uipc_socket.c revision 1.309 1 /* $NetBSD: uipc_socket.c,v 1.309 2024/02/11 13:01:29 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2007, 2008, 2009, 2023 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.309 2024/02/11 13:01:29 jdolecek Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #include "opt_sctp.h"
84 #include "opt_pipe.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/file.h>
91 #include <sys/filedesc.h>
92 #include <sys/kmem.h>
93 #include <sys/mbuf.h>
94 #include <sys/domain.h>
95 #include <sys/kernel.h>
96 #include <sys/protosw.h>
97 #include <sys/socket.h>
98 #include <sys/socketvar.h>
99 #include <sys/signalvar.h>
100 #include <sys/resourcevar.h>
101 #include <sys/uidinfo.h>
102 #include <sys/event.h>
103 #include <sys/poll.h>
104 #include <sys/kauth.h>
105 #include <sys/mutex.h>
106 #include <sys/condvar.h>
107 #include <sys/kthread.h>
108 #include <sys/compat_stub.h>
109
110 #include <compat/sys/time.h>
111 #include <compat/sys/socket.h>
112
113 #include <uvm/uvm_extern.h>
114 #include <uvm/uvm_loan.h>
115 #include <uvm/uvm_page.h>
116
117 #ifdef SCTP
118 #include <netinet/sctp_route.h>
119 #endif
120
121 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
122
123 extern const struct fileops socketops;
124
125 static int sooptions;
126 extern int somaxconn; /* patchable (XXX sysctl) */
127 int somaxconn = SOMAXCONN;
128 kmutex_t *softnet_lock;
129
130 #ifdef SOSEND_COUNTERS
131 #include <sys/device.h>
132
133 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
134 NULL, "sosend", "loan big");
135 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
136 NULL, "sosend", "copy big");
137 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
138 NULL, "sosend", "copy small");
139 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
140 NULL, "sosend", "kva limit");
141
142 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
143
144 EVCNT_ATTACH_STATIC(sosend_loan_big);
145 EVCNT_ATTACH_STATIC(sosend_copy_big);
146 EVCNT_ATTACH_STATIC(sosend_copy_small);
147 EVCNT_ATTACH_STATIC(sosend_kvalimit);
148 #else
149
150 #define SOSEND_COUNTER_INCR(ev) /* nothing */
151
152 #endif /* SOSEND_COUNTERS */
153
154 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
155 int sock_loan_thresh = -1;
156 #else
157 int sock_loan_thresh = 4096;
158 #endif
159
160 static kmutex_t so_pendfree_lock;
161 static struct mbuf *so_pendfree = NULL;
162
163 #ifndef SOMAXKVA
164 #define SOMAXKVA (16 * 1024 * 1024)
165 #endif
166 int somaxkva = SOMAXKVA;
167 static int socurkva;
168 static kcondvar_t socurkva_cv;
169
170 #ifndef SOFIXEDBUF
171 #define SOFIXEDBUF true
172 #endif
173 bool sofixedbuf = SOFIXEDBUF;
174
175 static kauth_listener_t socket_listener;
176
177 #define SOCK_LOAN_CHUNK 65536
178
179 static void sopendfree_thread(void *);
180 static kcondvar_t pendfree_thread_cv;
181 static lwp_t *sopendfree_lwp;
182
183 static void sysctl_kern_socket_setup(void);
184 static struct sysctllog *socket_sysctllog;
185
186 static vsize_t
187 sokvareserve(struct socket *so, vsize_t len)
188 {
189 int error;
190
191 mutex_enter(&so_pendfree_lock);
192 while (socurkva + len > somaxkva) {
193 SOSEND_COUNTER_INCR(&sosend_kvalimit);
194 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
195 if (error) {
196 len = 0;
197 break;
198 }
199 }
200 socurkva += len;
201 mutex_exit(&so_pendfree_lock);
202 return len;
203 }
204
205 static void
206 sokvaunreserve(vsize_t len)
207 {
208
209 mutex_enter(&so_pendfree_lock);
210 socurkva -= len;
211 cv_broadcast(&socurkva_cv);
212 mutex_exit(&so_pendfree_lock);
213 }
214
215 /*
216 * sokvaalloc: allocate kva for loan.
217 */
218 vaddr_t
219 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
220 {
221 vaddr_t lva;
222
223 if (sokvareserve(so, len) == 0)
224 return 0;
225
226 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
227 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
228 if (lva == 0) {
229 sokvaunreserve(len);
230 return 0;
231 }
232
233 return lva;
234 }
235
236 /*
237 * sokvafree: free kva for loan.
238 */
239 void
240 sokvafree(vaddr_t sva, vsize_t len)
241 {
242
243 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
244 sokvaunreserve(len);
245 }
246
247 static void
248 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
249 {
250 vaddr_t sva, eva;
251 vsize_t len;
252 int npgs;
253
254 KASSERT(pgs != NULL);
255
256 eva = round_page((vaddr_t) buf + size);
257 sva = trunc_page((vaddr_t) buf);
258 len = eva - sva;
259 npgs = len >> PAGE_SHIFT;
260
261 pmap_kremove(sva, len);
262 pmap_update(pmap_kernel());
263 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
264 sokvafree(sva, len);
265 }
266
267 /*
268 * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
269 * so_pendfree_lock when freeing mbufs.
270 */
271 static void
272 sopendfree_thread(void *v)
273 {
274 struct mbuf *m, *next;
275 size_t rv;
276
277 mutex_enter(&so_pendfree_lock);
278
279 for (;;) {
280 rv = 0;
281 while (so_pendfree != NULL) {
282 m = so_pendfree;
283 so_pendfree = NULL;
284 mutex_exit(&so_pendfree_lock);
285
286 for (; m != NULL; m = next) {
287 next = m->m_next;
288 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
289 0);
290 KASSERT(m->m_ext.ext_refcnt == 0);
291
292 rv += m->m_ext.ext_size;
293 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
294 m->m_ext.ext_size);
295 pool_cache_put(mb_cache, m);
296 }
297
298 mutex_enter(&so_pendfree_lock);
299 }
300 if (rv)
301 cv_broadcast(&socurkva_cv);
302 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
303 }
304 panic("sopendfree_thread");
305 /* NOTREACHED */
306 }
307
308 void
309 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
310 {
311
312 KASSERT(m != NULL);
313
314 /*
315 * postpone freeing mbuf.
316 *
317 * we can't do it in interrupt context
318 * because we need to put kva back to kernel_map.
319 */
320
321 mutex_enter(&so_pendfree_lock);
322 m->m_next = so_pendfree;
323 so_pendfree = m;
324 cv_signal(&pendfree_thread_cv);
325 mutex_exit(&so_pendfree_lock);
326 }
327
328 static long
329 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
330 {
331 struct iovec *iov = uio->uio_iov;
332 vaddr_t sva, eva;
333 vsize_t len;
334 vaddr_t lva;
335 int npgs, error;
336 vaddr_t va;
337 int i;
338
339 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
340 return 0;
341
342 if (iov->iov_len < (size_t) space)
343 space = iov->iov_len;
344 if (space > SOCK_LOAN_CHUNK)
345 space = SOCK_LOAN_CHUNK;
346
347 eva = round_page((vaddr_t) iov->iov_base + space);
348 sva = trunc_page((vaddr_t) iov->iov_base);
349 len = eva - sva;
350 npgs = len >> PAGE_SHIFT;
351
352 KASSERT(npgs <= M_EXT_MAXPAGES);
353
354 lva = sokvaalloc(sva, len, so);
355 if (lva == 0)
356 return 0;
357
358 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
359 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
360 if (error) {
361 sokvafree(lva, len);
362 return 0;
363 }
364
365 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
366 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
367 VM_PROT_READ, 0);
368 pmap_update(pmap_kernel());
369
370 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
371
372 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
373 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
374
375 uio->uio_resid -= space;
376 /* uio_offset not updated, not set/used for write(2) */
377 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
378 uio->uio_iov->iov_len -= space;
379 if (uio->uio_iov->iov_len == 0) {
380 uio->uio_iov++;
381 uio->uio_iovcnt--;
382 }
383
384 return space;
385 }
386
387 static int
388 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
389 void *arg0, void *arg1, void *arg2, void *arg3)
390 {
391 int result;
392 enum kauth_network_req req;
393
394 result = KAUTH_RESULT_DEFER;
395 req = (enum kauth_network_req)(uintptr_t)arg0;
396
397 if ((action != KAUTH_NETWORK_SOCKET) &&
398 (action != KAUTH_NETWORK_BIND))
399 return result;
400
401 switch (req) {
402 case KAUTH_REQ_NETWORK_BIND_PORT:
403 result = KAUTH_RESULT_ALLOW;
404 break;
405
406 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
407 /* Normal users can only drop their own connections. */
408 struct socket *so = (struct socket *)arg1;
409
410 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
411 result = KAUTH_RESULT_ALLOW;
412
413 break;
414 }
415
416 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
417 /* We allow "raw" routing/bluetooth sockets to anyone. */
418 switch ((u_long)arg1) {
419 case PF_ROUTE:
420 case PF_OROUTE:
421 case PF_BLUETOOTH:
422 case PF_CAN:
423 result = KAUTH_RESULT_ALLOW;
424 break;
425 default:
426 /* Privileged, let secmodel handle this. */
427 if ((u_long)arg2 == SOCK_RAW)
428 break;
429 result = KAUTH_RESULT_ALLOW;
430 break;
431 }
432 break;
433
434 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
435 result = KAUTH_RESULT_ALLOW;
436
437 break;
438
439 default:
440 break;
441 }
442
443 return result;
444 }
445
446 void
447 soinit(void)
448 {
449
450 sysctl_kern_socket_setup();
451
452 #ifdef SCTP
453 /* Update the SCTP function hooks if necessary*/
454
455 vec_sctp_add_ip_address = sctp_add_ip_address;
456 vec_sctp_delete_ip_address = sctp_delete_ip_address;
457 #endif
458
459 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
460 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
461 cv_init(&socurkva_cv, "sokva");
462 cv_init(&pendfree_thread_cv, "sopendfr");
463 soinit2();
464
465 /* Set the initial adjusted socket buffer size. */
466 if (sb_max_set(sb_max))
467 panic("bad initial sb_max value: %lu", sb_max);
468
469 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
470 socket_listener_cb, NULL);
471 }
472
473 void
474 soinit1(void)
475 {
476 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
477 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
478 if (error)
479 panic("soinit1 %d", error);
480 }
481
482 /*
483 * socreate: create a new socket of the specified type and the protocol.
