uipc_socket.c revision 1.44.6.1 1 /* $NetBSD: uipc_socket.c,v 1.44.6.1 1999/06/28 06:36:53 itojun Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
36 */
37
38 #include "opt_compat_sunos.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/file.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/domain.h>
47 #include <sys/kernel.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/signalvar.h>
52 #include <sys/resourcevar.h>
53 #include <sys/pool.h>
54
55 struct pool socket_pool;
56
57 void
58 soinit()
59 {
60
61 pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
62 "sockpl", 0, NULL, NULL, M_SOCKET);
63 }
64
65 #ifdef KEY
66 #include <netkey/key.h>
67 #endif
68
69 /*
70 * Socket operation routines.
71 * These routines are called by the routines in
72 * sys_socket.c or from a system process, and
73 * implement the semantics of socket operations by
74 * switching out to the protocol specific routines.
75 */
76 /*ARGSUSED*/
77 int
78 socreate(dom, aso, type, proto)
79 int dom;
80 struct socket **aso;
81 register int type;
82 int proto;
83 {
84 struct proc *p = curproc; /* XXX */
85 register struct protosw *prp;
86 register struct socket *so;
87 register int error;
88 int s;
89
90 if (proto)
91 prp = pffindproto(dom, proto, type);
92 else
93 prp = pffindtype(dom, type);
94 if (prp == 0 || prp->pr_usrreq == 0)
95 return (EPROTONOSUPPORT);
96 if (prp->pr_type != type)
97 return (EPROTOTYPE);
98 s = splsoftnet();
99 so = pool_get(&socket_pool, PR_WAITOK);
100 memset((caddr_t)so, 0, sizeof(*so));
101 TAILQ_INIT(&so->so_q0);
102 TAILQ_INIT(&so->so_q);
103 so->so_type = type;
104 so->so_proto = prp;
105 so->so_send = sosend;
106 so->so_receive = soreceive;
107 if (p != 0)
108 so->so_uid = p->p_ucred->cr_uid;
109 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
110 (struct mbuf *)(long)proto, (struct mbuf *)0, p);
111 if (error) {
112 so->so_state |= SS_NOFDREF;
113 sofree(so);
114 splx(s);
115 return (error);
116 }
117 #ifdef COMPAT_SUNOS
118 {
119 extern struct emul emul_sunos;
120 if (p->p_emul == &emul_sunos && type == SOCK_DGRAM)
121 so->so_options |= SO_BROADCAST;
122 }
123 #endif
124 splx(s);
125 *aso = so;
126 return (0);
127 }
128
129 int
130 sobind(so, nam)
131 struct socket *so;
132 struct mbuf *nam;
133 {
134 struct proc *p = curproc; /* XXX */
135 int s = splsoftnet();
136 int error;
137
138 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
139 nam, (struct mbuf *)0, p);
140 splx(s);
141 return (error);
142 }
143
144 int
145 solisten(so, backlog)
146 register struct socket *so;
147 int backlog;
148 {
149 int s = splsoftnet(), error;
150
151 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
152 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
153 if (error) {
154 splx(s);
155 return (error);
156 }
157 if (so->so_q.tqh_first == NULL)
158 so->so_options |= SO_ACCEPTCONN;
159 if (backlog < 0)
160 backlog = 0;
161 so->so_qlimit = min(backlog, SOMAXCONN);
162 splx(s);
163 return (0);
164 }
165
166 void
167 sofree(so)
168 register struct socket *so;
169 {
170
171 if (so->so_pcb
172 #ifdef MAPPED_ADDR_ENABLED
173 /*
174 * MAPPED_ADDR implementation spec:
175 * Check so_pcb2 despite the ip6_mapped_addr value.
176 * Because the sysctl value may be changed to 0
177 * after connection establishment.
178 */
179 || so->so_pcb2
180 #endif /* MAPPED_ADDR_ENABLED */
181 || (so->so_state & SS_NOFDREF) == 0)
182 return;
183 if (so->so_head) {
184 /*
185 * We must not decommission a socket that's on the accept(2)
186 * queue. If we do, then accept(2) may hang after select(2)
187 * indicated that the listening socket was ready.
