Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.309
      1 /*	$NetBSD: uipc_socket.c,v 1.309 2024/02/11 13:01:29 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2007, 2008, 2009, 2023 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.309 2024/02/11 13:01:29 jdolecek Exp $");
     75 
     76 #ifdef _KERNEL_OPT
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_sock_counters.h"
     79 #include "opt_sosend_loan.h"
     80 #include "opt_mbuftrace.h"
     81 #include "opt_somaxkva.h"
     82 #include "opt_multiprocessor.h"	/* XXX */
     83 #include "opt_sctp.h"
     84 #include "opt_pipe.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/file.h>
     91 #include <sys/filedesc.h>
     92 #include <sys/kmem.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/domain.h>
     95 #include <sys/kernel.h>
     96 #include <sys/protosw.h>
     97 #include <sys/socket.h>
     98 #include <sys/socketvar.h>
     99 #include <sys/signalvar.h>
    100 #include <sys/resourcevar.h>
    101 #include <sys/uidinfo.h>
    102 #include <sys/event.h>
    103 #include <sys/poll.h>
    104 #include <sys/kauth.h>
    105 #include <sys/mutex.h>
    106 #include <sys/condvar.h>
    107 #include <sys/kthread.h>
    108 #include <sys/compat_stub.h>
    109 
    110 #include <compat/sys/time.h>
    111 #include <compat/sys/socket.h>
    112 
    113 #include <uvm/uvm_extern.h>
    114 #include <uvm/uvm_loan.h>
    115 #include <uvm/uvm_page.h>
    116 
    117 #ifdef SCTP
    118 #include <netinet/sctp_route.h>
    119 #endif
    120 
    121 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    122 
    123 extern const struct fileops socketops;
    124 
    125 static int	sooptions;
    126 extern int	somaxconn;			/* patchable (XXX sysctl) */
    127 int		somaxconn = SOMAXCONN;
    128 kmutex_t	*softnet_lock;
    129 
    130 #ifdef SOSEND_COUNTERS
    131 #include <sys/device.h>
    132 
    133 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    134     NULL, "sosend", "loan big");
    135 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    136     NULL, "sosend", "copy big");
    137 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    138     NULL, "sosend", "copy small");
    139 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    140     NULL, "sosend", "kva limit");
    141 
    142 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    143 
    144 EVCNT_ATTACH_STATIC(sosend_loan_big);
    145 EVCNT_ATTACH_STATIC(sosend_copy_big);
    146 EVCNT_ATTACH_STATIC(sosend_copy_small);
    147 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    148 #else
    149 
    150 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    151 
    152 #endif /* SOSEND_COUNTERS */
    153 
    154 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    155 int sock_loan_thresh = -1;
    156 #else
    157 int sock_loan_thresh = 4096;
    158 #endif
    159 
    160 static kmutex_t so_pendfree_lock;
    161 static struct mbuf *so_pendfree = NULL;
    162 
    163 #ifndef SOMAXKVA
    164 #define	SOMAXKVA (16 * 1024 * 1024)
    165 #endif
    166 int somaxkva = SOMAXKVA;
    167 static int socurkva;
    168 static kcondvar_t socurkva_cv;
    169 
    170 #ifndef SOFIXEDBUF
    171 #define SOFIXEDBUF true
    172 #endif
    173 bool sofixedbuf = SOFIXEDBUF;
    174 
    175 static kauth_listener_t socket_listener;
    176 
    177 #define	SOCK_LOAN_CHUNK		65536
    178 
    179 static void sopendfree_thread(void *);
    180 static kcondvar_t pendfree_thread_cv;
    181 static lwp_t *sopendfree_lwp;
    182 
    183 static void sysctl_kern_socket_setup(void);
    184 static struct sysctllog *socket_sysctllog;
    185 
    186 static vsize_t
    187 sokvareserve(struct socket *so, vsize_t len)
    188 {
    189 	int error;
    190 
    191 	mutex_enter(&so_pendfree_lock);
    192 	while (socurkva + len > somaxkva) {
    193 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    194 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    195 		if (error) {
    196 			len = 0;
    197 			break;
    198 		}
    199 	}
    200 	socurkva += len;
    201 	mutex_exit(&so_pendfree_lock);
    202 	return len;
    203 }
    204 
    205 static void
    206 sokvaunreserve(vsize_t len)
    207 {
    208 
    209 	mutex_enter(&so_pendfree_lock);
    210 	socurkva -= len;
    211 	cv_broadcast(&socurkva_cv);
    212 	mutex_exit(&so_pendfree_lock);
    213 }
    214 
    215 /*
    216  * sokvaalloc: allocate kva for loan.
    217  */
    218 vaddr_t
    219 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    220 {
    221 	vaddr_t lva;
    222 
    223 	if (sokvareserve(so, len) == 0)
    224 		return 0;
    225 
    226 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    227 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    228 	if (lva == 0) {
    229 		sokvaunreserve(len);
    230 		return 0;
    231 	}
    232 
    233 	return lva;
    234 }
    235 
    236 /*
    237  * sokvafree: free kva for loan.
    238  */
    239 void
    240 sokvafree(vaddr_t sva, vsize_t len)
    241 {
    242 
    243 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    244 	sokvaunreserve(len);
    245 }
    246 
    247 static void
    248 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    249 {
    250 	vaddr_t sva, eva;
    251 	vsize_t len;
    252 	int npgs;
    253 
    254 	KASSERT(pgs != NULL);
    255 
    256 	eva = round_page((vaddr_t) buf + size);
    257 	sva = trunc_page((vaddr_t) buf);
    258 	len = eva - sva;
    259 	npgs = len >> PAGE_SHIFT;
    260 
    261 	pmap_kremove(sva, len);
    262 	pmap_update(pmap_kernel());
    263 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    264 	sokvafree(sva, len);
    265 }
    266 
    267 /*
    268  * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
    269  * so_pendfree_lock when freeing mbufs.
    270  */
    271 static void
    272 sopendfree_thread(void *v)
    273 {
    274 	struct mbuf *m, *next;
    275 	size_t rv;
    276 
    277 	mutex_enter(&so_pendfree_lock);
    278 
    279 	for (;;) {
    280 		rv = 0;
    281 		while (so_pendfree != NULL) {
    282 			m = so_pendfree;
    283 			so_pendfree = NULL;
    284 			mutex_exit(&so_pendfree_lock);
    285 
    286 			for (; m != NULL; m = next) {
    287 				next = m->m_next;
    288 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
    289 				    0);
    290 				KASSERT(m->m_ext.ext_refcnt == 0);
    291 
    292 				rv += m->m_ext.ext_size;
    293 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    294 				    m->m_ext.ext_size);
    295 				pool_cache_put(mb_cache, m);
    296 			}
    297 
    298 			mutex_enter(&so_pendfree_lock);
    299 		}
    300 		if (rv)
    301 			cv_broadcast(&socurkva_cv);
    302 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    303 	}
    304 	panic("sopendfree_thread");
    305 	/* NOTREACHED */
    306 }
    307 
    308 void
    309 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    310 {
    311 
    312 	KASSERT(m != NULL);
    313 
    314 	/*
    315 	 * postpone freeing mbuf.
    316 	 *
    317 	 * we can't do it in interrupt context
    318 	 * because we need to put kva back to kernel_map.
    319 	 */
    320 
    321 	mutex_enter(&so_pendfree_lock);
    322 	m->m_next = so_pendfree;
    323 	so_pendfree = m;
    324 	cv_signal(&pendfree_thread_cv);
    325 	mutex_exit(&so_pendfree_lock);
    326 }
    327 
    328 static long
    329 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    330 {
    331 	struct iovec *iov = uio->uio_iov;
    332 	vaddr_t sva, eva;
    333 	vsize_t len;
    334 	vaddr_t lva;
    335 	int npgs, error;
    336 	vaddr_t va;
    337 	int i;
    338 
    339 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    340 		return 0;
    341 
    342 	if (iov->iov_len < (size_t) space)
    343 		space = iov->iov_len;
    344 	if (space > SOCK_LOAN_CHUNK)
    345 		space = SOCK_LOAN_CHUNK;
    346 
    347 	eva = round_page((vaddr_t) iov->iov_base + space);
    348 	sva = trunc_page((vaddr_t) iov->iov_base);
    349 	len = eva - sva;
    350 	npgs = len >> PAGE_SHIFT;
    351 
    352 	KASSERT(npgs <= M_EXT_MAXPAGES);
    353 
    354 	lva = sokvaalloc(sva, len, so);
    355 	if (lva == 0)
    356 		return 0;
    357 
    358 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    359 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    360 	if (error) {
    361 		sokvafree(lva, len);
    362 		return 0;
    363 	}
    364 
    365 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    366 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    367 		    VM_PROT_READ, 0);
    368 	pmap_update(pmap_kernel());
    369 
    370 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    371 
    372 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    373 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    374 
    375 	uio->uio_resid -= space;
    376 	/* uio_offset not updated, not set/used for write(2) */
    377 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    378 	uio->uio_iov->iov_len -= space;
    379 	if (uio->uio_iov->iov_len == 0) {
    380 		uio->uio_iov++;
    381 		uio->uio_iovcnt--;
    382 	}
    383 
    384 	return space;
    385 }
    386 
    387 static int
    388 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    389     void *arg0, void *arg1, void *arg2, void *arg3)
    390 {
    391 	int result;
    392 	enum kauth_network_req req;
    393 
    394 	result = KAUTH_RESULT_DEFER;
    395 	req = (enum kauth_network_req)(uintptr_t)arg0;
    396 
    397 	if ((action != KAUTH_NETWORK_SOCKET) &&
    398 	    (action != KAUTH_NETWORK_BIND))
    399 		return result;
    400 
    401 	switch (req) {
    402 	case KAUTH_REQ_NETWORK_BIND_PORT:
    403 		result = KAUTH_RESULT_ALLOW;
    404 		break;
    405 
    406 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    407 		/* Normal users can only drop their own connections. */
    408 		struct socket *so = (struct socket *)arg1;
    409 
    410 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    411 			result = KAUTH_RESULT_ALLOW;
    412 
    413 		break;
    414 		}
    415 
    416 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    417 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    418 		switch ((u_long)arg1) {
    419 		case PF_ROUTE:
    420 		case PF_OROUTE:
    421 		case PF_BLUETOOTH:
    422 		case PF_CAN:
    423 			result = KAUTH_RESULT_ALLOW;
    424 			break;
    425 		default:
    426 			/* Privileged, let secmodel handle this. */
    427 			if ((u_long)arg2 == SOCK_RAW)
    428 				break;
    429 			result = KAUTH_RESULT_ALLOW;
    430 			break;
    431 		}
    432 		break;
    433 
    434 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    435 		result = KAUTH_RESULT_ALLOW;
    436 
    437 		break;
    438 
    439 	default:
    440 		break;
    441 	}
    442 
    443 	return result;
    444 }
    445 
    446 void
    447 soinit(void)
    448 {
    449 
    450 	sysctl_kern_socket_setup();
    451 
    452 #ifdef SCTP
    453 	/* Update the SCTP function hooks if necessary*/
    454 
    455         vec_sctp_add_ip_address = sctp_add_ip_address;
    456         vec_sctp_delete_ip_address = sctp_delete_ip_address;
    457 #endif
    458 
    459 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    460 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    461 	cv_init(&socurkva_cv, "sokva");
    462 	cv_init(&pendfree_thread_cv, "sopendfr");
    463 	soinit2();
    464 
    465 	/* Set the initial adjusted socket buffer size. */
    466 	if (sb_max_set(sb_max))
    467 		panic("bad initial sb_max value: %lu", sb_max);
    468 
    469 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    470 	    socket_listener_cb, NULL);
    471 }
    472 
    473 void
    474 soinit1(void)
    475 {
    476 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    477 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    478 	if (error)
    479 		panic("soinit1 %d", error);
    480 }
    481 
    482 /*
    483  * socreate: create a new socket of the specified type and the protocol.
