uipc_socket.c revision 1.56.2.7 1 /* $NetBSD: uipc_socket.c,v 1.56.2.7 2002/09/06 08:48:16 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.56.2.7 2002/09/06 08:48:16 jdolecek Exp $");
76
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/file.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/domain.h>
87 #include <sys/kernel.h>
88 #include <sys/protosw.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/signalvar.h>
92 #include <sys/resourcevar.h>
93 #include <sys/pool.h>
94 #include <sys/event.h>
95
96 #include <uvm/uvm.h>
97
98 static void filt_sordetach(struct knote *kn);
99 static int filt_soread(struct knote *kn, long hint);
100 static void filt_sowdetach(struct knote *kn);
101 static int filt_sowrite(struct knote *kn, long hint);
102 static int filt_solisten(struct knote *kn, long hint);
103
104 static const struct filterops solisten_filtops =
105 { 1, NULL, filt_sordetach, filt_solisten };
106 const struct filterops soread_filtops =
107 { 1, NULL, filt_sordetach, filt_soread };
108 const struct filterops sowrite_filtops =
109 { 1, NULL, filt_sowdetach, filt_sowrite };
110
111 struct pool socket_pool;
112
113 extern int somaxconn; /* patchable (XXX sysctl) */
114 int somaxconn = SOMAXCONN;
115
116 #ifdef SOSEND_COUNTERS
117 #include <sys/device.h>
118
119 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "loan big");
121 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "copy big");
123 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
124 NULL, "sosend", "copy small");
125 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
126 NULL, "sosend", "kva limit");
127
128 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
129
130 #else
131
132 #define SOSEND_COUNTER_INCR(ev) /* nothing */
133
134 #endif /* SOSEND_COUNTERS */
135
136 void
137 soinit(void)
138 {
139
140 pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
141 "sockpl", NULL);
142
143 #ifdef SOSEND_COUNTERS
144 evcnt_attach_static(&sosend_loan_big);
145 evcnt_attach_static(&sosend_copy_big);
146 evcnt_attach_static(&sosend_copy_small);
147 evcnt_attach_static(&sosend_kvalimit);
148 #endif /* SOSEND_COUNTERS */
149 }
150
151 #ifdef SOSEND_NO_LOAN
152 int use_sosend_loan = 0;
153 #else
154 int use_sosend_loan = 1;
155 #endif
156
157 struct mbuf *so_pendfree;
158
159 int somaxkva = 16 * 1024 * 1024;
160 int socurkva;
161 int sokvawaiters;
162
163 #define SOCK_LOAN_THRESH 4096
164 #define SOCK_LOAN_CHUNK 65536
165
166 static void
167 sodoloanfree(caddr_t buf, u_int size)
168 {
169 struct vm_page **pgs;
170 vaddr_t va, sva, eva;
171 vsize_t len;
172 paddr_t pa;
173 int i, npgs;
174
175 eva = round_page((vaddr_t) buf + size);
176 sva = trunc_page((vaddr_t) buf);
177 len = eva - sva;
178 npgs = len >> PAGE_SHIFT;
179
180 pgs = alloca(npgs * sizeof(*pgs));
181
182 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
183 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
184 panic("sodoloanfree: va 0x%lx not mapped", va);
185 pgs[i] = PHYS_TO_VM_PAGE(pa);
186 }
187
188 pmap_kremove(sva, len);
189 pmap_update(pmap_kernel());
190 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
191 uvm_km_free(kernel_map, sva, len);
192 socurkva -= len;
193 if (sokvawaiters)
194 wakeup(&socurkva);
195 }
196
197 static size_t
198 sodopendfree(struct socket *so)
199 {
200 struct mbuf *m;
201 size_t rv = 0;
202 int s;
203
204 s = splvm();
205
206 for (;;) {
207 m = so_pendfree;
208 if (m == NULL)
209 break;
210 so_pendfree = m->m_next;
211 splx(s);
212
213 rv += m->m_ext.ext_size;
214 sodoloanfree(m->m_ext.ext_buf, m->m_ext.ext_size);
215 s = splvm();
216 pool_cache_put(&mbpool_cache, m);
217 }
218
219 for (;;) {
220 m = so->so_pendfree;
221 if (m == NULL)
222 break;
223 so->so_pendfree = m->m_next;
224 splx(s);
225
226 rv += m->m_ext.ext_size;
227 sodoloanfree(m->m_ext.ext_buf, m->m_ext.ext_size);
228 s = splvm();
229 pool_cache_put(&mbpool_cache, m);
230 }
231
232 splx(s);
233 return (rv);
234 }
235
236 static void
237 soloanfree(struct mbuf *m, caddr_t buf, u_int size, void *arg)
238 {
239 struct socket *so = arg;
240 int s;
241
242 if (m == NULL) {
243 sodoloanfree(buf, size);
244 return;
245 }
246
247 s = splvm();
248 m->m_next = so->so_pendfree;
249 so->so_pendfree = m;
250 splx(s);
251 if (sokvawaiters)
252 wakeup(&socurkva);
253 }
254
255 static long
256 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
257 {
258 struct iovec *iov = uio->uio_iov;
259 vaddr_t sva, eva;
260 vsize_t len;
261 struct vm_page **pgs;
262 vaddr_t lva, va;
263 int npgs, s, i, error;
264
265 if (uio->uio_segflg != UIO_USERSPACE)
266 return (0);
267
268 if (iov->iov_len < (size_t) space)
269 space = iov->iov_len;
270 if (space > SOCK_LOAN_CHUNK)
271 space = SOCK_LOAN_CHUNK;
272
273 eva = round_page((vaddr_t) iov->iov_base + space);
274 sva = trunc_page((vaddr_t) iov->iov_base);
275 len = eva - sva;
276 npgs = len >> PAGE_SHIFT;
277
278 while (socurkva + len > somaxkva) {
279 if (sodopendfree(so))
280 continue;
281 SOSEND_COUNTER_INCR(&sosend_kvalimit);
282 s = splvm();
283 sokvawaiters++;
284 (void) tsleep(&socurkva, PVM, "sokva", 0);
285 sokvawaiters--;
286 splx(s);
287 }
288
289 lva = uvm_km_valloc_wait(kernel_map, len);
290 if (lva == 0)
291 return (0);
292 socurkva += len;
293
294 pgs = alloca(npgs * sizeof(*pgs));
295
296 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
297 pgs, UVM_LOAN_TOPAGE);
298 if (error) {
299 uvm_km_free(kernel_map, lva, len);
300 socurkva -= len;
301 return (0);
302 }
303
304 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
305 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pgs[i]), VM_PROT_READ);
306 pmap_update(pmap_kernel());
307
308 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
309
310 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
311
312 uio->uio_resid -= space;
313 /* uio_offset not updated, not set/used for write(2) */
314 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
315 uio->uio_iov->iov_len -= space;
316 if (uio->uio_iov->iov_len == 0) {
317 uio->uio_iov++;
318 uio->uio_iovcnt--;
319 }
320
321 return (space);
322 }
323
324 /*
325 * Socket operation routines.