188 */
189 if (!soqremque(so, 0))
190 return;
191 }
192 sbrelease(&so->so_snd);
193 sorflush(so);
194 pool_put(&socket_pool, so);
195 }
196
197 /*
198 * Close a socket on last file table reference removal.
199 * Initiate disconnect if connected.
200 * Free socket when disconnect complete.
201 */
202 int
203 soclose(so)
204 register struct socket *so;
205 {
206 struct socket *so2;
207 int s = splsoftnet(); /* conservative */
208 int error = 0;
209
210 if (so->so_options & SO_ACCEPTCONN) {
211 while ((so2 = so->so_q0.tqh_first) != 0) {
212 (void) soqremque(so2, 0);
213 (void) soabort(so2);
214 }
215 while ((so2 = so->so_q.tqh_first) != 0) {
216 (void) soqremque(so2, 1);
217 (void) soabort(so2);
218 }
219 }
220 if (so->so_pcb == 0
221 #ifdef MAPPED_ADDR_ENABLED
222 && so->so_pcb2 == 0
223 #endif /* MAPPED_ADDR_ENABLED */
224 )
225 goto discard;
226 if (so->so_state & SS_ISCONNECTED) {
227 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
228 error = sodisconnect(so);
229 if (error)
230 goto drop;
231 }
232 if (so->so_options & SO_LINGER) {
233 if ((so->so_state & SS_ISDISCONNECTING) &&
234 (so->so_state & SS_NBIO))
235 goto drop;
236 while (so->so_state & SS_ISCONNECTED) {
237 error = tsleep((caddr_t)&so->so_timeo,
238 PSOCK | PCATCH, netcls,
239 so->so_linger * hz);
240 if (error)
241 break;
242 }
243 }
244 }
245 drop:
246 if (so->so_pcb
247 #ifdef MAPPED_ADDR_ENABLED
248 || so->so_pcb2
249 #endif /* MAPPED_ADDR_ENABLED */
250 ) {
251 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
252 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
253 (struct proc *)0);
254 if (error == 0)
255 error = error2;
256 }
257 discard:
258 if (so->so_state & SS_NOFDREF)
259 panic("soclose: NOFDREF");
260 so->so_state |= SS_NOFDREF;
261 sofree(so);
262 splx(s);
263 return (error);
264 }
265
266 /*
267 * Must be called at splsoftnet...
268 */
269 int
270 soabort(so)
271 struct socket *so;
272 {
273
274 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
275 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
276 }
277
278 int
279 soaccept(so, nam)
280 register struct socket *so;
281 struct mbuf *nam;
282 {
283 int s = splsoftnet();
284 int error;
285
286 if ((so->so_state & SS_NOFDREF) == 0)
287 panic("soaccept: !NOFDREF");
288 so->so_state &= ~SS_NOFDREF;
289 if ((so->so_state & SS_ISDISCONNECTED) == 0)
290 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
291 (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
292 else
293 error = 0;
294 splx(s);
295 return (error);
296 }
297
298 int
299 soconnect(so, nam)
300 register struct socket *so;
301 struct mbuf *nam;
302 {
303 struct proc *p = curproc; /* XXX */
304 int s;
305 int error;
306
307 if (so->so_options & SO_ACCEPTCONN)
308 return (EOPNOTSUPP);
309 s = splsoftnet();
310 /*
311 * If protocol is connection-based, can only connect once.
312 * Otherwise, if connected, try to disconnect first.
313 * This allows user to disconnect by connecting to, e.g.,
314 * a null address.
315 */
316 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
317 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
318 (error = sodisconnect(so))))
319 error = EISCONN;
320 else
321 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
322 (struct mbuf *)0, nam, (struct mbuf *)0, p);
323 splx(s);
324 return (error);
325 }
326
327 int
328 soconnect2(so1, so2)
329 register struct socket *so1;
330 struct socket *so2;
331 {
332 int s = splsoftnet();
333 int error;
334
335 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
336 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
337 (struct proc *)0);
338 splx(s);
339 return (error);
340 }
341
342 int
343 sodisconnect(so)
344 register struct socket *so;
345 {
346 int s = splsoftnet();
347 int error;
348
349 if ((so->so_state & SS_ISCONNECTED) == 0) {
350 error = ENOTCONN;
351 goto bad;
352 }
353 if (so->so_state & SS_ISDISCONNECTING) {
354 error = EALREADY;
355 goto bad;
356 }
357 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
358 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
359 (struct proc *)0);
360 bad:
361 splx(s);
362 return (error);
363 }
364
365 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
366 /*
367 * Send on a socket.
