uipc_socket.c revision 1.77 1 /* $NetBSD: uipc_socket.c,v 1.77 2003/02/01 06:23:44 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.77 2003/02/01 06:23:44 thorpej Exp $");
76
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/file.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/domain.h>
87 #include <sys/kernel.h>
88 #include <sys/protosw.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/signalvar.h>
92 #include <sys/resourcevar.h>
93 #include <sys/pool.h>
94 #include <sys/event.h>
95
96 #include <uvm/uvm.h>
97
98 struct pool socket_pool;
99
100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
102
103 extern int somaxconn; /* patchable (XXX sysctl) */
104 int somaxconn = SOMAXCONN;
105
106 #ifdef SOSEND_COUNTERS
107 #include <sys/device.h>
108
109 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "loan big");
111 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy big");
113 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy small");
115 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "kva limit");
117
118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
119
120 #else
121
122 #define SOSEND_COUNTER_INCR(ev) /* nothing */
123
124 #endif /* SOSEND_COUNTERS */
125
126 void
127 soinit(void)
128 {
129
130 pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
131 "sockpl", NULL);
132
133 #ifdef SOSEND_COUNTERS
134 evcnt_attach_static(&sosend_loan_big);
135 evcnt_attach_static(&sosend_copy_big);
136 evcnt_attach_static(&sosend_copy_small);
137 evcnt_attach_static(&sosend_kvalimit);
138 #endif /* SOSEND_COUNTERS */
139 }
140
141 #ifdef SOSEND_NO_LOAN
142 int use_sosend_loan = 0;
143 #else
144 int use_sosend_loan = 1;
145 #endif
146
147 struct mbuf *so_pendfree;
148
149 int somaxkva = 16 * 1024 * 1024;
150 int socurkva;
151 int sokvawaiters;
152
153 #define SOCK_LOAN_THRESH 4096
154 #define SOCK_LOAN_CHUNK 65536
155
156 static void
157 sodoloanfree(caddr_t buf, size_t size)
158 {
159 struct vm_page **pgs;
160 vaddr_t va, sva, eva;
161 vsize_t len;
162 paddr_t pa;
163 int i, npgs;
164
165 eva = round_page((vaddr_t) buf + size);
166 sva = trunc_page((vaddr_t) buf);
167 len = eva - sva;
168 npgs = len >> PAGE_SHIFT;
169
170 pgs = alloca(npgs * sizeof(*pgs));
171
172 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
173 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
174 panic("sodoloanfree: va 0x%lx not mapped", va);
175 pgs[i] = PHYS_TO_VM_PAGE(pa);
176 }
177
178 pmap_kremove(sva, len);
179 pmap_update(pmap_kernel());
180 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
181 uvm_km_free(kernel_map, sva, len);
182 socurkva -= len;
183 if (sokvawaiters)
184 wakeup(&socurkva);
185 }
186
187 static size_t
188 sodopendfree(struct socket *so)
189 {
190 struct mbuf *m;
191 size_t rv = 0;
192 int s;
193
194 s = splvm();
195
196 for (;;) {
197 m = so_pendfree;
198 if (m == NULL)
199 break;
200 so_pendfree = m->m_next;
201 splx(s);
202
203 rv += m->m_ext.ext_size;
204 sodoloanfree(m->m_ext.ext_buf, m->m_ext.ext_size);
205 s = splvm();
206 pool_cache_put(&mbpool_cache, m);
207 }
208
209 for (;;) {
210 m = so->so_pendfree;
211 if (m == NULL)
212 break;
213 so->so_pendfree = m->m_next;
214 splx(s);
215
216 rv += m->m_ext.ext_size;
217 sodoloanfree(m->m_ext.ext_buf, m->m_ext.ext_size);
218 s = splvm();
219 pool_cache_put(&mbpool_cache, m);
220 }
221
222 splx(s);
223 return (rv);
224 }
225
226 static void
227 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
228 {
229 struct socket *so = arg;
230 int s;
231
232 if (m == NULL) {
233 sodoloanfree(buf, size);
234 return;
235 }
236
237 s = splvm();
238 m->m_next = so->so_pendfree;
239 so->so_pendfree = m;
240 splx(s);
241 if (sokvawaiters)
242 wakeup(&socurkva);
243 }
244
245 static long
246 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
247 {
248 struct iovec *iov = uio->uio_iov;
249 vaddr_t sva, eva;
250 vsize_t len;
251 struct vm_page **pgs;
252 vaddr_t lva, va;
253 int npgs, s, i, error;
254
255 if (uio->uio_segflg != UIO_USERSPACE)
256 return (0);
257
258 if (iov->iov_len < (size_t) space)
259 space = iov->iov_len;
260 if (space > SOCK_LOAN_CHUNK)
261 space = SOCK_LOAN_CHUNK;
262
263 eva = round_page((vaddr_t) iov->iov_base + space);
264 sva = trunc_page((vaddr_t) iov->iov_base);
265 len = eva - sva;
266 npgs = len >> PAGE_SHIFT;
267
268 while (socurkva + len > somaxkva) {
269 if (sodopendfree(so))
270 continue;
271 SOSEND_COUNTER_INCR(&sosend_kvalimit);
272 s = splvm();
273 sokvawaiters++;
274 (void) tsleep(&socurkva, PVM, "sokva", 0);
275 sokvawaiters--;
276 splx(s);
277 }
278
279 lva = uvm_km_valloc_wait(kernel_map, len);
280 if (lva == 0)
281 return (0);
282 socurkva += len;
283
284 pgs = alloca(npgs * sizeof(*pgs));
285
286 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
287 pgs, UVM_LOAN_TOPAGE);
288 if (error) {
289 uvm_km_free(kernel_map, lva, len);
290 socurkva -= len;
291 return (0);
292 }
293
294 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
295 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pgs[i]), VM_PROT_READ);
296 pmap_update(pmap_kernel());
297
298 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
299
300 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
301
302 uio->uio_resid -= space;
303 /* uio_offset not updated, not set/used for write(2) */
304 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
305 uio->uio_iov->iov_len -= space;
306 if (uio->uio_iov->iov_len == 0) {
307 uio->uio_iov++;
308 uio->uio_iovcnt--;
309 }
310
311 return (space);
312 }
313
314 /*
315 * Socket operation routines.