326 * These routines are called by the routines in
327 * sys_socket.c or from a system process, and
328 * implement the semantics of socket operations by
329 * switching out to the protocol specific routines.
330 */
331 /*ARGSUSED*/
332 int
333 socreate(int dom, struct socket **aso, int type, int proto)
334 {
335 struct proc *p;
336 struct protosw *prp;
337 struct socket *so;
338 int error, s;
339
340 p = curproc; /* XXX */
341 if (proto)
342 prp = pffindproto(dom, proto, type);
343 else
344 prp = pffindtype(dom, type);
345 if (prp == 0 || prp->pr_usrreq == 0)
346 return (EPROTONOSUPPORT);
347 if (prp->pr_type != type)
348 return (EPROTOTYPE);
349 s = splsoftnet();
350 so = pool_get(&socket_pool, PR_WAITOK);
351 memset((caddr_t)so, 0, sizeof(*so));
352 TAILQ_INIT(&so->so_q0);
353 TAILQ_INIT(&so->so_q);
354 so->so_type = type;
355 so->so_proto = prp;
356 so->so_send = sosend;
357 so->so_receive = soreceive;
358 if (p != 0)
359 so->so_uid = p->p_ucred->cr_uid;
360 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
361 (struct mbuf *)(long)proto, (struct mbuf *)0, p);
362 if (error) {
363 so->so_state |= SS_NOFDREF;
364 sofree(so);
365 splx(s);
366 return (error);
367 }
368 splx(s);
369 *aso = so;
370 return (0);
371 }
372
373 int
374 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
375 {
376 int s, error;
377
378 s = splsoftnet();
379 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
380 nam, (struct mbuf *)0, p);
381 splx(s);
382 return (error);
383 }
384
385 int
386 solisten(struct socket *so, int backlog)
387 {
388 int s, error;
389
390 s = splsoftnet();
391 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
392 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
393 if (error) {
394 splx(s);
395 return (error);
396 }
397 if (TAILQ_EMPTY(&so->so_q))
398 so->so_options |= SO_ACCEPTCONN;
399 if (backlog < 0)
400 backlog = 0;
401 so->so_qlimit = min(backlog, somaxconn);
402 splx(s);
403 return (0);
404 }
405
406 void
407 sofree(struct socket *so)
408 {
409 struct mbuf *m;
410
411 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
412 return;
413 if (so->so_head) {
414 /*
415 * We must not decommission a socket that's on the accept(2)
416 * queue. If we do, then accept(2) may hang after select(2)
417 * indicated that the listening socket was ready.
418 */
419 if (!soqremque(so, 0))
420 return;
421 }
422 sbrelease(&so->so_snd);
423 sorflush(so);
424 while ((m = so->so_pendfree) != NULL) {
425 so->so_pendfree = m->m_next;
426 m->m_next = so_pendfree;
427 so_pendfree = m;
428 }
429 pool_put(&socket_pool, so);
430 }
431
432 /*
433 * Close a socket on last file table reference removal.
434 * Initiate disconnect if connected.
435 * Free socket when disconnect complete.
436 */
437 int
438 soclose(struct socket *so)
439 {
440 struct socket *so2;
441 int s, error;
442
443 error = 0;
444 s = splsoftnet(); /* conservative */
445 if (so->so_options & SO_ACCEPTCONN) {
446 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
447 (void) soqremque(so2, 0);
448 (void) soabort(so2);
449 }
450 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
451 (void) soqremque(so2, 1);
452 (void) soabort(so2);
453 }
454 }
455 if (so->so_pcb == 0)
456 goto discard;
457 if (so->so_state & SS_ISCONNECTED) {
458 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
459 error = sodisconnect(so);
460 if (error)
461 goto drop;
462 }
463 if (so->so_options & SO_LINGER) {
464 if ((so->so_state & SS_ISDISCONNECTING) &&
465 (so->so_state & SS_NBIO))
466 goto drop;
467 while (so->so_state & SS_ISCONNECTED) {
468 error = tsleep((caddr_t)&so->so_timeo,
469 PSOCK | PCATCH, netcls,
470 so->so_linger * hz);
471 if (error)
472 break;
473 }
474 }
475 }
476 drop:
477 if (so->so_pcb) {
478 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
479 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
480 (struct proc *)0);
481 if (error == 0)
482 error = error2;
483 }
484 discard:
485 if (so->so_state & SS_NOFDREF)
486 panic("soclose: NOFDREF");
487 so->so_state |= SS_NOFDREF;
488 sofree(so);
489 splx(s);
490 return (error);
491 }
492
493 /*
494 * Must be called at splsoftnet...