    484  *
    485  * => Caller may specify another socket for lock sharing (must not be held).
    486  * => Returns the new socket without lock held.
    487  */
    488 int
    489 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    490     struct socket *lockso)
    491 {
    492 	const struct protosw *prp;
    493 	struct socket *so;
    494 	uid_t uid;
    495 	int error;
    496 	kmutex_t *lock;
    497 
    498 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    499 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    500 	    KAUTH_ARG(proto));
    501 	if (error != 0)
    502 		return error;
    503 
    504 	if (proto)
    505 		prp = pffindproto(dom, proto, type);
    506 	else
    507 		prp = pffindtype(dom, type);
    508 	if (prp == NULL) {
    509 		/* no support for domain */
    510 		if (pffinddomain(dom) == 0)
    511 			return EAFNOSUPPORT;
    512 		/* no support for socket type */
    513 		if (proto == 0 && type != 0)
    514 			return EPROTOTYPE;
    515 		return EPROTONOSUPPORT;
    516 	}
    517 	if (prp->pr_usrreqs == NULL)
    518 		return EPROTONOSUPPORT;
    519 	if (prp->pr_type != type)
    520 		return EPROTOTYPE;
    521 
    522 	so = soget(true);
    523 	so->so_type = type;
    524 	so->so_proto = prp;
    525 	so->so_send = sosend;
    526 	so->so_receive = soreceive;
    527 	so->so_options = sooptions;
    528 #ifdef MBUFTRACE
    529 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    530 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    531 	so->so_mowner = &prp->pr_domain->dom_mowner;
    532 #endif
    533 	uid = kauth_cred_geteuid(l->l_cred);
    534 	so->so_uidinfo = uid_find(uid);
    535 	so->so_egid = kauth_cred_getegid(l->l_cred);
    536 	so->so_cpid = l->l_proc->p_pid;
    537 
    538 	/*
    539 	 * Lock assigned and taken during PCB attach, unless we share
    540 	 * the lock with another socket, e.g. socketpair(2) case.
    541 	 */
    542 	if (lockso) {
    543 		/*
    544 		 * lockso->so_lock should be stable at this point, so
    545 		 * no need for atomic_load_*.
    546 		 */
    547 		lock = lockso->so_lock;
    548 		so->so_lock = lock;
    549 		mutex_obj_hold(lock);
    550 		mutex_enter(lock);
    551 	}
    552 
    553 	/* Attach the PCB (returns with the socket lock held). */
    554 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    555 	KASSERT(solocked(so));
    556 
    557 	if (error) {
    558 		KASSERT(so->so_pcb == NULL);
    559 		so->so_state |= SS_NOFDREF;
    560 		sofree(so);
    561 		return error;
    562 	}
    563 	so->so_cred = kauth_cred_hold(l->l_cred);
    564 	sounlock(so);
    565 
    566 	*aso = so;
    567 	return 0;
    568 }
    569 
    570 /*
    571  * fsocreate: create a socket and a file descriptor associated with it.
    572  * Returns the allocated file structure in *fpp, but the descriptor
    573  * is not visible yet for the process.
    574  * Caller is responsible for calling fd_affix() for the returned *fpp once
    575  * it's socket initialization is finished successfully, or fd_abort() if it's
    576  * initialization fails.
    577  *
    578  *
    579  * => On success, write file descriptor to *fdout and *fpp and return zero.
    580  * => On failure, return non-zero; *fdout and *fpp will be undefined.
    581  */
    582 int
    583 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout,
    584     file_t **fpp, struct socket *lockso)
    585 {
    586 	lwp_t *l = curlwp;
    587 	int error, fd, flags;
    588 	struct socket *so;
    589 	file_t *fp;
    590 
    591 	flags = type & SOCK_FLAGS_MASK;
    592 	type &= ~SOCK_FLAGS_MASK;
    593 	error = socreate(domain, &so, type, proto, l, lockso);
    594 	if (error) {
    595 		return error;
    596 	}
    597 
    598 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    599 		soclose(so);
    600 		return error;
    601 	}
    602 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    603 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    604 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    605 	fp->f_type = DTYPE_SOCKET;
    606 	fp->f_ops = &socketops;
    607 	if (flags & SOCK_NONBLOCK) {
    608 		so->so_state |= SS_NBIO;
    609 	}
    610 	fp->f_socket = so;
    611 
    612 	if (sop != NULL) {
    613 		*sop = so;
    614 	}
    615 	*fdout = fd;
    616 	*fpp = fp;
    617 	return error;
    618 }
    619 
    620 int
    621 sofamily(const struct socket *so)
    622 {
    623 	const struct protosw *pr;
    624 	const struct domain *dom;
    625 
    626 	if ((pr = so->so_proto) == NULL)
    627 		return AF_UNSPEC;
    628 	if ((dom = pr->pr_domain) == NULL)
    629 		return AF_UNSPEC;
    630 	return dom->dom_family;
    631 }
    632 
    633 int
    634 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    635 {
    636 	int error;
    637 
    638 	solock(so);
    639 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    640 		sounlock(so);
    641 		return EAFNOSUPPORT;
    642 	}
    643 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    644 	sounlock(so);
    645 	return error;
    646 }
    647 
    648 int
    649 solisten(struct socket *so, int backlog, struct lwp *l)
    650 {
    651 	int error;
    652 	short oldopt, oldqlimit;
    653 
    654 	solock(so);
    655 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    656 	    SS_ISDISCONNECTING)) != 0) {
    657 		sounlock(so);
    658 		return EINVAL;
    659 	}
    660 	oldopt = so->so_options;
    661 	oldqlimit = so->so_qlimit;
    662 	if (TAILQ_EMPTY(&so->so_q))
    663 		so->so_options |= SO_ACCEPTCONN;
    664 	if (backlog < 0)
    665 		backlog = 0;
    666 	so->so_qlimit = uimin(backlog, somaxconn);
    667 
    668 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    669 	if (error != 0) {
    670 		so->so_options = oldopt;
    671 		so->so_qlimit = oldqlimit;
    672 		sounlock(so);
    673 		return error;
    674 	}
    675 	sounlock(so);
    676 	return 0;
    677 }
    678 
    679 void
    680 sofree(struct socket *so)
    681 {
    682 	u_int refs;
    683 
    684 	KASSERT(solocked(so));
    685 
    686 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    687 		sounlock(so);
    688 		return;
    689 	}
    690 	if (so->so_head) {
    691 		/*
    692 		 * We must not decommission a socket that's on the accept(2)
    693 		 * queue.  If we do, then accept(2) may hang after select(2)
    694 		 * indicated that the listening socket was ready.
    695 		 */
    696 		if (!soqremque(so, 0)) {
    697 			sounlock(so);
    698 			return;
    699 		}
    700 	}
    701 	if (so->so_rcv.sb_hiwat)
    702 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    703 		    RLIM_INFINITY);
    704 	if (so->so_snd.sb_hiwat)
    705 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    706 		    RLIM_INFINITY);
    707 	sbrelease(&so->so_snd, so);
    708 	KASSERT(!cv_has_waiters(&so->so_cv));
    709 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    710 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    711 	sorflush(so);
    712 	refs = so->so_aborting;	/* XXX */
    713 	/* Remove accept filter if one is present. */
    714 	if (so->so_accf != NULL)
    715 		(void)accept_filt_clear(so);
    716 	sounlock(so);
    717 	if (refs == 0)		/* XXX */
    718 		soput(so);
    719 }
    720 
    721 /*
    722  * soclose: close a socket on last file table reference removal.
    723  * Initiate disconnect if connected.  Free socket when disconnect complete.
