uipc_socket.c revision 1.6.2.2 1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from: @(#)uipc_socket.c 7.28 (Berkeley) 5/4/91
34 * $Id: uipc_socket.c,v 1.6.2.2 1993/11/06 00:07:55 mycroft Exp $
35 */
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/file.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/domain.h>
44 #include <sys/kernel.h>
45 #include <sys/select.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/resourcevar.h>
50
51 #include <machine/cpu.h>
52
53 /*
54 * Socket operation routines.
55 * These routines are called by the routines in
56 * sys_socket.c or from a system process, and
57 * implement the semantics of socket operations by
58 * switching out to the protocol specific routines.
59 */
60 /*ARGSUSED*/
61 int
62 socreate(dom, aso, type, proto)
63 struct socket **aso;
64 register int type;
65 int proto;
66 {
67 struct proc *p = curproc; /* XXX */
68 register struct protosw *prp;
69 register struct socket *so;
70 register int error;
71
72 if (proto)
73 prp = pffindproto(dom, proto, type);
74 else
75 prp = pffindtype(dom, type);
76 if (!prp || !prp->pr_usrreq)
77 return (EPROTONOSUPPORT);
78 if (prp->pr_type != type)
79 return (EPROTOTYPE);
80 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_WAIT);
81 bzero((caddr_t)so, sizeof(*so));
82 so->so_type = type;
83 if (p->p_ucred->cr_uid == 0)
84 so->so_state = SS_PRIV;
85 so->so_proto = prp;
86 error =
87 (*prp->pr_usrreq)(so, PRU_ATTACH,
88 (struct mbuf *)0, (struct mbuf *)proto, (struct mbuf *)0);
89 if (error) {
90 so->so_state |= SS_NOFDREF;
91 sofree(so);
92 return (error);
93 }
94 *aso = so;
95 return (0);
96 }
97
98 int
99 sobind(so, nam)
100 struct socket *so;
101 struct mbuf *nam;
102 {
103 int s = splnet();
104 int error;
105
106 error =
107 (*so->so_proto->pr_usrreq)(so, PRU_BIND,
108 (struct mbuf *)0, nam, (struct mbuf *)0);
109 splx(s);
110 return (error);
111 }
112
113 int
114 solisten(so, backlog)
115 register struct socket *so;
116 int backlog;
117 {
118 int s = splnet(), error;
119
120 error =
121 (*so->so_proto->pr_usrreq)(so, PRU_LISTEN,
122 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0);
123 if (error) {
124 splx(s);
125 return (error);
126 }
127 if (so->so_q == 0)
128 so->so_options |= SO_ACCEPTCONN;
129 if (backlog < 0)
130 backlog = 0;
131 so->so_qlimit = min(backlog, SOMAXCONN);
132 splx(s);
133 return (0);
134 }
135
136 int
137 sofree(so)
138 register struct socket *so;
139 {
140
141 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
142 return;
143 if (so->so_head) {
144 if (!soqremque(so, 0) && !soqremque(so, 1))
145 panic("sofree dq");
146 so->so_head = 0;
147 }
148 sbrelease(&so->so_snd);
149 sorflush(so);
150 FREE(so, M_SOCKET);
151 }
152
153 /*
154 * Close a socket on last file table reference removal.
155 * Initiate disconnect if connected.
156 * Free socket when disconnect complete.
157 */
158 int
159 soclose(so)
160 register struct socket *so;
161 {
162 int s = splnet(); /* conservative */
163 int error = 0;
164
165 if (so->so_options & SO_ACCEPTCONN) {
166 while (so->so_q0)
167 (void) soabort(so->so_q0);
168 while (so->so_q)
169 (void) soabort(so->so_q);
170 }
171 if (so->so_pcb == 0)
172 goto discard;
173 if (so->so_state & SS_ISCONNECTED) {
174 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
175 error = sodisconnect(so);
176 if (error)
177 goto drop;
178 }
179 if (so->so_options & SO_LINGER) {
180 if ((so->so_state & SS_ISDISCONNECTING) &&
181 (so->so_state & SS_NBIO))
182 goto drop;
183 while (so->so_state & SS_ISCONNECTED)
184 if (error = tsleep((caddr_t)&so->so_timeo,
185 PSOCK | PCATCH, netcls, so->so_linger))
186 break;
187 }
188 }
189 drop:
190 if (so->so_pcb) {
191 int error2 =
192 (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
193 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0);
194 if (error == 0)
195 error = error2;
196 }
197 discard:
198 if (so->so_state & SS_NOFDREF)
199 panic("soclose: NOFDREF");
200 so->so_state |= SS_NOFDREF;
201 sofree(so);
202 splx(s);
203 return (error);
204 }
205
206 /*
207 * Must be called at splnet...