495 */
496 int
497 soabort(struct socket *so)
498 {
499
500 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
501 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
502 }
503
504 int
505 soaccept(struct socket *so, struct mbuf *nam)
506 {
507 int s, error;
508
509 error = 0;
510 s = splsoftnet();
511 if ((so->so_state & SS_NOFDREF) == 0)
512 panic("soaccept: !NOFDREF");
513 so->so_state &= ~SS_NOFDREF;
514 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
515 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
516 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
517 (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
518 else
519 error = ECONNABORTED;
520
521 splx(s);
522 return (error);
523 }
524
525 int
526 soconnect(struct socket *so, struct mbuf *nam)
527 {
528 struct proc *p;
529 int s, error;
530
531 p = curproc; /* XXX */
532 if (so->so_options & SO_ACCEPTCONN)
533 return (EOPNOTSUPP);
534 s = splsoftnet();
535 /*
536 * If protocol is connection-based, can only connect once.
537 * Otherwise, if connected, try to disconnect first.
538 * This allows user to disconnect by connecting to, e.g.,
539 * a null address.
540 */
541 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
542 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
543 (error = sodisconnect(so))))
544 error = EISCONN;
545 else
546 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
547 (struct mbuf *)0, nam, (struct mbuf *)0, p);
548 splx(s);
549 return (error);
550 }
551
552 int
553 soconnect2(struct socket *so1, struct socket *so2)
554 {
555 int s, error;
556
557 s = splsoftnet();
558 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
559 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
560 (struct proc *)0);
561 splx(s);
562 return (error);
563 }
564
565 int
566 sodisconnect(struct socket *so)
567 {
568 int s, error;
569
570 s = splsoftnet();
571 if ((so->so_state & SS_ISCONNECTED) == 0) {
572 error = ENOTCONN;
573 goto bad;
574 }
575 if (so->so_state & SS_ISDISCONNECTING) {
576 error = EALREADY;
577 goto bad;
578 }
579 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
580 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
581 (struct proc *)0);
582 bad:
583 splx(s);
584 sodopendfree(so);
585 return (error);
586 }
587
588 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
589 /*
590 * Send on a socket.
591 * If send must go all at once and message is larger than
592 * send buffering, then hard error.
593 * Lock against other senders.
594 * If must go all at once and not enough room now, then
595 * inform user that this would block and do nothing.
596 * Otherwise, if nonblocking, send as much as possible.
597 * The data to be sent is described by "uio" if nonzero,
598 * otherwise by the mbuf chain "top" (which must be null
599 * if uio is not). Data provided in mbuf chain must be small
600 * enough to send all at once.
601 *
602 * Returns nonzero on error, timeout or signal; callers
603 * must check for short counts if EINTR/ERESTART are returned.
604 * Data and control buffers are freed on return.
605 */
606 int
607 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
608 struct mbuf *control, int flags)
609 {
610 struct proc *p;
611 struct mbuf **mp, *m;
612 long space, len, resid, clen, mlen;
613 int error, s, dontroute, atomic;
614
615 sodopendfree(so);
616
617 p = curproc; /* XXX */
618 clen = 0;
619 atomic = sosendallatonce(so) || top;
620 if (uio)
621 resid = uio->uio_resid;
622 else
623 resid = top->m_pkthdr.len;
624 /*
625 * In theory resid should be unsigned.
626 * However, space must be signed, as it might be less than 0
627 * if we over-committed, and we must use a signed comparison
628 * of space and resid. On the other hand, a negative resid
629 * causes us to loop sending 0-length segments to the protocol.
630 */
631 if (resid < 0) {
632 error = EINVAL;
633 goto out;
634 }
635 dontroute =
636 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
637 (so->so_proto->pr_flags & PR_ATOMIC);
638 p->p_stats->p_ru.ru_msgsnd++;
639 if (control)
640 clen = control->m_len;
641 #define snderr(errno) { error = errno; splx(s); goto release; }
642
643 restart:
644 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
645 goto out;
646 do {
647 s = splsoftnet();
648 if (so->so_state & SS_CANTSENDMORE)
649 snderr(EPIPE);
650 if (so->so_error) {
651 error = so->so_error;
652 so->so_error = 0;
653 splx(s);
654 goto release;
655 }
656 if ((so->so_state & SS_ISCONNECTED) == 0) {
657 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
658 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
659 !(resid == 0 && clen != 0))
660 snderr(ENOTCONN);
661 } else if (addr == 0)
662 snderr(EDESTADDRREQ);
663 }
664 space = sbspace(&so->so_snd);
665 if (flags & MSG_OOB)
666 space += 1024;
667 if ((atomic && resid > so->so_snd.sb_hiwat) ||
668 clen > so->so_snd.sb_hiwat)
669 snderr(EMSGSIZE);
670 if (space < resid + clen && uio &&
671 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
672 if (so->so_state & SS_NBIO)
673 snderr(EWOULDBLOCK);
674 sbunlock(&so->so_snd);
675 error = sbwait(&so->so_snd);
676 splx(s);
677 if (error)
678 goto out;
679 goto restart;
680 }
681 splx(s);
682 mp = ⊤
683 space -= clen;
684 do {
685 if (uio == NULL) {
686 /*
687 * Data is prepackaged in "top".
