Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.78
      1 /*	$NetBSD: uipc_socket.c,v 1.78 2003/02/26 06:31:11 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the University of
     54  *	California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     72  */
     73 
     74 #include <sys/cdefs.h>
     75 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.78 2003/02/26 06:31:11 matt Exp $");
     76 
     77 #include "opt_sock_counters.h"
     78 #include "opt_sosend_loan.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/file.h>
     84 #include <sys/malloc.h>
     85 #include <sys/mbuf.h>
     86 #include <sys/domain.h>
     87 #include <sys/kernel.h>
     88 #include <sys/protosw.h>
     89 #include <sys/socket.h>
     90 #include <sys/socketvar.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/pool.h>
     94 #include <sys/event.h>
     95 
     96 #include <uvm/uvm.h>
     97 
     98 struct pool	socket_pool;
     99 
    100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    102 
    103 extern int	somaxconn;			/* patchable (XXX sysctl) */
    104 int		somaxconn = SOMAXCONN;
    105 
    106 #ifdef SOSEND_COUNTERS
    107 #include <sys/device.h>
    108 
    109 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    110     NULL, "sosend", "loan big");
    111 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    112     NULL, "sosend", "copy big");
    113 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    114     NULL, "sosend", "copy small");
    115 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "kva limit");
    117 
    118 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    119 
    120 #else
    121 
    122 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    123 
    124 #endif /* SOSEND_COUNTERS */
    125 
    126 void
    127 soinit(void)
    128 {
    129 
    130 	pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
    131 	    "sockpl", NULL);
    132 
    133 #ifdef SOSEND_COUNTERS
    134 	evcnt_attach_static(&sosend_loan_big);
    135 	evcnt_attach_static(&sosend_copy_big);
    136 	evcnt_attach_static(&sosend_copy_small);
    137 	evcnt_attach_static(&sosend_kvalimit);
    138 #endif /* SOSEND_COUNTERS */
    139 }
    140 
    141 #ifdef SOSEND_NO_LOAN
    142 int use_sosend_loan = 0;
    143 #else
    144 int use_sosend_loan = 1;
    145 #endif
    146 
    147 struct mbuf *so_pendfree;
    148 
    149 int somaxkva = 16 * 1024 * 1024;
    150 int socurkva;
    151 int sokvawaiters;
    152 
    153 #define	SOCK_LOAN_THRESH	4096
    154 #define	SOCK_LOAN_CHUNK		65536
    155 
    156 static void
    157 sodoloanfree(caddr_t buf, size_t size)
    158 {
    159 	struct vm_page **pgs;
    160 	vaddr_t va, sva, eva;
    161 	vsize_t len;
    162 	paddr_t pa;
    163 	int i, npgs;
    164 
    165 	eva = round_page((vaddr_t) buf + size);
    166 	sva = trunc_page((vaddr_t) buf);
    167 	len = eva - sva;
    168 	npgs = len >> PAGE_SHIFT;
    169 
    170 	pgs = alloca(npgs * sizeof(*pgs));
    171 
    172 	for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
    173 		if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
    174 			panic("sodoloanfree: va 0x%lx not mapped", va);
    175 		pgs[i] = PHYS_TO_VM_PAGE(pa);
    176 	}
    177 
    178 	pmap_kremove(sva, len);
    179 	pmap_update(pmap_kernel());
    180 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    181 	uvm_km_free(kernel_map, sva, len);
    182 	socurkva -= len;
    183 	if (sokvawaiters)
    184 		wakeup(&socurkva);
    185 }
    186 
    187 static size_t
    188 sodopendfree(struct socket *so)
    189 {
    190 	struct mbuf *m;
    191 	size_t rv = 0;
    192 	int s;
    193 
    194 	s = splvm();
    195 
    196 	for (;;) {
    197 		m = so_pendfree;
    198 		if (m == NULL)
    199 			break;
    200 		so_pendfree = m->m_next;
    201 		splx(s);
    202 
    203 		rv += m->m_ext.ext_size;
    204 		sodoloanfree(m->m_ext.ext_buf, m->m_ext.ext_size);
    205 		s = splvm();
    206 		pool_cache_put(&mbpool_cache, m);
    207 	}
    208 
    209 	for (;;) {
    210 		m = so->so_pendfree;
    211 		if (m == NULL)
    212 			break;
    213 		so->so_pendfree = m->m_next;
    214 		splx(s);
    215 
    216 		rv += m->m_ext.ext_size;
    217 		sodoloanfree(m->m_ext.ext_buf, m->m_ext.ext_size);
    218 		s = splvm();
    219 		pool_cache_put(&mbpool_cache, m);
    220 	}
    221 
    222 	splx(s);
    223 	return (rv);
    224 }
    225 
    226 static void
    227 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
    228 {
    229 	struct socket *so = arg;
    230 	int s;
    231 
    232 	if (m == NULL) {
    233 		sodoloanfree(buf, size);
    234 		return;
    235 	}
    236 
    237 	s = splvm();
    238 	m->m_next = so->so_pendfree;
    239 	so->so_pendfree = m;
    240 	splx(s);
    241 	if (sokvawaiters)
    242 		wakeup(&socurkva);
    243 }
    244 
    245 static long
    246 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    247 {
    248 	struct iovec *iov = uio->uio_iov;