208 */
209 int
210 soabort(so)
211 struct socket *so;
212 {
213
214 return (
215 (*so->so_proto->pr_usrreq)(so, PRU_ABORT,
216 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0));
217 }
218
219 int
220 soaccept(so, nam)
221 register struct socket *so;
222 struct mbuf *nam;
223 {
224 int s = splnet();
225 int error;
226
227 if ((so->so_state & SS_NOFDREF) == 0)
228 panic("soaccept: !NOFDREF");
229 so->so_state &= ~SS_NOFDREF;
230 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
231 (struct mbuf *)0, nam, (struct mbuf *)0);
232 splx(s);
233 return (error);
234 }
235
236 int
237 soconnect(so, nam)
238 register struct socket *so;
239 struct mbuf *nam;
240 {
241 int s;
242 int error;
243
244 if (so->so_options & SO_ACCEPTCONN)
245 return (EOPNOTSUPP);
246 s = splnet();
247 /*
248 * If protocol is connection-based, can only connect once.
249 * Otherwise, if connected, try to disconnect first.
250 * This allows user to disconnect by connecting to, e.g.,
251 * a null address.
252 */
253 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
254 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
255 (error = sodisconnect(so))))
256 error = EISCONN;
257 else
258 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
259 (struct mbuf *)0, nam, (struct mbuf *)0);
260 splx(s);
261 return (error);
262 }
263
264 int
265 soconnect2(so1, so2)
266 register struct socket *so1;
267 struct socket *so2;
268 {
269 int s = splnet();
270 int error;
271
272 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
273 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0);
274 splx(s);
275 return (error);
276 }
277
278 int
279 sodisconnect(so)
280 register struct socket *so;
281 {
282 int s = splnet();
283 int error;
284
285 if ((so->so_state & SS_ISCONNECTED) == 0) {
286 error = ENOTCONN;
287 goto bad;
288 }
289 if (so->so_state & SS_ISDISCONNECTING) {
290 error = EALREADY;
291 goto bad;
292 }
293 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
294 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0);
295 bad:
296 splx(s);
297 return (error);
298 }
299
300 /*
301 * Send on a socket.
302 * If send must go all at once and message is larger than
303 * send buffering, then hard error.
304 * Lock against other senders.
305 * If must go all at once and not enough room now, then
306 * inform user that this would block and do nothing.
307 * Otherwise, if nonblocking, send as much as possible.
308 * The data to be sent is described by "uio" if nonzero,
309 * otherwise by the mbuf chain "top" (which must be null
310 * if uio is not). Data provided in mbuf chain must be small
311 * enough to send all at once.
312 *
313 * Returns nonzero on error, timeout or signal; callers
314 * must check for short counts if EINTR/ERESTART are returned.
315 * Data and control buffers are freed on return.
316 */
317 int
318 sosend(so, addr, uio, top, control, flags)
319 register struct socket *so;
320 struct mbuf *addr;
321 struct uio *uio;
322 struct mbuf *top;
323 struct mbuf *control;
324 int flags;
325 {
326 struct proc *p = curproc; /* XXX */
327 struct mbuf **mp;
328 register struct mbuf *m;
329 register long space, len, resid;
330 int clen = 0, error, s, dontroute, mlen;
331 int atomic = sosendallatonce(so) || top;
332
333 if (uio)
334 resid = uio->uio_resid;
335 else
336 resid = top->m_pkthdr.len;
337 /*
338 * In theory resid should be unsigned.
339 * However, space must be signed, as it might be less than 0
340 * if we over-committed, and we must use a signed comparison
341 * of space and resid. On the other hand, a negative resid
342 * causes us to loop sending 0-length segments to the protocol.