688 */
689 resid = 0;
690 if (flags & MSG_EOR)
691 top->m_flags |= M_EOR;
692 } else do {
693 if (top == 0) {
694 MGETHDR(m, M_WAIT, MT_DATA);
695 mlen = MHLEN;
696 m->m_pkthdr.len = 0;
697 m->m_pkthdr.rcvif = (struct ifnet *)0;
698 } else {
699 MGET(m, M_WAIT, MT_DATA);
700 mlen = MLEN;
701 }
702 if (use_sosend_loan &&
703 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
704 space >= SOCK_LOAN_THRESH &&
705 (len = sosend_loan(so, uio, m,
706 space)) != 0) {
707 SOSEND_COUNTER_INCR(&sosend_loan_big);
708 space -= len;
709 goto have_data;
710 }
711 if (resid >= MINCLSIZE && space >= MCLBYTES) {
712 SOSEND_COUNTER_INCR(&sosend_copy_big);
713 MCLGET(m, M_WAIT);
714 if ((m->m_flags & M_EXT) == 0)
715 goto nopages;
716 mlen = MCLBYTES;
717 if (atomic && top == 0) {
718 len = lmin(MCLBYTES - max_hdr,
719 resid);
720 m->m_data += max_hdr;
721 } else
722 len = lmin(MCLBYTES, resid);
723 space -= len;
724 } else {
725 nopages:
726 SOSEND_COUNTER_INCR(&sosend_copy_small);
727 len = lmin(lmin(mlen, resid), space);
728 space -= len;
729 /*
730 * For datagram protocols, leave room
731 * for protocol headers in first mbuf.
732 */
733 if (atomic && top == 0 && len < mlen)
734 MH_ALIGN(m, len);
735 }
736 error = uiomove(mtod(m, caddr_t), (int)len,
737 uio);
738 have_data:
739 resid = uio->uio_resid;
740 m->m_len = len;
741 *mp = m;
742 top->m_pkthdr.len += len;
743 if (error)
744 goto release;
745 mp = &m->m_next;
746 if (resid <= 0) {
747 if (flags & MSG_EOR)
748 top->m_flags |= M_EOR;
749 break;
750 }
751 } while (space > 0 && atomic);
752
753 s = splsoftnet();
754
755 if (so->so_state & SS_CANTSENDMORE)
756 snderr(EPIPE);
757
758 if (dontroute)
759 so->so_options |= SO_DONTROUTE;
760 if (resid > 0)
761 so->so_state |= SS_MORETOCOME;
762 error = (*so->so_proto->pr_usrreq)(so,
763 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
764 top, addr, control, p);
765 if (dontroute)
766 so->so_options &= ~SO_DONTROUTE;
767 if (resid > 0)
768 so->so_state &= ~SS_MORETOCOME;
769 splx(s);
770
771 clen = 0;
772 control = 0;
773 top = 0;
774 mp = ⊤
775 if (error)
776 goto release;
777 } while (resid && space > 0);
778 } while (resid);
779
780 release:
781 sbunlock(&so->so_snd);
782 out:
783 if (top)
784 m_freem(top);
785 if (control)
786 m_freem(control);
787 return (error);
788 }
789
790 /*
791 * Implement receive operations on a socket.
792 * We depend on the way that records are added to the sockbuf
793 * by sbappend*. In particular, each record (mbufs linked through m_next)
794 * must begin with an address if the protocol so specifies,
795 * followed by an optional mbuf or mbufs containing ancillary data,
796 * and then zero or more mbufs of data.
797 * In order to avoid blocking network interrupts for the entire time here,
798 * we splx() while doing the actual copy to user space.
799 * Although the sockbuf is locked, new data may still be appended,
800 * and thus we must maintain consistency of the sockbuf during that time.
801 *
802 * The caller may receive the data as a single mbuf chain by supplying
803 * an mbuf **mp0 for use in returning the chain. The uio is then used
804 * only for the count in uio_resid.
805 */
806 int
807 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
808 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
809 {
810 struct mbuf *m, **mp;
811 int flags, len, error, s, offset, moff, type, orig_resid;
812 struct protosw *pr;
813 struct mbuf *nextrecord;
814 int mbuf_removed = 0;
815
816 pr = so->so_proto;
817 mp = mp0;
818 type = 0;
819 orig_resid = uio->uio_resid;
820 if (paddr)
821 *paddr = 0;
822 if (controlp)
823 *controlp = 0;
824 if (flagsp)
825 flags = *flagsp &~ MSG_EOR;
826 else
827 flags = 0;
828
829 if ((flags & MSG_DONTWAIT) == 0)
830 sodopendfree(so);
831
832 if (flags & MSG_OOB) {
833 m = m_get(M_WAIT, MT_DATA);
834 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
835 (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
836 (struct proc *)0);
837 if (error)
838 goto bad;
839 do {
840 error = uiomove(mtod(m, caddr_t),
841 (int) min(uio->uio_resid, m->m_len), uio);
842 m = m_free(m);
843 } while (uio->uio_resid && error == 0 && m);
844 bad:
845 if (m)
846 m_freem(m);
847 return (error);
848 }
849 if (mp)
850 *mp = (struct mbuf *)0;
851 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
852 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
853 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
854
855 restart:
856 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
857 return (error);
858 s = splsoftnet();
859
860 m = so->so_rcv.sb_mb;
861 /*
862 * If we have less data than requested, block awaiting more
863 * (subject to any timeout) if:
864 * 1. the current count is less than the low water mark,
865 * 2. MSG_WAITALL is set, and it is possible to do the entire
866 * receive operation at once if we block (resid <= hiwat), or
867 * 3. MSG_DONTWAIT is not set.
868 * If MSG_WAITALL is set but resid is larger than the receive buffer,
869 * we have to do the receive in sections, and thus risk returning
870 * a short count if a timeout or signal occurs after we start.