    249 	vaddr_t sva, eva;
    250 	vsize_t len;
    251 	struct vm_page **pgs;
    252 	vaddr_t lva, va;
    253 	int npgs, s, i, error;
    254 
    255 	if (uio->uio_segflg != UIO_USERSPACE)
    256 		return (0);
    257 
    258 	if (iov->iov_len < (size_t) space)
    259 		space = iov->iov_len;
    260 	if (space > SOCK_LOAN_CHUNK)
    261 		space = SOCK_LOAN_CHUNK;
    262 
    263 	eva = round_page((vaddr_t) iov->iov_base + space);
    264 	sva = trunc_page((vaddr_t) iov->iov_base);
    265 	len = eva - sva;
    266 	npgs = len >> PAGE_SHIFT;
    267 
    268 	while (socurkva + len > somaxkva) {
    269 		if (sodopendfree(so))
    270 			continue;
    271 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    272 		s = splvm();
    273 		sokvawaiters++;
    274 		(void) tsleep(&socurkva, PVM, "sokva", 0);
    275 		sokvawaiters--;
    276 		splx(s);
    277 	}
    278 
    279 	lva = uvm_km_valloc_wait(kernel_map, len);
    280 	if (lva == 0)
    281 		return (0);
    282 	socurkva += len;
    283 
    284 	pgs = alloca(npgs * sizeof(*pgs));
    285 
    286 	error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
    287 	    pgs, UVM_LOAN_TOPAGE);
    288 	if (error) {
    289 		uvm_km_free(kernel_map, lva, len);
    290 		socurkva -= len;
    291 		return (0);
    292 	}
    293 
    294 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    295 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pgs[i]), VM_PROT_READ);
    296 	pmap_update(pmap_kernel());
    297 
    298 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    299 
    300 	MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
    301 
    302 	uio->uio_resid -= space;
    303 	/* uio_offset not updated, not set/used for write(2) */
    304 	uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
    305 	uio->uio_iov->iov_len -= space;
    306 	if (uio->uio_iov->iov_len == 0) {
    307 		uio->uio_iov++;
    308 		uio->uio_iovcnt--;
    309 	}
    310 
    311 	return (space);
    312 }
    313 
    314 /*
    315  * Socket operation routines.
    316  * These routines are called by the routines in
    317  * sys_socket.c or from a system process, and
    318  * implement the semantics of socket operations by
    319  * switching out to the protocol specific routines.
    320  */
    321 /*ARGSUSED*/
    322 int
    323 socreate(int dom, struct socket **aso, int type, int proto)
    324 {
    325 	struct proc	*p;
    326 	struct protosw	*prp;
    327 	struct socket	*so;
    328 	int		error, s;
    329 
    330 	p = curproc;		/* XXX */
    331 	if (proto)
    332 		prp = pffindproto(dom, proto, type);
    333 	else
    334 		prp = pffindtype(dom, type);
    335 	if (prp == 0 || prp->pr_usrreq == 0)
    336 		return (EPROTONOSUPPORT);
    337 	if (prp->pr_type != type)
    338 		return (EPROTOTYPE);
    339 	s = splsoftnet();
    340 	so = pool_get(&socket_pool, PR_WAITOK);
    341 	memset((caddr_t)so, 0, sizeof(*so));
    342 	TAILQ_INIT(&so->so_q0);
    343 	TAILQ_INIT(&so->so_q);
    344 	so->so_type = type;
    345 	so->so_proto = prp;
    346 	so->so_send = sosend;
    347 	so->so_receive = soreceive;
    348 #ifdef MBUFTRACE
    349 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    350 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    351 	so->so_mowner = &prp->pr_domain->dom_mowner;
    352 #endif
    353 	if (p != 0)
    354 		so->so_uid = p->p_ucred->cr_uid;
    355 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
    356 	    (struct mbuf *)(long)proto, (struct mbuf *)0, p);
    357 	if (error) {
    358 		so->so_state |= SS_NOFDREF;
    359 		sofree(so);
    360 		splx(s);
    361 		return (error);
    362 	}
    363 	splx(s);
    364 	*aso = so;
    365 	return (0);
    366 }
    367 
    368 int
    369 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
    370 {
    371 	int	s, error;
    372 
    373 	s = splsoftnet();
    374 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
    375 	    nam, (struct mbuf *)0, p);
    376 	splx(s);
    377 	return (error);
    378 }
    379 
    380 int
    381 solisten(struct socket *so, int backlog)
    382 {
    383 	int	s, error;
    384 
    385 	s = splsoftnet();
    386 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
    387 	    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    388 	if (error) {
    389 		splx(s);
    390 		return (error);
    391 	}
    392 	if (TAILQ_EMPTY(&so->so_q))
    393 		so->so_options |= SO_ACCEPTCONN;
    394 	if (backlog < 0)
    395 		backlog = 0;
    396 	so->so_qlimit = min(backlog, somaxconn);
    397 	splx(s);
    398 	return (0);
    399 }
    400 
    401 void
    402 sofree(struct socket *so)
    403 {
    404 	struct mbuf *m;
    405 
    406 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    407 		return;
    408 	if (so->so_head) {
    409 		/*
    410 		 * We must not decommission a socket that's on the accept(2)
    411 		 * queue.  If we do, then accept(2) may hang after select(2)
    412 		 * indicated that the listening socket was ready.