343 */
344 if (resid < 0)
345 return (EINVAL);
346 dontroute =
347 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
348 (so->so_proto->pr_flags & PR_ATOMIC);
349 p->p_stats->p_ru.ru_msgsnd++;
350 if (control)
351 clen = control->m_len;
352 #define snderr(errno) { error = errno; splx(s); goto release; }
353
354 restart:
355 if (error = sblock(&so->so_snd))
356 goto out;
357 do {
358 s = splnet();
359 if (so->so_state & SS_CANTSENDMORE)
360 snderr(EPIPE);
361 if (so->so_error)
362 snderr(so->so_error);
363 if ((so->so_state & SS_ISCONNECTED) == 0) {
364 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
365 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
366 !(resid == 0 && clen != 0))
367 snderr(ENOTCONN);
368 } else if (addr == 0)
369 snderr(EDESTADDRREQ);
370 }
371 space = sbspace(&so->so_snd);
372 if (flags & MSG_OOB)
373 space += 1024;
374 if (space < resid + clen &&
375 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
376 if (atomic && resid > so->so_snd.sb_hiwat ||
377 clen > so->so_snd.sb_hiwat)
378 snderr(EMSGSIZE);
379 if (so->so_state & SS_NBIO)
380 snderr(EWOULDBLOCK);
381 sbunlock(&so->so_snd);
382 error = sbwait(&so->so_snd);
383 splx(s);
384 if (error)
385 goto out;
386 goto restart;
387 }
388 splx(s);
389 mp = ⊤
390 space -= clen;
391 do {
392 if (uio == NULL) {
393 /*
394 * Data is prepackaged in "top".
395 */
396 resid = 0;
397 if (flags & MSG_EOR)
398 top->m_flags |= M_EOR;
399 } else do {
400 if (top == 0) {
401 MGETHDR(m, M_WAIT, MT_DATA);
402 mlen = MHLEN;
403 m->m_pkthdr.len = 0;
404 m->m_pkthdr.rcvif = (struct ifnet *)0;
405 } else {
406 MGET(m, M_WAIT, MT_DATA);
407 mlen = MLEN;
408 }
409 if (resid >= MINCLSIZE) {
410 MCLGET(m, M_WAIT);
411 if ((m->m_flags & M_EXT) == 0)
412 goto nopages;
413 mlen = MCLBYTES;
414 len = min(min(mlen, resid), space);
415 } else {
416 nopages:
417 len = min(min(mlen, resid), space);
418 /*
419 * For datagram protocols, leave room
420 * for protocol headers in first mbuf.
421 */
422 if (atomic && top == 0 && len < mlen)
423 MH_ALIGN(m, len);
424 }
425 space -= len;
426 error = uiomove(mtod(m, caddr_t), (int)len, uio);
427 resid = uio->uio_resid;
428 m->m_len = len;
429 *mp = m;
430 top->m_pkthdr.len += len;
431 if (error)
432 goto release;
433 mp = &m->m_next;
434 if (resid <= 0) {
435 if (flags & MSG_EOR)
436 top->m_flags |= M_EOR;
437 break;
438 }
439 } while (space > 0 && atomic);
440 if (dontroute)
441 so->so_options |= SO_DONTROUTE;
442 s = splnet(); /* XXX */
443 error = (*so->so_proto->pr_usrreq)(so,
444 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
445 top, addr, control);
446 splx(s);
447 if (dontroute)
448 so->so_options &= ~SO_DONTROUTE;
449 clen = 0;
450 control = 0;
451 top = 0;
452 mp = ⊤
453 if (error)
454 goto release;
455 } while (resid && space > 0);
456 } while (resid);
457
458 release:
459 sbunlock(&so->so_snd);
460 out:
461 if (top)
462 m_freem(top);
463 if (control)
464 m_freem(control);
465 return (error);
466 }
467
468 /*
469 * Implement receive operations on a socket.
470 * We depend on the way that records are added to the sockbuf
471 * by sbappend*. In particular, each record (mbufs linked through m_next)
472 * must begin with an address if the protocol so specifies,
473 * followed by an optional mbuf or mbufs containing ancillary data,
474 * and then zero or more mbufs of data.
475 * In order to avoid blocking network interrupts for the entire time here,
476 * we splx() while doing the actual copy to user space.