368 * If send must go all at once and message is larger than
369 * send buffering, then hard error.
370 * Lock against other senders.
371 * If must go all at once and not enough room now, then
372 * inform user that this would block and do nothing.
373 * Otherwise, if nonblocking, send as much as possible.
374 * The data to be sent is described by "uio" if nonzero,
375 * otherwise by the mbuf chain "top" (which must be null
376 * if uio is not). Data provided in mbuf chain must be small
377 * enough to send all at once.
378 *
379 * Returns nonzero on error, timeout or signal; callers
380 * must check for short counts if EINTR/ERESTART are returned.
381 * Data and control buffers are freed on return.
382 */
383 int
384 sosend(so, addr, uio, top, control, flags)
385 register struct socket *so;
386 struct mbuf *addr;
387 struct uio *uio;
388 struct mbuf *top;
389 struct mbuf *control;
390 int flags;
391 {
392 struct proc *p = curproc; /* XXX */
393 struct mbuf **mp;
394 register struct mbuf *m;
395 register long space, len, resid;
396 int clen = 0, error, s, dontroute, mlen;
397 int atomic = sosendallatonce(so) || top;
398
399 if (uio)
400 resid = uio->uio_resid;
401 else
402 resid = top->m_pkthdr.len;
403 /*
404 * In theory resid should be unsigned.
405 * However, space must be signed, as it might be less than 0
406 * if we over-committed, and we must use a signed comparison
407 * of space and resid. On the other hand, a negative resid
408 * causes us to loop sending 0-length segments to the protocol.
409 */
410 if (resid < 0) {
411 error = EINVAL;
412 goto out;
413 }
414 dontroute =
415 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
416 (so->so_proto->pr_flags & PR_ATOMIC);
417 p->p_stats->p_ru.ru_msgsnd++;
418 if (control)
419 clen = control->m_len;
420 #define snderr(errno) { error = errno; splx(s); goto release; }
421
422 restart:
423 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
424 goto out;
425 do {
426 s = splsoftnet();
427 if (so->so_state & SS_CANTSENDMORE)
428 snderr(EPIPE);
429 if (so->so_error)
430 snderr(so->so_error);
431 if ((so->so_state & SS_ISCONNECTED) == 0) {
432 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
433 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
434 !(resid == 0 && clen != 0))
435 snderr(ENOTCONN);
436 } else if (addr == 0)
437 snderr(EDESTADDRREQ);
438 }
439 space = sbspace(&so->so_snd);
440 if (flags & MSG_OOB)
441 space += 1024;
442 if ((atomic && resid > so->so_snd.sb_hiwat) ||
443 clen > so->so_snd.sb_hiwat)
444 snderr(EMSGSIZE);
445 if (space < resid + clen && uio &&
446 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
447 if (so->so_state & SS_NBIO)
448 snderr(EWOULDBLOCK);
449 sbunlock(&so->so_snd);
450 error = sbwait(&so->so_snd);
451 splx(s);
452 if (error)
453 goto out;
454 goto restart;
455 }
456 splx(s);
457 mp = ⊤
458 space -= clen;
459 do {
460 if (uio == NULL) {
461 /*
462 * Data is prepackaged in "top".
463 */
464 resid = 0;
465 if (flags & MSG_EOR)
466 top->m_flags |= M_EOR;
467 } else do {
468 if (top == 0) {
469 MGETHDR(m, M_WAIT, MT_DATA);
470 mlen = MHLEN;
471 m->m_pkthdr.len = 0;
472 m->m_pkthdr.rcvif = (struct ifnet *)0;
473 } else {
474 MGET(m, M_WAIT, MT_DATA);
475 mlen = MLEN;
476 }
477 if (resid >= MINCLSIZE && space >= MCLBYTES) {
478 MCLGET(m, M_WAIT);
479 if ((m->m_flags & M_EXT) == 0)
480 goto nopages;
481 mlen = MCLBYTES;
482 #ifdef MAPPED_MBUFS
483 len = min(MCLBYTES, resid);
484 #else
485 if (atomic && top == 0) {
486 len = min(MCLBYTES - max_hdr, resid);
487 m->m_data += max_hdr;
488 } else
489 len = min(MCLBYTES, resid);
490 #endif
491 space -= len;
492 } else {
493 nopages:
494 len = min(min(mlen, resid), space);
495 space -= len;
496 /*
497 * For datagram protocols, leave room
498 * for protocol headers in first mbuf.