871 */
872 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
873 so->so_rcv.sb_cc < uio->uio_resid) &&
874 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
875 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
876 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
877 #ifdef DIAGNOSTIC
878 if (m == 0 && so->so_rcv.sb_cc)
879 panic("receive 1");
880 #endif
881 if (so->so_error) {
882 if (m)
883 goto dontblock;
884 error = so->so_error;
885 if ((flags & MSG_PEEK) == 0)
886 so->so_error = 0;
887 goto release;
888 }
889 if (so->so_state & SS_CANTRCVMORE) {
890 if (m)
891 goto dontblock;
892 else
893 goto release;
894 }
895 for (; m; m = m->m_next)
896 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
897 m = so->so_rcv.sb_mb;
898 goto dontblock;
899 }
900 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
901 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
902 error = ENOTCONN;
903 goto release;
904 }
905 if (uio->uio_resid == 0)
906 goto release;
907 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
908 error = EWOULDBLOCK;
909 goto release;
910 }
911 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
912 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
913 sbunlock(&so->so_rcv);
914 error = sbwait(&so->so_rcv);
915 splx(s);
916 if (error)
917 return (error);
918 goto restart;
919 }
920 dontblock:
921 /*
922 * On entry here, m points to the first record of the socket buffer.
923 * While we process the initial mbufs containing address and control
924 * info, we save a copy of m->m_nextpkt into nextrecord.
925 */
926 #ifdef notyet /* XXXX */
927 if (uio->uio_procp)
928 uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
929 #endif
930 KASSERT(m == so->so_rcv.sb_mb);
931 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
932 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
933 nextrecord = m->m_nextpkt;
934 if (pr->pr_flags & PR_ADDR) {
935 #ifdef DIAGNOSTIC
936 if (m->m_type != MT_SONAME)
937 panic("receive 1a");
938 #endif
939 orig_resid = 0;
940 if (flags & MSG_PEEK) {
941 if (paddr)
942 *paddr = m_copy(m, 0, m->m_len);
943 m = m->m_next;
944 } else {
945 sbfree(&so->so_rcv, m);
946 mbuf_removed = 1;
947 if (paddr) {
948 *paddr = m;
949 so->so_rcv.sb_mb = m->m_next;
950 m->m_next = 0;
951 m = so->so_rcv.sb_mb;
952 } else {
953 MFREE(m, so->so_rcv.sb_mb);
954 m = so->so_rcv.sb_mb;
955 }
956 }
957 }
958 while (m && m->m_type == MT_CONTROL && error == 0) {
959 if (flags & MSG_PEEK) {
960 if (controlp)
961 *controlp = m_copy(m, 0, m->m_len);
962 m = m->m_next;
963 } else {
964 sbfree(&so->so_rcv, m);
965 mbuf_removed = 1;
966 if (controlp) {
967 if (pr->pr_domain->dom_externalize &&
968 mtod(m, struct cmsghdr *)->cmsg_type ==
969 SCM_RIGHTS)
970 error = (*pr->pr_domain->dom_externalize)(m);
971 *controlp = m;
972 so->so_rcv.sb_mb = m->m_next;
973 m->m_next = 0;
974 m = so->so_rcv.sb_mb;
975 } else {
976 MFREE(m, so->so_rcv.sb_mb);
977 m = so->so_rcv.sb_mb;
978 }
979 }
980 if (controlp) {
981 orig_resid = 0;
982 controlp = &(*controlp)->m_next;
983 }
984 }
985
986 /*
987 * If m is non-NULL, we have some data to read. From now on,
988 * make sure to keep sb_lastrecord consistent when working on
989 * the last packet on the chain (nextrecord == NULL) and we
990 * change m->m_nextpkt.
991 */
992 if (m) {
993 if ((flags & MSG_PEEK) == 0) {
994 m->m_nextpkt = nextrecord;
995 /*
996 * If nextrecord == NULL (this is a single chain),
997 * then sb_lastrecord may not be valid here if m
998 * was changed earlier.
999 */
1000 if (nextrecord == NULL) {
1001 KASSERT(so->so_rcv.sb_mb == m);
1002 so->so_rcv.sb_lastrecord = m;
1003 }
1004 }
1005 type = m->m_type;
1006 if (type == MT_OOBDATA)
1007 flags |= MSG_OOB;
1008 } else {
1009 if ((flags & MSG_PEEK) == 0) {
1010 KASSERT(so->so_rcv.sb_mb == m);
1011 so->so_rcv.sb_mb = nextrecord;
1012 SB_EMPTY_FIXUP(&so->so_rcv);
1013 }
1014 }
1015 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1016 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1017
1018 moff = 0;
1019 offset = 0;
1020 while (m && uio->uio_resid > 0 && error == 0) {
1021 if (m->m_type == MT_OOBDATA) {
1022 if (type != MT_OOBDATA)
1023 break;
1024 } else if (type == MT_OOBDATA)
1025 break;
1026 #ifdef DIAGNOSTIC
1027 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1028 panic("receive 3");
1029 #endif
1030 so->so_state &= ~SS_RCVATMARK;
1031 len = uio->uio_resid;
1032 if (so->so_oobmark && len > so->so_oobmark - offset)
1033 len = so->so_oobmark - offset;
1034 if (len > m->m_len - moff)
1035 len = m->m_len - moff;
1036 /*
1037 * If mp is set, just pass back the mbufs.
1038 * Otherwise copy them out via the uio, then free.
1039 * Sockbuf must be consistent here (points to current mbuf,
1040 * it points to next record) when we drop priority;
1041 * we must note any additions to the sockbuf when we
1042 * block interrupts again.
1043 */
1044 if (mp == 0) {
1045 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1046 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1047 splx(s);
1048 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1049 s = splsoftnet();
1050 if (error) {
1051 /*
1052 * If any part of the record has been removed
1053 * (such as the MT_SONAME mbuf, which will
1054 * happen when PR_ADDR, and thus also
1055 * PR_ATOMIC, is set), then drop the entire
1056 * record to maintain the atomicity of the
1057 * receive operation.
1058 *
1059 * This avoids a later panic("receive 1a")
1060 * when compiled with DIAGNOSTIC.