    413 		 */
    414 		if (!soqremque(so, 0))
    415 			return;
    416 	}
    417 	sbrelease(&so->so_snd);
    418 	sorflush(so);
    419 	while ((m = so->so_pendfree) != NULL) {
    420 		so->so_pendfree = m->m_next;
    421 		m->m_next = so_pendfree;
    422 		so_pendfree = m;
    423 	}
    424 	pool_put(&socket_pool, so);
    425 }
    426 
    427 /*
    428  * Close a socket on last file table reference removal.
    429  * Initiate disconnect if connected.
    430  * Free socket when disconnect complete.
    431  */
    432 int
    433 soclose(struct socket *so)
    434 {
    435 	struct socket	*so2;
    436 	int		s, error;
    437 
    438 	error = 0;
    439 	s = splsoftnet();		/* conservative */
    440 	if (so->so_options & SO_ACCEPTCONN) {
    441 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    442 			(void) soqremque(so2, 0);
    443 			(void) soabort(so2);
    444 		}
    445 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    446 			(void) soqremque(so2, 1);
    447 			(void) soabort(so2);
    448 		}
    449 	}
    450 	if (so->so_pcb == 0)
    451 		goto discard;
    452 	if (so->so_state & SS_ISCONNECTED) {
    453 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    454 			error = sodisconnect(so);
    455 			if (error)
    456 				goto drop;
    457 		}
    458 		if (so->so_options & SO_LINGER) {
    459 			if ((so->so_state & SS_ISDISCONNECTING) &&
    460 			    (so->so_state & SS_NBIO))
    461 				goto drop;
    462 			while (so->so_state & SS_ISCONNECTED) {
    463 				error = tsleep((caddr_t)&so->so_timeo,
    464 					       PSOCK | PCATCH, netcls,
    465 					       so->so_linger * hz);
    466 				if (error)
    467 					break;
    468 			}
    469 		}
    470 	}
    471  drop:
    472 	if (so->so_pcb) {
    473 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    474 		    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    475 		    (struct proc *)0);
    476 		if (error == 0)
    477 			error = error2;
    478 	}
    479  discard:
    480 	if (so->so_state & SS_NOFDREF)
    481 		panic("soclose: NOFDREF");
    482 	so->so_state |= SS_NOFDREF;
    483 	sofree(so);
    484 	splx(s);
    485 	return (error);
    486 }
    487 
    488 /*
    489  * Must be called at splsoftnet...
    490  */
    491 int
    492 soabort(struct socket *so)
    493 {
    494 
    495 	return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
    496 	    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    497 }
    498 
    499 int
    500 soaccept(struct socket *so, struct mbuf *nam)
    501 {
    502 	int	s, error;
    503 
    504 	error = 0;
    505 	s = splsoftnet();
    506 	if ((so->so_state & SS_NOFDREF) == 0)
    507 		panic("soaccept: !NOFDREF");
    508 	so->so_state &= ~SS_NOFDREF;
    509 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    510 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    511 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    512 		    (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
    513 	else
    514 		error = ECONNABORTED;
    515 
    516 	splx(s);
    517 	return (error);
    518 }
    519 
    520 int
    521 soconnect(struct socket *so, struct mbuf *nam)
    522 {
    523 	struct proc	*p;
    524 	int		s, error;
    525 
    526 	p = curproc;		/* XXX */
    527 	if (so->so_options & SO_ACCEPTCONN)
    528 		return (EOPNOTSUPP);
    529 	s = splsoftnet();
    530 	/*
    531 	 * If protocol is connection-based, can only connect once.
    532 	 * Otherwise, if connected, try to disconnect first.
    533 	 * This allows user to disconnect by connecting to, e.g.,
    534 	 * a null address.
    535 	 */
    536 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    537 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    538 	    (error = sodisconnect(so))))
    539 		error = EISCONN;
    540 	else
    541 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    542 		    (struct mbuf *)0, nam, (struct mbuf *)0, p);
    543 	splx(s);
    544 	return (error);
    545 }
    546 
    547 int
    548 soconnect2(struct socket *so1, struct socket *so2)
    549 {
    550 	int	s, error;
    551 
    552 	s = splsoftnet();
    553 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    554 	    (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
    555 	    (struct proc *)0);
    556 	splx(s);
    557 	return (error);
    558 }
    559 
    560 int
    561 sodisconnect(struct socket *so)
    562 {
    563 	int	s, error;
    564 
    565 	s = splsoftnet();
    566 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    567 		error = ENOTCONN;
    568 		goto bad;
    569 	}
    570 	if (so->so_state & SS_ISDISCONNECTING) {
    571 		error = EALREADY;
    572 		goto bad;
    573 	}
    574 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    575 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    576 	    (struct proc *)0);
    577  bad:
    578 	splx(s);
    579 	sodopendfree(so);
    580 	return (error);
    581 }
    582 
    583 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    584 /*
    585  * Send on a socket.
