uipc_socket.c revision 1.310 1 /* $NetBSD: uipc_socket.c,v 1.310 2024/07/05 04:31:53 rin Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2007, 2008, 2009, 2023 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.310 2024/07/05 04:31:53 rin Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #include "opt_sctp.h"
84 #include "opt_pipe.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/file.h>
91 #include <sys/filedesc.h>
92 #include <sys/kmem.h>
93 #include <sys/mbuf.h>
94 #include <sys/domain.h>
95 #include <sys/kernel.h>
96 #include <sys/protosw.h>
97 #include <sys/socket.h>
98 #include <sys/socketvar.h>
99 #include <sys/signalvar.h>
100 #include <sys/resourcevar.h>
101 #include <sys/uidinfo.h>
102 #include <sys/event.h>
103 #include <sys/poll.h>
104 #include <sys/kauth.h>
105 #include <sys/mutex.h>
106 #include <sys/condvar.h>
107 #include <sys/kthread.h>
108 #include <sys/compat_stub.h>
109
110 #include <compat/sys/time.h>
111 #include <compat/sys/socket.h>
112
113 #include <uvm/uvm_extern.h>
114 #include <uvm/uvm_loan.h>
115 #include <uvm/uvm_page.h>
116
117 #ifdef SCTP
118 #include <netinet/sctp_route.h>
119 #endif
120
121 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
122
123 extern const struct fileops socketops;
124
125 static int sooptions;
126 extern int somaxconn; /* patchable (XXX sysctl) */
127 int somaxconn = SOMAXCONN;
128 kmutex_t *softnet_lock;
129
130 #ifdef SOSEND_COUNTERS
131 #include <sys/device.h>
132
133 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
134 NULL, "sosend", "loan big");
135 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
136 NULL, "sosend", "copy big");
137 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
138 NULL, "sosend", "copy small");
139 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
140 NULL, "sosend", "kva limit");
141
142 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
143
144 EVCNT_ATTACH_STATIC(sosend_loan_big);
145 EVCNT_ATTACH_STATIC(sosend_copy_big);
146 EVCNT_ATTACH_STATIC(sosend_copy_small);
147 EVCNT_ATTACH_STATIC(sosend_kvalimit);
148 #else
149
150 #define SOSEND_COUNTER_INCR(ev) /* nothing */
151
152 #endif /* SOSEND_COUNTERS */
153
154 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
155 int sock_loan_thresh = -1;
156 #else
157 int sock_loan_thresh = 4096;
158 #endif
159
160 static kmutex_t so_pendfree_lock;
161 static struct mbuf *so_pendfree = NULL;
162
163 #ifndef SOMAXKVA
164 #define SOMAXKVA (16 * 1024 * 1024)
165 #endif
166 int somaxkva = SOMAXKVA;
167 static int socurkva;
168 static kcondvar_t socurkva_cv;
169
170 #ifndef SOFIXEDBUF
171 #define SOFIXEDBUF true
172 #endif
173 bool sofixedbuf = SOFIXEDBUF;
174
175 static kauth_listener_t socket_listener;
176
177 #define SOCK_LOAN_CHUNK 65536
178
179 static void sopendfree_thread(void *);
180 static kcondvar_t pendfree_thread_cv;
181 static lwp_t *sopendfree_lwp;
182
183 static void sysctl_kern_socket_setup(void);
184 static struct sysctllog *socket_sysctllog;
185
186 static vsize_t
187 sokvareserve(struct socket *so, vsize_t len)
188 {
189 int error;
190
191 mutex_enter(&so_pendfree_lock);
192 while (socurkva + len > somaxkva) {
193 SOSEND_COUNTER_INCR(&sosend_kvalimit);
194 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
195 if (error) {
196 len = 0;
197 break;
198 }
199 }
200 socurkva += len;
201 mutex_exit(&so_pendfree_lock);
202 return len;
203 }
204
205 static void
206 sokvaunreserve(vsize_t len)
207 {
208
209 mutex_enter(&so_pendfree_lock);
210 socurkva -= len;
211 cv_broadcast(&socurkva_cv);
212 mutex_exit(&so_pendfree_lock);
213 }
214
215 /*
216 * sokvaalloc: allocate kva for loan.
217 */
218 vaddr_t
219 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
220 {
221 vaddr_t lva;
222
223 if (sokvareserve(so, len) == 0)
224 return 0;
225
226 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
227 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
228 if (lva == 0) {
229 sokvaunreserve(len);
230 return 0;
231 }
232
233 return lva;
234 }
235
236 /*
237 * sokvafree: free kva for loan.
238 */
239 void
240 sokvafree(vaddr_t sva, vsize_t len)
241 {
242
243 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
244 sokvaunreserve(len);
245 }
246
247 static void
248 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
249 {
250 vaddr_t sva, eva;
251 vsize_t len;
252 int npgs;
253
254 KASSERT(pgs != NULL);
255
256 eva = round_page((vaddr_t) buf + size);
257 sva = trunc_page((vaddr_t) buf);
258 len = eva - sva;
259 npgs = len >> PAGE_SHIFT;
260
261 pmap_kremove(sva, len);
262 pmap_update(pmap_kernel());
263 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
264 sokvafree(sva, len);
265 }
266
267 /*
268 * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
269 * so_pendfree_lock when freeing mbufs.
270 */
271 static void
272 sopendfree_thread(void *v)
273 {
274 struct mbuf *m, *next;
275 size_t rv;
276
277 mutex_enter(&so_pendfree_lock);
278
279 for (;;) {
280 rv = 0;
281 while (so_pendfree != NULL) {
282 m = so_pendfree;
283 so_pendfree = NULL;
284 mutex_exit(&so_pendfree_lock);
285
286 for (; m != NULL; m = next) {
287 next = m->m_next;
288 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
289 0);
290 KASSERT(m->m_ext.ext_refcnt == 0);
291
292 rv += m->m_ext.ext_size;
293 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
294 m->m_ext.ext_size);
295 pool_cache_put(mb_cache, m);
296 }
297
298 mutex_enter(&so_pendfree_lock);
299 }
300 if (rv)
301 cv_broadcast(&socurkva_cv);
302 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
303 }
304 panic("sopendfree_thread");
305 /* NOTREACHED */
306 }
307
308 void
309 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
310 {
311
312 KASSERT(m != NULL);
313
314 /*
315 * postpone freeing mbuf.
316 *
317 * we can't do it in interrupt context
318 * because we need to put kva back to kernel_map.
319 */
320
321 mutex_enter(&so_pendfree_lock);
322 m->m_next = so_pendfree;
323 so_pendfree = m;
324 cv_signal(&pendfree_thread_cv);
325 mutex_exit(&so_pendfree_lock);
326 }
327
328 static long
329 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
330 {
331 struct iovec *iov = uio->uio_iov;
332 vaddr_t sva, eva;
333 vsize_t len;
334 vaddr_t lva;
335 int npgs, error;
336 vaddr_t va;
337 int i;
338
339 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
340 return 0;
341
342 if (iov->iov_len < (size_t) space)
343 space = iov->iov_len;
344 if (space > SOCK_LOAN_CHUNK)
345 space = SOCK_LOAN_CHUNK;
346
347 eva = round_page((vaddr_t) iov->iov_base + space);
348 sva = trunc_page((vaddr_t) iov->iov_base);
349 len = eva - sva;
350 npgs = len >> PAGE_SHIFT;
351
352 KASSERT(npgs <= M_EXT_MAXPAGES);
353
354 lva = sokvaalloc(sva, len, so);
355 if (lva == 0)
356 return 0;
357
358 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
359 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
360 if (error) {
361 sokvafree(lva, len);
362 return 0;
363 }
364
365 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
366 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
367 VM_PROT_READ, 0);
368 pmap_update(pmap_kernel());
369
370 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
371
372 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
373 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
374
375 uio->uio_resid -= space;
376 /* uio_offset not updated, not set/used for write(2) */
377 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
378 uio->uio_iov->iov_len -= space;
379 if (uio->uio_iov->iov_len == 0) {
380 uio->uio_iov++;
381 uio->uio_iovcnt--;
382 }
383
384 return space;
385 }
386
387 static int
388 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
389 void *arg0, void *arg1, void *arg2, void *arg3)
390 {
391 int result;
392 enum kauth_network_req req;
393
394 result = KAUTH_RESULT_DEFER;
395 req = (enum kauth_network_req)(uintptr_t)arg0;
396
397 if ((action != KAUTH_NETWORK_SOCKET) &&
398 (action != KAUTH_NETWORK_BIND))
399 return result;
400
401 switch (req) {
402 case KAUTH_REQ_NETWORK_BIND_PORT:
403 result = KAUTH_RESULT_ALLOW;
404 break;
405
406 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
407 /* Normal users can only drop their own connections. */
408 struct socket *so = (struct socket *)arg1;
409
410 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
411 result = KAUTH_RESULT_ALLOW;
412
413 break;
414 }
415
416 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
417 /* We allow "raw" routing/bluetooth sockets to anyone. */
418 switch ((u_long)arg1) {
419 case PF_ROUTE:
420 case PF_OROUTE:
421 case PF_BLUETOOTH:
422 case PF_CAN:
423 result = KAUTH_RESULT_ALLOW;
424 break;
425 default:
426 /* Privileged, let secmodel handle this. */
427 if ((u_long)arg2 == SOCK_RAW)
428 break;
429 result = KAUTH_RESULT_ALLOW;
430 break;
431 }
432 break;
433
434 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
435 result = KAUTH_RESULT_ALLOW;
436
437 break;
438
439 default:
440 break;
441 }
442
443 return result;
444 }
445
446 void
447 soinit(void)
448 {
449
450 sysctl_kern_socket_setup();
451
452 #ifdef SCTP
453 /* Update the SCTP function hooks if necessary*/
454
455 vec_sctp_add_ip_address = sctp_add_ip_address;
456 vec_sctp_delete_ip_address = sctp_delete_ip_address;
457 #endif
458
459 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
460 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
461 cv_init(&socurkva_cv, "sokva");
462 cv_init(&pendfree_thread_cv, "sopendfr");
463 soinit2();
464
465 /* Set the initial adjusted socket buffer size. */
466 if (sb_max_set(sb_max))
467 panic("bad initial sb_max value: %lu", sb_max);
468
469 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
470 socket_listener_cb, NULL);
471 }
472
473 void
474 soinit1(void)
475 {
476 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
477 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
478 if (error)
479 panic("soinit1 %d", error);
480 }
481
482 /*
483 * socreate: create a new socket of the specified type and the protocol.