484 *
485 * => Caller may specify another socket for lock sharing (must not be held).
486 * => Returns the new socket without lock held.
487 */
488 int
489 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
490 struct socket *lockso)
491 {
492 const struct protosw *prp;
493 struct socket *so;
494 uid_t uid;
495 int error;
496 kmutex_t *lock;
497
498 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
499 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
500 KAUTH_ARG(proto));
501 if (error != 0)
502 return error;
503
504 if (proto)
505 prp = pffindproto(dom, proto, type);
506 else
507 prp = pffindtype(dom, type);
508 if (prp == NULL) {
509 /* no support for domain */
510 if (pffinddomain(dom) == 0)
511 return EAFNOSUPPORT;
512 /* no support for socket type */
513 if (proto == 0 && type != 0)
514 return EPROTOTYPE;
515 return EPROTONOSUPPORT;
516 }
517 if (prp->pr_usrreqs == NULL)
518 return EPROTONOSUPPORT;
519 if (prp->pr_type != type)
520 return EPROTOTYPE;
521
522 so = soget(true);
523 so->so_type = type;
524 so->so_proto = prp;
525 so->so_send = sosend;
526 so->so_receive = soreceive;
527 so->so_options = sooptions;
528 #ifdef MBUFTRACE
529 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
530 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
531 so->so_mowner = &prp->pr_domain->dom_mowner;
532 #endif
533 uid = kauth_cred_geteuid(l->l_cred);
534 so->so_uidinfo = uid_find(uid);
535 so->so_egid = kauth_cred_getegid(l->l_cred);
536 so->so_cpid = l->l_proc->p_pid;
537
538 /*
539 * Lock assigned and taken during PCB attach, unless we share
540 * the lock with another socket, e.g. socketpair(2) case.
541 */
542 if (lockso) {
543 /*
544 * lockso->so_lock should be stable at this point, so
545 * no need for atomic_load_*.
546 */
547 lock = lockso->so_lock;
548 so->so_lock = lock;
549 mutex_obj_hold(lock);
550 mutex_enter(lock);
551 }
552
553 /* Attach the PCB (returns with the socket lock held). */
554 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
555 KASSERT(solocked(so));
556
557 if (error) {
558 KASSERT(so->so_pcb == NULL);
559 so->so_state |= SS_NOFDREF;
560 sofree(so);
561 return error;
562 }
563 so->so_cred = kauth_cred_hold(l->l_cred);
564 sounlock(so);
565
566 *aso = so;
567 return 0;
568 }
569
570 /*
571 * fsocreate: create a socket and a file descriptor associated with it.
572 * Returns the allocated file structure in *fpp, but the descriptor
573 * is not visible yet for the process.
574 * Caller is responsible for calling fd_affix() for the returned *fpp once
575 * it's socket initialization is finished successfully, or fd_abort() if it's
576 * initialization fails.
577 *
578 *
579 * => On success, write file descriptor to *fdout and *fpp and return zero.
580 * => On failure, return non-zero; *fdout and *fpp will be undefined.
581 */
582 int
583 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout,
584 file_t **fpp, struct socket *lockso)
585 {
586 lwp_t *l = curlwp;
587 int error, fd, flags;
588 struct socket *so;
589 file_t *fp;
590
591 flags = type & SOCK_FLAGS_MASK;
592 type &= ~SOCK_FLAGS_MASK;
593 error = socreate(domain, &so, type, proto, l, lockso);
594 if (error) {
595 return error;
596 }
597
598 if ((error = fd_allocfile(&fp, &fd)) != 0) {
599 soclose(so);
600 return error;
601 }
602 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
603 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
604 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
605 fp->f_type = DTYPE_SOCKET;
606 fp->f_ops = &socketops;
607 if (flags & SOCK_NONBLOCK) {
608 so->so_state |= SS_NBIO;
609 }
610 fp->f_socket = so;
611
612 if (sop != NULL) {
613 *sop = so;
614 }
615 *fdout = fd;
616 *fpp = fp;
617 return error;
618 }
619
620 int
621 sofamily(const struct socket *so)
622 {
623 const struct protosw *pr;
624 const struct domain *dom;
625
626 if ((pr = so->so_proto) == NULL)
627 return AF_UNSPEC;
628 if ((dom = pr->pr_domain) == NULL)
629 return AF_UNSPEC;
630 return dom->dom_family;
631 }
632
633 int
634 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
635 {
636 int error;
637
638 solock(so);
639 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
640 sounlock(so);
641 return EAFNOSUPPORT;
642 }
643 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
644 sounlock(so);
645 return error;
646 }
647
648 int
649 solisten(struct socket *so, int backlog, struct lwp *l)
650 {
651 int error;
652 short oldopt, oldqlimit;
653
654 solock(so);
655 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
656 SS_ISDISCONNECTING)) != 0) {
657 sounlock(so);
658 return EINVAL;
659 }
660 oldopt = so->so_options;
661 oldqlimit = so->so_qlimit;
662 if (TAILQ_EMPTY(&so->so_q))
663 so->so_options |= SO_ACCEPTCONN;
664 if (backlog < 0)
665 backlog = 0;
666 so->so_qlimit = uimin(backlog, somaxconn);
667
668 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
669 if (error != 0) {
670 so->so_options = oldopt;
671 so->so_qlimit = oldqlimit;
672 sounlock(so);
673 return error;
674 }
675 sounlock(so);
676 return 0;
677 }
678
679 void
680 sofree(struct socket *so)
681 {
682 u_int refs;
683
684 KASSERT(solocked(so));
685
686 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
687 sounlock(so);
688 return;
689 }
690 if (so->so_head) {
691 /*
692 * We must not decommission a socket that's on the accept(2)
693 * queue. If we do, then accept(2) may hang after select(2)
694 * indicated that the listening socket was ready.
695 */
696 if (!soqremque(so, 0)) {
697 sounlock(so);
698 return;
699 }
700 }
701 if (so->so_rcv.sb_hiwat)
702 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
703 RLIM_INFINITY);
704 if (so->so_snd.sb_hiwat)
705 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
706 RLIM_INFINITY);
707 sbrelease(&so->so_snd, so);
708 KASSERT(!cv_has_waiters(&so->so_cv));
709 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
710 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
711 sorflush(so);
712 refs = so->so_aborting; /* XXX */
713 /* Remove accept filter if one is present. */
714 if (so->so_accf != NULL)
715 (void)accept_filt_clear(so);
716 sounlock(so);
717 if (refs == 0) /* XXX */
718 soput(so);
719 }
720
721 /*
722 * soclose: close a socket on last file table reference removal.
723 * Initiate disconnect if connected. Free socket when disconnect complete.
724 */
725 int
726 soclose(struct socket *so)
727 {
728 struct socket *so2;
729 int error = 0;
730
731 solock(so);
732 if (so->so_options & SO_ACCEPTCONN) {
733 for (;;) {
734 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
735 KASSERT(solocked2(so, so2));
736 (void) soqremque(so2, 0);
737 /* soabort drops the lock. */
738 (void) soabort(so2);
739 solock(so);
740 continue;
741 }
742 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
743 KASSERT(solocked2(so, so2));
744 (void) soqremque(so2, 1);
745 /* soabort drops the lock. */
746 (void) soabort(so2);
747 solock(so);
748 continue;
749 }
750 break;
751 }
752 }
753 if (so->so_pcb == NULL)
754 goto discard;
755 if (so->so_state & SS_ISCONNECTED) {
756 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
757 error = sodisconnect(so);
758 if (error)
759 goto drop;
760 }
761 if (so->so_options & SO_LINGER) {
762 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
763 (SS_ISDISCONNECTING|SS_NBIO))
764 goto drop;
765 while (so->so_state & SS_ISCONNECTED) {
766 error = sowait(so, true, so->so_linger * hz);
767 if (error)
768 break;
769 }
770 }
771 }
772 drop:
773 if (so->so_pcb) {
774 KASSERT(solocked(so));
775 (*so->so_proto->pr_usrreqs->pr_detach)(so);
776 }
777 discard:
778 KASSERT((so->so_state & SS_NOFDREF) == 0);
779 kauth_cred_free(so->so_cred);
780 so->so_cred = NULL;
781 so->so_state |= SS_NOFDREF;
782 sofree(so);
783 return error;
784 }
785
786 /*
787 * Must be called with the socket locked.. Will return with it unlocked.