316 * These routines are called by the routines in
317 * sys_socket.c or from a system process, and
318 * implement the semantics of socket operations by
319 * switching out to the protocol specific routines.
320 */
321 /*ARGSUSED*/
322 int
323 socreate(int dom, struct socket **aso, int type, int proto)
324 {
325 struct proc *p;
326 struct protosw *prp;
327 struct socket *so;
328 int error, s;
329
330 p = curproc; /* XXX */
331 if (proto)
332 prp = pffindproto(dom, proto, type);
333 else
334 prp = pffindtype(dom, type);
335 if (prp == 0 || prp->pr_usrreq == 0)
336 return (EPROTONOSUPPORT);
337 if (prp->pr_type != type)
338 return (EPROTOTYPE);
339 s = splsoftnet();
340 so = pool_get(&socket_pool, PR_WAITOK);
341 memset((caddr_t)so, 0, sizeof(*so));
342 TAILQ_INIT(&so->so_q0);
343 TAILQ_INIT(&so->so_q);
344 so->so_type = type;
345 so->so_proto = prp;
346 so->so_send = sosend;
347 so->so_receive = soreceive;
348 if (p != 0)
349 so->so_uid = p->p_ucred->cr_uid;
350 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
351 (struct mbuf *)(long)proto, (struct mbuf *)0, p);
352 if (error) {
353 so->so_state |= SS_NOFDREF;
354 sofree(so);
355 splx(s);
356 return (error);
357 }
358 splx(s);
359 *aso = so;
360 return (0);
361 }
362
363 int
364 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
365 {
366 int s, error;
367
368 s = splsoftnet();
369 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
370 nam, (struct mbuf *)0, p);
371 splx(s);
372 return (error);
373 }
374
375 int
376 solisten(struct socket *so, int backlog)
377 {
378 int s, error;
379
380 s = splsoftnet();
381 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
382 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
383 if (error) {
384 splx(s);
385 return (error);
386 }
387 if (TAILQ_EMPTY(&so->so_q))
388 so->so_options |= SO_ACCEPTCONN;
389 if (backlog < 0)
390 backlog = 0;
391 so->so_qlimit = min(backlog, somaxconn);
392 splx(s);
393 return (0);
394 }
395
396 void
397 sofree(struct socket *so)
398 {
399 struct mbuf *m;
400
401 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
402 return;
403 if (so->so_head) {
404 /*
405 * We must not decommission a socket that's on the accept(2)
406 * queue. If we do, then accept(2) may hang after select(2)
407 * indicated that the listening socket was ready.
408 */
409 if (!soqremque(so, 0))
410 return;
411 }
412 sbrelease(&so->so_snd);
413 sorflush(so);
414 while ((m = so->so_pendfree) != NULL) {
415 so->so_pendfree = m->m_next;
416 m->m_next = so_pendfree;
417 so_pendfree = m;
418 }
419 pool_put(&socket_pool, so);
420 }
421
422 /*
423 * Close a socket on last file table reference removal.
424 * Initiate disconnect if connected.
425 * Free socket when disconnect complete.
426 */
427 int
428 soclose(struct socket *so)
429 {
430 struct socket *so2;
431 int s, error;
432
433 error = 0;
434 s = splsoftnet(); /* conservative */
435 if (so->so_options & SO_ACCEPTCONN) {
436 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
437 (void) soqremque(so2, 0);
438 (void) soabort(so2);
439 }
440 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
441 (void) soqremque(so2, 1);
442 (void) soabort(so2);
443 }
444 }
445 if (so->so_pcb == 0)
446 goto discard;
447 if (so->so_state & SS_ISCONNECTED) {
448 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
449 error = sodisconnect(so);
450 if (error)
451 goto drop;
452 }
453 if (so->so_options & SO_LINGER) {
454 if ((so->so_state & SS_ISDISCONNECTING) &&
455 (so->so_state & SS_NBIO))
456 goto drop;
457 while (so->so_state & SS_ISCONNECTED) {
458 error = tsleep((caddr_t)&so->so_timeo,
459 PSOCK | PCATCH, netcls,
460 so->so_linger * hz);
461 if (error)
462 break;
463 }
464 }
465 }
466 drop:
467 if (so->so_pcb) {
468 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
469 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
470 (struct proc *)0);
471 if (error == 0)
472 error = error2;
473 }
474 discard:
475 if (so->so_state & SS_NOFDREF)
476 panic("soclose: NOFDREF");
477 so->so_state |= SS_NOFDREF;
478 sofree(so);
479 splx(s);
480 return (error);
481 }
482
483 /*
484 * Must be called at splsoftnet...