484 *
485 * => Caller may specify another socket for lock sharing (must not be held).
486 * => Returns the new socket without lock held.
487 */
488 int
489 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
490 struct socket *lockso)
491 {
492 const struct protosw *prp;
493 struct socket *so;
494 uid_t uid;
495 int error;
496 kmutex_t *lock;
497
498 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
499 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
500 KAUTH_ARG(proto));
501 if (error != 0)
502 return error;
503
504 if (proto)
505 prp = pffindproto(dom, proto, type);
506 else
507 prp = pffindtype(dom, type);
508 if (prp == NULL) {
509 /* no support for domain */
510 if (pffinddomain(dom) == 0)
511 return EAFNOSUPPORT;
512 /* no support for socket type */
513 if (proto == 0 && type != 0)
514 return EPROTOTYPE;
515 return EPROTONOSUPPORT;
516 }
517 if (prp->pr_usrreqs == NULL)
518 return EPROTONOSUPPORT;
519 if (prp->pr_type != type)
520 return EPROTOTYPE;
521
522 so = soget(true);
523 so->so_type = type;
524 so->so_proto = prp;
525 so->so_send = sosend;
526 so->so_receive = soreceive;
527 so->so_options = sooptions;
528 #ifdef MBUFTRACE
529 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
530 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
531 so->so_mowner = &prp->pr_domain->dom_mowner;
532 #endif
533 uid = kauth_cred_geteuid(l->l_cred);
534 so->so_uidinfo = uid_find(uid);
535 so->so_egid = kauth_cred_getegid(l->l_cred);
536 so->so_cpid = l->l_proc->p_pid;
537
538 /*
539 * Lock assigned and taken during PCB attach, unless we share
540 * the lock with another socket, e.g. socketpair(2) case.
541 */
542 if (lockso) {
543 /*
544 * lockso->so_lock should be stable at this point, so
545 * no need for atomic_load_*.
546 */
547 lock = lockso->so_lock;
548 so->so_lock = lock;
549 mutex_obj_hold(lock);
550 mutex_enter(lock);
551 }
552
553 /* Attach the PCB (returns with the socket lock held). */
554 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
555 KASSERT(solocked(so));
556
557 if (error) {
558 KASSERT(so->so_pcb == NULL);
559 so->so_state |= SS_NOFDREF;
560 sofree(so);
561 return error;
562 }
563 so->so_cred = kauth_cred_hold(l->l_cred);
564 sounlock(so);
565
566 *aso = so;
567 return 0;
568 }
569
570 /*
571 * fsocreate: create a socket and a file descriptor associated with it.
572 * Returns the allocated file structure in *fpp, but the descriptor
573 * is not visible yet for the process.
574 * Caller is responsible for calling fd_affix() for the returned *fpp once
575 * it's socket initialization is finished successfully, or fd_abort() if it's
576 * initialization fails.
577 *
578 *
579 * => On success, write file descriptor to *fdout and *fpp and return zero.
580 * => On failure, return non-zero; *fdout and *fpp will be undefined.
581 */
582 int
583 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout,
584 file_t **fpp, struct socket *lockso)
585 {
586 lwp_t *l = curlwp;
587 int error, fd, flags;
588 struct socket *so;
589 file_t *fp;
590
591 flags = type & SOCK_FLAGS_MASK;
592 type &= ~SOCK_FLAGS_MASK;
593 error = socreate(domain, &so, type, proto, l, lockso);
594 if (error) {
595 return error;
596 }
597
598 if ((error = fd_allocfile(&fp, &fd)) != 0) {
599 soclose(so);
600 return error;
601 }
602 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
603 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
604 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
605 fp->f_type = DTYPE_SOCKET;
606 fp->f_ops = &socketops;
607 if (flags & SOCK_NONBLOCK) {
608 so->so_state |= SS_NBIO;
609 }
610 fp->f_socket = so;
611
612 if (sop != NULL) {
613 *sop = so;
614 }
615 *fdout = fd;
616 *fpp = fp;
617 return error;
618 }
619
620 int
621 sofamily(const struct socket *so)
622 {
623 const struct protosw *pr;
624 const struct domain *dom;
625
626 if ((pr = so->so_proto) == NULL)
627 return AF_UNSPEC;
628 if ((dom = pr->pr_domain) == NULL)
629 return AF_UNSPEC;
630 return dom->dom_family;
631 }
632
633 int
634 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
635 {
636 int error;
637
638 solock(so);
639 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
640 sounlock(so);
641 return EAFNOSUPPORT;
642 }
643 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
644 sounlock(so);
645 return error;
646 }
647
648 int
649 solisten(struct socket *so, int backlog, struct lwp *l)
650 {
651 int error;
652 short oldopt, oldqlimit;
653
654 solock(so);
655 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
656 SS_ISDISCONNECTING)) != 0) {
657 sounlock(so);
658 return EINVAL;
659 }
660 oldopt = so->so_options;
661 oldqlimit = so->so_qlimit;
662 if (TAILQ_EMPTY(&so->so_q))
663 so->so_options |= SO_ACCEPTCONN;
664 if (backlog < 0)
665 backlog = 0;
666 so->so_qlimit = uimin(backlog, somaxconn);
667
668 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
669 if (error != 0) {
670 so->so_options = oldopt;
671 so->so_qlimit = oldqlimit;
672 sounlock(so);
673 return error;
674 }
675 sounlock(so);
676 return 0;
677 }
678
679 void
680 sofree(struct socket *so)
681 {
682 u_int refs;
683
684 KASSERT(solocked(so));
685
686 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
687 sounlock(so);
688 return;
689 }
690 if (so->so_head) {
691 /*
692 * We must not decommission a socket that's on the accept(2)
693 * queue. If we do, then accept(2) may hang after select(2)
694 * indicated that the listening socket was ready.
695 */
696 if (!soqremque(so, 0)) {
697 sounlock(so);
698 return;
699 }
700 }
701 if (so->so_rcv.sb_hiwat)
702 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
703 RLIM_INFINITY);
704 if (so->so_snd.sb_hiwat)
705 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
706 RLIM_INFINITY);
707 sbrelease(&so->so_snd, so);
708 KASSERT(!cv_has_waiters(&so->so_cv));
709 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
710 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
711 sorflush(so);
712 refs = so->so_aborting; /* XXX */
713 /* Remove accept filter if one is present. */
714 if (so->so_accf != NULL)
715 (void)accept_filt_clear(so);
716 sounlock(so);
717 if (refs == 0) /* XXX */
718 soput(so);
719 }
720
721 /*
722 * soclose: close a socket on last file table reference removal.
723 * Initiate disconnect if connected. Free socket when disconnect complete.
724 */
725 int
726 soclose(struct socket *so)
727 {
728 struct socket *so2;
729 int error = 0;
730
731 solock(so);
732 if (so->so_options & SO_ACCEPTCONN) {
733 for (;;) {
734 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
735 KASSERT(solocked2(so, so2));
736 (void) soqremque(so2, 0);
737 /* soabort drops the lock. */
738 (void) soabort(so2);
739 solock(so);
740 continue;
741 }
742 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
743 KASSERT(solocked2(so, so2));
744 (void) soqremque(so2, 1);
745 /* soabort drops the lock. */
746 (void) soabort(so2);
747 solock(so);
748 continue;
749 }
750 break;
751 }
752 }
753 if (so->so_pcb == NULL)
754 goto discard;
755 if (so->so_state & SS_ISCONNECTED) {
756 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
757 error = sodisconnect(so);
758 if (error)
759 goto drop;
760 }
761 if (so->so_options & SO_LINGER) {
762 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
763 (SS_ISDISCONNECTING|SS_NBIO))
764 goto drop;
765 while (so->so_state & SS_ISCONNECTED) {
766 error = sowait(so, true, so->so_linger * hz);
767 if (error)
768 break;
769 }
770 }
771 }
772 drop:
773 if (so->so_pcb) {
774 KASSERT(solocked(so));
775 (*so->so_proto->pr_usrreqs->pr_detach)(so);
776 }
777 discard:
778 KASSERT((so->so_state & SS_NOFDREF) == 0);
779 kauth_cred_free(so->so_cred);
780 so->so_cred = NULL;
781 so->so_state |= SS_NOFDREF;
782 sofree(so);
783 return error;
784 }
785
786 /*
787 * Must be called with the socket locked.. Will return with it unlocked.