499 */
500 if (atomic && top == 0 && len < mlen)
501 MH_ALIGN(m, len);
502 }
503 error = uiomove(mtod(m, caddr_t), (int)len, uio);
504 resid = uio->uio_resid;
505 m->m_len = len;
506 *mp = m;
507 top->m_pkthdr.len += len;
508 if (error)
509 goto release;
510 mp = &m->m_next;
511 if (resid <= 0) {
512 if (flags & MSG_EOR)
513 top->m_flags |= M_EOR;
514 break;
515 }
516 } while (space > 0 && atomic);
517 if (dontroute)
518 so->so_options |= SO_DONTROUTE;
519 if (resid > 0)
520 so->so_state |= SS_MORETOCOME;
521 s = splsoftnet(); /* XXX */
522 error = (*so->so_proto->pr_usrreq)(so,
523 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
524 top, addr, control, p);
525 splx(s);
526 if (dontroute)
527 so->so_options &= ~SO_DONTROUTE;
528 if (resid > 0)
529 so->so_state &= ~SS_MORETOCOME;
530 clen = 0;
531 control = 0;
532 top = 0;
533 mp = ⊤
534 if (error)
535 goto release;
536 } while (resid && space > 0);
537 } while (resid);
538
539 release:
540 sbunlock(&so->so_snd);
541 out:
542 if (top)
543 m_freem(top);
544 if (control)
545 m_freem(control);
546 return (error);
547 }
548
549 /*
550 * Implement receive operations on a socket.
551 * We depend on the way that records are added to the sockbuf
552 * by sbappend*. In particular, each record (mbufs linked through m_next)
553 * must begin with an address if the protocol so specifies,
554 * followed by an optional mbuf or mbufs containing ancillary data,
555 * and then zero or more mbufs of data.
556 * In order to avoid blocking network interrupts for the entire time here,
557 * we splx() while doing the actual copy to user space.
558 * Although the sockbuf is locked, new data may still be appended,
559 * and thus we must maintain consistency of the sockbuf during that time.
560 *
561 * The caller may receive the data as a single mbuf chain by supplying
562 * an mbuf **mp0 for use in returning the chain. The uio is then used
563 * only for the count in uio_resid.
564 */
565 int
566 soreceive(so, paddr, uio, mp0, controlp, flagsp)
567 register struct socket *so;
568 struct mbuf **paddr;
569 struct uio *uio;
570 struct mbuf **mp0;
571 struct mbuf **controlp;
572 int *flagsp;
573 {
574 register struct mbuf *m, **mp;
575 register int flags, len, error, s, offset;
576 struct protosw *pr = so->so_proto;
577 struct mbuf *nextrecord;
578 int moff, type = 0;
579 int orig_resid = uio->uio_resid;
580
581 mp = mp0;
582 if (paddr)
583 *paddr = 0;
584 if (controlp)
585 *controlp = 0;
586 if (flagsp)
587 flags = *flagsp &~ MSG_EOR;
588 else
589 flags = 0;
590 if (flags & MSG_OOB) {
591 m = m_get(M_WAIT, MT_DATA);
592 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
593 (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
594 (struct proc *)0);
595 if (error)
596 goto bad;
597 do {
598 error = uiomove(mtod(m, caddr_t),
599 (int) min(uio->uio_resid, m->m_len), uio);
600 m = m_free(m);
601 } while (uio->uio_resid && error == 0 && m);
602 bad:
603 if (m)
604 m_freem(m);
605 return (error);
606 }
607 if (mp)
608 *mp = (struct mbuf *)0;
609 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
610 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
611 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
612
613 restart:
614 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
615 return (error);
616 s = splsoftnet();
617
618 m = so->so_rcv.sb_mb;
619 /*
620 * If we have less data than requested, block awaiting more
621 * (subject to any timeout) if:
622 * 1. the current count is less than the low water mark,
623 * 2. MSG_WAITALL is set, and it is possible to do the entire
624 * receive operation at once if we block (resid <= hiwat), or
625 * 3. MSG_DONTWAIT is not set.