    586  * If send must go all at once and message is larger than
    587  * send buffering, then hard error.
    588  * Lock against other senders.
    589  * If must go all at once and not enough room now, then
    590  * inform user that this would block and do nothing.
    591  * Otherwise, if nonblocking, send as much as possible.
    592  * The data to be sent is described by "uio" if nonzero,
    593  * otherwise by the mbuf chain "top" (which must be null
    594  * if uio is not).  Data provided in mbuf chain must be small
    595  * enough to send all at once.
    596  *
    597  * Returns nonzero on error, timeout or signal; callers
    598  * must check for short counts if EINTR/ERESTART are returned.
    599  * Data and control buffers are freed on return.
    600  */
    601 int
    602 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    603 	struct mbuf *control, int flags)
    604 {
    605 	struct proc	*p;
    606 	struct mbuf	**mp, *m;
    607 	long		space, len, resid, clen, mlen;
    608 	int		error, s, dontroute, atomic;
    609 
    610 	sodopendfree(so);
    611 
    612 	p = curproc;		/* XXX */
    613 	clen = 0;
    614 	atomic = sosendallatonce(so) || top;
    615 	if (uio)
    616 		resid = uio->uio_resid;
    617 	else
    618 		resid = top->m_pkthdr.len;
    619 	/*
    620 	 * In theory resid should be unsigned.
    621 	 * However, space must be signed, as it might be less than 0
    622 	 * if we over-committed, and we must use a signed comparison
    623 	 * of space and resid.  On the other hand, a negative resid
    624 	 * causes us to loop sending 0-length segments to the protocol.
    625 	 */
    626 	if (resid < 0) {
    627 		error = EINVAL;
    628 		goto out;
    629 	}
    630 	dontroute =
    631 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    632 	    (so->so_proto->pr_flags & PR_ATOMIC);
    633 	p->p_stats->p_ru.ru_msgsnd++;
    634 	if (control)
    635 		clen = control->m_len;
    636 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    637 
    638  restart:
    639 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    640 		goto out;
    641 	do {
    642 		s = splsoftnet();
    643 		if (so->so_state & SS_CANTSENDMORE)
    644 			snderr(EPIPE);
    645 		if (so->so_error) {
    646 			error = so->so_error;
    647 			so->so_error = 0;
    648 			splx(s);
    649 			goto release;
    650 		}
    651 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    652 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    653 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    654 				    !(resid == 0 && clen != 0))
    655 					snderr(ENOTCONN);
    656 			} else if (addr == 0)
    657 				snderr(EDESTADDRREQ);
    658 		}
    659 		space = sbspace(&so->so_snd);
    660 		if (flags & MSG_OOB)
    661 			space += 1024;
    662 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    663 		    clen > so->so_snd.sb_hiwat)
    664 			snderr(EMSGSIZE);
    665 		if (space < resid + clen && uio &&
    666 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    667 			if (so->so_state & SS_NBIO)
    668 				snderr(EWOULDBLOCK);
    669 			sbunlock(&so->so_snd);
    670 			error = sbwait(&so->so_snd);
    671 			splx(s);
    672 			if (error)
    673 				goto out;
    674 			goto restart;
    675 		}
    676 		splx(s);
    677 		mp = &top;
    678 		space -= clen;
    679 		do {
    680 			if (uio == NULL) {
    681 				/*
    682 				 * Data is prepackaged in "top".
    683 				 */
    684 				resid = 0;
    685 				if (flags & MSG_EOR)
    686 					top->m_flags |= M_EOR;
    687 			} else do {
    688 				if (top == 0) {
    689 					m = m_gethdr(M_WAIT, MT_DATA);
    690 					mlen = MHLEN;
    691 					m->m_pkthdr.len = 0;
    692 					m->m_pkthdr.rcvif = (struct ifnet *)0;
    693 				} else {
    694 					m = m_get(M_WAIT, MT_DATA);
    695 					mlen = MLEN;
    696 				}
    697 				MCLAIM(m, so->so_snd.sb_mowner);
    698 				if (use_sosend_loan &&
    699 				    uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
    700 				    space >= SOCK_LOAN_THRESH &&
    701 				    (len = sosend_loan(so, uio, m,
    702 						       space)) != 0) {
    703 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    704 					space -= len;
    705 					goto have_data;
    706 				}
    707 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    708 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    709 					m_clget(m, M_WAIT);
    710 					if ((m->m_flags & M_EXT) == 0)
    711 						goto nopages;
    712 					mlen = MCLBYTES;
    713 					if (atomic && top == 0) {
    714 						len = lmin(MCLBYTES - max_hdr,
    715 						    resid);
    716 						m->m_data += max_hdr;
    717 					} else
    718 						len = lmin(MCLBYTES, resid);
    719 					space -= len;
    720 				} else {
    721  nopages:
    722 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    723 					len = lmin(lmin(mlen, resid), space);
    724 					space -= len;
    725 					/*
    726 					 * For datagram protocols, leave room
    727 					 * for protocol headers in first mbuf.