788 */
789 int
790 soabort(struct socket *so)
791 {
792 u_int refs;
793 int error;
794
795 KASSERT(solocked(so));
796 KASSERT(so->so_head == NULL);
797
798 so->so_aborting++; /* XXX */
799 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
800 refs = --so->so_aborting; /* XXX */
801 if (error || (refs == 0)) {
802 sofree(so);
803 } else {
804 sounlock(so);
805 }
806 return error;
807 }
808
809 int
810 soaccept(struct socket *so, struct sockaddr *nam)
811 {
812 int error;
813
814 KASSERT(solocked(so));
815 KASSERT((so->so_state & SS_NOFDREF) != 0);
816
817 so->so_state &= ~SS_NOFDREF;
818 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
819 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
820 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
821 else
822 error = ECONNABORTED;
823
824 return error;
825 }
826
827 int
828 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
829 {
830 int error;
831
832 KASSERT(solocked(so));
833
834 if (so->so_options & SO_ACCEPTCONN)
835 return EOPNOTSUPP;
836 /*
837 * If protocol is connection-based, can only connect once.
838 * Otherwise, if connected, try to disconnect first.
839 * This allows user to disconnect by connecting to, e.g.,
840 * a null address.
841 */
842 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
843 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
844 (error = sodisconnect(so)))) {
845 error = EISCONN;
846 } else {
847 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
848 return EAFNOSUPPORT;
849 }
850 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
851 }
852
853 return error;
854 }
855
856 int
857 soconnect2(struct socket *so1, struct socket *so2)
858 {
859 KASSERT(solocked2(so1, so2));
860
861 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
862 }
863
864 int
865 sodisconnect(struct socket *so)
866 {
867 int error;
868
869 KASSERT(solocked(so));
870
871 if ((so->so_state & SS_ISCONNECTED) == 0) {
872 error = ENOTCONN;
873 } else if (so->so_state & SS_ISDISCONNECTING) {
874 error = EALREADY;
875 } else {
876 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
877 }
878 return error;
879 }
880
881 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
882 /*
883 * Send on a socket.
884 * If send must go all at once and message is larger than
885 * send buffering, then hard error.
886 * Lock against other senders.
887 * If must go all at once and not enough room now, then
888 * inform user that this would block and do nothing.
889 * Otherwise, if nonblocking, send as much as possible.
890 * The data to be sent is described by "uio" if nonzero,
891 * otherwise by the mbuf chain "top" (which must be null
892 * if uio is not). Data provided in mbuf chain must be small
893 * enough to send all at once.
894 *
895 * Returns nonzero on error, timeout or signal; callers
896 * must check for short counts if EINTR/ERESTART are returned.
897 * Data and control buffers are freed on return.
898 */
899 int
900 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
901 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
902 {
903 struct mbuf **mp, *m;
904 long space, len, resid, clen, mlen;
905 int error, s, dontroute, atomic;
906 short wakeup_state = 0;
907
908 clen = 0;
909
910 /*
911 * solock() provides atomicity of access. splsoftnet() prevents
912 * protocol processing soft interrupts from interrupting us and
913 * blocking (expensive).
914 */
915 s = splsoftnet();
916 solock(so);
917 atomic = sosendallatonce(so) || top;
918 if (uio)
919 resid = uio->uio_resid;
920 else
921 resid = top->m_pkthdr.len;
922 /*
923 * In theory resid should be unsigned.
924 * However, space must be signed, as it might be less than 0
925 * if we over-committed, and we must use a signed comparison
926 * of space and resid. On the other hand, a negative resid
927 * causes us to loop sending 0-length segments to the protocol.
928 */
929 if (resid < 0) {
930 error = EINVAL;
931 goto out;
932 }
933 dontroute =
934 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
935 (so->so_proto->pr_flags & PR_ATOMIC);
936 l->l_ru.ru_msgsnd++;
937 if (control)
938 clen = control->m_len;
939 restart:
940 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
941 goto out;
942 do {
943 if (so->so_state & SS_CANTSENDMORE) {
944 error = EPIPE;
945 goto release;
946 }
947 if (so->so_error) {
948 error = so->so_error;
949 if ((flags & MSG_PEEK) == 0)
950 so->so_error = 0;
951 goto release;
952 }
953 if ((so->so_state & SS_ISCONNECTED) == 0) {
954 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
955 if (resid || clen == 0) {
956 error = ENOTCONN;
957 goto release;
958 }
959 } else if (addr == NULL) {
960 error = EDESTADDRREQ;
961 goto release;
962 }
963 }
964 space = sbspace(&so->so_snd);
965 if (flags & MSG_OOB)
966 space += 1024;
967 if ((atomic && resid > so->so_snd.sb_hiwat) ||
968 clen > so->so_snd.sb_hiwat) {
969 error = EMSGSIZE;
970 goto release;
971 }
972 if (space < resid + clen &&
973 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
974 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
975 error = EWOULDBLOCK;
976 goto release;
977 }
978 sbunlock(&so->so_snd);
979 if (wakeup_state & SS_RESTARTSYS) {
980 error = ERESTART;
981 goto out;
982 }
983 error = sbwait(&so->so_snd);
984 if (error)
985 goto out;
986 wakeup_state = so->so_state;
987 goto restart;
988 }
989 wakeup_state = 0;
990 mp = ⊤
991 space -= clen;
992 do {
993 if (uio == NULL) {
994 /*
995 * Data is prepackaged in "top".
996 */
997 resid = 0;
998 if (flags & MSG_EOR)
999 top->m_flags |= M_EOR;
1000 } else do {
1001 sounlock(so);
1002 splx(s);
1003 if (top == NULL) {
1004 m = m_gethdr(M_WAIT, MT_DATA);
1005 mlen = MHLEN;
1006 m->m_pkthdr.len = 0;
1007 m_reset_rcvif(m);
1008 } else {
1009 m = m_get(M_WAIT, MT_DATA);
1010 mlen = MLEN;
1011 }
1012 MCLAIM(m, so->so_snd.sb_mowner);
1013 if (sock_loan_thresh >= 0 &&
1014 uio->uio_iov->iov_len >= sock_loan_thresh &&
1015 space >= sock_loan_thresh &&
1016 (len = sosend_loan(so, uio, m,
1017 space)) != 0) {
1018 SOSEND_COUNTER_INCR(&sosend_loan_big);
1019 space -= len;
1020 goto have_data;
1021 }
1022 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1023 SOSEND_COUNTER_INCR(&sosend_copy_big);
1024 m_clget(m, M_DONTWAIT);
1025 if ((m->m_flags & M_EXT) == 0)
1026 goto nopages;
1027 mlen = MCLBYTES;
1028 if (atomic && top == 0) {
1029 len = lmin(MCLBYTES - max_hdr,
1030 resid);
1031 m->m_data += max_hdr;
1032 } else
1033 len = lmin(MCLBYTES, resid);
1034 space -= len;
1035 } else {
1036 nopages:
1037 SOSEND_COUNTER_INCR(&sosend_copy_small);
1038 len = lmin(lmin(mlen, resid), space);
1039 space -= len;
1040 /*
1041 * For datagram protocols, leave room
1042 * for protocol headers in first mbuf.
1043 */
1044 if (atomic && top == 0 && len < mlen)
1045 m_align(m, len);
1046 }
1047 error = uiomove(mtod(m, void *), (int)len, uio);
1048 have_data:
1049 resid = uio->uio_resid;
1050 m->m_len = len;
1051 *mp = m;
1052 top->m_pkthdr.len += len;
1053 s = splsoftnet();
1054 solock(so);
1055 if (error != 0)
1056 goto release;
1057 mp = &m->m_next;
1058 if (resid <= 0) {
1059 if (flags & MSG_EOR)
1060 top->m_flags |= M_EOR;
1061 break;
1062 }
1063 } while (space > 0 && atomic);
1064
1065 if (so->so_state & SS_CANTSENDMORE) {
1066 error = EPIPE;
1067 goto release;
1068 }
1069 if (dontroute)
1070 so->so_options |= SO_DONTROUTE;
1071 if (resid > 0)
1072 so->so_state |= SS_MORETOCOME;
1073 if (flags & MSG_OOB) {
1074 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1075 so, top, control);
1076 } else {
1077 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1078 top, addr, control, l);
1079 }
1080 if (dontroute)
1081 so->so_options &= ~SO_DONTROUTE;
1082 if (resid > 0)
1083 so->so_state &= ~SS_MORETOCOME;
1084 clen = 0;
1085 control = NULL;
1086 top = NULL;
1087 mp = ⊤
1088 if (error != 0)
1089 goto release;
1090 } while (resid && space > 0);
1091 } while (resid);
1092
1093 release:
1094 sbunlock(&so->so_snd);
1095 out:
1096 sounlock(so);
1097 splx(s);
1098 m_freem(top);
1099 m_freem(control);
1100 return error;
1101 }
1102
1103 /*
1104 * Following replacement or removal of the first mbuf on the first
1105 * mbuf chain of a socket buffer, push necessary state changes back
1106 * into the socket buffer so that other consumers see the values
1107 * consistently. 'nextrecord' is the caller's locally stored value of
1108 * the original value of sb->sb_mb->m_nextpkt which must be restored
1109 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1110 */
1111 static void
1112 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1113 {
1114
1115 KASSERT(solocked(sb->sb_so));
1116
1117 /*
1118 * First, update for the new value of nextrecord. If necessary,
1119 * make it the first record.