    724  */
    725 int
    726 soclose(struct socket *so)
    727 {
    728 	struct socket *so2;
    729 	int error = 0;
    730 
    731 	solock(so);
    732 	if (so->so_options & SO_ACCEPTCONN) {
    733 		for (;;) {
    734 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    735 				KASSERT(solocked2(so, so2));
    736 				(void) soqremque(so2, 0);
    737 				/* soabort drops the lock. */
    738 				(void) soabort(so2);
    739 				solock(so);
    740 				continue;
    741 			}
    742 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    743 				KASSERT(solocked2(so, so2));
    744 				(void) soqremque(so2, 1);
    745 				/* soabort drops the lock. */
    746 				(void) soabort(so2);
    747 				solock(so);
    748 				continue;
    749 			}
    750 			break;
    751 		}
    752 	}
    753 	if (so->so_pcb == NULL)
    754 		goto discard;
    755 	if (so->so_state & SS_ISCONNECTED) {
    756 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    757 			error = sodisconnect(so);
    758 			if (error)
    759 				goto drop;
    760 		}
    761 		if (so->so_options & SO_LINGER) {
    762 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    763 			    (SS_ISDISCONNECTING|SS_NBIO))
    764 				goto drop;
    765 			while (so->so_state & SS_ISCONNECTED) {
    766 				error = sowait(so, true, so->so_linger * hz);
    767 				if (error)
    768 					break;
    769 			}
    770 		}
    771 	}
    772  drop:
    773 	if (so->so_pcb) {
    774 		KASSERT(solocked(so));
    775 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    776 	}
    777  discard:
    778 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    779 	kauth_cred_free(so->so_cred);
    780 	so->so_cred = NULL;
    781 	so->so_state |= SS_NOFDREF;
    782 	sofree(so);
    783 	return error;
    784 }
    785 
    786 /*
    787  * Must be called with the socket locked..  Will return with it unlocked.
    788  */
    789 int
    790 soabort(struct socket *so)
    791 {
    792 	u_int refs;
    793 	int error;
    794 
    795 	KASSERT(solocked(so));
    796 	KASSERT(so->so_head == NULL);
    797 
    798 	so->so_aborting++;		/* XXX */
    799 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    800 	refs = --so->so_aborting;	/* XXX */
    801 	if (error || (refs == 0)) {
    802 		sofree(so);
    803 	} else {
    804 		sounlock(so);
    805 	}
    806 	return error;
    807 }
    808 
    809 int
    810 soaccept(struct socket *so, struct sockaddr *nam)
    811 {
    812 	int error;
    813 
    814 	KASSERT(solocked(so));
    815 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    816 
    817 	so->so_state &= ~SS_NOFDREF;
    818 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    819 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    820 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    821 	else
    822 		error = ECONNABORTED;
    823 
    824 	return error;
    825 }
    826 
    827 int
    828 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    829 {
    830 	int error;
    831 
    832 	KASSERT(solocked(so));
    833 
    834 	if (so->so_options & SO_ACCEPTCONN)
    835 		return EOPNOTSUPP;
    836 	/*
    837 	 * If protocol is connection-based, can only connect once.
    838 	 * Otherwise, if connected, try to disconnect first.
    839 	 * This allows user to disconnect by connecting to, e.g.,
    840 	 * a null address.
    841 	 */
    842 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    843 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    844 	    (error = sodisconnect(so)))) {
    845 		error = EISCONN;
    846 	} else {
    847 		if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    848 			return EAFNOSUPPORT;
    849 		}
    850 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    851 	}
    852 
    853 	return error;
    854 }
    855 
    856 int
    857 soconnect2(struct socket *so1, struct socket *so2)
    858 {
    859 	KASSERT(solocked2(so1, so2));
    860 
    861 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    862 }
    863 
    864 int
    865 sodisconnect(struct socket *so)
    866 {
    867 	int error;
    868 
    869 	KASSERT(solocked(so));
    870 
    871 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    872 		error = ENOTCONN;
    873 	} else if (so->so_state & SS_ISDISCONNECTING) {
    874 		error = EALREADY;
    875 	} else {
    876 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    877 	}
    878 	return error;
    879 }
    880 
    881 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    882 /*
    883  * Send on a socket.
    884  * If send must go all at once and message is larger than
    885  * send buffering, then hard error.
    886  * Lock against other senders.
    887  * If must go all at once and not enough room now, then
    888  * inform user that this would block and do nothing.
    889  * Otherwise, if nonblocking, send as much as possible.
    890  * The data to be sent is described by "uio" if nonzero,
    891  * otherwise by the mbuf chain "top" (which must be null
    892  * if uio is not).  Data provided in mbuf chain must be small
    893  * enough to send all at once.
    894  *
    895  * Returns nonzero on error, timeout or signal; callers
    896  * must check for short counts if EINTR/ERESTART are returned.
    897  * Data and control buffers are freed on return.
    898  */
    899 int
    900 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
    901 	struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
    902 {
    903 	struct mbuf **mp, *m;
    904 	long space, len, resid, clen, mlen;
    905 	int error, s, dontroute, atomic;
    906 	short wakeup_state = 0;
    907 
    908 	clen = 0;
    909 
    910 	/*
    911 	 * solock() provides atomicity of access.  splsoftnet() prevents
    912 	 * protocol processing soft interrupts from interrupting us and
    913 	 * blocking (expensive).
    914 	 */
    915 	s = splsoftnet();
    916 	solock(so);
    917 	atomic = sosendallatonce(so) || top;
    918 	if (uio)
    919 		resid = uio->uio_resid;
    920 	else
    921 		resid = top->m_pkthdr.len;
    922 	/*
    923 	 * In theory resid should be unsigned.
    924 	 * However, space must be signed, as it might be less than 0
    925 	 * if we over-committed, and we must use a signed comparison
    926 	 * of space and resid.  On the other hand, a negative resid
    927 	 * causes us to loop sending 0-length segments to the protocol.
    928 	 */
    929 	if (resid < 0) {
    930 		error = EINVAL;
    931 		goto out;
    932 	}
    933 	dontroute =
    934 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    935 	    (so->so_proto->pr_flags & PR_ATOMIC);
    936 	l->l_ru.ru_msgsnd++;
    937 	if (control)
    938 		clen = control->m_len;
    939  restart:
    940 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    941 		goto out;
    942 	do {
    943 		if (so->so_state & SS_CANTSENDMORE) {
    944 			error = EPIPE;
    945 			goto release;
    946 		}
    947 		if (so->so_error) {
    948 			error = so->so_error;
    949 			if ((flags & MSG_PEEK) == 0)
    950 				so->so_error = 0;
    951 			goto release;
    952 		}
    953 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    954 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    955 				if (resid || clen == 0) {
    956 					error = ENOTCONN;
    957 					goto release;
    958 				}
    959 			} else if (addr == NULL) {
    960 				error = EDESTADDRREQ;
    961 				goto release;
    962 			}
    963 		}
    964 		space = sbspace(&so->so_snd);
    965 		if (flags & MSG_OOB)
    966 			space += 1024;
    967 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    968 		    clen > so->so_snd.sb_hiwat) {
    969 			error = EMSGSIZE;
    970 			goto release;
    971 		}
    972 		if (space < resid + clen &&
    973 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    974 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    975 				error = EWOULDBLOCK;
    976 				goto release;
    977 			}
    978 			sbunlock(&so->so_snd);
    979 			if (wakeup_state & SS_RESTARTSYS) {
    980 				error = ERESTART;
    981 				goto out;
    982 			}
    983 			error = sbwait(&so->so_snd);
    984 			if (error)
    985 				goto out;
    986 			wakeup_state = so->so_state;
    987 			goto restart;
    988 		}
    989 		wakeup_state = 0;
    990 		mp = &top;
    991 		space -= clen;
    992 		do {
    993 			if (uio == NULL) {
    994 				/*
    995 				 * Data is prepackaged in "top".
    996 				 */
    997 				resid = 0;
    998 				if (flags & MSG_EOR)
    999 					top->m_flags |= M_EOR;
   1000 			} else do {
   1001 				sounlock(so);
   1002 				splx(s);
   1003 				if (top == NULL) {
   1004 					m = m_gethdr(M_WAIT, MT_DATA);
   1005 					mlen = MHLEN;
   1006 					m->m_pkthdr.len = 0;
   1007 					m_reset_rcvif(m);
   1008 				} else {
   1009 					m = m_get(M_WAIT, MT_DATA);
   1010 					mlen = MLEN;
   1011 				}
   1012 				MCLAIM(m, so->so_snd.sb_mowner);
   1013 				if (sock_loan_thresh >= 0 &&
   1014 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1015 				    space >= sock_loan_thresh &&
   1016 				    (len = sosend_loan(so, uio, m,
   1017 						       space)) != 0) {
   1018 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1019 					space -= len;
   1020 					goto have_data;
   1021 				}
   1022 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1023 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1024 					m_clget(m, M_DONTWAIT);
   1025 					if ((m->m_flags & M_EXT) == 0)
   1026 						goto nopages;
   1027 					mlen = MCLBYTES;
   1028 					if (atomic && top == 0) {
   1029 						len = lmin(MCLBYTES - max_hdr,
   1030 						    resid);
   1031 						m->m_data += max_hdr;
   1032 					} else
   1033 						len = lmin(MCLBYTES, resid);
   1034 					space -= len;
   1035 				} else {
   1036  nopages:
   1037 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1038 					len = lmin(lmin(mlen, resid), space);
   1039 					space -= len;
   1040 					/*
   1041 					 * For datagram protocols, leave room
   1042 					 * for protocol headers in first mbuf.
   1043 					 */
   1044 					if (atomic && top == 0 && len < mlen)
   1045 						m_align(m, len);
   1046 				}
   1047 				error = uiomove(mtod(m, void *), (int)len, uio);
   1048  have_data:
   1049 				resid = uio->uio_resid;
   1050 				m->m_len = len;
   1051 				*mp = m;
   1052 				top->m_pkthdr.len += len;
   1053 				s = splsoftnet();
   1054 				solock(so);
   1055 				if (error != 0)
   1056 					goto release;
   1057 				mp = &m->m_next;
   1058 				if (resid <= 0) {
   1059 					if (flags & MSG_EOR)
   1060 						top->m_flags |= M_EOR;
   1061 					break;
   1062 				}
   1063 			} while (space > 0 && atomic);
   1064 
   1065 			if (so->so_state & SS_CANTSENDMORE) {
   1066 				error = EPIPE;
   1067 				goto release;
   1068 			}
   1069 			if (dontroute)
   1070 				so->so_options |= SO_DONTROUTE;
   1071 			if (resid > 0)
   1072 				so->so_state |= SS_MORETOCOME;
   1073 			if (flags & MSG_OOB) {
   1074 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
   1075 				    so, top, control);
   1076 			} else {
   1077 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1078 				    top, addr, control, l);
   1079 			}
   1080 			if (dontroute)
   1081 				so->so_options &= ~SO_DONTROUTE;
   1082 			if (resid > 0)
   1083 				so->so_state &= ~SS_MORETOCOME;
   1084 			clen = 0;
   1085 			control = NULL;
   1086 			top = NULL;
   1087 			mp = &top;
   1088 			if (error != 0)
   1089 				goto release;
   1090 		} while (resid && space > 0);
   1091 	} while (resid);
   1092 
   1093  release:
   1094 	sbunlock(&so->so_snd);
   1095  out:
   1096 	sounlock(so);
   1097 	splx(s);
   1098 	if (top)
   1099 		m_freem(top);
   1100 	if (control)
   1101 		m_freem(control);
   1102 	return error;
   1103 }
   1104 
   1105 /*
   1106  * Following replacement or removal of the first mbuf on the first
   1107  * mbuf chain of a socket buffer, push necessary state changes back
   1108  * into the socket buffer so that other consumers see the values
   1109  * consistently.  'nextrecord' is the caller's locally stored value of
   1110  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1111  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1112  */
   1113 static void
   1114 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1115 {
   1116 
   1117 	KASSERT(solocked(sb->sb_so));
   1118 
   1119 	/*
   1120 	 * First, update for the new value of nextrecord.  If necessary,
   1121 	 * make it the first record.