    728 					 */
    729 					if (atomic && top == 0 && len < mlen)
    730 						MH_ALIGN(m, len);
    731 				}
    732 				error = uiomove(mtod(m, caddr_t), (int)len,
    733 				    uio);
    734  have_data:
    735 				resid = uio->uio_resid;
    736 				m->m_len = len;
    737 				*mp = m;
    738 				top->m_pkthdr.len += len;
    739 				if (error)
    740 					goto release;
    741 				mp = &m->m_next;
    742 				if (resid <= 0) {
    743 					if (flags & MSG_EOR)
    744 						top->m_flags |= M_EOR;
    745 					break;
    746 				}
    747 			} while (space > 0 && atomic);
    748 
    749 			s = splsoftnet();
    750 
    751 			if (so->so_state & SS_CANTSENDMORE)
    752 				snderr(EPIPE);
    753 
    754 			if (dontroute)
    755 				so->so_options |= SO_DONTROUTE;
    756 			if (resid > 0)
    757 				so->so_state |= SS_MORETOCOME;
    758 			error = (*so->so_proto->pr_usrreq)(so,
    759 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    760 			    top, addr, control, p);
    761 			if (dontroute)
    762 				so->so_options &= ~SO_DONTROUTE;
    763 			if (resid > 0)
    764 				so->so_state &= ~SS_MORETOCOME;
    765 			splx(s);
    766 
    767 			clen = 0;
    768 			control = 0;
    769 			top = 0;
    770 			mp = &top;
    771 			if (error)
    772 				goto release;
    773 		} while (resid && space > 0);
    774 	} while (resid);
    775 
    776  release:
    777 	sbunlock(&so->so_snd);
    778  out:
    779 	if (top)
    780 		m_freem(top);
    781 	if (control)
    782 		m_freem(control);
    783 	return (error);
    784 }
    785 
    786 /*
    787  * Implement receive operations on a socket.
    788  * We depend on the way that records are added to the sockbuf
    789  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    790  * must begin with an address if the protocol so specifies,
    791  * followed by an optional mbuf or mbufs containing ancillary data,
    792  * and then zero or more mbufs of data.
    793  * In order to avoid blocking network interrupts for the entire time here,
    794  * we splx() while doing the actual copy to user space.
    795  * Although the sockbuf is locked, new data may still be appended,
    796  * and thus we must maintain consistency of the sockbuf during that time.
    797  *
    798  * The caller may receive the data as a single mbuf chain by supplying
    799  * an mbuf **mp0 for use in returning the chain.  The uio is then used
    800  * only for the count in uio_resid.
    801  */
    802 int
    803 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
    804 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
    805 {
    806 	struct mbuf	*m, **mp;
    807 	int		flags, len, error, s, offset, moff, type, orig_resid;
    808 	struct protosw	*pr;
    809 	struct mbuf	*nextrecord;
    810 	int		mbuf_removed = 0;
    811 
    812 	pr = so->so_proto;
    813 	mp = mp0;
    814 	type = 0;
    815 	orig_resid = uio->uio_resid;
    816 	if (paddr)
    817 		*paddr = 0;
    818 	if (controlp)
    819 		*controlp = 0;
    820 	if (flagsp)
    821 		flags = *flagsp &~ MSG_EOR;
    822 	else
    823 		flags = 0;
    824 
    825 	if ((flags & MSG_DONTWAIT) == 0)
    826 		sodopendfree(so);
    827 
    828 	if (flags & MSG_OOB) {
    829 		m = m_get(M_WAIT, MT_DATA);
    830 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
    831 		    (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
    832 		    (struct proc *)0);
    833 		if (error)
    834 			goto bad;
    835 		do {
    836 			error = uiomove(mtod(m, caddr_t),
    837 			    (int) min(uio->uio_resid, m->m_len), uio);
    838 			m = m_free(m);
    839 		} while (uio->uio_resid && error == 0 && m);
    840  bad:
    841 		if (m)
    842 			m_freem(m);
    843 		return (error);
    844 	}
    845 	if (mp)
    846 		*mp = (struct mbuf *)0;
    847 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
    848 		(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
    849 		    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    850 
    851  restart:
    852 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
    853 		return (error);
    854 	s = splsoftnet();
    855 
    856 	m = so->so_rcv.sb_mb;
    857 	/*
    858 	 * If we have less data than requested, block awaiting more
    859 	 * (subject to any timeout) if:
    860 	 *   1. the current count is less than the low water mark,
    861 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
    862 	 *	receive operation at once if we block (resid <= hiwat), or
    863 	 *   3. MSG_DONTWAIT is not set.