1061 */
1062 if (m && mbuf_removed
1063 && (pr->pr_flags & PR_ATOMIC))
1064 (void) sbdroprecord(&so->so_rcv);
1065
1066 goto release;
1067 }
1068 } else
1069 uio->uio_resid -= len;
1070 if (len == m->m_len - moff) {
1071 if (m->m_flags & M_EOR)
1072 flags |= MSG_EOR;
1073 if (flags & MSG_PEEK) {
1074 m = m->m_next;
1075 moff = 0;
1076 } else {
1077 nextrecord = m->m_nextpkt;
1078 sbfree(&so->so_rcv, m);
1079 if (mp) {
1080 *mp = m;
1081 mp = &m->m_next;
1082 so->so_rcv.sb_mb = m = m->m_next;
1083 *mp = (struct mbuf *)0;
1084 } else {
1085 MFREE(m, so->so_rcv.sb_mb);
1086 m = so->so_rcv.sb_mb;
1087 }
1088 /*
1089 * If m != NULL, we also know that
1090 * so->so_rcv.sb_mb != NULL.
1091 */
1092 KASSERT(so->so_rcv.sb_mb == m);
1093 if (m) {
1094 m->m_nextpkt = nextrecord;
1095 if (nextrecord == NULL)
1096 so->so_rcv.sb_lastrecord = m;
1097 } else {
1098 so->so_rcv.sb_mb = nextrecord;
1099 SB_EMPTY_FIXUP(&so->so_rcv);
1100 }
1101 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1102 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1103 }
1104 } else {
1105 if (flags & MSG_PEEK)
1106 moff += len;
1107 else {
1108 if (mp)
1109 *mp = m_copym(m, 0, len, M_WAIT);
1110 m->m_data += len;
1111 m->m_len -= len;
1112 so->so_rcv.sb_cc -= len;
1113 }
1114 }
1115 if (so->so_oobmark) {
1116 if ((flags & MSG_PEEK) == 0) {
1117 so->so_oobmark -= len;
1118 if (so->so_oobmark == 0) {
1119 so->so_state |= SS_RCVATMARK;
1120 break;
1121 }
1122 } else {
1123 offset += len;
1124 if (offset == so->so_oobmark)
1125 break;
1126 }
1127 }
1128 if (flags & MSG_EOR)
1129 break;
1130 /*
1131 * If the MSG_WAITALL flag is set (for non-atomic socket),
1132 * we must not quit until "uio->uio_resid == 0" or an error
1133 * termination. If a signal/timeout occurs, return
1134 * with a short count but without error.
1135 * Keep sockbuf locked against other readers.
1136 */
1137 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1138 !sosendallatonce(so) && !nextrecord) {
1139 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1140 break;
1141 /*
1142 * If we are peeking and the socket receive buffer is
1143 * full, stop since we can't get more data to peek at.
1144 */
1145 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1146 break;
1147 /*
1148 * If we've drained the socket buffer, tell the
1149 * protocol in case it needs to do something to
1150 * get it filled again.
1151 */
1152 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1153 (*pr->pr_usrreq)(so, PRU_RCVD,
1154 (struct mbuf *)0,
1155 (struct mbuf *)(long)flags,
1156 (struct mbuf *)0,
1157 (struct proc *)0);
1158 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1159 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1160 error = sbwait(&so->so_rcv);
1161 if (error) {
1162 sbunlock(&so->so_rcv);
1163 splx(s);
1164 return (0);
1165 }
1166 if ((m = so->so_rcv.sb_mb) != NULL)
1167 nextrecord = m->m_nextpkt;
1168 }
1169 }
1170
1171 if (m && pr->pr_flags & PR_ATOMIC) {
1172 flags |= MSG_TRUNC;
1173 if ((flags & MSG_PEEK) == 0)
1174 (void) sbdroprecord(&so->so_rcv);
1175 }
1176 if ((flags & MSG_PEEK) == 0) {
1177 if (m == 0) {
1178 /*
1179 * First part is an inline SB_EMPTY_FIXUP(). Second
1180 * part makes sure sb_lastrecord is up-to-date if
1181 * there is still data in the socket buffer.