   1122 	 */
   1123 	if (sb->sb_mb != NULL)
   1124 		sb->sb_mb->m_nextpkt = nextrecord;
   1125 	else
   1126 		sb->sb_mb = nextrecord;
   1127 
   1128         /*
   1129          * Now update any dependent socket buffer fields to reflect
   1130          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1131          * the addition of a second clause that takes care of the
   1132          * case where sb_mb has been updated, but remains the last
   1133          * record.
   1134          */
   1135         if (sb->sb_mb == NULL) {
   1136                 sb->sb_mbtail = NULL;
   1137                 sb->sb_lastrecord = NULL;
   1138         } else if (sb->sb_mb->m_nextpkt == NULL)
   1139                 sb->sb_lastrecord = sb->sb_mb;
   1140 }
   1141 
   1142 /*
   1143  * Implement receive operations on a socket.
   1144  *
   1145  * We depend on the way that records are added to the sockbuf by sbappend*. In
   1146  * particular, each record (mbufs linked through m_next) must begin with an
   1147  * address if the protocol so specifies, followed by an optional mbuf or mbufs
   1148  * containing ancillary data, and then zero or more mbufs of data.
   1149  *
   1150  * In order to avoid blocking network interrupts for the entire time here, we
   1151  * splx() while doing the actual copy to user space. Although the sockbuf is
   1152  * locked, new data may still be appended, and thus we must maintain
   1153  * consistency of the sockbuf during that time.
   1154  *
   1155  * The caller may receive the data as a single mbuf chain by supplying an mbuf
   1156  * **mp0 for use in returning the chain. The uio is then used only for the
   1157  * count in uio_resid.
   1158  */
   1159 int
   1160 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1161     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1162 {
   1163 	struct lwp *l = curlwp;
   1164 	struct mbuf *m, **mp, *mt;
   1165 	size_t len, offset, moff, orig_resid;
   1166 	int atomic, flags, error, s, type;
   1167 	const struct protosw *pr;
   1168 	struct mbuf *nextrecord;
   1169 	int mbuf_removed = 0;
   1170 	const struct domain *dom;
   1171 	short wakeup_state = 0;
   1172 
   1173 	pr = so->so_proto;
   1174 	atomic = pr->pr_flags & PR_ATOMIC;
   1175 	dom = pr->pr_domain;
   1176 	mp = mp0;
   1177 	type = 0;
   1178 	orig_resid = uio->uio_resid;
   1179 
   1180 	if (paddr != NULL)
   1181 		*paddr = NULL;
   1182 	if (controlp != NULL)
   1183 		*controlp = NULL;
   1184 	if (flagsp != NULL)
   1185 		flags = *flagsp &~ MSG_EOR;
   1186 	else
   1187 		flags = 0;
   1188 
   1189 	if (flags & MSG_OOB) {
   1190 		m = m_get(M_WAIT, MT_DATA);
   1191 		solock(so);
   1192 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1193 		sounlock(so);
   1194 		if (error)
   1195 			goto bad;
   1196 		do {
   1197 			error = uiomove(mtod(m, void *),
   1198 			    MIN(uio->uio_resid, m->m_len), uio);
   1199 			m = m_free(m);
   1200 		} while (uio->uio_resid > 0 && error == 0 && m);
   1201 bad:
   1202 		if (m != NULL)
   1203 			m_freem(m);
   1204 		return error;
   1205 	}
   1206 	if (mp != NULL)
   1207 		*mp = NULL;
   1208 
   1209 	/*
   1210 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1211 	 * protocol processing soft interrupts from interrupting us and
   1212 	 * blocking (expensive).
   1213 	 */
   1214 	s = splsoftnet();
   1215 	solock(so);
   1216 restart:
   1217 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1218 		sounlock(so);
   1219 		splx(s);
   1220 		return error;
   1221 	}
   1222 	m = so->so_rcv.sb_mb;
   1223 
   1224 	/*
   1225 	 * If we have less data than requested, block awaiting more
   1226 	 * (subject to any timeout) if:
   1227 	 *   1. the current count is less than the low water mark,
   1228 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1229 	 *	receive operation at once if we block (resid <= hiwat), or
   1230 	 *   3. MSG_DONTWAIT is not set.
   1231 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1232 	 * we have to do the receive in sections, and thus risk returning
   1233 	 * a short count if a timeout or signal occurs after we start.
   1234 	 */
   1235 	if (m == NULL ||
   1236 	    ((flags & MSG_DONTWAIT) == 0 &&
   1237 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1238 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1239 	      ((flags & MSG_WAITALL) &&
   1240 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1241 	     m->m_nextpkt == NULL && !atomic)) {
   1242 #ifdef DIAGNOSTIC
   1243 		if (m == NULL && so->so_rcv.sb_cc)
   1244 			panic("receive 1");
   1245 #endif
   1246 		if (so->so_error || so->so_rerror) {
   1247 			u_short *e;
   1248 			if (m != NULL)
   1249 				goto dontblock;
   1250 			e = so->so_error ? &so->so_error : &so->so_rerror;
   1251 			error = *e;
   1252 			if ((flags & MSG_PEEK) == 0)
   1253 				*e = 0;
   1254 			goto release;
   1255 		}
   1256 		if (so->so_state & SS_CANTRCVMORE) {
   1257 			if (m != NULL)
   1258 				goto dontblock;
   1259 			else
   1260 				goto release;
   1261 		}
   1262 		for (; m != NULL; m = m->m_next)
   1263 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1264 				m = so->so_rcv.sb_mb;
   1265 				goto dontblock;
   1266 			}
   1267 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1268 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1269 			error = ENOTCONN;
   1270 			goto release;
   1271 		}
   1272 		if (uio->uio_resid == 0)
   1273 			goto release;
   1274 		if ((so->so_state & SS_NBIO) ||
   1275 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1276 			error = EWOULDBLOCK;
   1277 			goto release;
   1278 		}
   1279 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1280 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1281 		sbunlock(&so->so_rcv);
   1282 		if (wakeup_state & SS_RESTARTSYS)
   1283 			error = ERESTART;
   1284 		else
   1285 			error = sbwait(&so->so_rcv);
   1286 		if (error != 0) {
   1287 			sounlock(so);
   1288 			splx(s);
   1289 			return error;
   1290 		}
   1291 		wakeup_state = so->so_state;
   1292 		goto restart;
   1293 	}
   1294 
   1295 dontblock:
   1296 	/*
   1297 	 * On entry here, m points to the first record of the socket buffer.
   1298 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1299 	 * pointer to the next record in the socket buffer.  We must keep the
   1300 	 * various socket buffer pointers and local stack versions of the
   1301 	 * pointers in sync, pushing out modifications before dropping the
   1302 	 * socket lock, and re-reading them when picking it up.
   1303 	 *
   1304 	 * Otherwise, we will race with the network stack appending new data
   1305 	 * or records onto the socket buffer by using inconsistent/stale
   1306 	 * versions of the field, possibly resulting in socket buffer
   1307 	 * corruption.
   1308 	 *
   1309 	 * By holding the high-level sblock(), we prevent simultaneous
   1310 	 * readers from pulling off the front of the socket buffer.
   1311 	 */
   1312 	if (l != NULL)
   1313 		l->l_ru.ru_msgrcv++;
   1314 	KASSERT(m == so->so_rcv.sb_mb);
   1315 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1316 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1317 	nextrecord = m->m_nextpkt;
   1318 
   1319 	if (pr->pr_flags & PR_ADDR) {
   1320 		KASSERT(m->m_type == MT_SONAME);
   1321 		orig_resid = 0;
   1322 		if (flags & MSG_PEEK) {
   1323 			if (paddr)
   1324 				*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1325 			m = m->m_next;
   1326 		} else {
   1327 			sbfree(&so->so_rcv, m);
   1328 			mbuf_removed = 1;
   1329 			if (paddr != NULL) {
   1330 				*paddr = m;
   1331 				so->so_rcv.sb_mb = m->m_next;
   1332 				m->m_next = NULL;
   1333 				m = so->so_rcv.sb_mb;
   1334 			} else {
   1335 				m = so->so_rcv.sb_mb = m_free(m);
   1336 			}
   1337 			sbsync(&so->so_rcv, nextrecord);
   1338 		}
   1339 	}
   1340 
   1341 	if (pr->pr_flags & PR_ADDR_OPT) {
   1342 		/*
   1343 		 * For SCTP we may be getting a whole message OR a partial
   1344 		 * delivery.
   1345 		 */
   1346 		if (m->m_type == MT_SONAME) {
   1347 			orig_resid = 0;
   1348 			if (flags & MSG_PEEK) {
   1349 				if (paddr)
   1350 					*paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1351 				m = m->m_next;
   1352 			} else {
   1353 				sbfree(&so->so_rcv, m);
   1354 				mbuf_removed = 1;
   1355 				if (paddr) {
   1356 					*paddr = m;
   1357 					so->so_rcv.sb_mb = m->m_next;
   1358 					m->m_next = 0;
   1359 					m = so->so_rcv.sb_mb;
   1360 				} else {
   1361 					m = so->so_rcv.sb_mb = m_free(m);
   1362 				}
   1363 				sbsync(&so->so_rcv, nextrecord);
   1364 			}
   1365 		}
   1366 	}
   1367 
   1368 	/*
   1369 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1370 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1371 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1372 	 * perform externalization (or freeing if controlp == NULL).