788 */
789 int
790 soabort(struct socket *so)
791 {
792 u_int refs;
793 int error;
794
795 KASSERT(solocked(so));
796 KASSERT(so->so_head == NULL);
797
798 so->so_aborting++; /* XXX */
799 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
800 refs = --so->so_aborting; /* XXX */
801 if (error || (refs == 0)) {
802 sofree(so);
803 } else {
804 sounlock(so);
805 }
806 return error;
807 }
808
809 int
810 soaccept(struct socket *so, struct sockaddr *nam)
811 {
812 int error;
813
814 KASSERT(solocked(so));
815 KASSERT((so->so_state & SS_NOFDREF) != 0);
816
817 so->so_state &= ~SS_NOFDREF;
818 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
819 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
820 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
821 else
822 error = ECONNABORTED;
823
824 return error;
825 }
826
827 int
828 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
829 {
830 int error;
831
832 KASSERT(solocked(so));
833
834 if (so->so_options & SO_ACCEPTCONN)
835 return EOPNOTSUPP;
836 /*
837 * If protocol is connection-based, can only connect once.
838 * Otherwise, if connected, try to disconnect first.
839 * This allows user to disconnect by connecting to, e.g.,
840 * a null address.
841 */
842 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
843 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
844 (error = sodisconnect(so)))) {
845 error = EISCONN;
846 } else {
847 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
848 return EAFNOSUPPORT;
849 }
850 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
851 }
852
853 return error;
854 }
855
856 int
857 soconnect2(struct socket *so1, struct socket *so2)
858 {
859 KASSERT(solocked2(so1, so2));
860
861 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
862 }
863
864 int
865 sodisconnect(struct socket *so)
866 {
867 int error;
868
869 KASSERT(solocked(so));
870
871 if ((so->so_state & SS_ISCONNECTED) == 0) {
872 error = ENOTCONN;
873 } else if (so->so_state & SS_ISDISCONNECTING) {
874 error = EALREADY;
875 } else {
876 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
877 }
878 return error;
879 }
880
881 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
882 /*
883 * Send on a socket.
884 * If send must go all at once and message is larger than
885 * send buffering, then hard error.
886 * Lock against other senders.
887 * If must go all at once and not enough room now, then
888 * inform user that this would block and do nothing.
889 * Otherwise, if nonblocking, send as much as possible.
890 * The data to be sent is described by "uio" if nonzero,
891 * otherwise by the mbuf chain "top" (which must be null
892 * if uio is not). Data provided in mbuf chain must be small
893 * enough to send all at once.
894 *
895 * Returns nonzero on error, timeout or signal; callers
896 * must check for short counts if EINTR/ERESTART are returned.
897 * Data and control buffers are freed on return.
898 */
899 int
900 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
901 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
902 {
903 struct mbuf **mp, *m;
904 long space, len, resid, clen, mlen;
905 int error, s, dontroute, atomic;
906 short wakeup_state = 0;
907
908 clen = 0;
909
910 /*
911 * solock() provides atomicity of access. splsoftnet() prevents
912 * protocol processing soft interrupts from interrupting us and
913 * blocking (expensive).
914 */
915 s = splsoftnet();
916 solock(so);
917 atomic = sosendallatonce(so) || top;
918 if (uio)
919 resid = uio->uio_resid;
920 else
921 resid = top->m_pkthdr.len;
922 /*
923 * In theory resid should be unsigned.
924 * However, space must be signed, as it might be less than 0
925 * if we over-committed, and we must use a signed comparison
926 * of space and resid. On the other hand, a negative resid
927 * causes us to loop sending 0-length segments to the protocol.
928 */
929 if (resid < 0) {
930 error = EINVAL;
931 goto out;
932 }
933 dontroute =
934 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
935 (so->so_proto->pr_flags & PR_ATOMIC);
936 l->l_ru.ru_msgsnd++;
937 if (control)
938 clen = control->m_len;
939 restart:
940 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
941 goto out;
942 do {
943 if (so->so_state & SS_CANTSENDMORE) {
944 error = EPIPE;
945 goto release;
946 }
947 if (so->so_error) {
948 error = so->so_error;
949 if ((flags & MSG_PEEK) == 0)
950 so->so_error = 0;
951 goto release;
952 }
953 if ((so->so_state & SS_ISCONNECTED) == 0) {
954 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
955 if (resid || clen == 0) {
956 error = ENOTCONN;
957 goto release;
958 }
959 } else if (addr == NULL) {
960 error = EDESTADDRREQ;
961 goto release;
962 }
963 }
964 space = sbspace(&so->so_snd);
965 if (flags & MSG_OOB)
966 space += 1024;
967 if ((atomic && resid > so->so_snd.sb_hiwat) ||
968 clen > so->so_snd.sb_hiwat) {
969 error = EMSGSIZE;
970 goto release;
971 }
972 if (space < resid + clen &&
973 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
974 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
975 error = EWOULDBLOCK;
976 goto release;
977 }
978 sbunlock(&so->so_snd);
979 if (wakeup_state & SS_RESTARTSYS) {
980 error = ERESTART;
981 goto out;
982 }
983 error = sbwait(&so->so_snd);
984 if (error)
985 goto out;
986 wakeup_state = so->so_state;
987 goto restart;
988 }
989 wakeup_state = 0;
990 mp = ⊤
991 space -= clen;
992 do {
993 if (uio == NULL) {
994 /*
995 * Data is prepackaged in "top".
996 */
997 resid = 0;
998 if (flags & MSG_EOR)
999 top->m_flags |= M_EOR;
1000 } else do {
1001 sounlock(so);
1002 splx(s);
1003 if (top == NULL) {
1004 m = m_gethdr(M_WAIT, MT_DATA);
1005 mlen = MHLEN;
1006 m->m_pkthdr.len = 0;
1007 m_reset_rcvif(m);
1008 } else {
1009 m = m_get(M_WAIT, MT_DATA);
1010 mlen = MLEN;
1011 }
1012 MCLAIM(m, so->so_snd.sb_mowner);
1013 if (sock_loan_thresh >= 0 &&
1014 uio->uio_iov->iov_len >= sock_loan_thresh &&
1015 space >= sock_loan_thresh &&
1016 (len = sosend_loan(so, uio, m,
1017 space)) != 0) {
1018 SOSEND_COUNTER_INCR(&sosend_loan_big);
1019 space -= len;
1020 goto have_data;
1021 }
1022 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1023 SOSEND_COUNTER_INCR(&sosend_copy_big);
1024 m_clget(m, M_DONTWAIT);
1025 if ((m->m_flags & M_EXT) == 0)
1026 goto nopages;
1027 mlen = MCLBYTES;
1028 if (atomic && top == 0) {
1029 len = lmin(MCLBYTES - max_hdr,
1030 resid);
1031 m->m_data += max_hdr;
1032 } else
1033 len = lmin(MCLBYTES, resid);
1034 space -= len;
1035 } else {
1036 nopages:
1037 SOSEND_COUNTER_INCR(&sosend_copy_small);
1038 len = lmin(lmin(mlen, resid), space);
1039 space -= len;
1040 /*
1041 * For datagram protocols, leave room
1042 * for protocol headers in first mbuf.
1043 */
1044 if (atomic && top == 0 && len < mlen)
1045 m_align(m, len);
1046 }
1047 error = uiomove(mtod(m, void *), (int)len, uio);
1048 have_data:
1049 resid = uio->uio_resid;
1050 m->m_len = len;
1051 *mp = m;
1052 top->m_pkthdr.len += len;
1053 s = splsoftnet();
1054 solock(so);
1055 if (error != 0)
1056 goto release;
1057 mp = &m->m_next;
1058 if (resid <= 0) {
1059 if (flags & MSG_EOR)
1060 top->m_flags |= M_EOR;
1061 break;
1062 }
1063 } while (space > 0 && atomic);
1064
1065 if (so->so_state & SS_CANTSENDMORE) {
1066 error = EPIPE;
1067 goto release;
1068 }
1069 if (dontroute)
1070 so->so_options |= SO_DONTROUTE;
1071 if (resid > 0)
1072 so->so_state |= SS_MORETOCOME;
1073 if (flags & MSG_OOB) {
1074 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1075 so, top, control);
1076 } else {
1077 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1078 top, addr, control, l);
1079 }
1080 if (dontroute)
1081 so->so_options &= ~SO_DONTROUTE;
1082 if (resid > 0)
1083 so->so_state &= ~SS_MORETOCOME;
1084 clen = 0;
1085 control = NULL;
1086 top = NULL;
1087 mp = ⊤
1088 if (error != 0)
1089 goto release;
1090 } while (resid && space > 0);
1091 } while (resid);
1092
1093 release:
1094 sbunlock(&so->so_snd);
1095 out:
1096 sounlock(so);
1097 splx(s);
1098 if (top)
1099 m_freem(top);
1100 if (control)
1101 m_freem(control);
1102 return error;
1103 }
1104
1105 /*
1106 * Following replacement or removal of the first mbuf on the first
1107 * mbuf chain of a socket buffer, push necessary state changes back
1108 * into the socket buffer so that other consumers see the values
1109 * consistently. 'nextrecord' is the caller's locally stored value of
1110 * the original value of sb->sb_mb->m_nextpkt which must be restored
1111 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1112 */
1113 static void
1114 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1115 {
1116
1117 KASSERT(solocked(sb->sb_so));
1118
1119 /*
1120 * First, update for the new value of nextrecord. If necessary,
1121 * make it the first record.