1120 */
1121 if (sb->sb_mb != NULL)
1122 sb->sb_mb->m_nextpkt = nextrecord;
1123 else
1124 sb->sb_mb = nextrecord;
1125
1126 /*
1127 * Now update any dependent socket buffer fields to reflect
1128 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1129 * the addition of a second clause that takes care of the
1130 * case where sb_mb has been updated, but remains the last
1131 * record.
1132 */
1133 if (sb->sb_mb == NULL) {
1134 sb->sb_mbtail = NULL;
1135 sb->sb_lastrecord = NULL;
1136 } else if (sb->sb_mb->m_nextpkt == NULL)
1137 sb->sb_lastrecord = sb->sb_mb;
1138 }
1139
1140 /*
1141 * Implement receive operations on a socket.
1142 *
1143 * We depend on the way that records are added to the sockbuf by sbappend*. In
1144 * particular, each record (mbufs linked through m_next) must begin with an
1145 * address if the protocol so specifies, followed by an optional mbuf or mbufs
1146 * containing ancillary data, and then zero or more mbufs of data.
1147 *
1148 * In order to avoid blocking network interrupts for the entire time here, we
1149 * splx() while doing the actual copy to user space. Although the sockbuf is
1150 * locked, new data may still be appended, and thus we must maintain
1151 * consistency of the sockbuf during that time.
1152 *
1153 * The caller may receive the data as a single mbuf chain by supplying an mbuf
1154 * **mp0 for use in returning the chain. The uio is then used only for the
1155 * count in uio_resid.
1156 */
1157 int
1158 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1159 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1160 {
1161 struct lwp *l = curlwp;
1162 struct mbuf *m, **mp, *mt;
1163 size_t len, offset, moff, orig_resid;
1164 int atomic, flags, error, s, type;
1165 const struct protosw *pr;
1166 struct mbuf *nextrecord;
1167 int mbuf_removed = 0;
1168 const struct domain *dom;
1169 short wakeup_state = 0;
1170
1171 pr = so->so_proto;
1172 atomic = pr->pr_flags & PR_ATOMIC;
1173 dom = pr->pr_domain;
1174 mp = mp0;
1175 type = 0;
1176 orig_resid = uio->uio_resid;
1177
1178 if (paddr != NULL)
1179 *paddr = NULL;
1180 if (controlp != NULL)
1181 *controlp = NULL;
1182 if (flagsp != NULL)
1183 flags = *flagsp &~ MSG_EOR;
1184 else
1185 flags = 0;
1186
1187 if (flags & MSG_OOB) {
1188 m = m_get(M_WAIT, MT_DATA);
1189 solock(so);
1190 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1191 sounlock(so);
1192 if (error)
1193 goto bad;
1194 do {
1195 error = uiomove(mtod(m, void *),
1196 MIN(uio->uio_resid, m->m_len), uio);
1197 m = m_free(m);
1198 } while (uio->uio_resid > 0 && error == 0 && m);
1199 bad:
1200 m_freem(m);
1201 return error;
1202 }
1203 if (mp != NULL)
1204 *mp = NULL;
1205
1206 /*
1207 * solock() provides atomicity of access. splsoftnet() prevents
1208 * protocol processing soft interrupts from interrupting us and
1209 * blocking (expensive).
1210 */
1211 s = splsoftnet();
1212 solock(so);
1213 restart:
1214 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1215 sounlock(so);
1216 splx(s);
1217 return error;
1218 }
1219 m = so->so_rcv.sb_mb;
1220
1221 /*
1222 * If we have less data than requested, block awaiting more
1223 * (subject to any timeout) if:
1224 * 1. the current count is less than the low water mark,
1225 * 2. MSG_WAITALL is set, and it is possible to do the entire
1226 * receive operation at once if we block (resid <= hiwat), or
1227 * 3. MSG_DONTWAIT is not set.
1228 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1229 * we have to do the receive in sections, and thus risk returning
1230 * a short count if a timeout or signal occurs after we start.
1231 */
1232 if (m == NULL ||
1233 ((flags & MSG_DONTWAIT) == 0 &&
1234 so->so_rcv.sb_cc < uio->uio_resid &&
1235 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1236 ((flags & MSG_WAITALL) &&
1237 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1238 m->m_nextpkt == NULL && !atomic)) {
1239 #ifdef DIAGNOSTIC
1240 if (m == NULL && so->so_rcv.sb_cc)
1241 panic("receive 1");
1242 #endif
1243 if (so->so_error || so->so_rerror) {
1244 u_short *e;
1245 if (m != NULL)
1246 goto dontblock;
1247 e = so->so_error ? &so->so_error : &so->so_rerror;
1248 error = *e;
1249 if ((flags & MSG_PEEK) == 0)
1250 *e = 0;
1251 goto release;
1252 }
1253 if (so->so_state & SS_CANTRCVMORE) {
1254 if (m != NULL)
1255 goto dontblock;
1256 else
1257 goto release;
1258 }
1259 for (; m != NULL; m = m->m_next)
1260 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1261 m = so->so_rcv.sb_mb;
1262 goto dontblock;
1263 }
1264 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1265 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1266 error = ENOTCONN;
1267 goto release;
1268 }
1269 if (uio->uio_resid == 0)
1270 goto release;
1271 if ((so->so_state & SS_NBIO) ||
1272 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1273 error = EWOULDBLOCK;
1274 goto release;
1275 }
1276 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1277 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1278 sbunlock(&so->so_rcv);
1279 if (wakeup_state & SS_RESTARTSYS)
1280 error = ERESTART;
1281 else
1282 error = sbwait(&so->so_rcv);
1283 if (error != 0) {
1284 sounlock(so);
1285 splx(s);
1286 return error;
1287 }
1288 wakeup_state = so->so_state;
1289 goto restart;
1290 }
1291
1292 dontblock:
1293 /*
1294 * On entry here, m points to the first record of the socket buffer.
1295 * From this point onward, we maintain 'nextrecord' as a cache of the
1296 * pointer to the next record in the socket buffer. We must keep the
1297 * various socket buffer pointers and local stack versions of the
1298 * pointers in sync, pushing out modifications before dropping the
1299 * socket lock, and re-reading them when picking it up.
1300 *
1301 * Otherwise, we will race with the network stack appending new data
1302 * or records onto the socket buffer by using inconsistent/stale
1303 * versions of the field, possibly resulting in socket buffer
1304 * corruption.
1305 *
1306 * By holding the high-level sblock(), we prevent simultaneous
1307 * readers from pulling off the front of the socket buffer.
1308 */
1309 if (l != NULL)
1310 l->l_ru.ru_msgrcv++;
1311 KASSERT(m == so->so_rcv.sb_mb);
1312 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1313 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1314 nextrecord = m->m_nextpkt;
1315
1316 if (pr->pr_flags & PR_ADDR) {
1317 KASSERT(m->m_type == MT_SONAME);
1318 orig_resid = 0;
1319 if (flags & MSG_PEEK) {
1320 if (paddr)
1321 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1322 m = m->m_next;
1323 } else {
1324 sbfree(&so->so_rcv, m);
1325 mbuf_removed = 1;
1326 if (paddr != NULL) {
1327 *paddr = m;
1328 so->so_rcv.sb_mb = m->m_next;
1329 m->m_next = NULL;
1330 m = so->so_rcv.sb_mb;
1331 } else {
1332 m = so->so_rcv.sb_mb = m_free(m);
1333 }
1334 sbsync(&so->so_rcv, nextrecord);
1335 }
1336 }
1337
1338 if (pr->pr_flags & PR_ADDR_OPT) {
1339 /*
1340 * For SCTP we may be getting a whole message OR a partial
1341 * delivery.
1342 */
1343 if (m->m_type == MT_SONAME) {
1344 orig_resid = 0;
1345 if (flags & MSG_PEEK) {
1346 if (paddr)
1347 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1348 m = m->m_next;
1349 } else {
1350 sbfree(&so->so_rcv, m);
1351 mbuf_removed = 1;
1352 if (paddr) {
1353 *paddr = m;
1354 so->so_rcv.sb_mb = m->m_next;
1355 m->m_next = 0;
1356 m = so->so_rcv.sb_mb;
1357 } else {
1358 m = so->so_rcv.sb_mb = m_free(m);
1359 }
1360 sbsync(&so->so_rcv, nextrecord);
1361 }
1362 }
1363 }
1364
1365 /*
1366 * Process one or more MT_CONTROL mbufs present before any data mbufs
1367 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1368 * just copy the data; if !MSG_PEEK, we call into the protocol to
1369 * perform externalization (or freeing if controlp == NULL).