485 */
486 int
487 soabort(struct socket *so)
488 {
489
490 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
491 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
492 }
493
494 int
495 soaccept(struct socket *so, struct mbuf *nam)
496 {
497 int s, error;
498
499 error = 0;
500 s = splsoftnet();
501 if ((so->so_state & SS_NOFDREF) == 0)
502 panic("soaccept: !NOFDREF");
503 so->so_state &= ~SS_NOFDREF;
504 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
505 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
506 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
507 (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
508 else
509 error = ECONNABORTED;
510
511 splx(s);
512 return (error);
513 }
514
515 int
516 soconnect(struct socket *so, struct mbuf *nam)
517 {
518 struct proc *p;
519 int s, error;
520
521 p = curproc; /* XXX */
522 if (so->so_options & SO_ACCEPTCONN)
523 return (EOPNOTSUPP);
524 s = splsoftnet();
525 /*
526 * If protocol is connection-based, can only connect once.
527 * Otherwise, if connected, try to disconnect first.
528 * This allows user to disconnect by connecting to, e.g.,
529 * a null address.
530 */
531 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
532 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
533 (error = sodisconnect(so))))
534 error = EISCONN;
535 else
536 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
537 (struct mbuf *)0, nam, (struct mbuf *)0, p);
538 splx(s);
539 return (error);
540 }
541
542 int
543 soconnect2(struct socket *so1, struct socket *so2)
544 {
545 int s, error;
546
547 s = splsoftnet();
548 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
549 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
550 (struct proc *)0);
551 splx(s);
552 return (error);
553 }
554
555 int
556 sodisconnect(struct socket *so)
557 {
558 int s, error;
559
560 s = splsoftnet();
561 if ((so->so_state & SS_ISCONNECTED) == 0) {
562 error = ENOTCONN;
563 goto bad;
564 }
565 if (so->so_state & SS_ISDISCONNECTING) {
566 error = EALREADY;
567 goto bad;
568 }
569 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
570 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
571 (struct proc *)0);
572 bad:
573 splx(s);
574 sodopendfree(so);
575 return (error);
576 }
577
578 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
579 /*
580 * Send on a socket.
581 * If send must go all at once and message is larger than
582 * send buffering, then hard error.
583 * Lock against other senders.
584 * If must go all at once and not enough room now, then
585 * inform user that this would block and do nothing.
586 * Otherwise, if nonblocking, send as much as possible.
587 * The data to be sent is described by "uio" if nonzero,
588 * otherwise by the mbuf chain "top" (which must be null
589 * if uio is not). Data provided in mbuf chain must be small
590 * enough to send all at once.
591 *
592 * Returns nonzero on error, timeout or signal; callers
593 * must check for short counts if EINTR/ERESTART are returned.
594 * Data and control buffers are freed on return.
595 */
596 int
597 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
598 struct mbuf *control, int flags)
599 {
600 struct proc *p;
601 struct mbuf **mp, *m;
602 long space, len, resid, clen, mlen;
603 int error, s, dontroute, atomic;
604
605 sodopendfree(so);
606
607 p = curproc; /* XXX */
608 clen = 0;
609 atomic = sosendallatonce(so) || top;
610 if (uio)
611 resid = uio->uio_resid;
612 else
613 resid = top->m_pkthdr.len;
614 /*
615 * In theory resid should be unsigned.
616 * However, space must be signed, as it might be less than 0
617 * if we over-committed, and we must use a signed comparison
618 * of space and resid. On the other hand, a negative resid
619 * causes us to loop sending 0-length segments to the protocol.
620 */
621 if (resid < 0) {
622 error = EINVAL;
623 goto out;
624 }
625 dontroute =
626 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
627 (so->so_proto->pr_flags & PR_ATOMIC);
628 p->p_stats->p_ru.ru_msgsnd++;
629 if (control)
630 clen = control->m_len;
631 #define snderr(errno) { error = errno; splx(s); goto release; }
632
633 restart:
634 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
635 goto out;
636 do {
637 s = splsoftnet();
638 if (so->so_state & SS_CANTSENDMORE)
639 snderr(EPIPE);
640 if (so->so_error) {
641 error = so->so_error;
642 so->so_error = 0;
643 splx(s);
644 goto release;
645 }
646 if ((so->so_state & SS_ISCONNECTED) == 0) {
647 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
648 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
649 !(resid == 0 && clen != 0))
650 snderr(ENOTCONN);
651 } else if (addr == 0)
652 snderr(EDESTADDRREQ);
653 }
654 space = sbspace(&so->so_snd);
655 if (flags & MSG_OOB)
656 space += 1024;
657 if ((atomic && resid > so->so_snd.sb_hiwat) ||
658 clen > so->so_snd.sb_hiwat)
659 snderr(EMSGSIZE);
660 if (space < resid + clen && uio &&
661 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
662 if (so->so_state & SS_NBIO)
663 snderr(EWOULDBLOCK);
664 sbunlock(&so->so_snd);
665 error = sbwait(&so->so_snd);
666 splx(s);
667 if (error)
668 goto out;
669 goto restart;
670 }
671 splx(s);
672 mp = ⊤
673 space -= clen;
674 do {
675 if (uio == NULL) {
676 /*
677 * Data is prepackaged in "top".
678 */
679 resid = 0;
680 if (flags & MSG_EOR)
681 top->m_flags |= M_EOR;
682 } else do {
683 if (top == 0) {
684 MGETHDR(m, M_WAIT, MT_DATA);
685 mlen = MHLEN;
686 m->m_pkthdr.len = 0;
687 m->m_pkthdr.rcvif = (struct ifnet *)0;
688 } else {
689 MGET(m, M_WAIT, MT_DATA);
690 mlen = MLEN;
691 }
692 if (use_sosend_loan &&
693 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
694 space >= SOCK_LOAN_THRESH &&
695 (len = sosend_loan(so, uio, m,
696 space)) != 0) {
697 SOSEND_COUNTER_INCR(&sosend_loan_big);
698 space -= len;
699 goto have_data;
700 }
701 if (resid >= MINCLSIZE && space >= MCLBYTES) {
702 SOSEND_COUNTER_INCR(&sosend_copy_big);
703 MCLGET(m, M_WAIT);
704 if ((m->m_flags & M_EXT) == 0)
705 goto nopages;
706 mlen = MCLBYTES;
707 if (atomic && top == 0) {
708 len = lmin(MCLBYTES - max_hdr,
709 resid);
710 m->m_data += max_hdr;
711 } else
712 len = lmin(MCLBYTES, resid);
713 space -= len;
714 } else {
715 nopages:
716 SOSEND_COUNTER_INCR(&sosend_copy_small);
717 len = lmin(lmin(mlen, resid), space);
718 space -= len;
719 /*
720 * For datagram protocols, leave room
721 * for protocol headers in first mbuf.