1122 */
1123 if (sb->sb_mb != NULL)
1124 sb->sb_mb->m_nextpkt = nextrecord;
1125 else
1126 sb->sb_mb = nextrecord;
1127
1128 /*
1129 * Now update any dependent socket buffer fields to reflect
1130 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1131 * the addition of a second clause that takes care of the
1132 * case where sb_mb has been updated, but remains the last
1133 * record.
1134 */
1135 if (sb->sb_mb == NULL) {
1136 sb->sb_mbtail = NULL;
1137 sb->sb_lastrecord = NULL;
1138 } else if (sb->sb_mb->m_nextpkt == NULL)
1139 sb->sb_lastrecord = sb->sb_mb;
1140 }
1141
1142 /*
1143 * Implement receive operations on a socket.
1144 *
1145 * We depend on the way that records are added to the sockbuf by sbappend*. In
1146 * particular, each record (mbufs linked through m_next) must begin with an
1147 * address if the protocol so specifies, followed by an optional mbuf or mbufs
1148 * containing ancillary data, and then zero or more mbufs of data.
1149 *
1150 * In order to avoid blocking network interrupts for the entire time here, we
1151 * splx() while doing the actual copy to user space. Although the sockbuf is
1152 * locked, new data may still be appended, and thus we must maintain
1153 * consistency of the sockbuf during that time.
1154 *
1155 * The caller may receive the data as a single mbuf chain by supplying an mbuf
1156 * **mp0 for use in returning the chain. The uio is then used only for the
1157 * count in uio_resid.
1158 */
1159 int
1160 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1161 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1162 {
1163 struct lwp *l = curlwp;
1164 struct mbuf *m, **mp, *mt;
1165 size_t len, offset, moff, orig_resid;
1166 int atomic, flags, error, s, type;
1167 const struct protosw *pr;
1168 struct mbuf *nextrecord;
1169 int mbuf_removed = 0;
1170 const struct domain *dom;
1171 short wakeup_state = 0;
1172
1173 pr = so->so_proto;
1174 atomic = pr->pr_flags & PR_ATOMIC;
1175 dom = pr->pr_domain;
1176 mp = mp0;
1177 type = 0;
1178 orig_resid = uio->uio_resid;
1179
1180 if (paddr != NULL)
1181 *paddr = NULL;
1182 if (controlp != NULL)
1183 *controlp = NULL;
1184 if (flagsp != NULL)
1185 flags = *flagsp &~ MSG_EOR;
1186 else
1187 flags = 0;
1188
1189 if (flags & MSG_OOB) {
1190 m = m_get(M_WAIT, MT_DATA);
1191 solock(so);
1192 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1193 sounlock(so);
1194 if (error)
1195 goto bad;
1196 do {
1197 error = uiomove(mtod(m, void *),
1198 MIN(uio->uio_resid, m->m_len), uio);
1199 m = m_free(m);
1200 } while (uio->uio_resid > 0 && error == 0 && m);
1201 bad:
1202 if (m != NULL)
1203 m_freem(m);
1204 return error;
1205 }
1206 if (mp != NULL)
1207 *mp = NULL;
1208
1209 /*
1210 * solock() provides atomicity of access. splsoftnet() prevents
1211 * protocol processing soft interrupts from interrupting us and
1212 * blocking (expensive).
1213 */
1214 s = splsoftnet();
1215 solock(so);
1216 restart:
1217 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1218 sounlock(so);
1219 splx(s);
1220 return error;
1221 }
1222 m = so->so_rcv.sb_mb;
1223
1224 /*
1225 * If we have less data than requested, block awaiting more
1226 * (subject to any timeout) if:
1227 * 1. the current count is less than the low water mark,
1228 * 2. MSG_WAITALL is set, and it is possible to do the entire
1229 * receive operation at once if we block (resid <= hiwat), or
1230 * 3. MSG_DONTWAIT is not set.
1231 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1232 * we have to do the receive in sections, and thus risk returning
1233 * a short count if a timeout or signal occurs after we start.
1234 */
1235 if (m == NULL ||
1236 ((flags & MSG_DONTWAIT) == 0 &&
1237 so->so_rcv.sb_cc < uio->uio_resid &&
1238 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1239 ((flags & MSG_WAITALL) &&
1240 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1241 m->m_nextpkt == NULL && !atomic)) {
1242 #ifdef DIAGNOSTIC
1243 if (m == NULL && so->so_rcv.sb_cc)
1244 panic("receive 1");
1245 #endif
1246 if (so->so_error || so->so_rerror) {
1247 u_short *e;
1248 if (m != NULL)
1249 goto dontblock;
1250 e = so->so_error ? &so->so_error : &so->so_rerror;
1251 error = *e;
1252 if ((flags & MSG_PEEK) == 0)
1253 *e = 0;
1254 goto release;
1255 }
1256 if (so->so_state & SS_CANTRCVMORE) {
1257 if (m != NULL)
1258 goto dontblock;
1259 else
1260 goto release;
1261 }
1262 for (; m != NULL; m = m->m_next)
1263 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1264 m = so->so_rcv.sb_mb;
1265 goto dontblock;
1266 }
1267 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1268 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1269 error = ENOTCONN;
1270 goto release;
1271 }
1272 if (uio->uio_resid == 0)
1273 goto release;
1274 if ((so->so_state & SS_NBIO) ||
1275 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1276 error = EWOULDBLOCK;
1277 goto release;
1278 }
1279 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1280 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1281 sbunlock(&so->so_rcv);
1282 if (wakeup_state & SS_RESTARTSYS)
1283 error = ERESTART;
1284 else
1285 error = sbwait(&so->so_rcv);
1286 if (error != 0) {
1287 sounlock(so);
1288 splx(s);
1289 return error;
1290 }
1291 wakeup_state = so->so_state;
1292 goto restart;
1293 }
1294
1295 dontblock:
1296 /*
1297 * On entry here, m points to the first record of the socket buffer.
1298 * From this point onward, we maintain 'nextrecord' as a cache of the
1299 * pointer to the next record in the socket buffer. We must keep the
1300 * various socket buffer pointers and local stack versions of the
1301 * pointers in sync, pushing out modifications before dropping the
1302 * socket lock, and re-reading them when picking it up.
1303 *
1304 * Otherwise, we will race with the network stack appending new data
1305 * or records onto the socket buffer by using inconsistent/stale
1306 * versions of the field, possibly resulting in socket buffer
1307 * corruption.
1308 *
1309 * By holding the high-level sblock(), we prevent simultaneous
1310 * readers from pulling off the front of the socket buffer.
1311 */
1312 if (l != NULL)
1313 l->l_ru.ru_msgrcv++;
1314 KASSERT(m == so->so_rcv.sb_mb);
1315 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1316 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1317 nextrecord = m->m_nextpkt;
1318
1319 if (pr->pr_flags & PR_ADDR) {
1320 KASSERT(m->m_type == MT_SONAME);
1321 orig_resid = 0;
1322 if (flags & MSG_PEEK) {
1323 if (paddr)
1324 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1325 m = m->m_next;
1326 } else {
1327 sbfree(&so->so_rcv, m);
1328 mbuf_removed = 1;
1329 if (paddr != NULL) {
1330 *paddr = m;
1331 so->so_rcv.sb_mb = m->m_next;
1332 m->m_next = NULL;
1333 m = so->so_rcv.sb_mb;
1334 } else {
1335 m = so->so_rcv.sb_mb = m_free(m);
1336 }
1337 sbsync(&so->so_rcv, nextrecord);
1338 }
1339 }
1340
1341 if (pr->pr_flags & PR_ADDR_OPT) {
1342 /*
1343 * For SCTP we may be getting a whole message OR a partial
1344 * delivery.
1345 */
1346 if (m->m_type == MT_SONAME) {
1347 orig_resid = 0;
1348 if (flags & MSG_PEEK) {
1349 if (paddr)
1350 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1351 m = m->m_next;
1352 } else {
1353 sbfree(&so->so_rcv, m);
1354 mbuf_removed = 1;
1355 if (paddr) {
1356 *paddr = m;
1357 so->so_rcv.sb_mb = m->m_next;
1358 m->m_next = 0;
1359 m = so->so_rcv.sb_mb;
1360 } else {
1361 m = so->so_rcv.sb_mb = m_free(m);
1362 }
1363 sbsync(&so->so_rcv, nextrecord);
1364 }
1365 }
1366 }
1367
1368 /*
1369 * Process one or more MT_CONTROL mbufs present before any data mbufs
1370 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1371 * just copy the data; if !MSG_PEEK, we call into the protocol to
1372 * perform externalization (or freeing if controlp == NULL).