1182 */
1183 so->so_rcv.sb_mb = nextrecord;
1184 if (so->so_rcv.sb_mb == NULL) {
1185 so->so_rcv.sb_mbtail = NULL;
1186 so->so_rcv.sb_lastrecord = NULL;
1187 } else if (nextrecord->m_nextpkt == NULL)
1188 so->so_rcv.sb_lastrecord = nextrecord;
1189 }
1190 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1191 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1192 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1193 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1194 (struct mbuf *)(long)flags, (struct mbuf *)0,
1195 (struct proc *)0);
1196 }
1197 if (orig_resid == uio->uio_resid && orig_resid &&
1198 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1199 sbunlock(&so->so_rcv);
1200 splx(s);
1201 goto restart;
1202 }
1203
1204 if (flagsp)
1205 *flagsp |= flags;
1206 release:
1207 sbunlock(&so->so_rcv);
1208 splx(s);
1209 return (error);
1210 }
1211
1212 int
1213 soshutdown(struct socket *so, int how)
1214 {
1215 struct protosw *pr;
1216
1217 pr = so->so_proto;
1218 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1219 return (EINVAL);
1220
1221 if (how == SHUT_RD || how == SHUT_RDWR)
1222 sorflush(so);
1223 if (how == SHUT_WR || how == SHUT_RDWR)
1224 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1225 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1226 return (0);
1227 }
1228
1229 void
1230 sorflush(struct socket *so)
1231 {
1232 struct sockbuf *sb, asb;
1233 struct protosw *pr;
1234 int s;
1235
1236 sb = &so->so_rcv;
1237 pr = so->so_proto;
1238 sb->sb_flags |= SB_NOINTR;
1239 (void) sblock(sb, M_WAITOK);
1240 s = splnet();
1241 socantrcvmore(so);
1242 sbunlock(sb);
1243 asb = *sb;
1244 memset((caddr_t)sb, 0, sizeof(*sb));
1245 splx(s);
1246 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1247 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1248 sbrelease(&asb);
1249 }
1250
1251 int
1252 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1253 {
1254 int error;
1255 struct mbuf *m;
1256
1257 error = 0;
1258 m = m0;
1259 if (level != SOL_SOCKET) {
1260 if (so->so_proto && so->so_proto->pr_ctloutput)
1261 return ((*so->so_proto->pr_ctloutput)
1262 (PRCO_SETOPT, so, level, optname, &m0));
1263 error = ENOPROTOOPT;
1264 } else {
1265 switch (optname) {
1266
1267 case SO_LINGER:
1268 if (m == NULL || m->m_len != sizeof(struct linger)) {
1269 error = EINVAL;
1270 goto bad;
1271 }
1272 so->so_linger = mtod(m, struct linger *)->l_linger;
1273 /* fall thru... */
1274
1275 case SO_DEBUG:
1276 case SO_KEEPALIVE:
1277 case SO_DONTROUTE:
1278 case SO_USELOOPBACK:
1279 case SO_BROADCAST:
1280 case SO_REUSEADDR:
1281 case SO_REUSEPORT:
1282 case SO_OOBINLINE:
1283 case SO_TIMESTAMP:
1284 if (m == NULL || m->m_len < sizeof(int)) {
1285 error = EINVAL;
1286 goto bad;
1287 }
1288 if (*mtod(m, int *))
1289 so->so_options |= optname;
1290 else
1291 so->so_options &= ~optname;
1292 break;
1293
1294 case SO_SNDBUF:
1295 case SO_RCVBUF:
1296 case SO_SNDLOWAT:
1297 case SO_RCVLOWAT:
1298 {
1299 int optval;
1300
1301 if (m == NULL || m->m_len < sizeof(int)) {
1302 error = EINVAL;
1303 goto bad;
1304 }
1305
1306 /*
1307 * Values < 1 make no sense for any of these
1308 * options, so disallow them.
1309 */
1310 optval = *mtod(m, int *);
1311 if (optval < 1) {
1312 error = EINVAL;
1313 goto bad;
1314 }
1315
1316 switch (optname) {
1317
1318 case SO_SNDBUF:
1319 case SO_RCVBUF:
1320 if (sbreserve(optname == SO_SNDBUF ?
1321 &so->so_snd : &so->so_rcv,
1322 (u_long) optval) == 0) {
1323 error = ENOBUFS;
1324 goto bad;
1325 }
1326 break;
1327
1328 /*
1329 * Make sure the low-water is never greater than
1330 * the high-water.
1331 */
1332 case SO_SNDLOWAT:
1333 so->so_snd.sb_lowat =
1334 (optval > so->so_snd.sb_hiwat) ?
1335 so->so_snd.sb_hiwat : optval;
1336 break;
1337 case SO_RCVLOWAT:
1338 so->so_rcv.sb_lowat =
1339 (optval > so->so_rcv.sb_hiwat) ?
1340 so->so_rcv.sb_hiwat : optval;
1341 break;
1342 }
1343 break;
1344 }
1345
1346 case SO_SNDTIMEO:
1347 case SO_RCVTIMEO:
1348 {
1349 struct timeval *tv;
1350 short val;
1351
1352 if (m == NULL || m->m_len < sizeof(*tv)) {
1353 error = EINVAL;
1354 goto bad;
1355 }
1356 tv = mtod(m, struct timeval *);
1357 if (tv->tv_sec * hz + tv->tv_usec / tick > SHRT_MAX) {
1358 error = EDOM;
1359 goto bad;
1360 }
1361 val = tv->tv_sec * hz + tv->tv_usec / tick;
1362
1363 switch (optname) {
1364
1365 case SO_SNDTIMEO:
1366 so->so_snd.sb_timeo = val;
1367 break;
1368 case SO_RCVTIMEO:
1369 so->so_rcv.sb_timeo = val;
1370 break;
1371 }
1372 break;
1373 }
1374
1375 default:
1376 error = ENOPROTOOPT;
1377 break;
1378 }
1379 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1380 (void) ((*so->so_proto->pr_ctloutput)
1381 (PRCO_SETOPT, so, level, optname, &m0));
1382 m = NULL; /* freed by protocol */
1383 }
1384 }
1385 bad:
1386 if (m)
1387 (void) m_free(m);
1388 return (error);
1389 }
1390
1391 int
1392 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1393 {
1394 struct mbuf *m;
1395
1396 if (level != SOL_SOCKET) {
1397 if (so->so_proto && so->so_proto->pr_ctloutput) {
1398 return ((*so->so_proto->pr_ctloutput)
1399 (PRCO_GETOPT, so, level, optname, mp));
1400 } else
1401 return (ENOPROTOOPT);
1402 } else {
1403 m = m_get(M_WAIT, MT_SOOPTS);
1404 m->m_len = sizeof(int);
1405
1406 switch (optname) {
1407
1408 case SO_LINGER:
1409 m->m_len = sizeof(struct linger);
1410 mtod(m, struct linger *)->l_onoff =
1411 so->so_options & SO_LINGER;
1412 mtod(m, struct linger *)->l_linger = so->so_linger;
1413 break;
1414
1415 case SO_USELOOPBACK:
1416 case SO_DONTROUTE:
1417 case SO_DEBUG:
1418 case SO_KEEPALIVE:
1419 case SO_REUSEADDR:
1420 case SO_REUSEPORT:
1421 case SO_BROADCAST:
1422 case SO_OOBINLINE:
1423 case SO_TIMESTAMP:
1424 *mtod(m, int *) = so->so_options & optname;
1425 break;
1426
1427 case SO_TYPE:
1428 *mtod(m, int *) = so->so_type;
1429 break;
1430
1431 case SO_ERROR:
1432 *mtod(m, int *) = so->so_error;
1433 so->so_error = 0;
1434 break;
1435
1436 case SO_SNDBUF:
1437 *mtod(m, int *) = so->so_snd.sb_hiwat;
1438 break;
1439
1440 case SO_RCVBUF:
1441 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1442 break;
1443
1444 case SO_SNDLOWAT:
1445 *mtod(m, int *) = so->so_snd.sb_lowat;
1446 break;
1447
1448 case SO_RCVLOWAT:
1449 *mtod(m, int *) = so->so_rcv.sb_lowat;
1450 break;
1451
1452 case SO_SNDTIMEO:
1453 case SO_RCVTIMEO:
1454 {
1455 int val = (optname == SO_SNDTIMEO ?