626 * If MSG_WAITALL is set but resid is larger than the receive buffer,
627 * we have to do the receive in sections, and thus risk returning
628 * a short count if a timeout or signal occurs after we start.
629 */
630 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
631 so->so_rcv.sb_cc < uio->uio_resid) &&
632 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
633 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
634 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
635 #ifdef DIAGNOSTIC
636 if (m == 0 && so->so_rcv.sb_cc)
637 panic("receive 1");
638 #endif
639 if (so->so_error) {
640 if (m)
641 goto dontblock;
642 error = so->so_error;
643 if ((flags & MSG_PEEK) == 0)
644 so->so_error = 0;
645 goto release;
646 }
647 if (so->so_state & SS_CANTRCVMORE) {
648 if (m)
649 goto dontblock;
650 else
651 goto release;
652 }
653 for (; m; m = m->m_next)
654 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
655 m = so->so_rcv.sb_mb;
656 goto dontblock;
657 }
658 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
659 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
660 error = ENOTCONN;
661 goto release;
662 }
663 if (uio->uio_resid == 0)
664 goto release;
665 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
666 error = EWOULDBLOCK;
667 goto release;
668 }
669 sbunlock(&so->so_rcv);
670 error = sbwait(&so->so_rcv);
671 splx(s);
672 if (error)
673 return (error);
674 goto restart;
675 }
676 dontblock:
677 #ifdef notyet /* XXXX */
678 if (uio->uio_procp)
679 uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
680 #endif
681 nextrecord = m->m_nextpkt;
682 if (pr->pr_flags & PR_ADDR) {
683 #ifdef DIAGNOSTIC
684 if (m->m_type != MT_SONAME)
685 panic("receive 1a");
686 #endif
687 orig_resid = 0;
688 if (flags & MSG_PEEK) {
689 if (paddr)
690 *paddr = m_copy(m, 0, m->m_len);
691 m = m->m_next;
692 } else {
693 sbfree(&so->so_rcv, m);
694 if (paddr) {
695 *paddr = m;
696 so->so_rcv.sb_mb = m->m_next;
697 m->m_next = 0;
698 m = so->so_rcv.sb_mb;
699 } else {
700 MFREE(m, so->so_rcv.sb_mb);
701 m = so->so_rcv.sb_mb;
702 }
703 }
704 }
705 while (m && m->m_type == MT_CONTROL && error == 0) {
706 if (flags & MSG_PEEK) {
707 if (controlp)
708 *controlp = m_copy(m, 0, m->m_len);
709 m = m->m_next;
710 } else {
711 sbfree(&so->so_rcv, m);
712 if (controlp) {
713 if (pr->pr_domain->dom_externalize &&
714 mtod(m, struct cmsghdr *)->cmsg_type ==
715 SCM_RIGHTS)
716 error = (*pr->pr_domain->dom_externalize)(m);
717 *controlp = m;
718 so->so_rcv.sb_mb = m->m_next;
719 m->m_next = 0;
720 m = so->so_rcv.sb_mb;
721 } else {
722 MFREE(m, so->so_rcv.sb_mb);
723 m = so->so_rcv.sb_mb;
724 }
725 }
726 if (controlp) {
727 orig_resid = 0;
728 controlp = &(*controlp)->m_next;
729 }
730 }
731 if (m) {
732 if ((flags & MSG_PEEK) == 0)
733 m->m_nextpkt = nextrecord;
734 type = m->m_type;
735 if (type == MT_OOBDATA)
736 flags |= MSG_OOB;
737 }
738 moff = 0;
739 offset = 0;
740 while (m && uio->uio_resid > 0 && error == 0) {
741 if (m->m_type == MT_OOBDATA) {
742 if (type != MT_OOBDATA)
743 break;
744 } else if (type == MT_OOBDATA)
745 break;
746 #ifdef DIAGNOSTIC
747 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
748 panic("receive 3");
749 #endif
750 so->so_state &= ~SS_RCVATMARK;
751 len = uio->uio_resid;
752 if (so->so_oobmark && len > so->so_oobmark - offset)
753 len = so->so_oobmark - offset;
754 if (len > m->m_len - moff)
755 len = m->m_len - moff;
756 /*
757 * If mp is set, just pass back the mbufs.