477 * Although the sockbuf is locked, new data may still be appended,
478 * and thus we must maintain consistency of the sockbuf during that time.
479 *
480 * The caller may receive the data as a single mbuf chain by supplying
481 * an mbuf **mp0 for use in returning the chain. The uio is then used
482 * only for the count in uio_resid.
483 */
484 int
485 soreceive(so, paddr, uio, mp0, controlp, flagsp)
486 register struct socket *so;
487 struct mbuf **paddr;
488 struct uio *uio;
489 struct mbuf **mp0;
490 struct mbuf **controlp;
491 int *flagsp;
492 {
493 struct proc *p = curproc; /* XXX */
494 register struct mbuf *m, **mp;
495 register int flags, len, error, s, offset;
496 struct protosw *pr = so->so_proto;
497 struct mbuf *nextrecord;
498 int moff, type;
499 int orig_resid = uio->uio_resid;
500
501 mp = mp0;
502 if (paddr)
503 *paddr = 0;
504 if (controlp)
505 *controlp = 0;
506 if (flagsp)
507 flags = *flagsp &~ MSG_EOR;
508 else
509 flags = 0;
510 if (flags & MSG_OOB) {
511 m = m_get(M_WAIT, MT_DATA);
512 error = (*pr->pr_usrreq)(so, PRU_RCVOOB,
513 m, (struct mbuf *)(flags & MSG_PEEK), (struct mbuf *)0);
514 if (error)
515 goto bad;
516 do {
517 error = uiomove(mtod(m, caddr_t),
518 (int) min(uio->uio_resid, m->m_len), uio);
519 m = m_free(m);
520 } while (uio->uio_resid && error == 0 && m);
521 bad:
522 if (m)
523 m_freem(m);
524 return (error);
525 }
526 if (mp)
527 *mp = (struct mbuf *)0;
528 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
529 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
530 (struct mbuf *)0, (struct mbuf *)0);
531
532 restart:
533 if (error = sblock(&so->so_rcv))
534 return (error);
535 s = splnet();
536
537 m = so->so_rcv.sb_mb;
538 /*
539 * If we have less data than requested, block awaiting more
540 * (subject to any timeout) if:
541 * 1. the current count is less than the low water mark, or
542 * 2. MSG_WAITALL is set, and it is possible to do the entire
543 * receive operation at once if we block (resid <= hiwat).
544 * If MSG_WAITALL is set but resid is larger than the receive buffer,
545 * we have to do the receive in sections, and thus risk returning
546 * a short count if a timeout or signal occurs after we start.
547 */
548 while (m == 0 || so->so_rcv.sb_cc < uio->uio_resid &&
549 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
550 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
551 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0) {
552 #ifdef DIAGNOSTIC
553 if (m == 0 && so->so_rcv.sb_cc)
554 panic("receive 1");
555 #endif
556 if (so->so_error) {
557 if (m)
558 break;
559 error = so->so_error;
560 if ((flags & MSG_PEEK) == 0)
561 so->so_error = 0;
562 goto release;
563 }
564 if (so->so_state & SS_CANTRCVMORE) {
565 if (m)
566 break;
567 else
568 goto release;
569 }
570 for (; m; m = m->m_next)
571 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
572 m = so->so_rcv.sb_mb;
573 goto dontblock;
574 }
575 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
576 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
577 error = ENOTCONN;
578 goto release;
579 }
580 if (uio->uio_resid == 0)
581 goto release;
582 if (so->so_state & SS_NBIO) {
583 error = EWOULDBLOCK;
584 goto release;
585 }
586 sbunlock(&so->so_rcv);
587 error = sbwait(&so->so_rcv);
588 splx(s);
589 if (error)
590 return (error);
591 goto restart;
592 }
593 dontblock:
594 p->p_stats->p_ru.ru_msgrcv++;
595 nextrecord = m->m_nextpkt;