1370 */
1371 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1372 struct mbuf *cm = NULL, *cmn;
1373 struct mbuf **cme = &cm;
1374
1375 do {
1376 if (flags & MSG_PEEK) {
1377 if (controlp != NULL) {
1378 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1379 controlp = (*controlp == NULL ? NULL :
1380 &(*controlp)->m_next);
1381 }
1382 m = m->m_next;
1383 } else {
1384 sbfree(&so->so_rcv, m);
1385 so->so_rcv.sb_mb = m->m_next;
1386 m->m_next = NULL;
1387 *cme = m;
1388 cme = &(*cme)->m_next;
1389 m = so->so_rcv.sb_mb;
1390 }
1391 } while (m != NULL && m->m_type == MT_CONTROL);
1392 if ((flags & MSG_PEEK) == 0)
1393 sbsync(&so->so_rcv, nextrecord);
1394
1395 for (; cm != NULL; cm = cmn) {
1396 cmn = cm->m_next;
1397 cm->m_next = NULL;
1398 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1399 if (controlp != NULL) {
1400 if (dom->dom_externalize != NULL &&
1401 type == SCM_RIGHTS) {
1402 sounlock(so);
1403 splx(s);
1404 error = (*dom->dom_externalize)(cm, l,
1405 (flags & MSG_CMSG_CLOEXEC) ?
1406 O_CLOEXEC : 0);
1407 s = splsoftnet();
1408 solock(so);
1409 }
1410 *controlp = cm;
1411 while (*controlp != NULL)
1412 controlp = &(*controlp)->m_next;
1413 } else {
1414 /*
1415 * Dispose of any SCM_RIGHTS message that went
1416 * through the read path rather than recv.
1417 */
1418 if (dom->dom_dispose != NULL &&
1419 type == SCM_RIGHTS) {
1420 sounlock(so);
1421 (*dom->dom_dispose)(cm);
1422 solock(so);
1423 }
1424 m_freem(cm);
1425 }
1426 }
1427 if (m != NULL)
1428 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1429 else
1430 nextrecord = so->so_rcv.sb_mb;
1431 orig_resid = 0;
1432 }
1433
1434 /* If m is non-NULL, we have some data to read. */
1435 if (__predict_true(m != NULL)) {
1436 type = m->m_type;
1437 if (type == MT_OOBDATA)
1438 flags |= MSG_OOB;
1439 }
1440 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1441 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1442
1443 moff = 0;
1444 offset = 0;
1445 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1446 /*
1447 * If the type of mbuf has changed, end the receive
1448 * operation and do a short read.
1449 */
1450 if (m->m_type == MT_OOBDATA) {
1451 if (type != MT_OOBDATA)
1452 break;
1453 } else if (type == MT_OOBDATA) {
1454 break;
1455 } else if (m->m_type == MT_CONTROL) {
1456 break;
1457 }
1458 #ifdef DIAGNOSTIC
1459 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1460 panic("%s: m_type=%d", __func__, m->m_type);
1461 }
1462 #endif
1463
1464 so->so_state &= ~SS_RCVATMARK;
1465 wakeup_state = 0;
1466 len = uio->uio_resid;
1467 if (so->so_oobmark && len > so->so_oobmark - offset)
1468 len = so->so_oobmark - offset;
1469 if (len > m->m_len - moff)
1470 len = m->m_len - moff;
1471
1472 /*
1473 * If mp is set, just pass back the mbufs.
1474 * Otherwise copy them out via the uio, then free.
1475 * Sockbuf must be consistent here (points to current mbuf,
1476 * it points to next record) when we drop priority;
1477 * we must note any additions to the sockbuf when we
1478 * block interrupts again.
1479 */
1480 if (mp == NULL) {
1481 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1482 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1483 sounlock(so);
1484 splx(s);
1485 error = uiomove(mtod(m, char *) + moff, len, uio);
1486 s = splsoftnet();
1487 solock(so);
1488 if (error != 0) {
1489 /*
1490 * If any part of the record has been removed
1491 * (such as the MT_SONAME mbuf, which will
1492 * happen when PR_ADDR, and thus also
1493 * PR_ATOMIC, is set), then drop the entire
1494 * record to maintain the atomicity of the
1495 * receive operation.
1496 *
1497 * This avoids a later panic("receive 1a")
1498 * when compiled with DIAGNOSTIC.
1499 */
1500 if (m && mbuf_removed && atomic)
1501 (void) sbdroprecord(&so->so_rcv);
1502
1503 goto release;
1504 }
1505 } else {
1506 uio->uio_resid -= len;
1507 }
1508
1509 if (len == m->m_len - moff) {
1510 if (m->m_flags & M_EOR)
1511 flags |= MSG_EOR;
1512 #ifdef SCTP
1513 if (m->m_flags & M_NOTIFICATION)
1514 flags |= MSG_NOTIFICATION;
1515 #endif
1516 if (flags & MSG_PEEK) {
1517 m = m->m_next;
1518 moff = 0;
1519 } else {
1520 nextrecord = m->m_nextpkt;
1521 sbfree(&so->so_rcv, m);
1522 if (mp) {
1523 *mp = m;
1524 mp = &m->m_next;
1525 so->so_rcv.sb_mb = m = m->m_next;
1526 *mp = NULL;
1527 } else {
1528 m = so->so_rcv.sb_mb = m_free(m);
1529 }
1530 /*
1531 * If m != NULL, we also know that
1532 * so->so_rcv.sb_mb != NULL.
1533 */
1534 KASSERT(so->so_rcv.sb_mb == m);
1535 if (m) {
1536 m->m_nextpkt = nextrecord;
1537 if (nextrecord == NULL)
1538 so->so_rcv.sb_lastrecord = m;
1539 } else {
1540 so->so_rcv.sb_mb = nextrecord;
1541 SB_EMPTY_FIXUP(&so->so_rcv);
1542 }
1543 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1544 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1545 }
1546 } else if (flags & MSG_PEEK) {
1547 moff += len;
1548 } else {
1549 if (mp != NULL) {
1550 mt = m_copym(m, 0, len, M_NOWAIT);
1551 if (__predict_false(mt == NULL)) {
1552 sounlock(so);
1553 mt = m_copym(m, 0, len, M_WAIT);
1554 solock(so);
1555 }
1556 *mp = mt;
1557 }
1558 m->m_data += len;
1559 m->m_len -= len;
1560 so->so_rcv.sb_cc -= len;
1561 }
1562
1563 if (so->so_oobmark) {
1564 if ((flags & MSG_PEEK) == 0) {
1565 so->so_oobmark -= len;
1566 if (so->so_oobmark == 0) {
1567 so->so_state |= SS_RCVATMARK;
1568 break;
1569 }
1570 } else {
1571 offset += len;
1572 if (offset == so->so_oobmark)
1573 break;
1574 }
1575 } else {
1576 so->so_state &= ~SS_POLLRDBAND;
1577 }
1578 if (flags & MSG_EOR)
1579 break;
1580
1581 /*
1582 * If the MSG_WAITALL flag is set (for non-atomic socket),
1583 * we must not quit until "uio->uio_resid == 0" or an error
1584 * termination. If a signal/timeout occurs, return
1585 * with a short count but without error.
1586 * Keep sockbuf locked against other readers.
1587 */
1588 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1589 !sosendallatonce(so) && !nextrecord) {
1590 if (so->so_error || so->so_rerror ||
1591 so->so_state & SS_CANTRCVMORE)
1592 break;
1593 /*
1594 * If we are peeking and the socket receive buffer is
1595 * full, stop since we can't get more data to peek at.
1596 */
1597 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1598 break;
1599 /*
1600 * If we've drained the socket buffer, tell the
1601 * protocol in case it needs to do something to
1602 * get it filled again.
1603 */
1604 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1605 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1606 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1607 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1608 if (wakeup_state & SS_RESTARTSYS)
1609 error = ERESTART;
1610 else
1611 error = sbwait(&so->so_rcv);
1612 if (error != 0) {
1613 sbunlock(&so->so_rcv);
1614 sounlock(so);
1615 splx(s);
1616 return 0;
1617 }
1618 if ((m = so->so_rcv.sb_mb) != NULL)
1619 nextrecord = m->m_nextpkt;
1620 wakeup_state = so->so_state;
1621 }
1622 }
1623
1624 if (m && atomic) {
1625 flags |= MSG_TRUNC;
1626 if ((flags & MSG_PEEK) == 0)
1627 (void) sbdroprecord(&so->so_rcv);
1628 }
1629 if ((flags & MSG_PEEK) == 0) {
1630 if (m == NULL) {
1631 /*
1632 * First part is an inline SB_EMPTY_FIXUP(). Second
1633 * part makes sure sb_lastrecord is up-to-date if
1634 * there is still data in the socket buffer.