   1373 	 */
   1374 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1375 		struct mbuf *cm = NULL, *cmn;
   1376 		struct mbuf **cme = &cm;
   1377 
   1378 		do {
   1379 			if (flags & MSG_PEEK) {
   1380 				if (controlp != NULL) {
   1381 					*controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
   1382 					controlp = (*controlp == NULL ? NULL :
   1383 					    &(*controlp)->m_next);
   1384 				}
   1385 				m = m->m_next;
   1386 			} else {
   1387 				sbfree(&so->so_rcv, m);
   1388 				so->so_rcv.sb_mb = m->m_next;
   1389 				m->m_next = NULL;
   1390 				*cme = m;
   1391 				cme = &(*cme)->m_next;
   1392 				m = so->so_rcv.sb_mb;
   1393 			}
   1394 		} while (m != NULL && m->m_type == MT_CONTROL);
   1395 		if ((flags & MSG_PEEK) == 0)
   1396 			sbsync(&so->so_rcv, nextrecord);
   1397 
   1398 		for (; cm != NULL; cm = cmn) {
   1399 			cmn = cm->m_next;
   1400 			cm->m_next = NULL;
   1401 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1402 			if (controlp != NULL) {
   1403 				if (dom->dom_externalize != NULL &&
   1404 				    type == SCM_RIGHTS) {
   1405 					sounlock(so);
   1406 					splx(s);
   1407 					error = (*dom->dom_externalize)(cm, l,
   1408 					    (flags & MSG_CMSG_CLOEXEC) ?
   1409 					    O_CLOEXEC : 0);
   1410 					s = splsoftnet();
   1411 					solock(so);
   1412 				}
   1413 				*controlp = cm;
   1414 				while (*controlp != NULL)
   1415 					controlp = &(*controlp)->m_next;
   1416 			} else {
   1417 				/*
   1418 				 * Dispose of any SCM_RIGHTS message that went
   1419 				 * through the read path rather than recv.
   1420 				 */
   1421 				if (dom->dom_dispose != NULL &&
   1422 				    type == SCM_RIGHTS) {
   1423 					sounlock(so);
   1424 					(*dom->dom_dispose)(cm);
   1425 					solock(so);
   1426 				}
   1427 				m_freem(cm);
   1428 			}
   1429 		}
   1430 		if (m != NULL)
   1431 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1432 		else
   1433 			nextrecord = so->so_rcv.sb_mb;
   1434 		orig_resid = 0;
   1435 	}
   1436 
   1437 	/* If m is non-NULL, we have some data to read. */
   1438 	if (__predict_true(m != NULL)) {
   1439 		type = m->m_type;
   1440 		if (type == MT_OOBDATA)
   1441 			flags |= MSG_OOB;
   1442 	}
   1443 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1444 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1445 
   1446 	moff = 0;
   1447 	offset = 0;
   1448 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1449 		/*
   1450 		 * If the type of mbuf has changed, end the receive
   1451 		 * operation and do a short read.
   1452 		 */
   1453 		if (m->m_type == MT_OOBDATA) {
   1454 			if (type != MT_OOBDATA)
   1455 				break;
   1456 		} else if (type == MT_OOBDATA) {
   1457 			break;
   1458 		} else if (m->m_type == MT_CONTROL) {
   1459 			break;
   1460 		}
   1461 #ifdef DIAGNOSTIC
   1462 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
   1463 			panic("%s: m_type=%d", __func__, m->m_type);
   1464 		}
   1465 #endif
   1466 
   1467 		so->so_state &= ~SS_RCVATMARK;
   1468 		wakeup_state = 0;
   1469 		len = uio->uio_resid;
   1470 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1471 			len = so->so_oobmark - offset;
   1472 		if (len > m->m_len - moff)
   1473 			len = m->m_len - moff;
   1474 
   1475 		/*
   1476 		 * If mp is set, just pass back the mbufs.
   1477 		 * Otherwise copy them out via the uio, then free.
   1478 		 * Sockbuf must be consistent here (points to current mbuf,
   1479 		 * it points to next record) when we drop priority;
   1480 		 * we must note any additions to the sockbuf when we
   1481 		 * block interrupts again.
   1482 		 */
   1483 		if (mp == NULL) {
   1484 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1485 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1486 			sounlock(so);
   1487 			splx(s);
   1488 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1489 			s = splsoftnet();
   1490 			solock(so);
   1491 			if (error != 0) {
   1492 				/*
   1493 				 * If any part of the record has been removed
   1494 				 * (such as the MT_SONAME mbuf, which will
   1495 				 * happen when PR_ADDR, and thus also
   1496 				 * PR_ATOMIC, is set), then drop the entire
   1497 				 * record to maintain the atomicity of the
   1498 				 * receive operation.
   1499 				 *
   1500 				 * This avoids a later panic("receive 1a")
   1501 				 * when compiled with DIAGNOSTIC.
   1502 				 */
   1503 				if (m && mbuf_removed && atomic)
   1504 					(void) sbdroprecord(&so->so_rcv);
   1505 
   1506 				goto release;
   1507 			}
   1508 		} else {
   1509 			uio->uio_resid -= len;
   1510 		}
   1511 
   1512 		if (len == m->m_len - moff) {
   1513 			if (m->m_flags & M_EOR)
   1514 				flags |= MSG_EOR;
   1515 #ifdef SCTP
   1516 			if (m->m_flags & M_NOTIFICATION)
   1517 				flags |= MSG_NOTIFICATION;
   1518 #endif
   1519 			if (flags & MSG_PEEK) {
   1520 				m = m->m_next;
   1521 				moff = 0;
   1522 			} else {
   1523 				nextrecord = m->m_nextpkt;
   1524 				sbfree(&so->so_rcv, m);
   1525 				if (mp) {
   1526 					*mp = m;
   1527 					mp = &m->m_next;
   1528 					so->so_rcv.sb_mb = m = m->m_next;
   1529 					*mp = NULL;
   1530 				} else {
   1531 					m = so->so_rcv.sb_mb = m_free(m);
   1532 				}
   1533 				/*
   1534 				 * If m != NULL, we also know that
   1535 				 * so->so_rcv.sb_mb != NULL.
   1536 				 */
   1537 				KASSERT(so->so_rcv.sb_mb == m);
   1538 				if (m) {
   1539 					m->m_nextpkt = nextrecord;
   1540 					if (nextrecord == NULL)
   1541 						so->so_rcv.sb_lastrecord = m;
   1542 				} else {
   1543 					so->so_rcv.sb_mb = nextrecord;
   1544 					SB_EMPTY_FIXUP(&so->so_rcv);
   1545 				}
   1546 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1547 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1548 			}
   1549 		} else if (flags & MSG_PEEK) {
   1550 			moff += len;
   1551 		} else {
   1552 			if (mp != NULL) {
   1553 				mt = m_copym(m, 0, len, M_NOWAIT);
   1554 				if (__predict_false(mt == NULL)) {
   1555 					sounlock(so);
   1556 					mt = m_copym(m, 0, len, M_WAIT);
   1557 					solock(so);
   1558 				}
   1559 				*mp = mt;
   1560 			}
   1561 			m->m_data += len;
   1562 			m->m_len -= len;
   1563 			so->so_rcv.sb_cc -= len;
   1564 		}
   1565 
   1566 		if (so->so_oobmark) {
   1567 			if ((flags & MSG_PEEK) == 0) {
   1568 				so->so_oobmark -= len;
   1569 				if (so->so_oobmark == 0) {
   1570 					so->so_state |= SS_RCVATMARK;
   1571 					break;
   1572 				}
   1573 			} else {
   1574 				offset += len;
   1575 				if (offset == so->so_oobmark)
   1576 					break;
   1577 			}
   1578 		} else {
   1579 			so->so_state &= ~SS_POLLRDBAND;
   1580 		}
   1581 		if (flags & MSG_EOR)
   1582 			break;
   1583 
   1584 		/*
   1585 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1586 		 * we must not quit until "uio->uio_resid == 0" or an error
   1587 		 * termination.  If a signal/timeout occurs, return
   1588 		 * with a short count but without error.
   1589 		 * Keep sockbuf locked against other readers.
   1590 		 */
   1591 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1592 		    !sosendallatonce(so) && !nextrecord) {
   1593 			if (so->so_error || so->so_rerror ||
   1594 			    so->so_state & SS_CANTRCVMORE)
   1595 				break;
   1596 			/*
   1597 			 * If we are peeking and the socket receive buffer is
   1598 			 * full, stop since we can't get more data to peek at.
   1599 			 */
   1600 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1601 				break;
   1602 			/*
   1603 			 * If we've drained the socket buffer, tell the
   1604 			 * protocol in case it needs to do something to
   1605 			 * get it filled again.
   1606 			 */
   1607 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1608 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1609 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1610 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1611 			if (wakeup_state & SS_RESTARTSYS)
   1612 				error = ERESTART;
   1613 			else
   1614 				error = sbwait(&so->so_rcv);
   1615 			if (error != 0) {
   1616 				sbunlock(&so->so_rcv);
   1617 				sounlock(so);
   1618 				splx(s);
   1619 				return 0;
   1620 			}
   1621 			if ((m = so->so_rcv.sb_mb) != NULL)
   1622 				nextrecord = m->m_nextpkt;
   1623 			wakeup_state = so->so_state;
   1624 		}
   1625 	}
   1626 
   1627 	if (m && atomic) {
   1628 		flags |= MSG_TRUNC;
   1629 		if ((flags & MSG_PEEK) == 0)
   1630 			(void) sbdroprecord(&so->so_rcv);
   1631 	}
   1632 	if ((flags & MSG_PEEK) == 0) {
   1633 		if (m == NULL) {
   1634 			/*
   1635 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1636 			 * part makes sure sb_lastrecord is up-to-date if
   1637 			 * there is still data in the socket buffer.