722 */
723 if (atomic && top == 0 && len < mlen)
724 MH_ALIGN(m, len);
725 }
726 error = uiomove(mtod(m, caddr_t), (int)len,
727 uio);
728 have_data:
729 resid = uio->uio_resid;
730 m->m_len = len;
731 *mp = m;
732 top->m_pkthdr.len += len;
733 if (error)
734 goto release;
735 mp = &m->m_next;
736 if (resid <= 0) {
737 if (flags & MSG_EOR)
738 top->m_flags |= M_EOR;
739 break;
740 }
741 } while (space > 0 && atomic);
742
743 s = splsoftnet();
744
745 if (so->so_state & SS_CANTSENDMORE)
746 snderr(EPIPE);
747
748 if (dontroute)
749 so->so_options |= SO_DONTROUTE;
750 if (resid > 0)
751 so->so_state |= SS_MORETOCOME;
752 error = (*so->so_proto->pr_usrreq)(so,
753 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
754 top, addr, control, p);
755 if (dontroute)
756 so->so_options &= ~SO_DONTROUTE;
757 if (resid > 0)
758 so->so_state &= ~SS_MORETOCOME;
759 splx(s);
760
761 clen = 0;
762 control = 0;
763 top = 0;
764 mp = ⊤
765 if (error)
766 goto release;
767 } while (resid && space > 0);
768 } while (resid);
769
770 release:
771 sbunlock(&so->so_snd);
772 out:
773 if (top)
774 m_freem(top);
775 if (control)
776 m_freem(control);
777 return (error);
778 }
779
780 /*
781 * Implement receive operations on a socket.
782 * We depend on the way that records are added to the sockbuf
783 * by sbappend*. In particular, each record (mbufs linked through m_next)
784 * must begin with an address if the protocol so specifies,
785 * followed by an optional mbuf or mbufs containing ancillary data,
786 * and then zero or more mbufs of data.
787 * In order to avoid blocking network interrupts for the entire time here,
788 * we splx() while doing the actual copy to user space.
789 * Although the sockbuf is locked, new data may still be appended,
790 * and thus we must maintain consistency of the sockbuf during that time.
791 *
792 * The caller may receive the data as a single mbuf chain by supplying
793 * an mbuf **mp0 for use in returning the chain. The uio is then used
794 * only for the count in uio_resid.
795 */
796 int
797 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
798 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
799 {
800 struct mbuf *m, **mp;
801 int flags, len, error, s, offset, moff, type, orig_resid;
802 struct protosw *pr;
803 struct mbuf *nextrecord;
804 int mbuf_removed = 0;
805
806 pr = so->so_proto;
807 mp = mp0;
808 type = 0;
809 orig_resid = uio->uio_resid;
810 if (paddr)
811 *paddr = 0;
812 if (controlp)
813 *controlp = 0;
814 if (flagsp)
815 flags = *flagsp &~ MSG_EOR;
816 else
817 flags = 0;
818
819 if ((flags & MSG_DONTWAIT) == 0)
820 sodopendfree(so);
821
822 if (flags & MSG_OOB) {
823 m = m_get(M_WAIT, MT_DATA);
824 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
825 (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
826 (struct proc *)0);
827 if (error)
828 goto bad;
829 do {
830 error = uiomove(mtod(m, caddr_t),
831 (int) min(uio->uio_resid, m->m_len), uio);
832 m = m_free(m);
833 } while (uio->uio_resid && error == 0 && m);
834 bad:
835 if (m)
836 m_freem(m);
837 return (error);
838 }
839 if (mp)
840 *mp = (struct mbuf *)0;
841 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
842 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
843 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
844
845 restart:
846 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
847 return (error);
848 s = splsoftnet();
849
850 m = so->so_rcv.sb_mb;
851 /*
852 * If we have less data than requested, block awaiting more
853 * (subject to any timeout) if:
854 * 1. the current count is less than the low water mark,
855 * 2. MSG_WAITALL is set, and it is possible to do the entire
856 * receive operation at once if we block (resid <= hiwat), or
857 * 3. MSG_DONTWAIT is not set.
858 * If MSG_WAITALL is set but resid is larger than the receive buffer,
859 * we have to do the receive in sections, and thus risk returning
860 * a short count if a timeout or signal occurs after we start.
861 */
862 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
863 so->so_rcv.sb_cc < uio->uio_resid) &&
864 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
865 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
866 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
867 #ifdef DIAGNOSTIC
868 if (m == 0 && so->so_rcv.sb_cc)
869 panic("receive 1");
870 #endif
871 if (so->so_error) {
872 if (m)
873 goto dontblock;
874 error = so->so_error;
875 if ((flags & MSG_PEEK) == 0)
876 so->so_error = 0;
877 goto release;
878 }
879 if (so->so_state & SS_CANTRCVMORE) {
880 if (m)
881 goto dontblock;
882 else
883 goto release;
884 }
885 for (; m; m = m->m_next)
886 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
887 m = so->so_rcv.sb_mb;
888 goto dontblock;
889 }
890 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
891 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
892 error = ENOTCONN;
893 goto release;
894 }
895 if (uio->uio_resid == 0)
896 goto release;
897 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
898 error = EWOULDBLOCK;
899 goto release;
900 }
901 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
902 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
903 sbunlock(&so->so_rcv);
904 error = sbwait(&so->so_rcv);
905 splx(s);
906 if (error)
907 return (error);
908 goto restart;
909 }
910 dontblock:
911 /*
912 * On entry here, m points to the first record of the socket buffer.
