 */
   2438 	if ((revents = sodopoll(so, events)) != 0)
   2439 		return revents;
   2440 #endif
   2441 
   2442 	solock(so);
   2443 	if ((revents = sodopoll(so, events)) == 0) {
   2444 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2445 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2446 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2447 		}
   2448 
   2449 		if (events & (POLLOUT | POLLWRNORM)) {
   2450 			selrecord(curlwp, &so->so_snd.sb_sel);
   2451 			so->so_snd.sb_flags |= SB_NOTIFY;
   2452 		}
   2453 	}
   2454 	sounlock(so);
   2455 
   2456 	return revents;
   2457 }
   2458 
   2459 struct mbuf **
   2460 sbsavetimestamp(int opt, struct mbuf **mp)
   2461 {
   2462 	struct timeval tv;
   2463 	int error;
   2464 
   2465 	memset(&tv, 0, sizeof(tv));
   2466 	microtime(&tv);
   2467 
   2468 	MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, &mp), enosys(), error);
   2469 	if (error == 0)
   2470 		return mp;
   2471 
   2472 	if (opt & SO_TIMESTAMP) {
   2473 		*mp = sbcreatecontrol(&tv, sizeof(tv),
   2474 		    SCM_TIMESTAMP, SOL_SOCKET);
   2475 		if (*mp)
   2476 			mp = &(*mp)->m_next;
   2477 	}
   2478 	return mp;
   2479 }
   2480 
   2481 
   2482 #include <sys/sysctl.h>
   2483 
   2484 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2485 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2486 
   2487 /*
   2488  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2489  * value is not too small.
   2490  * (XXX should we maybe make sure it's not too large as well?)
   2491  */
   2492 static int
   2493 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2494 {
   2495 	int error, new_somaxkva;
   2496 	struct sysctlnode node;
   2497 
   2498 	new_somaxkva = somaxkva;
   2499 	node = *rnode;
   2500 	node.sysctl_data = &new_somaxkva;
   2501 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2502 	if (error || newp == NULL)
   2503 		return error;
   2504 
   2505 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2506 		return EINVAL;
   2507 
   2508 	mutex_enter(&so_pendfree_lock);
   2509 	somaxkva = new_somaxkva;
   2510 	cv_broadcast(&socurkva_cv);
   2511 	mutex_exit(&so_pendfree_lock);
   2512 
   2513 	return error;
   2514 }
   2515 
   2516 /*
   2517  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2518  * any new value is not too small.
   2519  */
   2520 static int
   2521 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2522 {
   2523 	int error, new_sbmax;
   2524 	struct sysctlnode node;
   2525 
   2526 	new_sbmax = sb_max;
   2527 	node = *rnode;
   2528 	node.sysctl_data = &new_sbmax;
   2529 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2530 	if (error || newp == NULL)
   2531 		return error;
   2532 
   2533 	KERNEL_LOCK(1, NULL);
   2534 	error = sb_max_set(new_sbmax);
   2535 	KERNEL_UNLOCK_ONE(NULL);
   2536 
   2537 	return error;
   2538 }
   2539 
   2540 /*
   2541  * sysctl helper routine for kern.sooptions. Ensures that only allowed
   2542  * options can be set.
   2543  */
   2544 static int
   2545 sysctl_kern_sooptions(SYSCTLFN_ARGS)
   2546 {
   2547 	int error, new_options;
   2548 	struct sysctlnode node;
   2549 
   2550 	new_options = sooptions;
   2551 	node = *rnode;
   2552 	node.sysctl_data = &new_options;
   2553 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2554 	if (error || newp == NULL)
   2555 		return error;
   2556 
   2557 	if (new_options & ~SO_DEFOPTS)
   2558 		return EINVAL;
   2559 
   2560 	sooptions = new_options;
   2561 
   2562 	return 0;
   2563 }
   2564 
   2565 static void
   2566 sysctl_kern_socket_setup(void)
   2567 {
   2568 
   2569 	KASSERT(socket_sysctllog == NULL);
   2570 
   2571 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2572 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2573 		       CTLTYPE_INT, "somaxkva",
   2574 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2575 		                    "used for socket buffers"),
   2576 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2577 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2578 
   2579 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2580 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2581 		       CTLTYPE_BOOL, "sofixedbuf",
   2582 		       SYSCTL_DESCR("Prevent scaling of fixed socket buffers"),
   2583 		       NULL, 0, &sofixedbuf, 0,
   2584 		       CTL_KERN, KERN_SOFIXEDBUF, CTL_EOL);
   2585 
   2586 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2587 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2588 		       CTLTYPE_INT, "sbmax",
   2589 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2590 		       sysctl_kern_sbmax, 0, NULL, 0,
   2591 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2592 
   2593 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2594 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2595 		       CTLTYPE_INT, "sooptions",
   2596 		       SYSCTL_DESCR("Default socket options"),
   2597 		       sysctl_kern_sooptions, 0, NULL, 0,
   2598 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   2599 }
   2600