596 if (pr->pr_flags & PR_ADDR) {
597 #ifdef DIAGNOSTIC
598 if (m->m_type != MT_SONAME)
599 panic("receive 1a");
600 #endif
601 orig_resid = 0;
602 if (flags & MSG_PEEK) {
603 if (paddr)
604 *paddr = m_copy(m, 0, m->m_len);
605 m = m->m_next;
606 } else {
607 sbfree(&so->so_rcv, m);
608 if (paddr) {
609 *paddr = m;
610 so->so_rcv.sb_mb = m->m_next;
611 m->m_next = 0;
612 m = so->so_rcv.sb_mb;
613 } else {
614 MFREE(m, so->so_rcv.sb_mb);
615 m = so->so_rcv.sb_mb;
616 }
617 }
618 }
619 while (m && m->m_type == MT_CONTROL && error == 0) {
620 if (flags & MSG_PEEK) {
621 if (controlp)
622 *controlp = m_copy(m, 0, m->m_len);
623 m = m->m_next;
624 } else {
625 sbfree(&so->so_rcv, m);
626 if (controlp) {
627 if (pr->pr_domain->dom_externalize &&
628 mtod(m, struct cmsghdr *)->cmsg_type ==
629 SCM_RIGHTS)
630 error = (*pr->pr_domain->dom_externalize)(m);
631 *controlp = m;
632 so->so_rcv.sb_mb = m->m_next;
633 m->m_next = 0;
634 m = so->so_rcv.sb_mb;
635 } else {
636 MFREE(m, so->so_rcv.sb_mb);
637 m = so->so_rcv.sb_mb;
638 }
639 }
640 if (controlp) {
641 orig_resid = 0;
642 controlp = &(*controlp)->m_next;
643 }
644 }
645 if (m) {
646 if ((flags & MSG_PEEK) == 0)
647 m->m_nextpkt = nextrecord;
648 type = m->m_type;
649 if (type == MT_OOBDATA)
650 flags |= MSG_OOB;
651 }
652 moff = 0;
653 offset = 0;
654 while (m && uio->uio_resid > 0 && error == 0) {
655 if (m->m_type == MT_OOBDATA) {
656 if (type != MT_OOBDATA)
657 break;
658 } else if (type == MT_OOBDATA)
659 break;
660 #ifdef DIAGNOSTIC
661 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
662 panic("receive 3");
663 #endif
664 so->so_state &= ~SS_RCVATMARK;
665 len = uio->uio_resid;
666 if (so->so_oobmark && len > so->so_oobmark - offset)
667 len = so->so_oobmark - offset;
668 if (len > m->m_len - moff)
669 len = m->m_len - moff;
670 /*
671 * If mp is set, just pass back the mbufs.
672 * Otherwise copy them out via the uio, then free.
673 * Sockbuf must be consistent here (points to current mbuf,
674 * it points to next record) when we drop priority;
675 * we must note any additions to the sockbuf when we
676 * block interrupts again.
677 */
678 if (mp == 0) {
679 splx(s);
680 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
681 s = splnet();
682 } else
683 uio->uio_resid -= len;
684 if (len == m->m_len - moff) {
685 if (m->m_flags & M_EOR)
686 flags |= MSG_EOR;
687 if (flags & MSG_PEEK) {
688 m = m->m_next;
689 moff = 0;
690 } else {
691 nextrecord = m->m_nextpkt;
692 sbfree(&so->so_rcv, m);
693 if (mp) {
694 *mp = m;
695 mp = &m->m_next;
696 so->so_rcv.sb_mb = m = m->m_next;
697 *mp = (struct mbuf *)0;
698 } else {
699 MFREE(m, so->so_rcv.sb_mb);
700 m = so->so_rcv.sb_mb;
701 }
702 if (m)
703 m->m_nextpkt = nextrecord;
704 }
705 } else {
706 if (flags & MSG_PEEK)
707 moff += len;
708 else {
709 if (mp)
710 *mp = m_copym(m, 0, len, M_WAIT);
711 m->m_data += len;
712 m->m_len -= len;
713 so->so_rcv.sb_cc -= len;
714 }
715 }
716 if (so->so_oobmark) {
717 if ((flags & MSG_PEEK) == 0) {
718 so->so_oobmark -= len;
719 if (so->so_oobmark == 0) {
720 so->so_state |= SS_RCVATMARK;
721 break;
722 }
723 } else {
724 offset += len;
725 if (offset == so->so_oobmark)
726 break;
727 }
728 }
729 if (flags & MSG_EOR)
730 break;
731 /*
732 * If the MSG_WAITALL flag is set (for non-atomic socket),
733 * we must not quit until "uio->uio_resid == 0" or an error
734 * termination. If a signal/timeout occurs, return
735 * with a short count but without error.