913 * While we process the initial mbufs containing address and control
914 * info, we save a copy of m->m_nextpkt into nextrecord.
915 */
916 #ifdef notyet /* XXXX */
917 if (uio->uio_procp)
918 uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
919 #endif
920 KASSERT(m == so->so_rcv.sb_mb);
921 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
922 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
923 nextrecord = m->m_nextpkt;
924 if (pr->pr_flags & PR_ADDR) {
925 #ifdef DIAGNOSTIC
926 if (m->m_type != MT_SONAME)
927 panic("receive 1a");
928 #endif
929 orig_resid = 0;
930 if (flags & MSG_PEEK) {
931 if (paddr)
932 *paddr = m_copy(m, 0, m->m_len);
933 m = m->m_next;
934 } else {
935 sbfree(&so->so_rcv, m);
936 mbuf_removed = 1;
937 if (paddr) {
938 *paddr = m;
939 so->so_rcv.sb_mb = m->m_next;
940 m->m_next = 0;
941 m = so->so_rcv.sb_mb;
942 } else {
943 MFREE(m, so->so_rcv.sb_mb);
944 m = so->so_rcv.sb_mb;
945 }
946 }
947 }
948 while (m && m->m_type == MT_CONTROL && error == 0) {
949 if (flags & MSG_PEEK) {
950 if (controlp)
951 *controlp = m_copy(m, 0, m->m_len);
952 m = m->m_next;
953 } else {
954 sbfree(&so->so_rcv, m);
955 mbuf_removed = 1;
956 if (controlp) {
957 if (pr->pr_domain->dom_externalize &&
958 mtod(m, struct cmsghdr *)->cmsg_type ==
959 SCM_RIGHTS)
960 error = (*pr->pr_domain->dom_externalize)(m);
961 *controlp = m;
962 so->so_rcv.sb_mb = m->m_next;
963 m->m_next = 0;
964 m = so->so_rcv.sb_mb;
965 } else {
966 MFREE(m, so->so_rcv.sb_mb);
967 m = so->so_rcv.sb_mb;
968 }
969 }
970 if (controlp) {
971 orig_resid = 0;
972 controlp = &(*controlp)->m_next;
973 }
974 }
975
976 /*
977 * If m is non-NULL, we have some data to read. From now on,
978 * make sure to keep sb_lastrecord consistent when working on
979 * the last packet on the chain (nextrecord == NULL) and we
980 * change m->m_nextpkt.
981 */
982 if (m) {
983 if ((flags & MSG_PEEK) == 0) {
984 m->m_nextpkt = nextrecord;
985 /*
986 * If nextrecord == NULL (this is a single chain),
987 * then sb_lastrecord may not be valid here if m
988 * was changed earlier.
989 */
990 if (nextrecord == NULL) {
991 KASSERT(so->so_rcv.sb_mb == m);
992 so->so_rcv.sb_lastrecord = m;
993 }
994 }
995 type = m->m_type;
996 if (type == MT_OOBDATA)
997 flags |= MSG_OOB;
998 } else {
999 if ((flags & MSG_PEEK) == 0) {
1000 KASSERT(so->so_rcv.sb_mb == m);
1001 so->so_rcv.sb_mb = nextrecord;
1002 SB_EMPTY_FIXUP(&so->so_rcv);
1003 }
1004 }
1005 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1006 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1007
1008 moff = 0;
1009 offset = 0;
1010 while (m && uio->uio_resid > 0 && error == 0) {
1011 if (m->m_type == MT_OOBDATA) {
1012 if (type != MT_OOBDATA)
1013 break;
1014 } else if (type == MT_OOBDATA)
1015 break;
1016 #ifdef DIAGNOSTIC
1017 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1018 panic("receive 3");
1019 #endif
1020 so->so_state &= ~SS_RCVATMARK;
1021 len = uio->uio_resid;
1022 if (so->so_oobmark && len > so->so_oobmark - offset)
1023 len = so->so_oobmark - offset;
1024 if (len > m->m_len - moff)
1025 len = m->m_len - moff;
1026 /*
1027 * If mp is set, just pass back the mbufs.
1028 * Otherwise copy them out via the uio, then free.
1029 * Sockbuf must be consistent here (points to current mbuf,
1030 * it points to next record) when we drop priority;
1031 * we must note any additions to the sockbuf when we
1032 * block interrupts again.
1033 */
1034 if (mp == 0) {
1035 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1036 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1037 splx(s);
1038 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1039 s = splsoftnet();
1040 if (error) {
1041 /*
1042 * If any part of the record has been removed
1043 * (such as the MT_SONAME mbuf, which will
1044 * happen when PR_ADDR, and thus also
1045 * PR_ATOMIC, is set), then drop the entire
1046 * record to maintain the atomicity of the
1047 * receive operation.
1048 *
1049 * This avoids a later panic("receive 1a")
1050 * when compiled with DIAGNOSTIC.