1373 */
1374 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1375 struct mbuf *cm = NULL, *cmn;
1376 struct mbuf **cme = &cm;
1377
1378 do {
1379 if (flags & MSG_PEEK) {
1380 if (controlp != NULL) {
1381 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1382 controlp = (*controlp == NULL ? NULL :
1383 &(*controlp)->m_next);
1384 }
1385 m = m->m_next;
1386 } else {
1387 sbfree(&so->so_rcv, m);
1388 so->so_rcv.sb_mb = m->m_next;
1389 m->m_next = NULL;
1390 *cme = m;
1391 cme = &(*cme)->m_next;
1392 m = so->so_rcv.sb_mb;
1393 }
1394 } while (m != NULL && m->m_type == MT_CONTROL);
1395 if ((flags & MSG_PEEK) == 0)
1396 sbsync(&so->so_rcv, nextrecord);
1397
1398 for (; cm != NULL; cm = cmn) {
1399 cmn = cm->m_next;
1400 cm->m_next = NULL;
1401 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1402 if (controlp != NULL) {
1403 if (dom->dom_externalize != NULL &&
1404 type == SCM_RIGHTS) {
1405 sounlock(so);
1406 splx(s);
1407 error = (*dom->dom_externalize)(cm, l,
1408 (flags & MSG_CMSG_CLOEXEC) ?
1409 O_CLOEXEC : 0);
1410 s = splsoftnet();
1411 solock(so);
1412 }
1413 *controlp = cm;
1414 while (*controlp != NULL)
1415 controlp = &(*controlp)->m_next;
1416 } else {
1417 /*
1418 * Dispose of any SCM_RIGHTS message that went
1419 * through the read path rather than recv.
1420 */
1421 if (dom->dom_dispose != NULL &&
1422 type == SCM_RIGHTS) {
1423 sounlock(so);
1424 (*dom->dom_dispose)(cm);
1425 solock(so);
1426 }
1427 m_freem(cm);
1428 }
1429 }
1430 if (m != NULL)
1431 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1432 else
1433 nextrecord = so->so_rcv.sb_mb;
1434 orig_resid = 0;
1435 }
1436
1437 /* If m is non-NULL, we have some data to read. */
1438 if (__predict_true(m != NULL)) {
1439 type = m->m_type;
1440 if (type == MT_OOBDATA)
1441 flags |= MSG_OOB;
1442 }
1443 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1444 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1445
1446 moff = 0;
1447 offset = 0;
1448 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1449 /*
1450 * If the type of mbuf has changed, end the receive
1451 * operation and do a short read.
1452 */
1453 if (m->m_type == MT_OOBDATA) {
1454 if (type != MT_OOBDATA)
1455 break;
1456 } else if (type == MT_OOBDATA) {
1457 break;
1458 } else if (m->m_type == MT_CONTROL) {
1459 break;
1460 }
1461 #ifdef DIAGNOSTIC
1462 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1463 panic("%s: m_type=%d", __func__, m->m_type);
1464 }
1465 #endif
1466
1467 so->so_state &= ~SS_RCVATMARK;
1468 wakeup_state = 0;
1469 len = uio->uio_resid;
1470 if (so->so_oobmark && len > so->so_oobmark - offset)
1471 len = so->so_oobmark - offset;
1472 if (len > m->m_len - moff)
1473 len = m->m_len - moff;
1474
1475 /*
1476 * If mp is set, just pass back the mbufs.
1477 * Otherwise copy them out via the uio, then free.
1478 * Sockbuf must be consistent here (points to current mbuf,
1479 * it points to next record) when we drop priority;
1480 * we must note any additions to the sockbuf when we
1481 * block interrupts again.
1482 */
1483 if (mp == NULL) {
1484 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1485 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1486 sounlock(so);
1487 splx(s);
1488 error = uiomove(mtod(m, char *) + moff, len, uio);
1489 s = splsoftnet();
1490 solock(so);
1491 if (error != 0) {
1492 /*
1493 * If any part of the record has been removed
1494 * (such as the MT_SONAME mbuf, which will
1495 * happen when PR_ADDR, and thus also
1496 * PR_ATOMIC, is set), then drop the entire
1497 * record to maintain the atomicity of the
1498 * receive operation.
1499 *
1500 * This avoids a later panic("receive 1a")
1501 * when compiled with DIAGNOSTIC.
1502 */
1503 if (m && mbuf_removed && atomic)
1504 (void) sbdroprecord(&so->so_rcv);
1505
1506 goto release;
1507 }
1508 } else {
1509 uio->uio_resid -= len;
1510 }
1511
1512 if (len == m->m_len - moff) {
1513 if (m->m_flags & M_EOR)
1514 flags |= MSG_EOR;
1515 #ifdef SCTP
1516 if (m->m_flags & M_NOTIFICATION)
1517 flags |= MSG_NOTIFICATION;
1518 #endif
1519 if (flags & MSG_PEEK) {
1520 m = m->m_next;
1521 moff = 0;
1522 } else {
1523 nextrecord = m->m_nextpkt;
1524 sbfree(&so->so_rcv, m);
1525 if (mp) {
1526 *mp = m;
1527 mp = &m->m_next;
1528 so->so_rcv.sb_mb = m = m->m_next;
1529 *mp = NULL;
1530 } else {
1531 m = so->so_rcv.sb_mb = m_free(m);
1532 }
1533 /*
1534 * If m != NULL, we also know that
1535 * so->so_rcv.sb_mb != NULL.
1536 */
1537 KASSERT(so->so_rcv.sb_mb == m);
1538 if (m) {
1539 m->m_nextpkt = nextrecord;
1540 if (nextrecord == NULL)
1541 so->so_rcv.sb_lastrecord = m;
1542 } else {
1543 so->so_rcv.sb_mb = nextrecord;
1544 SB_EMPTY_FIXUP(&so->so_rcv);
1545 }
1546 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1547 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1548 }
1549 } else if (flags & MSG_PEEK) {
1550 moff += len;
1551 } else {
1552 if (mp != NULL) {
1553 mt = m_copym(m, 0, len, M_NOWAIT);
1554 if (__predict_false(mt == NULL)) {
1555 sounlock(so);
1556 mt = m_copym(m, 0, len, M_WAIT);
1557 solock(so);
1558 }
1559 *mp = mt;
1560 }
1561 m->m_data += len;
1562 m->m_len -= len;
1563 so->so_rcv.sb_cc -= len;
1564 }
1565
1566 if (so->so_oobmark) {
1567 if ((flags & MSG_PEEK) == 0) {
1568 so->so_oobmark -= len;
1569 if (so->so_oobmark == 0) {
1570 so->so_state |= SS_RCVATMARK;
1571 break;
1572 }
1573 } else {
1574 offset += len;
1575 if (offset == so->so_oobmark)
1576 break;
1577 }
1578 } else {
1579 so->so_state &= ~SS_POLLRDBAND;
1580 }
1581 if (flags & MSG_EOR)
1582 break;
1583
1584 /*
1585 * If the MSG_WAITALL flag is set (for non-atomic socket),
1586 * we must not quit until "uio->uio_resid == 0" or an error
1587 * termination. If a signal/timeout occurs, return
1588 * with a short count but without error.
1589 * Keep sockbuf locked against other readers.
1590 */
1591 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1592 !sosendallatonce(so) && !nextrecord) {
1593 if (so->so_error || so->so_rerror ||
1594 so->so_state & SS_CANTRCVMORE)
1595 break;
1596 /*
1597 * If we are peeking and the socket receive buffer is
1598 * full, stop since we can't get more data to peek at.
1599 */
1600 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1601 break;
1602 /*
1603 * If we've drained the socket buffer, tell the
1604 * protocol in case it needs to do something to
1605 * get it filled again.
1606 */
1607 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1608 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1609 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1610 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1611 if (wakeup_state & SS_RESTARTSYS)
1612 error = ERESTART;
1613 else
1614 error = sbwait(&so->so_rcv);
1615 if (error != 0) {
1616 sbunlock(&so->so_rcv);
1617 sounlock(so);
1618 splx(s);
1619 return 0;
1620 }
1621 if ((m = so->so_rcv.sb_mb) != NULL)
1622 nextrecord = m->m_nextpkt;
1623 wakeup_state = so->so_state;
1624 }
1625 }
1626
1627 if (m && atomic) {
1628 flags |= MSG_TRUNC;
1629 if ((flags & MSG_PEEK) == 0)
1630 (void) sbdroprecord(&so->so_rcv);
1631 }
1632 if ((flags & MSG_PEEK) == 0) {
1633 if (m == NULL) {
1634 /*
1635 * First part is an inline SB_EMPTY_FIXUP(). Second
1636 * part makes sure sb_lastrecord is up-to-date if
1637 * there is still data in the socket buffer.