   1638 			 */
   1639 			so->so_rcv.sb_mb = nextrecord;
   1640 			if (so->so_rcv.sb_mb == NULL) {
   1641 				so->so_rcv.sb_mbtail = NULL;
   1642 				so->so_rcv.sb_lastrecord = NULL;
   1643 			} else if (nextrecord->m_nextpkt == NULL)
   1644 				so->so_rcv.sb_lastrecord = nextrecord;
   1645 		}
   1646 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1647 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1648 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1649 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1650 	}
   1651 	if (orig_resid == uio->uio_resid && orig_resid &&
   1652 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1653 		sbunlock(&so->so_rcv);
   1654 		goto restart;
   1655 	}
   1656 
   1657 	if (flagsp != NULL)
   1658 		*flagsp |= flags;
   1659 release:
   1660 	sbunlock(&so->so_rcv);
   1661 	sounlock(so);
   1662 	splx(s);
   1663 	return error;
   1664 }
   1665 
   1666 int
   1667 soshutdown(struct socket *so, int how)
   1668 {
   1669 	const struct protosw *pr;
   1670 	int error;
   1671 
   1672 	KASSERT(solocked(so));
   1673 
   1674 	pr = so->so_proto;
   1675 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1676 		return EINVAL;
   1677 
   1678 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1679 		sorflush(so);
   1680 		error = 0;
   1681 	}
   1682 	if (how == SHUT_WR || how == SHUT_RDWR)
   1683 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1684 
   1685 	return error;
   1686 }
   1687 
   1688 void
   1689 sorestart(struct socket *so)
   1690 {
   1691 	/*
   1692 	 * An application has called close() on an fd on which another
   1693 	 * of its threads has called a socket system call.
   1694 	 * Mark this and wake everyone up, and code that would block again
   1695 	 * instead returns ERESTART.
   1696 	 * On system call re-entry the fd is validated and EBADF returned.
   1697 	 * Any other fd will block again on the 2nd syscall.
   1698 	 */
   1699 	solock(so);
   1700 	so->so_state |= SS_RESTARTSYS;
   1701 	cv_broadcast(&so->so_cv);
   1702 	cv_broadcast(&so->so_snd.sb_cv);
   1703 	cv_broadcast(&so->so_rcv.sb_cv);
   1704 	sounlock(so);
   1705 }
   1706 
   1707 void
   1708 sorflush(struct socket *so)
   1709 {
   1710 	struct sockbuf *sb, asb;
   1711 	const struct protosw *pr;
   1712 
   1713 	KASSERT(solocked(so));
   1714 
   1715 	sb = &so->so_rcv;
   1716 	pr = so->so_proto;
   1717 	socantrcvmore(so);
   1718 	sb->sb_flags |= SB_NOINTR;
   1719 	(void )sblock(sb, M_WAITOK);
   1720 	sbunlock(sb);
   1721 	asb = *sb;
   1722 	/*
   1723 	 * Clear most of the sockbuf structure, but leave some of the
   1724 	 * fields valid.
   1725 	 */
   1726 	memset(&sb->sb_startzero, 0,
   1727 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1728 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1729 		sounlock(so);
   1730 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1731 		solock(so);
   1732 	}
   1733 	sbrelease(&asb, so);
   1734 }
   1735 
   1736 /*
   1737  * internal set SOL_SOCKET options
   1738  */
   1739 static int
   1740 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1741 {
   1742 	int error, opt;
   1743 	int optval = 0; /* XXX: gcc */
   1744 	struct linger l;
   1745 	struct timeval tv;
   1746 
   1747 	opt = sopt->sopt_name;
   1748 
   1749 	switch (opt) {
   1750 
   1751 	case SO_ACCEPTFILTER:
   1752 		error = accept_filt_setopt(so, sopt);
   1753 		KASSERT(solocked(so));
   1754 		break;
   1755 
   1756 	case SO_LINGER:
   1757 		error = sockopt_get(sopt, &l, sizeof(l));
   1758 		solock(so);
   1759 		if (error)
   1760 			break;
   1761 		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1762 		    l.l_linger > (INT_MAX / hz)) {
   1763 			error = EDOM;
   1764 			break;
   1765 		}
   1766 		so->so_linger = l.l_linger;
   1767 		if (l.l_onoff)
   1768 			so->so_options |= SO_LINGER;
   1769 		else
   1770 			so->so_options &= ~SO_LINGER;
   1771 		break;
   1772 
   1773 	case SO_DEBUG:
   1774 	case SO_KEEPALIVE:
   1775 	case SO_DONTROUTE:
   1776 	case SO_USELOOPBACK:
   1777 	case SO_BROADCAST:
   1778 	case SO_REUSEADDR:
   1779 	case SO_REUSEPORT:
   1780 	case SO_OOBINLINE:
   1781 	case SO_TIMESTAMP:
   1782 	case SO_NOSIGPIPE:
   1783 	case SO_RERROR:
   1784 		error = sockopt_getint(sopt, &optval);
   1785 		solock(so);
   1786 		if (error)
   1787 			break;
   1788 		if (optval)
   1789 			so->so_options |= opt;
   1790 		else
   1791 			so->so_options &= ~opt;
   1792 		break;
   1793 
   1794 	case SO_SNDBUF:
   1795 	case SO_RCVBUF:
   1796 	case SO_SNDLOWAT:
   1797 	case SO_RCVLOWAT:
   1798 		error = sockopt_getint(sopt, &optval);
   1799 		solock(so);
   1800 		if (error)
   1801 			break;
   1802 
   1803 		/*
   1804 		 * Values < 1 make no sense for any of these
   1805 		 * options, so disallow them.
   1806 		 */
   1807 		if (optval < 1) {
   1808 			error = EINVAL;
   1809 			break;
   1810 		}
   1811 
   1812 		switch (opt) {
   1813 		case SO_SNDBUF:
   1814 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1815 				error = ENOBUFS;
   1816 				break;
   1817 			}
   1818 			if (sofixedbuf)
   1819 				so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1820 			break;
   1821 
   1822 		case SO_RCVBUF:
   1823 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1824 				error = ENOBUFS;
   1825 				break;
   1826 			}
   1827 			if (sofixedbuf)
   1828 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1829 			break;
   1830 
   1831 		/*
   1832 		 * Make sure the low-water is never greater than
   1833 		 * the high-water.
   1834 		 */
   1835 		case SO_SNDLOWAT:
   1836 			if (optval > so->so_snd.sb_hiwat)
   1837 				optval = so->so_snd.sb_hiwat;
   1838 
   1839 			so->so_snd.sb_lowat = optval;
   1840 			break;
   1841 
   1842 		case SO_RCVLOWAT:
   1843 			if (optval > so->so_rcv.sb_hiwat)
   1844 				optval = so->so_rcv.sb_hiwat;
   1845 
   1846 			so->so_rcv.sb_lowat = optval;
   1847 			break;
   1848 		}
   1849 		break;
   1850 
   1851 	case SO_SNDTIMEO:
   1852 	case SO_RCVTIMEO:
   1853 		solock(so);
   1854 		error = sockopt_get(sopt, &tv, sizeof(tv));
   1855 		if (error)
   1856 			break;
   1857 
   1858 		if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
   1859 			error = EDOM;
   1860 			break;
   1861 		}
   1862 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1863 			error = EDOM;
   1864 			break;
   1865 		}
   1866 
   1867 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1868 		if (optval == 0 && tv.tv_usec != 0)
   1869 			optval = 1;
   1870 
   1871 		switch (opt) {
   1872 		case SO_SNDTIMEO:
   1873 			so->so_snd.sb_timeo = optval;
   1874 			break;
   1875 		case SO_RCVTIMEO:
   1876 			so->so_rcv.sb_timeo = optval;
   1877 			break;
   1878 		}
   1879 		break;
   1880 
   1881 	default:
   1882 		MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
   1883 		    (opt, so, sopt), enosys(), error);
   1884 		if (error == ENOSYS || error == EPASSTHROUGH) {
   1885 			solock(so);
   1886 			error = ENOPROTOOPT;
   1887 		}
   1888 		break;
   1889 	}
   1890 	KASSERT(solocked(so));
   1891 	return error;
   1892 }
   1893 
   1894 int
   1895 sosetopt(struct socket *so, struct sockopt *sopt)
   1896 {
   1897 	int error, prerr;
   1898 
   1899 	if (sopt->sopt_level == SOL_SOCKET) {
   1900 		error = sosetopt1(so, sopt);
   1901 		KASSERT(solocked(so));
   1902 	} else {
   1903 		error = ENOPROTOOPT;
   1904 		solock(so);
   1905 	}
   1906 
   1907 	if ((error == 0 || error == ENOPROTOOPT) &&
   1908 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1909 		/* give the protocol stack a shot */
   1910 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1911 		if (prerr == 0)
   1912 			error = 0;
   1913 		else if (prerr != ENOPROTOOPT)
   1914 			error = prerr;
   1915 	}
   1916 	sounlock(so);
   1917 	return error;
   1918 }
   1919 
   1920 /*
   1921  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1922  */
   1923 int
   1924 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1925     const void *val, size_t valsize)
   1926 {
   1927 	struct sockopt sopt;
   1928 	int error;
   1929 
   1930 	KASSERT(valsize == 0 || val != NULL);
   1931 
   1932 	sockopt_init(&sopt, level, name, valsize);
   1933 	sockopt_set(&sopt, val, valsize);
   1934 
   1935 	error = sosetopt(so, &sopt);
   1936 
   1937 	sockopt_destroy(&sopt);
   1938 
   1939 	return error;
   1940 }
   1941 
   1942 /*
   1943  * internal get SOL_SOCKET options
   1944  */
   1945 static int
   1946 sogetopt1(struct socket *so, struct sockopt *sopt)
   1947 {
   1948 	int error, optval, opt;
   1949 	struct linger l;
   1950 	struct timeval tv;
   1951 
   1952 	switch ((opt = sopt->sopt_name)) {
   1953 
   1954 	case SO_ACCEPTFILTER:
   1955 		error = accept_filt_getopt(so, sopt);
   1956 		break;
   1957 
   1958 	case SO_LINGER:
   1959 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1960 		l.l_linger = so->so_linger;
   1961 
   1962 		error = sockopt_set(sopt, &l, sizeof(l));
   1963 		break;
   1964 
   1965 	case SO_USELOOPBACK:
   1966 	case SO_DONTROUTE:
   1967 	case SO_DEBUG:
   1968 	case SO_KEEPALIVE:
   1969 	case SO_REUSEADDR:
   1970 	case SO_REUSEPORT:
   1971 	case SO_BROADCAST:
   1972 	case SO_OOBINLINE:
   1973 	case SO_TIMESTAMP:
   1974 	case SO_NOSIGPIPE:
   1975 	case SO_RERROR:
   1976 	case SO_ACCEPTCONN:
   1977 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1978 		break;
   1979 
   1980 	case SO_TYPE:
   1981 		error = sockopt_setint(sopt, so->so_type);
   1982 		break;
   1983 
   1984 	case SO_ERROR:
   1985 		if (so->so_error == 0) {
   1986 			so->so_error = so->so_rerror;
   1987 			so->so_rerror = 0;
   1988 		}
   1989 		error = sockopt_setint(sopt, so->so_error);
   1990 		so->so_error = 0;
   1991 		break;
   1992 
   1993 	case SO_SNDBUF:
   1994 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1995 		break;
   1996 
   1997 	case SO_RCVBUF:
   1998 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1999 		break;
   2000 
   2001 	case SO_SNDLOWAT:
   2002 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   2003 		break;
   2004 
   2005 	case SO_RCVLOWAT:
   2006 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   2007 		break;
   2008 
   2009 	case SO_SNDTIMEO:
   2010 	case SO_RCVTIMEO:
   2011 		optval = (opt == SO_SNDTIMEO ?