1051 */
1052 if (m && mbuf_removed
1053 && (pr->pr_flags & PR_ATOMIC))
1054 (void) sbdroprecord(&so->so_rcv);
1055
1056 goto release;
1057 }
1058 } else
1059 uio->uio_resid -= len;
1060 if (len == m->m_len - moff) {
1061 if (m->m_flags & M_EOR)
1062 flags |= MSG_EOR;
1063 if (flags & MSG_PEEK) {
1064 m = m->m_next;
1065 moff = 0;
1066 } else {
1067 nextrecord = m->m_nextpkt;
1068 sbfree(&so->so_rcv, m);
1069 if (mp) {
1070 *mp = m;
1071 mp = &m->m_next;
1072 so->so_rcv.sb_mb = m = m->m_next;
1073 *mp = (struct mbuf *)0;
1074 } else {
1075 MFREE(m, so->so_rcv.sb_mb);
1076 m = so->so_rcv.sb_mb;
1077 }
1078 /*
1079 * If m != NULL, we also know that
1080 * so->so_rcv.sb_mb != NULL.
1081 */
1082 KASSERT(so->so_rcv.sb_mb == m);
1083 if (m) {
1084 m->m_nextpkt = nextrecord;
1085 if (nextrecord == NULL)
1086 so->so_rcv.sb_lastrecord = m;
1087 } else {
1088 so->so_rcv.sb_mb = nextrecord;
1089 SB_EMPTY_FIXUP(&so->so_rcv);
1090 }
1091 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1092 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1093 }
1094 } else {
1095 if (flags & MSG_PEEK)
1096 moff += len;
1097 else {
1098 if (mp)
1099 *mp = m_copym(m, 0, len, M_WAIT);
1100 m->m_data += len;
1101 m->m_len -= len;
1102 so->so_rcv.sb_cc -= len;
1103 }
1104 }
1105 if (so->so_oobmark) {
1106 if ((flags & MSG_PEEK) == 0) {
1107 so->so_oobmark -= len;
1108 if (so->so_oobmark == 0) {
1109 so->so_state |= SS_RCVATMARK;
1110 break;
1111 }
1112 } else {
1113 offset += len;
1114 if (offset == so->so_oobmark)
1115 break;
1116 }
1117 }
1118 if (flags & MSG_EOR)
1119 break;
1120 /*
1121 * If the MSG_WAITALL flag is set (for non-atomic socket),
1122 * we must not quit until "uio->uio_resid == 0" or an error
1123 * termination. If a signal/timeout occurs, return
1124 * with a short count but without error.
1125 * Keep sockbuf locked against other readers.
1126 */
1127 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1128 !sosendallatonce(so) && !nextrecord) {
1129 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1130 break;
1131 /*
1132 * If we are peeking and the socket receive buffer is
1133 * full, stop since we can't get more data to peek at.
1134 */
1135 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1136 break;
1137 /*
1138 * If we've drained the socket buffer, tell the
1139 * protocol in case it needs to do something to
1140 * get it filled again.
1141 */
1142 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1143 (*pr->pr_usrreq)(so, PRU_RCVD,
1144 (struct mbuf *)0,
1145 (struct mbuf *)(long)flags,
1146 (struct mbuf *)0,
1147 (struct proc *)0);
1148 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1149 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1150 error = sbwait(&so->so_rcv);
1151 if (error) {
1152 sbunlock(&so->so_rcv);
1153 splx(s);
1154 return (0);
1155 }
1156 if ((m = so->so_rcv.sb_mb) != NULL)
1157 nextrecord = m->m_nextpkt;
1158 }
1159 }
1160
1161 if (m && pr->pr_flags & PR_ATOMIC) {
1162 flags |= MSG_TRUNC;
1163 if ((flags & MSG_PEEK) == 0)
1164 (void) sbdroprecord(&so->so_rcv);
1165 }
1166 if ((flags & MSG_PEEK) == 0) {
1167 if (m == 0) {
1168 /*
1169 * First part is an inline SB_EMPTY_FIXUP(). Second
1170 * part makes sure sb_lastrecord is up-to-date if
1171 * there is still data in the socket buffer.
1172 */
1173 so->so_rcv.sb_mb = nextrecord;
1174 if (so->so_rcv.sb_mb == NULL) {
1175 so->so_rcv.sb_mbtail = NULL;
1176 so->so_rcv.sb_lastrecord = NULL;
1177 } else if (nextrecord->m_nextpkt == NULL)
1178 so->so_rcv.sb_lastrecord = nextrecord;
1179 }
1180 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1181 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1182 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1183 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1184 (struct mbuf *)(long)flags, (struct mbuf *)0,
1185 (struct proc *)0);
1186 }
1187 if (orig_resid == uio->uio_resid && orig_resid &&
1188 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1189 sbunlock(&so->so_rcv);
1190 splx(s);
1191 goto restart;
1192 }
1193
1194 if (flagsp)
1195 *flagsp |= flags;
1196 release:
1197 sbunlock(&so->so_rcv);
1198 splx(s);
1199 return (error);
1200 }
1201
1202 int
1203 soshutdown(struct socket *so, int how)
1204 {
1205 struct protosw *pr;
1206
1207 pr = so->so_proto;
1208 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1209 return (EINVAL);
1210
1211 if (how == SHUT_RD || how == SHUT_RDWR)
1212 sorflush(so);
1213 if (how == SHUT_WR || how == SHUT_RDWR)
1214 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1215 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1216 return (0);
1217 }
1218
1219 void
1220 sorflush(struct socket *so)
1221 {
1222 struct sockbuf *sb, asb;
1223 struct protosw *pr;
1224 int s;
1225
1226 sb = &so->so_rcv;
1227 pr = so->so_proto;
1228 sb->sb_flags |= SB_NOINTR;
1229 (void) sblock(sb, M_WAITOK);