    864 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
    865 	 * we have to do the receive in sections, and thus risk returning
    866 	 * a short count if a timeout or signal occurs after we start.
    867 	 */
    868 	if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
    869 	    so->so_rcv.sb_cc < uio->uio_resid) &&
    870 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
    871 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
    872 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
    873 #ifdef DIAGNOSTIC
    874 		if (m == 0 && so->so_rcv.sb_cc)
    875 			panic("receive 1");
    876 #endif
    877 		if (so->so_error) {
    878 			if (m)
    879 				goto dontblock;
    880 			error = so->so_error;
    881 			if ((flags & MSG_PEEK) == 0)
    882 				so->so_error = 0;
    883 			goto release;
    884 		}
    885 		if (so->so_state & SS_CANTRCVMORE) {
    886 			if (m)
    887 				goto dontblock;
    888 			else
    889 				goto release;
    890 		}
    891 		for (; m; m = m->m_next)
    892 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
    893 				m = so->so_rcv.sb_mb;
    894 				goto dontblock;
    895 			}
    896 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
    897 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
    898 			error = ENOTCONN;
    899 			goto release;
    900 		}
    901 		if (uio->uio_resid == 0)
    902 			goto release;
    903 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
    904 			error = EWOULDBLOCK;
    905 			goto release;
    906 		}
    907 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
    908 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
    909 		sbunlock(&so->so_rcv);
    910 		error = sbwait(&so->so_rcv);
    911 		splx(s);
    912 		if (error)
    913 			return (error);
    914 		goto restart;
    915 	}
    916  dontblock:
    917 	/*
    918 	 * On entry here, m points to the first record of the socket buffer.
    919 	 * While we process the initial mbufs containing address and control
    920 	 * info, we save a copy of m->m_nextpkt into nextrecord.
    921 	 */
    922 #ifdef notyet /* XXXX */
    923 	if (uio->uio_procp)
    924 		uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
    925 #endif
    926 	KASSERT(m == so->so_rcv.sb_mb);
    927 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
    928 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
    929 	nextrecord = m->m_nextpkt;
    930 	if (pr->pr_flags & PR_ADDR) {
    931 #ifdef DIAGNOSTIC
    932 		if (m->m_type != MT_SONAME)
    933 			panic("receive 1a");
    934 #endif
    935 		orig_resid = 0;
    936 		if (flags & MSG_PEEK) {
    937 			if (paddr)
    938 				*paddr = m_copy(m, 0, m->m_len);
    939 			m = m->m_next;
    940 		} else {
    941 			sbfree(&so->so_rcv, m);
    942 			mbuf_removed = 1;
    943 			if (paddr) {
    944 				*paddr = m;
    945 				so->so_rcv.sb_mb = m->m_next;
    946 				m->m_next = 0;
    947 				m = so->so_rcv.sb_mb;
    948 			} else {
    949 				MFREE(m, so->so_rcv.sb_mb);
    950 				m = so->so_rcv.sb_mb;
    951 			}
    952 		}
    953 	}
    954 	while (m && m->m_type == MT_CONTROL && error == 0) {
    955 		if (flags & MSG_PEEK) {
    956 			if (controlp)
    957 				*controlp = m_copy(m, 0, m->m_len);
    958 			m = m->m_next;
    959 		} else {
    960 			sbfree(&so->so_rcv, m);
    961 			mbuf_removed = 1;
    962 			if (controlp) {
    963 				if (pr->pr_domain->dom_externalize &&
    964 				    mtod(m, struct cmsghdr *)->cmsg_type ==
    965 				    SCM_RIGHTS)
    966 					error = (*pr->pr_domain->dom_externalize)(m);
    967 				*controlp = m;
    968 				so->so_rcv.sb_mb = m->m_next;
    969 				m->m_next = 0;
    970 				m = so->so_rcv.sb_mb;
    971 			} else {
    972 				MFREE(m, so->so_rcv.sb_mb);
    973 				m = so->so_rcv.sb_mb;
    974 			}
    975 		}
    976 		if (controlp) {
    977 			orig_resid = 0;
    978 			controlp = &(*controlp)->m_next;
    979 		}
    980 	}
    981 
    982 	/*
    983 	 * If m is non-NULL, we have some data to read.  From now on,
    984 	 * make sure to keep sb_lastrecord consistent when working on
    985 	 * the last packet on the chain (nextrecord == NULL) and we
    986 	 * change m->m_nextpkt.
    987 	 */
    988 	if (m) {
    989 		if ((flags & MSG_PEEK) == 0) {
    990 			m->m_nextpkt = nextrecord;
    991 			/*
    992 			 * If nextrecord == NULL (this is a single chain),
    993 			 * then sb_lastrecord may not be valid here if m
    994 			 * was changed earlier.