   2012 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   2013 
   2014 		memset(&tv, 0, sizeof(tv));
   2015 		tv.tv_sec = optval / hz;
   2016 		tv.tv_usec = (optval % hz) * tick;
   2017 
   2018 		error = sockopt_set(sopt, &tv, sizeof(tv));
   2019 		break;
   2020 
   2021 	case SO_OVERFLOWED:
   2022 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   2023 		break;
   2024 
   2025 	default:
   2026 		MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
   2027 		    (opt, so, sopt), enosys(), error);
   2028 		if (error)
   2029 			error = ENOPROTOOPT;
   2030 		break;
   2031 	}
   2032 
   2033 	return error;
   2034 }
   2035 
   2036 int
   2037 sogetopt(struct socket *so, struct sockopt *sopt)
   2038 {
   2039 	int error;
   2040 
   2041 	solock(so);
   2042 	if (sopt->sopt_level != SOL_SOCKET) {
   2043 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2044 			error = ((*so->so_proto->pr_ctloutput)
   2045 			    (PRCO_GETOPT, so, sopt));
   2046 		} else
   2047 			error = (ENOPROTOOPT);
   2048 	} else {
   2049 		error = sogetopt1(so, sopt);
   2050 	}
   2051 	sounlock(so);
   2052 	return error;
   2053 }
   2054 
   2055 /*
   2056  * alloc sockopt data buffer buffer
   2057  *	- will be released at destroy
   2058  */
   2059 static int
   2060 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2061 {
   2062 	void *data;
   2063 
   2064 	KASSERT(sopt->sopt_size == 0);
   2065 
   2066 	if (len > sizeof(sopt->sopt_buf)) {
   2067 		data = kmem_zalloc(len, kmflag);
   2068 		if (data == NULL)
   2069 			return ENOMEM;
   2070 		sopt->sopt_data = data;
   2071 	} else
   2072 		sopt->sopt_data = sopt->sopt_buf;
   2073 
   2074 	sopt->sopt_size = len;
   2075 	return 0;
   2076 }
   2077 
   2078 /*
   2079  * initialise sockopt storage
   2080  *	- MAY sleep during allocation
   2081  */
   2082 void
   2083 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2084 {
   2085 
   2086 	memset(sopt, 0, sizeof(*sopt));
   2087 
   2088 	sopt->sopt_level = level;
   2089 	sopt->sopt_name = name;
   2090 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2091 }
   2092 
   2093 /*
   2094  * destroy sockopt storage
   2095  *	- will release any held memory references
   2096  */
   2097 void
   2098 sockopt_destroy(struct sockopt *sopt)
   2099 {
   2100 
   2101 	if (sopt->sopt_data != sopt->sopt_buf)
   2102 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2103 
   2104 	memset(sopt, 0, sizeof(*sopt));
   2105 }
   2106 
   2107 /*
   2108  * set sockopt value
   2109  *	- value is copied into sockopt
   2110  *	- memory is allocated when necessary, will not sleep
   2111  */
   2112 int
   2113 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2114 {
   2115 	int error;
   2116 
   2117 	if (sopt->sopt_size == 0) {
   2118 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2119 		if (error)
   2120 			return error;
   2121 	}
   2122 
   2123 	sopt->sopt_retsize = MIN(sopt->sopt_size, len);
   2124 	if (sopt->sopt_retsize > 0) {
   2125 		memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
   2126 	}
   2127 
   2128 	return 0;
   2129 }
   2130 
   2131 /*
   2132  * common case of set sockopt integer value
   2133  */
   2134 int
   2135 sockopt_setint(struct sockopt *sopt, int val)
   2136 {
   2137 
   2138 	return sockopt_set(sopt, &val, sizeof(int));
   2139 }
   2140 
   2141 /*
   2142  * get sockopt value
   2143  *	- correct size must be given
   2144  */
   2145 int
   2146 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2147 {
   2148 
   2149 	if (sopt->sopt_size != len)
   2150 		return EINVAL;
   2151 
   2152 	memcpy(buf, sopt->sopt_data, len);
   2153 	return 0;
   2154 }
   2155 
   2156 /*
   2157  * common case of get sockopt integer value
   2158  */
   2159 int
   2160 sockopt_getint(const struct sockopt *sopt, int *valp)
   2161 {
   2162 
   2163 	return sockopt_get(sopt, valp, sizeof(int));
   2164 }
   2165 
   2166 /*
   2167  * set sockopt value from mbuf
   2168  *	- ONLY for legacy code
   2169  *	- mbuf is released by sockopt
   2170  *	- will not sleep
   2171  */
   2172 int
   2173 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2174 {
   2175 	size_t len;
   2176 	int error;
   2177 
   2178 	len = m_length(m);
   2179 
   2180 	if (sopt->sopt_size == 0) {
   2181 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2182 		if (error)
   2183 			return error;
   2184 	}
   2185 
   2186 	sopt->sopt_retsize = MIN(sopt->sopt_size, len);
   2187 	m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
   2188 	m_freem(m);
   2189 
   2190 	return 0;
   2191 }
   2192 
   2193 /*
   2194  * get sockopt value into mbuf
   2195  *	- ONLY for legacy code
   2196  *	- mbuf to be released by the caller
   2197  *	- will not sleep
   2198  */
   2199 struct mbuf *
   2200 sockopt_getmbuf(const struct sockopt *sopt)
   2201 {
   2202 	struct mbuf *m;
   2203 
   2204 	if (sopt->sopt_size > MCLBYTES)
   2205 		return NULL;
   2206 
   2207 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2208 	if (m == NULL)
   2209 		return NULL;
   2210 
   2211 	if (sopt->sopt_size > MLEN) {
   2212 		MCLGET(m, M_DONTWAIT);
   2213 		if ((m->m_flags & M_EXT) == 0) {
   2214 			m_free(m);
   2215 			return NULL;
   2216 		}
   2217 	}
   2218 
   2219 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2220 	m->m_len = sopt->sopt_size;
   2221 
   2222 	return m;
   2223 }
   2224 
   2225 void
   2226 sohasoutofband(struct socket *so)
   2227 {
   2228 
   2229 	so->so_state |= SS_POLLRDBAND;
   2230 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2231 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2232 }
   2233 
   2234 static void
   2235 filt_sordetach(struct knote *kn)
   2236 {
   2237 	struct socket *so;
   2238 
   2239 	so = ((file_t *)kn->kn_obj)->f_socket;
   2240 	solock(so);
   2241 	if (selremove_knote(&so->so_rcv.sb_sel, kn))
   2242 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2243 	sounlock(so);
   2244 }
   2245 
   2246 /*ARGSUSED*/
   2247 static int
   2248 filt_soread(struct knote *kn, long hint)
   2249 {
   2250 	struct socket *so;
   2251 	int rv;
   2252 
   2253 	so = ((file_t *)kn->kn_obj)->f_socket;
   2254 	if (hint != NOTE_SUBMIT)
   2255 		solock(so);
   2256 	kn->kn_data = so->so_rcv.sb_cc;
   2257 	if (so->so_state & SS_CANTRCVMORE) {
   2258 		knote_set_eof(kn, 0);
   2259 		kn->kn_fflags = so->so_error;
   2260 		rv = 1;
   2261 	} else if (so->so_error || so->so_rerror)
   2262 		rv = 1;
   2263 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2264 		rv = (kn->kn_data >= kn->kn_sdata);
   2265 	else
   2266 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2267 	if (hint != NOTE_SUBMIT)
   2268 		sounlock(so);
   2269 	return rv;
   2270 }
   2271 
   2272 static void
   2273 filt_sowdetach(struct knote *kn)
   2274 {
   2275 	struct socket *so;
   2276 
   2277 	so = ((file_t *)kn->kn_obj)->f_socket;
   2278 	solock(so);
   2279 	if (selremove_knote(&so->so_snd.sb_sel, kn))
   2280 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2281 	sounlock(so);
   2282 }
   2283 
   2284 /*ARGSUSED*/
   2285 static int
   2286 filt_sowrite(struct knote *kn, long hint)
   2287 {
   2288 	struct socket *so;
   2289 	int rv;
   2290 
   2291 	so = ((file_t *)kn->kn_obj)->f_socket;
   2292 	if (hint != NOTE_SUBMIT)
   2293 		solock(so);
   2294 	kn->kn_data = sbspace(&so->so_snd);
   2295 	if (so->so_state & SS_CANTSENDMORE) {
   2296 		knote_set_eof(kn, 0);
   2297 		kn->kn_fflags = so->so_error;
   2298 		rv = 1;
   2299 	} else if (so->so_error)
   2300 		rv = 1;
   2301 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2302 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2303 		rv = 0;
   2304 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2305 		rv = (kn->kn_data >= kn->kn_sdata);
   2306 	else
   2307 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2308 	if (hint != NOTE_SUBMIT)
   2309 		sounlock(so);
   2310 	return rv;
   2311 }
   2312 
   2313 static int
   2314 filt_soempty(struct knote *kn, long hint)
   2315 {
   2316 	struct socket *so;
   2317 	int rv;
   2318 
   2319 	so = ((file_t *)kn->kn_obj)->f_socket;
   2320 	if (hint != NOTE_SUBMIT)
   2321 		solock(so);
   2322 	rv = (kn->kn_data = sbused(&so->so_snd)) == 0 ||
   2323 	     (so->so_options & SO_ACCEPTCONN) != 0;
   2324 	if (hint != NOTE_SUBMIT)
   2325 		sounlock(so);
   2326 	return rv;
   2327 }
   2328 
   2329 /*ARGSUSED*/
   2330 static int
   2331 filt_solisten(struct knote *kn, long hint)
   2332 {
   2333 	struct socket *so;
   2334 	int rv;
   2335 
   2336 	so = ((file_t *)kn->kn_obj)->f_socket;
   2337 
   2338 	/*
   2339 	 * Set kn_data to number of incoming connections, not
   2340 	 * counting partial (incomplete) connections.