1638 */
1639 so->so_rcv.sb_mb = nextrecord;
1640 if (so->so_rcv.sb_mb == NULL) {
1641 so->so_rcv.sb_mbtail = NULL;
1642 so->so_rcv.sb_lastrecord = NULL;
1643 } else if (nextrecord->m_nextpkt == NULL)
1644 so->so_rcv.sb_lastrecord = nextrecord;
1645 }
1646 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1647 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1648 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1649 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1650 }
1651 if (orig_resid == uio->uio_resid && orig_resid &&
1652 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1653 sbunlock(&so->so_rcv);
1654 goto restart;
1655 }
1656
1657 if (flagsp != NULL)
1658 *flagsp |= flags;
1659 release:
1660 sbunlock(&so->so_rcv);
1661 sounlock(so);
1662 splx(s);
1663 return error;
1664 }
1665
1666 int
1667 soshutdown(struct socket *so, int how)
1668 {
1669 const struct protosw *pr;
1670 int error;
1671
1672 KASSERT(solocked(so));
1673
1674 pr = so->so_proto;
1675 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1676 return EINVAL;
1677
1678 if (how == SHUT_RD || how == SHUT_RDWR) {
1679 sorflush(so);
1680 error = 0;
1681 }
1682 if (how == SHUT_WR || how == SHUT_RDWR)
1683 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1684
1685 return error;
1686 }
1687
1688 void
1689 sorestart(struct socket *so)
1690 {
1691 /*
1692 * An application has called close() on an fd on which another
1693 * of its threads has called a socket system call.
1694 * Mark this and wake everyone up, and code that would block again
1695 * instead returns ERESTART.
1696 * On system call re-entry the fd is validated and EBADF returned.
1697 * Any other fd will block again on the 2nd syscall.
1698 */
1699 solock(so);
1700 so->so_state |= SS_RESTARTSYS;
1701 cv_broadcast(&so->so_cv);
1702 cv_broadcast(&so->so_snd.sb_cv);
1703 cv_broadcast(&so->so_rcv.sb_cv);
1704 sounlock(so);
1705 }
1706
1707 void
1708 sorflush(struct socket *so)
1709 {
1710 struct sockbuf *sb, asb;
1711 const struct protosw *pr;
1712
1713 KASSERT(solocked(so));
1714
1715 sb = &so->so_rcv;
1716 pr = so->so_proto;
1717 socantrcvmore(so);
1718 sb->sb_flags |= SB_NOINTR;
1719 (void )sblock(sb, M_WAITOK);
1720 sbunlock(sb);
1721 asb = *sb;
1722 /*
1723 * Clear most of the sockbuf structure, but leave some of the
1724 * fields valid.
1725 */
1726 memset(&sb->sb_startzero, 0,
1727 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1728 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1729 sounlock(so);
1730 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1731 solock(so);
1732 }
1733 sbrelease(&asb, so);
1734 }
1735
1736 /*
1737 * internal set SOL_SOCKET options
1738 */
1739 static int
1740 sosetopt1(struct socket *so, const struct sockopt *sopt)
1741 {
1742 int error, opt;
1743 int optval = 0; /* XXX: gcc */
1744 struct linger l;
1745 struct timeval tv;
1746
1747 opt = sopt->sopt_name;
1748
1749 switch (opt) {
1750
1751 case SO_ACCEPTFILTER:
1752 error = accept_filt_setopt(so, sopt);
1753 KASSERT(solocked(so));
1754 break;
1755
1756 case SO_LINGER:
1757 error = sockopt_get(sopt, &l, sizeof(l));
1758 solock(so);
1759 if (error)
1760 break;
1761 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1762 l.l_linger > (INT_MAX / hz)) {
1763 error = EDOM;
1764 break;
1765 }
1766 so->so_linger = l.l_linger;
1767 if (l.l_onoff)
1768 so->so_options |= SO_LINGER;
1769 else
1770 so->so_options &= ~SO_LINGER;
1771 break;
1772
1773 case SO_DEBUG:
1774 case SO_KEEPALIVE:
1775 case SO_DONTROUTE:
1776 case SO_USELOOPBACK:
1777 case SO_BROADCAST:
1778 case SO_REUSEADDR:
1779 case SO_REUSEPORT:
1780 case SO_OOBINLINE:
1781 case SO_TIMESTAMP:
1782 case SO_NOSIGPIPE:
1783 case SO_RERROR:
1784 error = sockopt_getint(sopt, &optval);
1785 solock(so);
1786 if (error)
1787 break;
1788 if (optval)
1789 so->so_options |= opt;
1790 else
1791 so->so_options &= ~opt;
1792 break;
1793
1794 case SO_SNDBUF:
1795 case SO_RCVBUF:
1796 case SO_SNDLOWAT:
1797 case SO_RCVLOWAT:
1798 error = sockopt_getint(sopt, &optval);
1799 solock(so);
1800 if (error)
1801 break;
1802
1803 /*
1804 * Values < 1 make no sense for any of these
1805 * options, so disallow them.
1806 */
1807 if (optval < 1) {
1808 error = EINVAL;
1809 break;
1810 }
1811
1812 switch (opt) {
1813 case SO_SNDBUF:
1814 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1815 error = ENOBUFS;
1816 break;
1817 }
1818 if (sofixedbuf)
1819 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1820 break;
1821
1822 case SO_RCVBUF:
1823 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1824 error = ENOBUFS;
1825 break;
1826 }
1827 if (sofixedbuf)
1828 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1829 break;
1830
1831 /*
1832 * Make sure the low-water is never greater than
1833 * the high-water.
1834 */
1835 case SO_SNDLOWAT:
1836 if (optval > so->so_snd.sb_hiwat)
1837 optval = so->so_snd.sb_hiwat;
1838
1839 so->so_snd.sb_lowat = optval;
1840 break;
1841
1842 case SO_RCVLOWAT:
1843 if (optval > so->so_rcv.sb_hiwat)
1844 optval = so->so_rcv.sb_hiwat;
1845
1846 so->so_rcv.sb_lowat = optval;
1847 break;
1848 }
1849 break;
1850
1851 case SO_SNDTIMEO:
1852 case SO_RCVTIMEO:
1853 solock(so);
1854 error = sockopt_get(sopt, &tv, sizeof(tv));
1855 if (error)
1856 break;
1857
1858 if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1859 error = EDOM;
1860 break;
1861 }
1862 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1863 error = EDOM;
1864 break;
1865 }
1866
1867 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1868 if (optval == 0 && tv.tv_usec != 0)
1869 optval = 1;
1870
1871 switch (opt) {
1872 case SO_SNDTIMEO:
1873 so->so_snd.sb_timeo = optval;
1874 break;
1875 case SO_RCVTIMEO:
1876 so->so_rcv.sb_timeo = optval;
1877 break;
1878 }
1879 break;
1880
1881 default:
1882 MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
1883 (opt, so, sopt), enosys(), error);
1884 if (error == ENOSYS || error == EPASSTHROUGH) {
1885 solock(so);
1886 error = ENOPROTOOPT;
1887 }
1888 break;
1889 }
1890 KASSERT(solocked(so));
1891 return error;
1892 }
1893
1894 int
1895 sosetopt(struct socket *so, struct sockopt *sopt)
1896 {
1897 int error, prerr;
1898
1899 if (sopt->sopt_level == SOL_SOCKET) {
1900 error = sosetopt1(so, sopt);
1901 KASSERT(solocked(so));
1902 } else {
1903 error = ENOPROTOOPT;
1904 solock(so);
1905 }
1906
1907 if ((error == 0 || error == ENOPROTOOPT) &&
1908 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1909 /* give the protocol stack a shot */
1910 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1911 if (prerr == 0)
1912 error = 0;
1913 else if (prerr != ENOPROTOOPT)
1914 error = prerr;
1915 }
1916 sounlock(so);
1917 return error;
1918 }
1919
1920 /*
1921 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1922 */
1923 int
1924 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1925 const void *val, size_t valsize)
1926 {
1927 struct sockopt sopt;
1928 int error;
1929
1930 KASSERT(valsize == 0 || val != NULL);
1931
1932 sockopt_init(&sopt, level, name, valsize);
1933 sockopt_set(&sopt, val, valsize);
1934
1935 error = sosetopt(so, &sopt);
1936
1937 sockopt_destroy(&sopt);
1938
1939 return error;
1940 }
1941
1942 /*
1943 * internal get SOL_SOCKET options
1944 */
1945 static int
1946 sogetopt1(struct socket *so, struct sockopt *sopt)
1947 {
1948 int error, optval, opt;
1949 struct linger l;
1950 struct timeval tv;
1951
1952 switch ((opt = sopt->sopt_name)) {
1953
1954 case SO_ACCEPTFILTER:
1955 error = accept_filt_getopt(so, sopt);
1956 break;
1957
1958 case SO_LINGER:
1959 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1960 l.l_linger = so->so_linger;
1961
1962 error = sockopt_set(sopt, &l, sizeof(l));
1963 break;
1964
1965 case SO_USELOOPBACK:
1966 case SO_DONTROUTE:
1967 case SO_DEBUG:
1968 case SO_KEEPALIVE:
1969 case SO_REUSEADDR:
1970 case SO_REUSEPORT:
1971 case SO_BROADCAST:
1972 case SO_OOBINLINE:
1973 case SO_TIMESTAMP:
1974 case SO_NOSIGPIPE:
1975 case SO_RERROR:
1976 case SO_ACCEPTCONN:
1977 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1978 break;
1979
1980 case SO_TYPE:
1981 error = sockopt_setint(sopt, so->so_type);
1982 break;
1983
1984 case SO_ERROR:
1985 if (so->so_error == 0) {
1986 so->so_error = so->so_rerror;
1987 so->so_rerror = 0;
1988 }
1989 error = sockopt_setint(sopt, so->so_error);
1990 so->so_error = 0;
1991 break;
1992
1993 case SO_SNDBUF:
1994 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1995 break;
1996
1997 case SO_RCVBUF:
1998 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1999 break;
2000
2001 case SO_SNDLOWAT:
2002 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
2003 break;
2004
2005 case SO_RCVLOWAT:
2006 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
2007 break;
2008
2009 case SO_SNDTIMEO:
2010 case SO_RCVTIMEO:
2011 optval = (opt == SO_SNDTIMEO ?