758 * Otherwise copy them out via the uio, then free.
759 * Sockbuf must be consistent here (points to current mbuf,
760 * it points to next record) when we drop priority;
761 * we must note any additions to the sockbuf when we
762 * block interrupts again.
763 */
764 if (mp == 0) {
765 splx(s);
766 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
767 s = splsoftnet();
768 } else
769 uio->uio_resid -= len;
770 if (len == m->m_len - moff) {
771 if (m->m_flags & M_EOR)
772 flags |= MSG_EOR;
773 if (flags & MSG_PEEK) {
774 m = m->m_next;
775 moff = 0;
776 } else {
777 nextrecord = m->m_nextpkt;
778 sbfree(&so->so_rcv, m);
779 if (mp) {
780 *mp = m;
781 mp = &m->m_next;
782 so->so_rcv.sb_mb = m = m->m_next;
783 *mp = (struct mbuf *)0;
784 } else {
785 MFREE(m, so->so_rcv.sb_mb);
786 m = so->so_rcv.sb_mb;
787 }
788 if (m)
789 m->m_nextpkt = nextrecord;
790 }
791 } else {
792 if (flags & MSG_PEEK)
793 moff += len;
794 else {
795 if (mp)
796 *mp = m_copym(m, 0, len, M_WAIT);
797 m->m_data += len;
798 m->m_len -= len;
799 so->so_rcv.sb_cc -= len;
800 }
801 }
802 if (so->so_oobmark) {
803 if ((flags & MSG_PEEK) == 0) {
804 so->so_oobmark -= len;
805 if (so->so_oobmark == 0) {
806 so->so_state |= SS_RCVATMARK;
807 break;
808 }
809 } else {
810 offset += len;
811 if (offset == so->so_oobmark)
812 break;
813 }
814 }
815 if (flags & MSG_EOR)
816 break;
817 /*
818 * If the MSG_WAITALL flag is set (for non-atomic socket),
819 * we must not quit until "uio->uio_resid == 0" or an error
820 * termination. If a signal/timeout occurs, return
821 * with a short count but without error.
822 * Keep sockbuf locked against other readers.
823 */
824 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
825 !sosendallatonce(so) && !nextrecord) {
826 if (so->so_error || so->so_state & SS_CANTRCVMORE)
827 break;
828 error = sbwait(&so->so_rcv);
829 if (error) {
830 sbunlock(&so->so_rcv);
831 splx(s);
832 return (0);
833 }
834 if ((m = so->so_rcv.sb_mb) != NULL)
835 nextrecord = m->m_nextpkt;
836 }
837 }
838
839 if (m && pr->pr_flags & PR_ATOMIC) {
840 flags |= MSG_TRUNC;
841 if ((flags & MSG_PEEK) == 0)
842 (void) sbdroprecord(&so->so_rcv);
843 }
844 if ((flags & MSG_PEEK) == 0) {
845 if (m == 0)
846 so->so_rcv.sb_mb = nextrecord;
847 if (pr->pr_flags & PR_WANTRCVD &&
848 (so->so_pcb
849 #ifdef MAPPED_ADDR_ENABLED
850 || so->so_pcb2
851 #endif /* MAPPED_ADDR_ENABLED */
852 )
853 )
854 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
855 (struct mbuf *)(long)flags, (struct mbuf *)0,
856 (struct proc *)0);
857 }
858 if (orig_resid == uio->uio_resid && orig_resid &&
859 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
860 sbunlock(&so->so_rcv);
861 splx(s);
862 goto restart;
863 }
864
865 if (flagsp)
866 *flagsp |= flags;
867 release:
868 sbunlock(&so->so_rcv);
869 splx(s);
870 return (error);
871 }
872
873 int
874 soshutdown(so, how)
875 struct socket *so;