736 * Keep sockbuf locked against other readers.
737 */
738 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
739 !sosendallatonce(so) && !nextrecord) {
740 if (so->so_error || so->so_state & SS_CANTRCVMORE)
741 break;
742 error = sbwait(&so->so_rcv);
743 if (error) {
744 sbunlock(&so->so_rcv);
745 splx(s);
746 return (0);
747 }
748 if (m = so->so_rcv.sb_mb)
749 nextrecord = m->m_nextpkt;
750 }
751 }
752
753 if (m && pr->pr_flags & PR_ATOMIC) {
754 flags |= MSG_TRUNC;
755 if ((flags & MSG_PEEK) == 0)
756 (void) sbdroprecord(&so->so_rcv);
757 }
758 if ((flags & MSG_PEEK) == 0) {
759 if (m == 0)
760 so->so_rcv.sb_mb = nextrecord;
761 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
762 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
763 (struct mbuf *)flags, (struct mbuf *)0,
764 (struct mbuf *)0);
765 }
766 if (orig_resid == uio->uio_resid && orig_resid &&
767 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
768 sbunlock(&so->so_rcv);
769 splx(s);
770 goto restart;
771 }
772
773 if (flagsp)
774 *flagsp |= flags;
775 release:
776 sbunlock(&so->so_rcv);
777 splx(s);
778 return (error);
779 }
780
781 soshutdown(so, how)
782 register struct socket *so;
783 register int how;
784 {
785 register struct protosw *pr = so->so_proto;
786
787 how++;
788 if (how & FREAD)
789 sorflush(so);
790 if (how & FWRITE)
791 return ((*pr->pr_usrreq)(so, PRU_SHUTDOWN,
792 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0));
793 return (0);
794 }
795
796 sorflush(so)
797 register struct socket *so;
798 {
799 register struct sockbuf *sb = &so->so_rcv;
800 register struct protosw *pr = so->so_proto;
801 register int s;
802 struct sockbuf asb;
803
804 sb->sb_flags |= SB_NOINTR;
805 (void) sblock(sb);
806 s = splimp();
807 socantrcvmore(so);
808 sbunlock(sb);
809 asb = *sb;
810 bzero((caddr_t)sb, sizeof (*sb));
811 splx(s);
812 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
813 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
814 sbrelease(&asb);
815 }
816
817 sosetopt(so, level, optname, m0)
818 register struct socket *so;
819 int level, optname;
820 struct mbuf *m0;
821 {
822 int error = 0;
823 register struct mbuf *m = m0;
824
825 if (level != SOL_SOCKET) {
826 if (so->so_proto && so->so_proto->pr_ctloutput)
827 return ((*so->so_proto->pr_ctloutput)
828 (PRCO_SETOPT, so, level, optname, &m0));
829 error = ENOPROTOOPT;
830 } else {
831 switch (optname) {
832
833 case SO_LINGER:
834 if (m == NULL || m->m_len != sizeof (struct linger)) {
835 error = EINVAL;
836 goto bad;
837 }
838 so->so_linger = mtod(m, struct linger *)->l_linger;
839 /* fall thru... */
840
841 case SO_DEBUG:
842 case SO_KEEPALIVE:
843 case SO_DONTROUTE:
844 case SO_USELOOPBACK:
845 case SO_BROADCAST:
846 case SO_REUSEADDR:
847 case SO_OOBINLINE:
848 if (m == NULL || m->m_len < sizeof (int)) {
849 error = EINVAL;
850 goto bad;
851 }
852 if (*mtod(m, int *))
853 so->so_options |= optname;
854 else
855 so->so_options &= ~optname;
856 break;
857
858 case SO_SNDBUF:
859 case SO_RCVBUF:
860 case SO_SNDLOWAT:
861 case SO_RCVLOWAT:
862 if (m == NULL || m->m_len < sizeof (int)) {
863 error = EINVAL;
864 goto bad;
865 }
866 switch (optname) {
867
868 case SO_SNDBUF:
869 case SO_RCVBUF:
870 if (sbreserve(optname == SO_SNDBUF ?