2012 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2013
2014 memset(&tv, 0, sizeof(tv));
2015 tv.tv_sec = optval / hz;
2016 tv.tv_usec = (optval % hz) * tick;
2017
2018 error = sockopt_set(sopt, &tv, sizeof(tv));
2019 break;
2020
2021 case SO_OVERFLOWED:
2022 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2023 break;
2024
2025 default:
2026 MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
2027 (opt, so, sopt), enosys(), error);
2028 if (error)
2029 error = ENOPROTOOPT;
2030 break;
2031 }
2032
2033 return error;
2034 }
2035
2036 int
2037 sogetopt(struct socket *so, struct sockopt *sopt)
2038 {
2039 int error;
2040
2041 solock(so);
2042 if (sopt->sopt_level != SOL_SOCKET) {
2043 if (so->so_proto && so->so_proto->pr_ctloutput) {
2044 error = ((*so->so_proto->pr_ctloutput)
2045 (PRCO_GETOPT, so, sopt));
2046 } else
2047 error = (ENOPROTOOPT);
2048 } else {
2049 error = sogetopt1(so, sopt);
2050 }
2051 sounlock(so);
2052 return error;
2053 }
2054
2055 /*
2056 * alloc sockopt data buffer buffer
2057 * - will be released at destroy
2058 */
2059 static int
2060 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2061 {
2062 void *data;
2063
2064 KASSERT(sopt->sopt_size == 0);
2065
2066 if (len > sizeof(sopt->sopt_buf)) {
2067 data = kmem_zalloc(len, kmflag);
2068 if (data == NULL)
2069 return ENOMEM;
2070 sopt->sopt_data = data;
2071 } else
2072 sopt->sopt_data = sopt->sopt_buf;
2073
2074 sopt->sopt_size = len;
2075 return 0;
2076 }
2077
2078 /*
2079 * initialise sockopt storage
2080 * - MAY sleep during allocation
2081 */
2082 void
2083 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2084 {
2085
2086 memset(sopt, 0, sizeof(*sopt));
2087
2088 sopt->sopt_level = level;
2089 sopt->sopt_name = name;
2090 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2091 }
2092
2093 /*
2094 * destroy sockopt storage
2095 * - will release any held memory references
2096 */
2097 void
2098 sockopt_destroy(struct sockopt *sopt)
2099 {
2100
2101 if (sopt->sopt_data != sopt->sopt_buf)
2102 kmem_free(sopt->sopt_data, sopt->sopt_size);
2103
2104 memset(sopt, 0, sizeof(*sopt));
2105 }
2106
2107 /*
2108 * set sockopt value
2109 * - value is copied into sockopt
2110 * - memory is allocated when necessary, will not sleep
2111 */
2112 int
2113 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2114 {
2115 int error;
2116
2117 if (sopt->sopt_size == 0) {
2118 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2119 if (error)
2120 return error;
2121 }
2122
2123 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2124 if (sopt->sopt_retsize > 0) {
2125 memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
2126 }
2127
2128 return 0;
2129 }
2130
2131 /*
2132 * common case of set sockopt integer value
2133 */
2134 int
2135 sockopt_setint(struct sockopt *sopt, int val)
2136 {
2137
2138 return sockopt_set(sopt, &val, sizeof(int));
2139 }
2140
2141 /*
2142 * get sockopt value
2143 * - correct size must be given
2144 */
2145 int
2146 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2147 {
2148
2149 if (sopt->sopt_size != len)
2150 return EINVAL;
2151
2152 memcpy(buf, sopt->sopt_data, len);
2153 return 0;
2154 }
2155
2156 /*
2157 * common case of get sockopt integer value
2158 */
2159 int
2160 sockopt_getint(const struct sockopt *sopt, int *valp)
2161 {
2162
2163 return sockopt_get(sopt, valp, sizeof(int));
2164 }
2165
2166 /*
2167 * set sockopt value from mbuf
2168 * - ONLY for legacy code
2169 * - mbuf is released by sockopt
2170 * - will not sleep
2171 */
2172 int
2173 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2174 {
2175 size_t len;
2176 int error;
2177
2178 len = m_length(m);
2179
2180 if (sopt->sopt_size == 0) {
2181 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2182 if (error)
2183 return error;
2184 }
2185
2186 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2187 m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
2188 m_freem(m);
2189
2190 return 0;
2191 }
2192
2193 /*
2194 * get sockopt value into mbuf
2195 * - ONLY for legacy code
2196 * - mbuf to be released by the caller
2197 * - will not sleep
2198 */
2199 struct mbuf *
2200 sockopt_getmbuf(const struct sockopt *sopt)
2201 {
2202 struct mbuf *m;
2203
2204 if (sopt->sopt_size > MCLBYTES)
2205 return NULL;
2206
2207 m = m_get(M_DONTWAIT, MT_SOOPTS);
2208 if (m == NULL)
2209 return NULL;
2210
2211 if (sopt->sopt_size > MLEN) {
2212 MCLGET(m, M_DONTWAIT);
2213 if ((m->m_flags & M_EXT) == 0) {
2214 m_free(m);
2215 return NULL;
2216 }
2217 }
2218
2219 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2220 m->m_len = sopt->sopt_size;
2221
2222 return m;
2223 }
2224
2225 void
2226 sohasoutofband(struct socket *so)
2227 {
2228
2229 so->so_state |= SS_POLLRDBAND;
2230 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2231 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2232 }
2233
2234 static void
2235 filt_sordetach(struct knote *kn)
2236 {
2237 struct socket *so;
2238
2239 so = ((file_t *)kn->kn_obj)->f_socket;
2240 solock(so);
2241 if (selremove_knote(&so->so_rcv.sb_sel, kn))
2242 so->so_rcv.sb_flags &= ~SB_KNOTE;
2243 sounlock(so);
2244 }
2245
2246 /*ARGSUSED*/
2247 static int
2248 filt_soread(struct knote *kn, long hint)
2249 {
2250 struct socket *so;
2251 int rv;
2252
2253 so = ((file_t *)kn->kn_obj)->f_socket;
2254 if (hint != NOTE_SUBMIT)
2255 solock(so);
2256 kn->kn_data = so->so_rcv.sb_cc;
2257 if (so->so_state & SS_CANTRCVMORE) {
2258 knote_set_eof(kn, 0);
2259 kn->kn_fflags = so->so_error;
2260 rv = 1;
2261 } else if (so->so_error || so->so_rerror)
2262 rv = 1;
2263 else if (kn->kn_sfflags & NOTE_LOWAT)
2264 rv = (kn->kn_data >= kn->kn_sdata);
2265 else
2266 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2267 if (hint != NOTE_SUBMIT)
2268 sounlock(so);
2269 return rv;
2270 }
2271
2272 static void
2273 filt_sowdetach(struct knote *kn)
2274 {
2275 struct socket *so;
2276
2277 so = ((file_t *)kn->kn_obj)->f_socket;
2278 solock(so);
2279 if (selremove_knote(&so->so_snd.sb_sel, kn))
2280 so->so_snd.sb_flags &= ~SB_KNOTE;
2281 sounlock(so);
2282 }
2283
2284 /*ARGSUSED*/
2285 static int
2286 filt_sowrite(struct knote *kn, long hint)
2287 {
2288 struct socket *so;
2289 int rv;
2290
2291 so = ((file_t *)kn->kn_obj)->f_socket;
2292 if (hint != NOTE_SUBMIT)
2293 solock(so);
2294 kn->kn_data = sbspace(&so->so_snd);
2295 if (so->so_state & SS_CANTSENDMORE) {
2296 knote_set_eof(kn, 0);
2297 kn->kn_fflags = so->so_error;
2298 rv = 1;
2299 } else if (so->so_error)
2300 rv = 1;
2301 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2302 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2303 rv = 0;
2304 else if (kn->kn_sfflags & NOTE_LOWAT)
2305 rv = (kn->kn_data >= kn->kn_sdata);
2306 else
2307 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2308 if (hint != NOTE_SUBMIT)
2309 sounlock(so);
2310 return rv;
2311 }
2312
2313 static int
2314 filt_soempty(struct knote *kn, long hint)
2315 {
2316 struct socket *so;
2317 int rv;
2318
2319 so = ((file_t *)kn->kn_obj)->f_socket;
2320 if (hint != NOTE_SUBMIT)
2321 solock(so);
2322 rv = (kn->kn_data = sbused(&so->so_snd)) == 0 ||
2323 (so->so_options & SO_ACCEPTCONN) != 0;
2324 if (hint != NOTE_SUBMIT)
2325 sounlock(so);
2326 return rv;
2327 }
2328
2329 /*ARGSUSED*/
2330 static int
2331 filt_solisten(struct knote *kn, long hint)
2332 {
2333 struct socket *so;
2334 int rv;
2335
2336 so = ((file_t *)kn->kn_obj)->f_socket;
2337
2338 /*
2339 * Set kn_data to number of incoming connections, not
2340 * counting partial (incomplete) connections.