1635 */
1636 so->so_rcv.sb_mb = nextrecord;
1637 if (so->so_rcv.sb_mb == NULL) {
1638 so->so_rcv.sb_mbtail = NULL;
1639 so->so_rcv.sb_lastrecord = NULL;
1640 } else if (nextrecord->m_nextpkt == NULL)
1641 so->so_rcv.sb_lastrecord = nextrecord;
1642 }
1643 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1644 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1645 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1646 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1647 }
1648 if (orig_resid == uio->uio_resid && orig_resid &&
1649 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1650 sbunlock(&so->so_rcv);
1651 goto restart;
1652 }
1653
1654 if (flagsp != NULL)
1655 *flagsp |= flags;
1656 release:
1657 sbunlock(&so->so_rcv);
1658 sounlock(so);
1659 splx(s);
1660 return error;
1661 }
1662
1663 int
1664 soshutdown(struct socket *so, int how)
1665 {
1666 const struct protosw *pr;
1667 int error;
1668
1669 KASSERT(solocked(so));
1670
1671 pr = so->so_proto;
1672 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1673 return EINVAL;
1674
1675 if (how == SHUT_RD || how == SHUT_RDWR) {
1676 sorflush(so);
1677 error = 0;
1678 }
1679 if (how == SHUT_WR || how == SHUT_RDWR)
1680 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1681
1682 return error;
1683 }
1684
1685 void
1686 sorestart(struct socket *so)
1687 {
1688 /*
1689 * An application has called close() on an fd on which another
1690 * of its threads has called a socket system call.
1691 * Mark this and wake everyone up, and code that would block again
1692 * instead returns ERESTART.
1693 * On system call re-entry the fd is validated and EBADF returned.
1694 * Any other fd will block again on the 2nd syscall.
1695 */
1696 solock(so);
1697 so->so_state |= SS_RESTARTSYS;
1698 cv_broadcast(&so->so_cv);
1699 cv_broadcast(&so->so_snd.sb_cv);
1700 cv_broadcast(&so->so_rcv.sb_cv);
1701 sounlock(so);
1702 }
1703
1704 void
1705 sorflush(struct socket *so)
1706 {
1707 struct sockbuf *sb, asb;
1708 const struct protosw *pr;
1709
1710 KASSERT(solocked(so));
1711
1712 sb = &so->so_rcv;
1713 pr = so->so_proto;
1714 socantrcvmore(so);
1715 sb->sb_flags |= SB_NOINTR;
1716 (void )sblock(sb, M_WAITOK);
1717 sbunlock(sb);
1718 asb = *sb;
1719 /*
1720 * Clear most of the sockbuf structure, but leave some of the
1721 * fields valid.
1722 */
1723 memset(&sb->sb_startzero, 0,
1724 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1725 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1726 sounlock(so);
1727 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1728 solock(so);
1729 }
1730 sbrelease(&asb, so);
1731 }
1732
1733 /*
1734 * internal set SOL_SOCKET options
1735 */
1736 static int
1737 sosetopt1(struct socket *so, const struct sockopt *sopt)
1738 {
1739 int error, opt;
1740 int optval = 0; /* XXX: gcc */
1741 struct linger l;
1742 struct timeval tv;
1743
1744 opt = sopt->sopt_name;
1745
1746 switch (opt) {
1747
1748 case SO_ACCEPTFILTER:
1749 error = accept_filt_setopt(so, sopt);
1750 KASSERT(solocked(so));
1751 break;
1752
1753 case SO_LINGER:
1754 error = sockopt_get(sopt, &l, sizeof(l));
1755 solock(so);
1756 if (error)
1757 break;
1758 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1759 l.l_linger > (INT_MAX / hz)) {
1760 error = EDOM;
1761 break;
1762 }
1763 so->so_linger = l.l_linger;
1764 if (l.l_onoff)
1765 so->so_options |= SO_LINGER;
1766 else
1767 so->so_options &= ~SO_LINGER;
1768 break;
1769
1770 case SO_DEBUG:
1771 case SO_KEEPALIVE:
1772 case SO_DONTROUTE:
1773 case SO_USELOOPBACK:
1774 case SO_BROADCAST:
1775 case SO_REUSEADDR:
1776 case SO_REUSEPORT:
1777 case SO_OOBINLINE:
1778 case SO_TIMESTAMP:
1779 case SO_NOSIGPIPE:
1780 case SO_RERROR:
1781 error = sockopt_getint(sopt, &optval);
1782 solock(so);
1783 if (error)
1784 break;
1785 if (optval)
1786 so->so_options |= opt;
1787 else
1788 so->so_options &= ~opt;
1789 break;
1790
1791 case SO_SNDBUF:
1792 case SO_RCVBUF:
1793 case SO_SNDLOWAT:
1794 case SO_RCVLOWAT:
1795 error = sockopt_getint(sopt, &optval);
1796 solock(so);
1797 if (error)
1798 break;
1799
1800 /*
1801 * Values < 1 make no sense for any of these
1802 * options, so disallow them.
1803 */
1804 if (optval < 1) {
1805 error = EINVAL;
1806 break;
1807 }
1808
1809 switch (opt) {
1810 case SO_SNDBUF:
1811 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1812 error = ENOBUFS;
1813 break;
1814 }
1815 if (sofixedbuf)
1816 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1817 break;
1818
1819 case SO_RCVBUF:
1820 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1821 error = ENOBUFS;
1822 break;
1823 }
1824 if (sofixedbuf)
1825 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1826 break;
1827
1828 /*
1829 * Make sure the low-water is never greater than
1830 * the high-water.
1831 */
1832 case SO_SNDLOWAT:
1833 if (optval > so->so_snd.sb_hiwat)
1834 optval = so->so_snd.sb_hiwat;
1835
1836 so->so_snd.sb_lowat = optval;
1837 break;
1838
1839 case SO_RCVLOWAT:
1840 if (optval > so->so_rcv.sb_hiwat)
1841 optval = so->so_rcv.sb_hiwat;
1842
1843 so->so_rcv.sb_lowat = optval;
1844 break;
1845 }
1846 break;
1847
1848 case SO_SNDTIMEO:
1849 case SO_RCVTIMEO:
1850 solock(so);
1851 error = sockopt_get(sopt, &tv, sizeof(tv));
1852 if (error)
1853 break;
1854
1855 if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1856 error = EDOM;
1857 break;
1858 }
1859 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1860 error = EDOM;
1861 break;
1862 }
1863
1864 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1865 if (optval == 0 && tv.tv_usec != 0)
1866 optval = 1;
1867
1868 switch (opt) {
1869 case SO_SNDTIMEO:
1870 so->so_snd.sb_timeo = optval;
1871 break;
1872 case SO_RCVTIMEO:
1873 so->so_rcv.sb_timeo = optval;
1874 break;
1875 }
1876 break;
1877
1878 default:
1879 MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
1880 (opt, so, sopt), enosys(), error);
1881 if (error == ENOSYS || error == EPASSTHROUGH) {
1882 solock(so);
1883 error = ENOPROTOOPT;
1884 }
1885 break;
1886 }
1887 KASSERT(solocked(so));
1888 return error;
1889 }
1890
1891 int
1892 sosetopt(struct socket *so, struct sockopt *sopt)
1893 {
1894 int error, prerr;
1895
1896 if (sopt->sopt_level == SOL_SOCKET) {
1897 error = sosetopt1(so, sopt);
1898 KASSERT(solocked(so));
1899 } else {
1900 error = ENOPROTOOPT;
1901 solock(so);
1902 }
1903
1904 if ((error == 0 || error == ENOPROTOOPT) &&
1905 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1906 /* give the protocol stack a shot */
1907 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1908 if (prerr == 0)
1909 error = 0;
1910 else if (prerr != ENOPROTOOPT)
1911 error = prerr;
1912 }
1913 sounlock(so);
1914 return error;
1915 }
1916
1917 /*
1918 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1919 */
1920 int
1921 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1922 const void *val, size_t valsize)
1923 {
1924 struct sockopt sopt;
1925 int error;
1926
1927 KASSERT(valsize == 0 || val != NULL);
1928
1929 sockopt_init(&sopt, level, name, valsize);
1930 sockopt_set(&sopt, val, valsize);
1931
1932 error = sosetopt(so, &sopt);
1933
1934 sockopt_destroy(&sopt);
1935
1936 return error;
1937 }
1938
1939 /*
1940 * internal get SOL_SOCKET options
1941 */
1942 static int
1943 sogetopt1(struct socket *so, struct sockopt *sopt)
1944 {
1945 int error, optval, opt;
1946 struct linger l;
1947 struct timeval tv;
1948
1949 switch ((opt = sopt->sopt_name)) {
1950
1951 case SO_ACCEPTFILTER:
1952 error = accept_filt_getopt(so, sopt);
1953 break;
1954
1955 case SO_LINGER:
1956 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1957 l.l_linger = so->so_linger;
1958
1959 error = sockopt_set(sopt, &l, sizeof(l));
1960 break;
1961
1962 case SO_USELOOPBACK:
1963 case SO_DONTROUTE:
1964 case SO_DEBUG:
1965 case SO_KEEPALIVE:
1966 case SO_REUSEADDR:
1967 case SO_REUSEPORT:
1968 case SO_BROADCAST:
1969 case SO_OOBINLINE:
1970 case SO_TIMESTAMP:
1971 case SO_NOSIGPIPE:
1972 case SO_RERROR:
1973 case SO_ACCEPTCONN:
1974 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1975 break;
1976
1977 case SO_TYPE:
1978 error = sockopt_setint(sopt, so->so_type);
1979 break;
1980
1981 case SO_ERROR:
1982 if (so->so_error == 0) {
1983 so->so_error = so->so_rerror;
1984 so->so_rerror = 0;
1985 }
1986 error = sockopt_setint(sopt, so->so_error);
1987 so->so_error = 0;
1988 break;
1989
1990 case SO_SNDBUF:
1991 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1992 break;
1993
1994 case SO_RCVBUF:
1995 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1996 break;
1997
1998 case SO_SNDLOWAT:
1999 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
2000 break;
2001
2002 case SO_RCVLOWAT:
2003 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
2004 break;
2005
2006 case SO_SNDTIMEO:
2007 case SO_RCVTIMEO:
2008 optval = (opt == SO_SNDTIMEO ?