    995 			 */
    996 			if (nextrecord == NULL) {
    997 				KASSERT(so->so_rcv.sb_mb == m);
    998 				so->so_rcv.sb_lastrecord = m;
    999 			}
   1000 		}
   1001 		type = m->m_type;
   1002 		if (type == MT_OOBDATA)
   1003 			flags |= MSG_OOB;
   1004 	} else {
   1005 		if ((flags & MSG_PEEK) == 0) {
   1006 			KASSERT(so->so_rcv.sb_mb == m);
   1007 			so->so_rcv.sb_mb = nextrecord;
   1008 			SB_EMPTY_FIXUP(&so->so_rcv);
   1009 		}
   1010 	}
   1011 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1012 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1013 
   1014 	moff = 0;
   1015 	offset = 0;
   1016 	while (m && uio->uio_resid > 0 && error == 0) {
   1017 		if (m->m_type == MT_OOBDATA) {
   1018 			if (type != MT_OOBDATA)
   1019 				break;
   1020 		} else if (type == MT_OOBDATA)
   1021 			break;
   1022 #ifdef DIAGNOSTIC
   1023 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1024 			panic("receive 3");
   1025 #endif
   1026 		so->so_state &= ~SS_RCVATMARK;
   1027 		len = uio->uio_resid;
   1028 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1029 			len = so->so_oobmark - offset;
   1030 		if (len > m->m_len - moff)
   1031 			len = m->m_len - moff;
   1032 		/*
   1033 		 * If mp is set, just pass back the mbufs.
   1034 		 * Otherwise copy them out via the uio, then free.
   1035 		 * Sockbuf must be consistent here (points to current mbuf,
   1036 		 * it points to next record) when we drop priority;
   1037 		 * we must note any additions to the sockbuf when we
   1038 		 * block interrupts again.
   1039 		 */
   1040 		if (mp == 0) {
   1041 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1042 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1043 			splx(s);
   1044 			error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
   1045 			s = splsoftnet();
   1046 			if (error) {
   1047 				/*
   1048 				 * If any part of the record has been removed
   1049 				 * (such as the MT_SONAME mbuf, which will
   1050 				 * happen when PR_ADDR, and thus also
   1051 				 * PR_ATOMIC, is set), then drop the entire
   1052 				 * record to maintain the atomicity of the
   1053 				 * receive operation.
   1054 				 *
   1055 				 * This avoids a later panic("receive 1a")
   1056 				 * when compiled with DIAGNOSTIC.
   1057 				 */
   1058 				if (m && mbuf_removed
   1059 				    && (pr->pr_flags & PR_ATOMIC))
   1060 					(void) sbdroprecord(&so->so_rcv);
   1061 
   1062 				goto release;
   1063 			}
   1064 		} else
   1065 			uio->uio_resid -= len;
   1066 		if (len == m->m_len - moff) {
   1067 			if (m->m_flags & M_EOR)
   1068 				flags |= MSG_EOR;
   1069 			if (flags & MSG_PEEK) {
   1070 				m = m->m_next;
   1071 				moff = 0;
   1072 			} else {
   1073 				nextrecord = m->m_nextpkt;
   1074 				sbfree(&so->so_rcv, m);
   1075 				if (mp) {
   1076 					*mp = m;
   1077 					mp = &m->m_next;
   1078 					so->so_rcv.sb_mb = m = m->m_next;
   1079 					*mp = (struct mbuf *)0;
   1080 				} else {
   1081 					MFREE(m, so->so_rcv.sb_mb);
   1082 					m = so->so_rcv.sb_mb;
   1083 				}
   1084 				/*
   1085 				 * If m != NULL, we also know that
   1086 				 * so->so_rcv.sb_mb != NULL.
   1087 				 */
   1088 				KASSERT(so->so_rcv.sb_mb == m);
   1089 				if (m) {
   1090 					m->m_nextpkt = nextrecord;
   1091 					if (nextrecord == NULL)
   1092 						so->so_rcv.sb_lastrecord = m;
   1093 				} else {
   1094 					so->so_rcv.sb_mb = nextrecord;
   1095 					SB_EMPTY_FIXUP(&so->so_rcv);
   1096 				}
   1097 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1098 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1099 			}
   1100 		} else {
   1101 			if (flags & MSG_PEEK)
   1102 				moff += len;
   1103 			else {
   1104 				if (mp)
   1105 					*mp = m_copym(m, 0, len, M_WAIT);
   1106 				m->m_data += len;
   1107 				m->m_len -= len;
   1108 				so->so_rcv.sb_cc -= len;
   1109 			}
   1110 		}
   1111 		if (so->so_oobmark) {
   1112 			if ((flags & MSG_PEEK) == 0) {
   1113 				so->so_oobmark -= len;
   1114 				if (so->so_oobmark == 0) {
   1115 					so->so_state |= SS_RCVATMARK;
   1116 					break;
   1117 				}
   1118 			} else {
   1119 				offset += len;
   1120 				if (offset == so->so_oobmark)
   1121 					break;
   1122 			}
   1123 		}
   1124 		if (flags & MSG_EOR)
   1125 			break;
   1126 		/*
   1127 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1128 		 * we must not quit until "uio->uio_resid == 0" or an error
   1129 		 * termination.  If a signal/timeout occurs, return
   1130 		 * with a short count but without error.