876 int how;
877 {
878 struct protosw *pr = so->so_proto;
879
880 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
881 return (EINVAL);
882
883 if (how == SHUT_RD || how == SHUT_RDWR)
884 sorflush(so);
885 if (how == SHUT_WR || how == SHUT_RDWR)
886 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
887 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
888 return (0);
889 }
890
891 void
892 sorflush(so)
893 register struct socket *so;
894 {
895 register struct sockbuf *sb = &so->so_rcv;
896 register struct protosw *pr = so->so_proto;
897 register int s;
898 struct sockbuf asb;
899
900 sb->sb_flags |= SB_NOINTR;
901 (void) sblock(sb, M_WAITOK);
902 s = splimp();
903 socantrcvmore(so);
904 sbunlock(sb);
905 asb = *sb;
906 memset((caddr_t)sb, 0, sizeof(*sb));
907 splx(s);
908 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
909 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
910 sbrelease(&asb);
911 }
912
913 int
914 sosetopt(so, level, optname, m0)
915 register struct socket *so;
916 int level, optname;
917 struct mbuf *m0;
918 {
919 int error = 0;
920 register struct mbuf *m = m0;
921
922 if (level != SOL_SOCKET) {
923 if (so->so_proto && so->so_proto->pr_ctloutput)
924 return ((*so->so_proto->pr_ctloutput)
925 (PRCO_SETOPT, so, level, optname, &m0));
926 error = ENOPROTOOPT;
927 } else {
928 switch (optname) {
929
930 case SO_LINGER:
931 if (m == NULL || m->m_len != sizeof(struct linger)) {
932 error = EINVAL;
933 goto bad;
934 }
935 so->so_linger = mtod(m, struct linger *)->l_linger;
936 /* fall thru... */
937
938 case SO_DEBUG:
939 case SO_KEEPALIVE:
940 case SO_DONTROUTE:
941 case SO_USELOOPBACK:
942 case SO_BROADCAST:
943 case SO_REUSEADDR:
944 case SO_REUSEPORT:
945 case SO_OOBINLINE:
946 case SO_TIMESTAMP:
947 if (m == NULL || m->m_len < sizeof(int)) {
948 error = EINVAL;
949 goto bad;
950 }
951 if (*mtod(m, int *))
952 so->so_options |= optname;
953 else
954 so->so_options &= ~optname;
955 break;
956
957 case SO_SNDBUF:
958 case SO_RCVBUF:
959 case SO_SNDLOWAT:
960 case SO_RCVLOWAT:
961 {
962 int optval;
963
964 if (m == NULL || m->m_len < sizeof(int)) {
965 error = EINVAL;
966 goto bad;
967 }
968
969 /*
970 * Values < 1 make no sense for any of these
971 * options, so disallow them.
972 */
973 optval = *mtod(m, int *);
974 if (optval < 1) {
975 error = EINVAL;
976 goto bad;
977 }
978
979 switch (optname) {
980
981 case SO_SNDBUF:
982 case SO_RCVBUF:
983 if (sbreserve(optname == SO_SNDBUF ?
984 &so->so_snd : &so->so_rcv,
985 (u_long) optval) == 0) {
986 error = ENOBUFS;
987 goto bad;
988 }
989 break;
990
991 /*
992 * Make sure the low-water is never greater than
993 * the high-water.
994 */
995 case SO_SNDLOWAT:
996 so->so_snd.sb_lowat =
997 (optval > so->so_snd.sb_hiwat) ?
998 so->so_snd.sb_hiwat : optval;
999 break;
1000 case SO_RCVLOWAT:
1001 so->so_rcv.sb_lowat =
1002 (optval > so->so_rcv.sb_hiwat) ?