2009 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2010
2011 memset(&tv, 0, sizeof(tv));
2012 tv.tv_sec = optval / hz;
2013 tv.tv_usec = (optval % hz) * tick;
2014
2015 error = sockopt_set(sopt, &tv, sizeof(tv));
2016 break;
2017
2018 case SO_OVERFLOWED:
2019 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2020 break;
2021
2022 default:
2023 MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
2024 (opt, so, sopt), enosys(), error);
2025 if (error)
2026 error = ENOPROTOOPT;
2027 break;
2028 }
2029
2030 return error;
2031 }
2032
2033 int
2034 sogetopt(struct socket *so, struct sockopt *sopt)
2035 {
2036 int error;
2037
2038 solock(so);
2039 if (sopt->sopt_level != SOL_SOCKET) {
2040 if (so->so_proto && so->so_proto->pr_ctloutput) {
2041 error = ((*so->so_proto->pr_ctloutput)
2042 (PRCO_GETOPT, so, sopt));
2043 } else
2044 error = (ENOPROTOOPT);
2045 } else {
2046 error = sogetopt1(so, sopt);
2047 }
2048 sounlock(so);
2049 return error;
2050 }
2051
2052 /*
2053 * alloc sockopt data buffer buffer
2054 * - will be released at destroy
2055 */
2056 static int
2057 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2058 {
2059 void *data;
2060
2061 KASSERT(sopt->sopt_size == 0);
2062
2063 if (len > sizeof(sopt->sopt_buf)) {
2064 data = kmem_zalloc(len, kmflag);
2065 if (data == NULL)
2066 return ENOMEM;
2067 sopt->sopt_data = data;
2068 } else
2069 sopt->sopt_data = sopt->sopt_buf;
2070
2071 sopt->sopt_size = len;
2072 return 0;
2073 }
2074
2075 /*
2076 * initialise sockopt storage
2077 * - MAY sleep during allocation
2078 */
2079 void
2080 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2081 {
2082
2083 memset(sopt, 0, sizeof(*sopt));
2084
2085 sopt->sopt_level = level;
2086 sopt->sopt_name = name;
2087 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2088 }
2089
2090 /*
2091 * destroy sockopt storage
2092 * - will release any held memory references
2093 */
2094 void
2095 sockopt_destroy(struct sockopt *sopt)
2096 {
2097
2098 if (sopt->sopt_data != sopt->sopt_buf)
2099 kmem_free(sopt->sopt_data, sopt->sopt_size);
2100
2101 memset(sopt, 0, sizeof(*sopt));
2102 }
2103
2104 /*
2105 * set sockopt value
2106 * - value is copied into sockopt
2107 * - memory is allocated when necessary, will not sleep
2108 */
2109 int
2110 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2111 {
2112 int error;
2113
2114 if (sopt->sopt_size == 0) {
2115 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2116 if (error)
2117 return error;
2118 }
2119
2120 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2121 if (sopt->sopt_retsize > 0) {
2122 memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
2123 }
2124
2125 return 0;
2126 }
2127
2128 /*
2129 * common case of set sockopt integer value
2130 */
2131 int
2132 sockopt_setint(struct sockopt *sopt, int val)
2133 {
2134
2135 return sockopt_set(sopt, &val, sizeof(int));
2136 }
2137
2138 /*
2139 * get sockopt value
2140 * - correct size must be given
2141 */
2142 int
2143 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2144 {
2145
2146 if (sopt->sopt_size != len)
2147 return EINVAL;
2148
2149 memcpy(buf, sopt->sopt_data, len);
2150 return 0;
2151 }
2152
2153 /*
2154 * common case of get sockopt integer value
2155 */
2156 int
2157 sockopt_getint(const struct sockopt *sopt, int *valp)
2158 {
2159
2160 return sockopt_get(sopt, valp, sizeof(int));
2161 }
2162
2163 /*
2164 * set sockopt value from mbuf
2165 * - ONLY for legacy code
2166 * - mbuf is released by sockopt
2167 * - will not sleep
2168 */
2169 int
2170 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2171 {
2172 size_t len;
2173 int error;
2174
2175 len = m_length(m);
2176
2177 if (sopt->sopt_size == 0) {
2178 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2179 if (error)
2180 return error;
2181 }
2182
2183 sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2184 m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
2185 m_freem(m);
2186
2187 return 0;
2188 }
2189
2190 /*
2191 * get sockopt value into mbuf
2192 * - ONLY for legacy code
2193 * - mbuf to be released by the caller
2194 * - will not sleep
2195 */
2196 struct mbuf *
2197 sockopt_getmbuf(const struct sockopt *sopt)
2198 {
2199 struct mbuf *m;
2200
2201 if (sopt->sopt_size > MCLBYTES)
2202 return NULL;
2203
2204 m = m_get(M_DONTWAIT, MT_SOOPTS);
2205 if (m == NULL)
2206 return NULL;
2207
2208 if (sopt->sopt_size > MLEN) {
2209 MCLGET(m, M_DONTWAIT);
2210 if ((m->m_flags & M_EXT) == 0) {
2211 m_free(m);
2212 return NULL;
2213 }
2214 }
2215
2216 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2217 m->m_len = sopt->sopt_size;
2218
2219 return m;
2220 }
2221
2222 void
2223 sohasoutofband(struct socket *so)
2224 {
2225
2226 so->so_state |= SS_POLLRDBAND;
2227 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2228 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2229 }
2230
2231 static void
2232 filt_sordetach(struct knote *kn)
2233 {
2234 struct socket *so;
2235
2236 so = ((file_t *)kn->kn_obj)->f_socket;
2237 solock(so);
2238 if (selremove_knote(&so->so_rcv.sb_sel, kn))
2239 so->so_rcv.sb_flags &= ~SB_KNOTE;
2240 sounlock(so);
2241 }
2242
2243 /*ARGSUSED*/
2244 static int
2245 filt_soread(struct knote *kn, long hint)
2246 {
2247 struct socket *so;
2248 int rv;
2249
2250 so = ((file_t *)kn->kn_obj)->f_socket;
2251 if (hint != NOTE_SUBMIT)
2252 solock(so);
2253 kn->kn_data = so->so_rcv.sb_cc;
2254 if (so->so_state & SS_CANTRCVMORE) {
2255 knote_set_eof(kn, 0);
2256 kn->kn_fflags = so->so_error;
2257 rv = 1;
2258 } else if (so->so_error || so->so_rerror)
2259 rv = 1;
2260 else if (kn->kn_sfflags & NOTE_LOWAT)
2261 rv = (kn->kn_data >= kn->kn_sdata);
2262 else
2263 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2264 if (hint != NOTE_SUBMIT)
2265 sounlock(so);
2266 return rv;
2267 }
2268
2269 static void
2270 filt_sowdetach(struct knote *kn)
2271 {
2272 struct socket *so;
2273
2274 so = ((file_t *)kn->kn_obj)->f_socket;
2275 solock(so);
2276 if (selremove_knote(&so->so_snd.sb_sel, kn))
2277 so->so_snd.sb_flags &= ~SB_KNOTE;
2278 sounlock(so);
2279 }
2280
2281 /*ARGSUSED*/
2282 static int
2283 filt_sowrite(struct knote *kn, long hint)
2284 {
2285 struct socket *so;
2286 int rv;
2287
2288 so = ((file_t *)kn->kn_obj)->f_socket;
2289 if (hint != NOTE_SUBMIT)
2290 solock(so);
2291 kn->kn_data = sbspace(&so->so_snd);
2292 if (so->so_state & SS_CANTSENDMORE) {
2293 knote_set_eof(kn, 0);
2294 kn->kn_fflags = so->so_error;
2295 rv = 1;
2296 } else if (so->so_error)
2297 rv = 1;
2298 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2299 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2300 rv = 0;
2301 else if (kn->kn_sfflags & NOTE_LOWAT)
2302 rv = (kn->kn_data >= kn->kn_sdata);
2303 else
2304 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2305 if (hint != NOTE_SUBMIT)
2306 sounlock(so);
2307 return rv;
2308 }
2309
2310 static int
2311 filt_soempty(struct knote *kn, long hint)
2312 {
2313 struct socket *so;
2314 int rv;
2315
2316 so = ((file_t *)kn->kn_obj)->f_socket;
2317 if (hint != NOTE_SUBMIT)
2318 solock(so);
2319 rv = (kn->kn_data = sbused(&so->so_snd)) == 0 ||
2320 (so->so_options & SO_ACCEPTCONN) != 0;
2321 if (hint != NOTE_SUBMIT)
2322 sounlock(so);
2323 return rv;
2324 }
2325
2326 /*ARGSUSED*/
2327 static int
2328 filt_solisten(struct knote *kn, long hint)
2329 {
2330 struct socket *so;
2331 int rv;
2332
2333 so = ((file_t *)kn->kn_obj)->f_socket;
2334
2335 /*
2336 * Set kn_data to number of incoming connections, not
2337 * counting partial (incomplete) connections.