2341 */
2342 if (hint != NOTE_SUBMIT)
2343 solock(so);
2344 kn->kn_data = so->so_qlen;
2345 rv = (kn->kn_data > 0);
2346 if (hint != NOTE_SUBMIT)
2347 sounlock(so);
2348 return rv;
2349 }
2350
2351 static const struct filterops solisten_filtops = {
2352 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2353 .f_attach = NULL,
2354 .f_detach = filt_sordetach,
2355 .f_event = filt_solisten,
2356 };
2357
2358 static const struct filterops soread_filtops = {
2359 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2360 .f_attach = NULL,
2361 .f_detach = filt_sordetach,
2362 .f_event = filt_soread,
2363 };
2364
2365 static const struct filterops sowrite_filtops = {
2366 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2367 .f_attach = NULL,
2368 .f_detach = filt_sowdetach,
2369 .f_event = filt_sowrite,
2370 };
2371
2372 static const struct filterops soempty_filtops = {
2373 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2374 .f_attach = NULL,
2375 .f_detach = filt_sowdetach,
2376 .f_event = filt_soempty,
2377 };
2378
2379 int
2380 soo_kqfilter(struct file *fp, struct knote *kn)
2381 {
2382 struct socket *so;
2383 struct sockbuf *sb;
2384
2385 so = ((file_t *)kn->kn_obj)->f_socket;
2386 solock(so);
2387 switch (kn->kn_filter) {
2388 case EVFILT_READ:
2389 if (so->so_options & SO_ACCEPTCONN)
2390 kn->kn_fop = &solisten_filtops;
2391 else
2392 kn->kn_fop = &soread_filtops;
2393 sb = &so->so_rcv;
2394 break;
2395 case EVFILT_WRITE:
2396 kn->kn_fop = &sowrite_filtops;
2397 sb = &so->so_snd;
2398
2399 #ifdef PIPE_SOCKETPAIR
2400 if (so->so_state & SS_ISAPIPE) {
2401 /* Other end of pipe has been closed. */
2402 if (so->so_state & SS_ISDISCONNECTED) {
2403 sounlock(so);
2404 return EBADF;
2405 }
2406 }
2407 #endif
2408 break;
2409 case EVFILT_EMPTY:
2410 kn->kn_fop = &soempty_filtops;
2411 sb = &so->so_snd;
2412 break;
2413 default:
2414 sounlock(so);
2415 return EINVAL;
2416 }
2417 selrecord_knote(&sb->sb_sel, kn);
2418 sb->sb_flags |= SB_KNOTE;
2419 sounlock(so);
2420 return 0;
2421 }
2422
2423 static int
2424 sodopoll(struct socket *so, int events)
2425 {
2426 int revents;
2427
2428 revents = 0;
2429
2430 if (events & (POLLIN | POLLRDNORM))
2431 if (soreadable(so))
2432 revents |= events & (POLLIN | POLLRDNORM);
2433
2434 if (events & (POLLOUT | POLLWRNORM))
2435 if (sowritable(so))
2436 revents |= events & (POLLOUT | POLLWRNORM);
2437
2438 if (events & (POLLPRI | POLLRDBAND))
2439 if (so->so_state & SS_POLLRDBAND)
2440 revents |= events & (POLLPRI | POLLRDBAND);
2441
2442 return revents;
2443 }
2444
2445 int
2446 sopoll(struct socket *so, int events)
2447 {
2448 int revents = 0;
2449
2450 #ifndef DIAGNOSTIC
2451 /*
2452 * Do a quick, unlocked check in expectation that the socket
2453 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2454 * as the solocked() assertions will fail.
2455 */
2456 if ((revents = sodopoll(so, events)) != 0)
2457 return revents;
2458 #endif
2459
2460 solock(so);
2461 if ((revents = sodopoll(so, events)) == 0) {
2462 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2463 selrecord(curlwp, &so->so_rcv.sb_sel);
2464 so->so_rcv.sb_flags |= SB_NOTIFY;
2465 }
2466
2467 if (events & (POLLOUT | POLLWRNORM)) {
2468 selrecord(curlwp, &so->so_snd.sb_sel);
2469 so->so_snd.sb_flags |= SB_NOTIFY;
2470 }
2471 }
2472 sounlock(so);
2473
2474 return revents;
2475 }
2476
2477 struct mbuf **
2478 sbsavetimestamp(int opt, struct mbuf **mp)
2479 {
2480 struct timeval tv;
2481 int error;
2482
2483 memset(&tv, 0, sizeof(tv));
2484 microtime(&tv);
2485
2486 MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, &mp), enosys(), error);
2487 if (error == 0)
2488 return mp;
2489
2490 if (opt & SO_TIMESTAMP) {
2491 *mp = sbcreatecontrol(&tv, sizeof(tv),
2492 SCM_TIMESTAMP, SOL_SOCKET);
2493 if (*mp)
2494 mp = &(*mp)->m_next;
2495 }
2496 return mp;
2497 }
2498
2499
2500 #include <sys/sysctl.h>
2501
2502 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2503 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2504
2505 /*
2506 * sysctl helper routine for kern.somaxkva. ensures that the given
2507 * value is not too small.
2508 * (XXX should we maybe make sure it's not too large as well?)
2509 */
2510 static int
2511 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2512 {
2513 int error, new_somaxkva;
2514 struct sysctlnode node;
2515
2516 new_somaxkva = somaxkva;
2517 node = *rnode;
2518 node.sysctl_data = &new_somaxkva;
2519 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2520 if (error || newp == NULL)
2521 return error;
2522
2523 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2524 return EINVAL;
2525
2526 mutex_enter(&so_pendfree_lock);
2527 somaxkva = new_somaxkva;
2528 cv_broadcast(&socurkva_cv);
2529 mutex_exit(&so_pendfree_lock);
2530
2531 return error;
2532 }
2533
2534 /*
2535 * sysctl helper routine for kern.sbmax. Basically just ensures that
2536 * any new value is not too small.
2537 */
2538 static int
2539 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2540 {
2541 int error, new_sbmax;
2542 struct sysctlnode node;
2543
2544 new_sbmax = sb_max;
2545 node = *rnode;
2546 node.sysctl_data = &new_sbmax;
2547 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2548 if (error || newp == NULL)
2549 return error;
2550
2551 KERNEL_LOCK(1, NULL);
2552 error = sb_max_set(new_sbmax);
2553 KERNEL_UNLOCK_ONE(NULL);
2554
2555 return error;
2556 }
2557
2558 /*
2559 * sysctl helper routine for kern.sooptions. Ensures that only allowed
2560 * options can be set.
2561 */
2562 static int
2563 sysctl_kern_sooptions(SYSCTLFN_ARGS)
2564 {
2565 int error, new_options;
2566 struct sysctlnode node;
2567
2568 new_options = sooptions;
2569 node = *rnode;
2570 node.sysctl_data = &new_options;
2571 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2572 if (error || newp == NULL)
2573 return error;
2574
2575 if (new_options & ~SO_DEFOPTS)
2576 return EINVAL;
2577
2578 sooptions = new_options;
2579
2580 return 0;
2581 }
2582
2583 static void
2584 sysctl_kern_socket_setup(void)
2585 {
2586
2587 KASSERT(socket_sysctllog == NULL);
2588
2589 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2590 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2591 CTLTYPE_INT, "somaxkva",
2592 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2593 "used for socket buffers"),
2594 sysctl_kern_somaxkva, 0, NULL, 0,
2595 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2596
2597 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2598 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2599 CTLTYPE_BOOL, "sofixedbuf",
2600 SYSCTL_DESCR("Prevent scaling of fixed socket buffers"),
2601 NULL, 0, &sofixedbuf, 0,
2602 CTL_KERN, KERN_SOFIXEDBUF, CTL_EOL);
2603
2604 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2605 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2606 CTLTYPE_INT, "sbmax",
2607 SYSCTL_DESCR("Maximum socket buffer size"),
2608 sysctl_kern_sbmax, 0, NULL, 0,
2609 CTL_KERN, KERN_SBMAX, CTL_EOL);
2610
2611 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2612 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2613 CTLTYPE_INT, "sooptions",
2614 SYSCTL_DESCR("Default socket options"),
2615 sysctl_kern_sooptions, 0, NULL, 0,
2616 CTL_KERN, CTL_CREATE, CTL_EOL);
2617 }
2618