   2341 	 */
   2342 	if (hint != NOTE_SUBMIT)
   2343 		solock(so);
   2344 	kn->kn_data = so->so_qlen;
   2345 	rv = (kn->kn_data > 0);
   2346 	if (hint != NOTE_SUBMIT)
   2347 		sounlock(so);
   2348 	return rv;
   2349 }
   2350 
   2351 static const struct filterops solisten_filtops = {
   2352 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   2353 	.f_attach = NULL,
   2354 	.f_detach = filt_sordetach,
   2355 	.f_event = filt_solisten,
   2356 };
   2357 
   2358 static const struct filterops soread_filtops = {
   2359 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   2360 	.f_attach = NULL,
   2361 	.f_detach = filt_sordetach,
   2362 	.f_event = filt_soread,
   2363 };
   2364 
   2365 static const struct filterops sowrite_filtops = {
   2366 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   2367 	.f_attach = NULL,
   2368 	.f_detach = filt_sowdetach,
   2369 	.f_event = filt_sowrite,
   2370 };
   2371 
   2372 static const struct filterops soempty_filtops = {
   2373 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   2374 	.f_attach = NULL,
   2375 	.f_detach = filt_sowdetach,
   2376 	.f_event = filt_soempty,
   2377 };
   2378 
   2379 int
   2380 soo_kqfilter(struct file *fp, struct knote *kn)
   2381 {
   2382 	struct socket *so;
   2383 	struct sockbuf *sb;
   2384 
   2385 	so = ((file_t *)kn->kn_obj)->f_socket;
   2386 	solock(so);
   2387 	switch (kn->kn_filter) {
   2388 	case EVFILT_READ:
   2389 		if (so->so_options & SO_ACCEPTCONN)
   2390 			kn->kn_fop = &solisten_filtops;
   2391 		else
   2392 			kn->kn_fop = &soread_filtops;
   2393 		sb = &so->so_rcv;
   2394 		break;
   2395 	case EVFILT_WRITE:
   2396 		kn->kn_fop = &sowrite_filtops;
   2397 		sb = &so->so_snd;
   2398 
   2399 #ifdef PIPE_SOCKETPAIR
   2400 		if (so->so_state & SS_ISAPIPE) {
   2401 			/* Other end of pipe has been closed. */
   2402 			if (so->so_state & SS_ISDISCONNECTED) {
   2403 				sounlock(so);
   2404 				return EBADF;
   2405 			}
   2406 		}
   2407 #endif
   2408 		break;
   2409 	case EVFILT_EMPTY:
   2410 		kn->kn_fop = &soempty_filtops;
   2411 		sb = &so->so_snd;
   2412 		break;
   2413 	default:
   2414 		sounlock(so);
   2415 		return EINVAL;
   2416 	}
   2417 	selrecord_knote(&sb->sb_sel, kn);
   2418 	sb->sb_flags |= SB_KNOTE;
   2419 	sounlock(so);
   2420 	return 0;
   2421 }
   2422 
   2423 static int
   2424 sodopoll(struct socket *so, int events)
   2425 {
   2426 	int revents;
   2427 
   2428 	revents = 0;
   2429 
   2430 	if (events & (POLLIN | POLLRDNORM))
   2431 		if (soreadable(so))
   2432 			revents |= events & (POLLIN | POLLRDNORM);
   2433 
   2434 	if (events & (POLLOUT | POLLWRNORM))
   2435 		if (sowritable(so))
   2436 			revents |= events & (POLLOUT | POLLWRNORM);
   2437 
   2438 	if (events & (POLLPRI | POLLRDBAND))
   2439 		if (so->so_state & SS_POLLRDBAND)
   2440 			revents |= events & (POLLPRI | POLLRDBAND);
   2441 
   2442 	return revents;
   2443 }
   2444 
   2445 int
   2446 sopoll(struct socket *so, int events)
   2447 {
   2448 	int revents = 0;
   2449 
   2450 #ifndef DIAGNOSTIC
   2451 	/*
   2452 	 * Do a quick, unlocked check in expectation that the socket
   2453 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2454 	 * as the solocked() assertions will fail.
   2455 	 */
   2456 	if ((revents = sodopoll(so, events)) != 0)
   2457 		return revents;
   2458 #endif
   2459 
   2460 	solock(so);
   2461 	if ((revents = sodopoll(so, events)) == 0) {
   2462 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2463 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2464 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2465 		}
   2466 
   2467 		if (events & (POLLOUT | POLLWRNORM)) {
   2468 			selrecord(curlwp, &so->so_snd.sb_sel);
   2469 			so->so_snd.sb_flags |= SB_NOTIFY;
   2470 		}
   2471 	}
   2472 	sounlock(so);
   2473 
   2474 	return revents;
   2475 }
   2476 
   2477 struct mbuf **
   2478 sbsavetimestamp(int opt, struct mbuf **mp)
   2479 {
   2480 	struct timeval tv;
   2481 	int error;
   2482 
   2483 	memset(&tv, 0, sizeof(tv));
   2484 	microtime(&tv);
   2485 
   2486 	MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, &mp), enosys(), error);
   2487 	if (error == 0)
   2488 		return mp;
   2489 
   2490 	if (opt & SO_TIMESTAMP) {
   2491 		*mp = sbcreatecontrol(&tv, sizeof(tv),
   2492 		    SCM_TIMESTAMP, SOL_SOCKET);
   2493 		if (*mp)
   2494 			mp = &(*mp)->m_next;
   2495 	}
   2496 	return mp;
   2497 }
   2498 
   2499 
   2500 #include <sys/sysctl.h>
   2501 
   2502 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2503 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2504 
   2505 /*
   2506  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2507  * value is not too small.
   2508  * (XXX should we maybe make sure it's not too large as well?)
   2509  */
   2510 static int
   2511 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2512 {
   2513 	int error, new_somaxkva;
   2514 	struct sysctlnode node;
   2515 
   2516 	new_somaxkva = somaxkva;
   2517 	node = *rnode;
   2518 	node.sysctl_data = &new_somaxkva;
   2519 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2520 	if (error || newp == NULL)
   2521 		return error;
   2522 
   2523 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2524 		return EINVAL;
   2525 
   2526 	mutex_enter(&so_pendfree_lock);
   2527 	somaxkva = new_somaxkva;
   2528 	cv_broadcast(&socurkva_cv);
   2529 	mutex_exit(&so_pendfree_lock);
   2530 
   2531 	return error;
   2532 }
   2533 
   2534 /*
   2535  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2536  * any new value is not too small.
   2537  */
   2538 static int
   2539 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2540 {
   2541 	int error, new_sbmax;
   2542 	struct sysctlnode node;
   2543 
   2544 	new_sbmax = sb_max;
   2545 	node = *rnode;
   2546 	node.sysctl_data = &new_sbmax;
   2547 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2548 	if (error || newp == NULL)
   2549 		return error;
   2550 
   2551 	KERNEL_LOCK(1, NULL);
   2552 	error = sb_max_set(new_sbmax);
   2553 	KERNEL_UNLOCK_ONE(NULL);
   2554 
   2555 	return error;
   2556 }
   2557 
   2558 /*
   2559  * sysctl helper routine for kern.sooptions. Ensures that only allowed
   2560  * options can be set.
   2561  */
   2562 static int
   2563 sysctl_kern_sooptions(SYSCTLFN_ARGS)
   2564 {
   2565 	int error, new_options;
   2566 	struct sysctlnode node;
   2567 
   2568 	new_options = sooptions;
   2569 	node = *rnode;
   2570 	node.sysctl_data = &new_options;
   2571 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2572 	if (error || newp == NULL)
   2573 		return error;
   2574 
   2575 	if (new_options & ~SO_DEFOPTS)
   2576 		return EINVAL;
   2577 
   2578 	sooptions = new_options;
   2579 
   2580 	return 0;
   2581 }
   2582 
   2583 static void
   2584 sysctl_kern_socket_setup(void)
   2585 {
   2586 
   2587 	KASSERT(socket_sysctllog == NULL);
   2588 
   2589 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2590 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2591 		       CTLTYPE_INT, "somaxkva",
   2592 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2593 		                    "used for socket buffers"),
   2594 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2595 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2596 
   2597 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2598 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2599 		       CTLTYPE_BOOL, "sofixedbuf",
   2600 		       SYSCTL_DESCR("Prevent scaling of fixed socket buffers"),
   2601 		       NULL, 0, &sofixedbuf, 0,
   2602 		       CTL_KERN, KERN_SOFIXEDBUF, CTL_EOL);
   2603 
   2604 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2605 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2606 		       CTLTYPE_INT, "sbmax",
   2607 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2608 		       sysctl_kern_sbmax, 0, NULL, 0,
   2609 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2610 
   2611 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2612 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2613 		       CTLTYPE_INT, "sooptions",
   2614 		       SYSCTL_DESCR("Default socket options"),
   2615 		       sysctl_kern_sooptions, 0, NULL, 0,
   2616 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   2617 }
   2618