2338 */
2339 if (hint != NOTE_SUBMIT)
2340 solock(so);
2341 kn->kn_data = so->so_qlen;
2342 rv = (kn->kn_data > 0);
2343 if (hint != NOTE_SUBMIT)
2344 sounlock(so);
2345 return rv;
2346 }
2347
2348 static const struct filterops solisten_filtops = {
2349 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2350 .f_attach = NULL,
2351 .f_detach = filt_sordetach,
2352 .f_event = filt_solisten,
2353 };
2354
2355 static const struct filterops soread_filtops = {
2356 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2357 .f_attach = NULL,
2358 .f_detach = filt_sordetach,
2359 .f_event = filt_soread,
2360 };
2361
2362 static const struct filterops sowrite_filtops = {
2363 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2364 .f_attach = NULL,
2365 .f_detach = filt_sowdetach,
2366 .f_event = filt_sowrite,
2367 };
2368
2369 static const struct filterops soempty_filtops = {
2370 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2371 .f_attach = NULL,
2372 .f_detach = filt_sowdetach,
2373 .f_event = filt_soempty,
2374 };
2375
2376 int
2377 soo_kqfilter(struct file *fp, struct knote *kn)
2378 {
2379 struct socket *so;
2380 struct sockbuf *sb;
2381
2382 so = ((file_t *)kn->kn_obj)->f_socket;
2383 solock(so);
2384 switch (kn->kn_filter) {
2385 case EVFILT_READ:
2386 if (so->so_options & SO_ACCEPTCONN)
2387 kn->kn_fop = &solisten_filtops;
2388 else
2389 kn->kn_fop = &soread_filtops;
2390 sb = &so->so_rcv;
2391 break;
2392 case EVFILT_WRITE:
2393 kn->kn_fop = &sowrite_filtops;
2394 sb = &so->so_snd;
2395
2396 #ifdef PIPE_SOCKETPAIR
2397 if (so->so_state & SS_ISAPIPE) {
2398 /* Other end of pipe has been closed. */
2399 if (so->so_state & SS_ISDISCONNECTED) {
2400 sounlock(so);
2401 return EBADF;
2402 }
2403 }
2404 #endif
2405 break;
2406 case EVFILT_EMPTY:
2407 kn->kn_fop = &soempty_filtops;
2408 sb = &so->so_snd;
2409 break;
2410 default:
2411 sounlock(so);
2412 return EINVAL;
2413 }
2414 selrecord_knote(&sb->sb_sel, kn);
2415 sb->sb_flags |= SB_KNOTE;
2416 sounlock(so);
2417 return 0;
2418 }
2419
2420 static int
2421 sodopoll(struct socket *so, int events)
2422 {
2423 int revents;
2424
2425 revents = 0;
2426
2427 if (events & (POLLIN | POLLRDNORM))
2428 if (soreadable(so))
2429 revents |= events & (POLLIN | POLLRDNORM);
2430
2431 if (events & (POLLOUT | POLLWRNORM))
2432 if (sowritable(so))
2433 revents |= events & (POLLOUT | POLLWRNORM);
2434
2435 if (events & (POLLPRI | POLLRDBAND))
2436 if (so->so_state & SS_POLLRDBAND)
2437 revents |= events & (POLLPRI | POLLRDBAND);
2438
2439 return revents;
2440 }
2441
2442 int
2443 sopoll(struct socket *so, int events)
2444 {
2445 int revents = 0;
2446
2447 #ifndef DIAGNOSTIC
2448 /*
2449 * Do a quick, unlocked check in expectation that the socket
2450 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2451 * as the solocked() assertions will fail.
2452 */
2453 if ((revents = sodopoll(so, events)) != 0)
2454 return revents;
2455 #endif
2456
2457 solock(so);
2458 if ((revents = sodopoll(so, events)) == 0) {
2459 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2460 selrecord(curlwp, &so->so_rcv.sb_sel);
2461 so->so_rcv.sb_flags |= SB_NOTIFY;
2462 }
2463
2464 if (events & (POLLOUT | POLLWRNORM)) {
2465 selrecord(curlwp, &so->so_snd.sb_sel);
2466 so->so_snd.sb_flags |= SB_NOTIFY;
2467 }
2468 }
2469 sounlock(so);
2470
2471 return revents;
2472 }
2473
2474 struct mbuf **
2475 sbsavetimestamp(int opt, struct mbuf **mp)
2476 {
2477 struct timeval tv;
2478 int error;
2479
2480 memset(&tv, 0, sizeof(tv));
2481 microtime(&tv);
2482
2483 MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, &mp), enosys(), error);
2484 if (error == 0)
2485 return mp;
2486
2487 if (opt & SO_TIMESTAMP) {
2488 *mp = sbcreatecontrol(&tv, sizeof(tv),
2489 SCM_TIMESTAMP, SOL_SOCKET);
2490 if (*mp)
2491 mp = &(*mp)->m_next;
2492 }
2493 return mp;
2494 }
2495
2496
2497 #include <sys/sysctl.h>
2498
2499 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2500 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2501
2502 /*
2503 * sysctl helper routine for kern.somaxkva. ensures that the given
2504 * value is not too small.
2505 * (XXX should we maybe make sure it's not too large as well?)
2506 */
2507 static int
2508 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2509 {
2510 int error, new_somaxkva;
2511 struct sysctlnode node;
2512
2513 new_somaxkva = somaxkva;
2514 node = *rnode;
2515 node.sysctl_data = &new_somaxkva;
2516 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2517 if (error || newp == NULL)
2518 return error;
2519
2520 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2521 return EINVAL;
2522
2523 mutex_enter(&so_pendfree_lock);
2524 somaxkva = new_somaxkva;
2525 cv_broadcast(&socurkva_cv);
2526 mutex_exit(&so_pendfree_lock);
2527
2528 return error;
2529 }
2530
2531 /*
2532 * sysctl helper routine for kern.sbmax. Basically just ensures that
2533 * any new value is not too small.
2534 */
2535 static int
2536 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2537 {
2538 int error, new_sbmax;
2539 struct sysctlnode node;
2540
2541 new_sbmax = sb_max;
2542 node = *rnode;
2543 node.sysctl_data = &new_sbmax;
2544 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2545 if (error || newp == NULL)
2546 return error;
2547
2548 KERNEL_LOCK(1, NULL);
2549 error = sb_max_set(new_sbmax);
2550 KERNEL_UNLOCK_ONE(NULL);
2551
2552 return error;
2553 }
2554
2555 /*
2556 * sysctl helper routine for kern.sooptions. Ensures that only allowed
2557 * options can be set.
2558 */
2559 static int
2560 sysctl_kern_sooptions(SYSCTLFN_ARGS)
2561 {
2562 int error, new_options;
2563 struct sysctlnode node;
2564
2565 new_options = sooptions;
2566 node = *rnode;
2567 node.sysctl_data = &new_options;
2568 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2569 if (error || newp == NULL)
2570 return error;
2571
2572 if (new_options & ~SO_DEFOPTS)
2573 return EINVAL;
2574
2575 sooptions = new_options;
2576
2577 return 0;
2578 }
2579
2580 static void
2581 sysctl_kern_socket_setup(void)
2582 {
2583
2584 KASSERT(socket_sysctllog == NULL);
2585
2586 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2587 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2588 CTLTYPE_INT, "somaxkva",
2589 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2590 "used for socket buffers"),
2591 sysctl_kern_somaxkva, 0, NULL, 0,
2592 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2593
2594 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2595 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2596 CTLTYPE_BOOL, "sofixedbuf",
2597 SYSCTL_DESCR("Prevent scaling of fixed socket buffers"),
2598 NULL, 0, &sofixedbuf, 0,
2599 CTL_KERN, KERN_SOFIXEDBUF, CTL_EOL);
2600
2601 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2602 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2603 CTLTYPE_INT, "sbmax",
2604 SYSCTL_DESCR("Maximum socket buffer size"),
2605 sysctl_kern_sbmax, 0, NULL, 0,
2606 CTL_KERN, KERN_SBMAX, CTL_EOL);
2607
2608 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2609 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2610 CTLTYPE_INT, "sooptions",
2611 SYSCTL_DESCR("Default socket options"),
2612 sysctl_kern_sooptions, 0, NULL, 0,
2613 CTL_KERN, CTL_CREATE, CTL_EOL);
2614 }
2615