1230 s = splnet();
1231 socantrcvmore(so);
1232 sbunlock(sb);
1233 asb = *sb;
1234 memset((caddr_t)sb, 0, sizeof(*sb));
1235 splx(s);
1236 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1237 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1238 sbrelease(&asb);
1239 }
1240
1241 int
1242 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1243 {
1244 int error;
1245 struct mbuf *m;
1246
1247 error = 0;
1248 m = m0;
1249 if (level != SOL_SOCKET) {
1250 if (so->so_proto && so->so_proto->pr_ctloutput)
1251 return ((*so->so_proto->pr_ctloutput)
1252 (PRCO_SETOPT, so, level, optname, &m0));
1253 error = ENOPROTOOPT;
1254 } else {
1255 switch (optname) {
1256
1257 case SO_LINGER:
1258 if (m == NULL || m->m_len != sizeof(struct linger)) {
1259 error = EINVAL;
1260 goto bad;
1261 }
1262 so->so_linger = mtod(m, struct linger *)->l_linger;
1263 /* fall thru... */
1264
1265 case SO_DEBUG:
1266 case SO_KEEPALIVE:
1267 case SO_DONTROUTE:
1268 case SO_USELOOPBACK:
1269 case SO_BROADCAST:
1270 case SO_REUSEADDR:
1271 case SO_REUSEPORT:
1272 case SO_OOBINLINE:
1273 case SO_TIMESTAMP:
1274 if (m == NULL || m->m_len < sizeof(int)) {
1275 error = EINVAL;
1276 goto bad;
1277 }
1278 if (*mtod(m, int *))
1279 so->so_options |= optname;
1280 else
1281 so->so_options &= ~optname;
1282 break;
1283
1284 case SO_SNDBUF:
1285 case SO_RCVBUF:
1286 case SO_SNDLOWAT:
1287 case SO_RCVLOWAT:
1288 {
1289 int optval;
1290
1291 if (m == NULL || m->m_len < sizeof(int)) {
1292 error = EINVAL;
1293 goto bad;
1294 }
1295
1296 /*
1297 * Values < 1 make no sense for any of these
1298 * options, so disallow them.
1299 */
1300 optval = *mtod(m, int *);
1301 if (optval < 1) {
1302 error = EINVAL;
1303 goto bad;
1304 }
1305
1306 switch (optname) {
1307
1308 case SO_SNDBUF:
1309 case SO_RCVBUF:
1310 if (sbreserve(optname == SO_SNDBUF ?
1311 &so->so_snd : &so->so_rcv,
1312 (u_long) optval) == 0) {
1313 error = ENOBUFS;
1314 goto bad;
1315 }
1316 break;
1317
1318 /*
1319 * Make sure the low-water is never greater than
1320 * the high-water.
1321 */
1322 case SO_SNDLOWAT:
1323 so->so_snd.sb_lowat =
1324 (optval > so->so_snd.sb_hiwat) ?
1325 so->so_snd.sb_hiwat : optval;
1326 break;
1327 case SO_RCVLOWAT:
1328 so->so_rcv.sb_lowat =
1329 (optval > so->so_rcv.sb_hiwat) ?
1330 so->so_rcv.sb_hiwat : optval;
1331 break;
1332 }
1333 break;
1334 }
1335
1336 case SO_SNDTIMEO:
1337 case SO_RCVTIMEO:
1338 {
1339 struct timeval *tv;
1340 short val;
1341
1342 if (m == NULL || m->m_len < sizeof(*tv)) {
1343 error = EINVAL;
1344 goto bad;
1345 }
1346 tv = mtod(m, struct timeval *);
1347 if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) {
1348 error = EDOM;
1349 goto bad;
1350 }
1351 val = tv->tv_sec * hz + tv->tv_usec / tick;
1352 if (val == 0 && tv->tv_usec != 0)
1353 val = 1;
1354
1355 switch (optname) {
1356
1357 case SO_SNDTIMEO:
1358 so->so_snd.sb_timeo = val;
1359 break;
1360 case SO_RCVTIMEO:
1361 so->so_rcv.sb_timeo = val;
1362 break;
1363 }
1364 break;
1365 }
1366
1367 default:
1368 error = ENOPROTOOPT;
1369 break;
1370 }
1371 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1372 (void) ((*so->so_proto->pr_ctloutput)
1373 (PRCO_SETOPT, so, level, optname, &m0));
1374 m = NULL; /* freed by protocol */
1375 }
1376 }
1377 bad:
1378 if (m)
1379 (void) m_free(m);
1380 return (error);
1381 }
1382
1383 int
1384 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1385 {
1386 struct mbuf *m;
1387
1388 if (level != SOL_SOCKET) {
1389 if (so->so_proto && so->so_proto->pr_ctloutput) {
1390 return ((*so->so_proto->pr_ctloutput)
1391 (PRCO_GETOPT, so, level, optname, mp));
1392 } else
1393 return (ENOPROTOOPT);
1394 } else {
1395 m = m_get(M_WAIT, MT_SOOPTS);
1396 m->m_len = sizeof(int);
1397
1398 switch (optname) {
1399
1400 case SO_LINGER:
1401 m->m_len = sizeof(struct linger);
1402 mtod(m, struct linger *)->l_onoff =
1403 so->so_options & SO_LINGER;
1404 mtod(m, struct linger *)->l_linger = so->so_linger;
1405 break;
1406
1407 case SO_USELOOPBACK:
1408 case SO_DONTROUTE:
1409 case SO_DEBUG:
1410 case SO_KEEPALIVE:
1411 case SO_REUSEADDR:
1412 case SO_REUSEPORT:
1413 case SO_BROADCAST:
1414 case SO_OOBINLINE:
1415 case SO_TIMESTAMP:
1416 *mtod(m, int *) = so->so_options & optname;
1417 break;
1418
1419 case SO_TYPE:
1420 *mtod(m, int *) = so->so_type;
1421 break;
1422
1423 case SO_ERROR:
1424 *mtod(m, int *) = so->so_error;
1425 so->so_error = 0;
1426 break;
1427
1428 case SO_SNDBUF:
1429 *mtod(m, int *) = so->so_snd.sb_hiwat;
1430 break;
1431
1432 case SO_RCVBUF:
1433 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1434 break;
1435
1436 case SO_SNDLOWAT:
1437 *mtod(m, int *) = so->so_snd.sb_lowat;
1438 break;
1439
1440 case SO_RCVLOWAT:
1441 *mtod(m, int *) = so->so_rcv.sb_lowat;
1442 break;
1443
1444 case SO_SNDTIMEO:
1445 case SO_RCVTIMEO:
1446 {
1447 int val = (optname == SO_SNDTIMEO ?