871 &so->so_snd : &so->so_rcv,
872 (u_long) *mtod(m, int *)) == 0) {
873 error = ENOBUFS;
874 goto bad;
875 }
876 break;
877
878 case SO_SNDLOWAT:
879 so->so_snd.sb_lowat = *mtod(m, int *);
880 break;
881 case SO_RCVLOWAT:
882 so->so_rcv.sb_lowat = *mtod(m, int *);
883 break;
884 }
885 break;
886
887 case SO_SNDTIMEO:
888 case SO_RCVTIMEO:
889 {
890 struct timeval *tv;
891 short val;
892
893 if (m == NULL || m->m_len < sizeof (*tv)) {
894 error = EINVAL;
895 goto bad;
896 }
897 tv = mtod(m, struct timeval *);
898 if (tv->tv_sec > SHRT_MAX / hz - hz) {
899 error = EDOM;
900 goto bad;
901 }
902 val = tv->tv_sec * hz + tv->tv_usec / tick;
903
904 switch (optname) {
905
906 case SO_SNDTIMEO:
907 so->so_snd.sb_timeo = val;
908 break;
909 case SO_RCVTIMEO:
910 so->so_rcv.sb_timeo = val;
911 break;
912 }
913 break;
914 }
915
916 default:
917 error = ENOPROTOOPT;
918 break;
919 }
920 }
921 bad:
922 if (m)
923 (void) m_free(m);
924 return (error);
925 }
926
927 sogetopt(so, level, optname, mp)
928 register struct socket *so;
929 int level, optname;
930 struct mbuf **mp;
931 {
932 register struct mbuf *m;
933
934 if (level != SOL_SOCKET) {
935 if (so->so_proto && so->so_proto->pr_ctloutput) {
936 return ((*so->so_proto->pr_ctloutput)
937 (PRCO_GETOPT, so, level, optname, mp));
938 } else
939 return (ENOPROTOOPT);
940 } else {
941 m = m_get(M_WAIT, MT_SOOPTS);
942 m->m_len = sizeof (int);
943
944 switch (optname) {
945
946 case SO_LINGER:
947 m->m_len = sizeof (struct linger);
948 mtod(m, struct linger *)->l_onoff =
949 so->so_options & SO_LINGER;
950 mtod(m, struct linger *)->l_linger = so->so_linger;
951 break;
952
953 case SO_USELOOPBACK:
954 case SO_DONTROUTE:
955 case SO_DEBUG:
956 case SO_KEEPALIVE:
957 case SO_REUSEADDR:
958 case SO_BROADCAST:
959 case SO_OOBINLINE:
960 *mtod(m, int *) = so->so_options & optname;
961 break;
962
963 case SO_TYPE:
964 *mtod(m, int *) = so->so_type;
965 break;
966
967 case SO_ERROR:
968 *mtod(m, int *) = so->so_error;
969 so->so_error = 0;
970 break;
971
972 case SO_SNDBUF:
973 *mtod(m, int *) = so->so_snd.sb_hiwat;
974 break;
975
976 case SO_RCVBUF:
977 *mtod(m, int *) = so->so_rcv.sb_hiwat;
978 break;
979
980 case SO_SNDLOWAT:
981 *mtod(m, int *) = so->so_snd.sb_lowat;
982 break;
983
984 case SO_RCVLOWAT:
985 *mtod(m, int *) = so->so_rcv.sb_lowat;
986 break;
987
988 case SO_SNDTIMEO:
989 case SO_RCVTIMEO:
990 {
991 int val = (optname == SO_SNDTIMEO ?
992 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
993
994 m->m_len = sizeof(struct timeval);
995 mtod(m, struct timeval *)->tv_sec = val / hz;
996 mtod(m, struct timeval *)->tv_usec =
997 (val % hz) / tick;
998 break;
999 }
1000
1001 default:
1002 (void)m_free(m);
1003 return (ENOPROTOOPT);
1004 }
1005 *mp = m;
1006 return (0);
1007 }
1008 }
1009
1010 sohasoutofband(so)
1011 register struct socket *so;
1012 {
1013 struct proc *p;
1014
1015 if (so->so_pgid < 0)
1016 gsignal(-so->so_pgid, SIGURG);
1017 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
1018 psignal(p, SIGURG);
1019 selwakeup(&so->so_rcv.sb_sel);
1020 }
1021