1456 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1457
1458 m->m_len = sizeof(struct timeval);
1459 mtod(m, struct timeval *)->tv_sec = val / hz;
1460 mtod(m, struct timeval *)->tv_usec =
1461 (val % hz) * tick;
1462 break;
1463 }
1464
1465 default:
1466 (void)m_free(m);
1467 return (ENOPROTOOPT);
1468 }
1469 *mp = m;
1470 return (0);
1471 }
1472 }
1473
1474 void
1475 sohasoutofband(struct socket *so)
1476 {
1477 struct proc *p;
1478
1479 if (so->so_pgid < 0)
1480 gsignal(-so->so_pgid, SIGURG);
1481 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
1482 psignal(p, SIGURG);
1483 selwakeup(&so->so_rcv.sb_sel);
1484 }
1485
1486
1487 int
1488 soo_kqfilter(struct file *fp, struct knote *kn)
1489 {
1490 struct socket *so;
1491 struct sockbuf *sb;
1492
1493 so = (struct socket *)kn->kn_fp->f_data;
1494 switch (kn->kn_filter) {
1495 case EVFILT_READ:
1496 if (so->so_options & SO_ACCEPTCONN)
1497 kn->kn_fop = &solisten_filtops;
1498 else
1499 kn->kn_fop = &soread_filtops;
1500 sb = &so->so_rcv;
1501 break;
1502 case EVFILT_WRITE:
1503 kn->kn_fop = &sowrite_filtops;
1504 sb = &so->so_snd;
1505 break;
1506 default:
1507 return (1);
1508 }
1509 SLIST_INSERT_HEAD(&sb->sb_sel.si_klist, kn, kn_selnext);
1510 sb->sb_flags |= SB_KNOTE;
1511 return (0);
1512 }
1513
1514 static void
1515 filt_sordetach(struct knote *kn)
1516 {
1517 struct socket *so;
1518
1519 so = (struct socket *)kn->kn_fp->f_data;
1520 SLIST_REMOVE(&so->so_rcv.sb_sel.si_klist, kn, knote, kn_selnext);
1521 if (SLIST_EMPTY(&so->so_rcv.sb_sel.si_klist))
1522 so->so_rcv.sb_flags &= ~SB_KNOTE;
1523 }
1524
1525 /*ARGSUSED*/
1526 static int
1527 filt_soread(struct knote *kn, long hint)
1528 {
1529 struct socket *so;
1530
1531 so = (struct socket *)kn->kn_fp->f_data;
1532 kn->kn_data = so->so_rcv.sb_cc;
1533 if (so->so_state & SS_CANTRCVMORE) {
1534 kn->kn_flags |= EV_EOF;
1535 kn->kn_fflags = so->so_error;
1536 return (1);
1537 }
1538 if (so->so_error) /* temporary udp error */
1539 return (1);
1540 if (kn->kn_sfflags & NOTE_LOWAT)
1541 return (kn->kn_data >= kn->kn_sdata);
1542 return (kn->kn_data >= so->so_rcv.sb_lowat);
1543 }
1544
1545 static void
1546 filt_sowdetach(struct knote *kn)
1547 {
1548 struct socket *so;
1549
1550 so = (struct socket *)kn->kn_fp->f_data;
1551 SLIST_REMOVE(&so->so_snd.sb_sel.si_klist, kn, knote, kn_selnext);
1552 if (SLIST_EMPTY(&so->so_snd.sb_sel.si_klist))
1553 so->so_snd.sb_flags &= ~SB_KNOTE;
1554 }
1555
1556 /*ARGSUSED*/
1557 static int
1558 filt_sowrite(struct knote *kn, long hint)
1559 {
1560 struct socket *so;
1561
1562 so = (struct socket *)kn->kn_fp->f_data;
1563 kn->kn_data = sbspace(&so->so_snd);
1564 if (so->so_state & SS_CANTSENDMORE) {
1565 kn->kn_flags |= EV_EOF;
1566 kn->kn_fflags = so->so_error;
1567 return (1);
1568 }
1569 if (so->so_error) /* temporary udp error */
1570 return (1);
1571 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1572 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1573 return (0);
1574 if (kn->kn_sfflags & NOTE_LOWAT)
1575 return (kn->kn_data >= kn->kn_sdata);
1576 return (kn->kn_data >= so->so_snd.sb_lowat);
1577 }
1578
1579 /*ARGSUSED*/
1580 static int
1581 filt_solisten(struct knote *kn, long hint)
1582 {
1583 struct socket *so;
1584
1585 so = (struct socket *)kn->kn_fp->f_data;
1586
1587 /*
1588 * Set kn_data to number of incoming connections, not
1589 * counting partial (incomplete) connections.
1590 */
1591 kn->kn_data = so->so_qlen;
1592 return (kn->kn_data > 0);
1593 }
1594