1448 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1449
1450 m->m_len = sizeof(struct timeval);
1451 mtod(m, struct timeval *)->tv_sec = val / hz;
1452 mtod(m, struct timeval *)->tv_usec =
1453 (val % hz) * tick;
1454 break;
1455 }
1456
1457 default:
1458 (void)m_free(m);
1459 return (ENOPROTOOPT);
1460 }
1461 *mp = m;
1462 return (0);
1463 }
1464 }
1465
1466 void
1467 sohasoutofband(struct socket *so)
1468 {
1469 struct proc *p;
1470
1471 if (so->so_pgid < 0)
1472 gsignal(-so->so_pgid, SIGURG);
1473 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
1474 psignal(p, SIGURG);
1475 selwakeup(&so->so_rcv.sb_sel);
1476 }
1477
1478 static void
1479 filt_sordetach(struct knote *kn)
1480 {
1481 struct socket *so;
1482
1483 so = (struct socket *)kn->kn_fp->f_data;
1484 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1485 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1486 so->so_rcv.sb_flags &= ~SB_KNOTE;
1487 }
1488
1489 /*ARGSUSED*/
1490 static int
1491 filt_soread(struct knote *kn, long hint)
1492 {
1493 struct socket *so;
1494
1495 so = (struct socket *)kn->kn_fp->f_data;
1496 kn->kn_data = so->so_rcv.sb_cc;
1497 if (so->so_state & SS_CANTRCVMORE) {
1498 kn->kn_flags |= EV_EOF;
1499 kn->kn_fflags = so->so_error;
1500 return (1);
1501 }
1502 if (so->so_error) /* temporary udp error */
1503 return (1);
1504 if (kn->kn_sfflags & NOTE_LOWAT)
1505 return (kn->kn_data >= kn->kn_sdata);
1506 return (kn->kn_data >= so->so_rcv.sb_lowat);
1507 }
1508
1509 static void
1510 filt_sowdetach(struct knote *kn)
1511 {
1512 struct socket *so;
1513
1514 so = (struct socket *)kn->kn_fp->f_data;
1515 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1516 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1517 so->so_snd.sb_flags &= ~SB_KNOTE;
1518 }
1519
1520 /*ARGSUSED*/
1521 static int
1522 filt_sowrite(struct knote *kn, long hint)
1523 {
1524 struct socket *so;
1525
1526 so = (struct socket *)kn->kn_fp->f_data;
1527 kn->kn_data = sbspace(&so->so_snd);
1528 if (so->so_state & SS_CANTSENDMORE) {
1529 kn->kn_flags |= EV_EOF;
1530 kn->kn_fflags = so->so_error;
1531 return (1);
1532 }
1533 if (so->so_error) /* temporary udp error */
1534 return (1);
1535 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1536 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1537 return (0);
1538 if (kn->kn_sfflags & NOTE_LOWAT)
1539 return (kn->kn_data >= kn->kn_sdata);
1540 return (kn->kn_data >= so->so_snd.sb_lowat);
1541 }
1542
1543 /*ARGSUSED*/
1544 static int
1545 filt_solisten(struct knote *kn, long hint)
1546 {
1547 struct socket *so;
1548
1549 so = (struct socket *)kn->kn_fp->f_data;
1550
1551 /*
1552 * Set kn_data to number of incoming connections, not
1553 * counting partial (incomplete) connections.
1554 */
1555 kn->kn_data = so->so_qlen;
1556 return (kn->kn_data > 0);
1557 }
1558
1559 static const struct filterops solisten_filtops =
1560 { 1, NULL, filt_sordetach, filt_solisten };
1561 static const struct filterops soread_filtops =
1562 { 1, NULL, filt_sordetach, filt_soread };
1563 static const struct filterops sowrite_filtops =
1564 { 1, NULL, filt_sowdetach, filt_sowrite };
1565
1566 int
1567 soo_kqfilter(struct file *fp, struct knote *kn)
1568 {
1569 struct socket *so;
1570 struct sockbuf *sb;
1571
1572 so = (struct socket *)kn->kn_fp->f_data;
1573 switch (kn->kn_filter) {
1574 case EVFILT_READ:
1575 if (so->so_options & SO_ACCEPTCONN)
1576 kn->kn_fop = &solisten_filtops;
1577 else
1578 kn->kn_fop = &soread_filtops;
1579 sb = &so->so_rcv;
1580 break;
1581 case EVFILT_WRITE:
1582 kn->kn_fop = &sowrite_filtops;
1583 sb = &so->so_snd;
1584 break;
1585 default:
1586 return (1);
1587 }
1588 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1589 sb->sb_flags |= SB_KNOTE;
1590 return (0);
1591 }
1592
1593