1003 so->so_rcv.sb_hiwat : optval;
1004 break;
1005 }
1006 break;
1007 }
1008
1009 case SO_SNDTIMEO:
1010 case SO_RCVTIMEO:
1011 {
1012 struct timeval *tv;
1013 short val;
1014
1015 if (m == NULL || m->m_len < sizeof(*tv)) {
1016 error = EINVAL;
1017 goto bad;
1018 }
1019 tv = mtod(m, struct timeval *);
1020 if (tv->tv_sec * hz + tv->tv_usec / tick > SHRT_MAX) {
1021 error = EDOM;
1022 goto bad;
1023 }
1024 val = tv->tv_sec * hz + tv->tv_usec / tick;
1025
1026 switch (optname) {
1027
1028 case SO_SNDTIMEO:
1029 so->so_snd.sb_timeo = val;
1030 break;
1031 case SO_RCVTIMEO:
1032 so->so_rcv.sb_timeo = val;
1033 break;
1034 }
1035 break;
1036 }
1037
1038 default:
1039 error = ENOPROTOOPT;
1040 break;
1041 }
1042 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1043 (void) ((*so->so_proto->pr_ctloutput)
1044 (PRCO_SETOPT, so, level, optname, &m0));
1045 m = NULL; /* freed by protocol */
1046 }
1047 }
1048 bad:
1049 if (m)
1050 (void) m_free(m);
1051 return (error);
1052 }
1053
1054 int
1055 sogetopt(so, level, optname, mp)
1056 register struct socket *so;
1057 int level, optname;
1058 struct mbuf **mp;
1059 {
1060 register struct mbuf *m;
1061
1062 if (level != SOL_SOCKET) {
1063 if (so->so_proto && so->so_proto->pr_ctloutput) {
1064 return ((*so->so_proto->pr_ctloutput)
1065 (PRCO_GETOPT, so, level, optname, mp));
1066 } else
1067 return (ENOPROTOOPT);
1068 } else {
1069 m = m_get(M_WAIT, MT_SOOPTS);
1070 m->m_len = sizeof(int);
1071
1072 switch (optname) {
1073
1074 case SO_LINGER:
1075 m->m_len = sizeof(struct linger);
1076 mtod(m, struct linger *)->l_onoff =
1077 so->so_options & SO_LINGER;
1078 mtod(m, struct linger *)->l_linger = so->so_linger;
1079 break;
1080
1081 case SO_USELOOPBACK:
1082 case SO_DONTROUTE:
1083 case SO_DEBUG:
1084 case SO_KEEPALIVE:
1085 case SO_REUSEADDR:
1086 case SO_REUSEPORT:
1087 case SO_BROADCAST:
1088 case SO_OOBINLINE:
1089 case SO_TIMESTAMP:
1090 *mtod(m, int *) = so->so_options & optname;
1091 break;
1092
1093 case SO_TYPE:
1094 *mtod(m, int *) = so->so_type;
1095 break;
1096
1097 case SO_ERROR:
1098 *mtod(m, int *) = so->so_error;
1099 so->so_error = 0;
1100 break;
1101
1102 case SO_SNDBUF:
1103 *mtod(m, int *) = so->so_snd.sb_hiwat;
1104 break;
1105
1106 case SO_RCVBUF:
1107 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1108 break;
1109
1110 case SO_SNDLOWAT:
1111 *mtod(m, int *) = so->so_snd.sb_lowat;
1112 break;
1113
1114 case SO_RCVLOWAT:
1115 *mtod(m, int *) = so->so_rcv.sb_lowat;
1116 break;
1117
1118 case SO_SNDTIMEO:
1119 case SO_RCVTIMEO:
1120 {
1121 int val = (optname == SO_SNDTIMEO ?
1122 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1123
1124 m->m_len = sizeof(struct timeval);
1125 mtod(m, struct timeval *)->tv_sec = val / hz;
1126 mtod(m, struct timeval *)->tv_usec =
1127 (val % hz) * tick;
1128 break;
1129 }
1130
1131 default:
1132 (void)m_free(m);
1133 return (ENOPROTOOPT);
1134 }
1135 *mp = m;
1136 return (0);
1137 }
1138 }
1139
1140 void
1141 sohasoutofband(so)
1142 register struct socket *so;
1143 {
1144 struct proc *p;
1145
1146 if (so->so_pgid < 0)
1147 gsignal(-so->so_pgid, SIGURG);
1148 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
1149 psignal(p, SIGURG);
1150 selwakeup(&so->so_rcv.sb_sel);
1151 }
1152