   1131 		 * Keep sockbuf locked against other readers.
   1132 		 */
   1133 		while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
   1134 		    !sosendallatonce(so) && !nextrecord) {
   1135 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1136 				break;
   1137 			/*
   1138 			 * If we are peeking and the socket receive buffer is
   1139 			 * full, stop since we can't get more data to peek at.
   1140 			 */
   1141 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1142 				break;
   1143 			/*
   1144 			 * If we've drained the socket buffer, tell the
   1145 			 * protocol in case it needs to do something to
   1146 			 * get it filled again.
   1147 			 */
   1148 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1149 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1150 				    (struct mbuf *)0,
   1151 				    (struct mbuf *)(long)flags,
   1152 				    (struct mbuf *)0,
   1153 				    (struct proc *)0);
   1154 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1155 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1156 			error = sbwait(&so->so_rcv);
   1157 			if (error) {
   1158 				sbunlock(&so->so_rcv);
   1159 				splx(s);
   1160 				return (0);
   1161 			}
   1162 			if ((m = so->so_rcv.sb_mb) != NULL)
   1163 				nextrecord = m->m_nextpkt;
   1164 		}
   1165 	}
   1166 
   1167 	if (m && pr->pr_flags & PR_ATOMIC) {
   1168 		flags |= MSG_TRUNC;
   1169 		if ((flags & MSG_PEEK) == 0)
   1170 			(void) sbdroprecord(&so->so_rcv);
   1171 	}
   1172 	if ((flags & MSG_PEEK) == 0) {
   1173 		if (m == 0) {
   1174 			/*
   1175 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1176 			 * part makes sure sb_lastrecord is up-to-date if
   1177 			 * there is still data in the socket buffer.
   1178 			 */
   1179 			so->so_rcv.sb_mb = nextrecord;
   1180 			if (so->so_rcv.sb_mb == NULL) {
   1181 				so->so_rcv.sb_mbtail = NULL;
   1182 				so->so_rcv.sb_lastrecord = NULL;
   1183 			} else if (nextrecord->m_nextpkt == NULL)
   1184 				so->so_rcv.sb_lastrecord = nextrecord;
   1185 		}
   1186 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1187 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1188 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1189 			(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1190 			    (struct mbuf *)(long)flags, (struct mbuf *)0,
   1191 			    (struct proc *)0);
   1192 	}
   1193 	if (orig_resid == uio->uio_resid && orig_resid &&
   1194 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1195 		sbunlock(&so->so_rcv);
   1196 		splx(s);
   1197 		goto restart;
   1198 	}
   1199 
   1200 	if (flagsp)
   1201 		*flagsp |= flags;
   1202  release:
   1203 	sbunlock(&so->so_rcv);
   1204 	splx(s);
   1205 	return (error);
   1206 }
   1207 
   1208 int
   1209 soshutdown(struct socket *so, int how)
   1210 {
   1211 	struct protosw	*pr;
   1212 
   1213 	pr = so->so_proto;
   1214 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1215 		return (EINVAL);
   1216 
   1217 	if (how == SHUT_RD || how == SHUT_RDWR)
   1218 		sorflush(so);
   1219 	if (how == SHUT_WR || how == SHUT_RDWR)
   1220 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
   1221 		    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
   1222 	return (0);
   1223 }
   1224 
   1225 void
   1226 sorflush(struct socket *so)
   1227 {
   1228 	struct sockbuf	*sb, asb;
   1229 	struct protosw	*pr;
   1230 	int		s;
   1231 
   1232 	sb = &so->so_rcv;
   1233 	pr = so->so_proto;
   1234 	sb->sb_flags |= SB_NOINTR;
   1235 	(void) sblock(sb, M_WAITOK);
   1236 	s = splnet();
   1237 	socantrcvmore(so);
   1238 	sbunlock(sb);
   1239 	asb = *sb;
   1240 	memset((caddr_t)sb, 0, sizeof(*sb));
   1241 	splx(s);
   1242 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1243 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1244 	sbrelease(&asb);
   1245 }
   1246 
   1247 int
   1248 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
   1249 {
   1250 	int		error;
   1251 	struct mbuf	*m;
   1252 
   1253 	error = 0;
   1254 	m = m0;
   1255 	if (level != SOL_SOCKET) {
   1256 		if (so->so_proto && so->so_proto->pr_ctloutput)
   1257 			return ((*so->so_proto->pr_ctloutput)
   1258 				  (PRCO_SETOPT, so, level, optname, &m0));
   1259 		error = ENOPROTOOPT;
   1260 	} else {
   1261 		switch (optname) {
   1262 
   1263 		case SO_LINGER:
   1264 			if (m == NULL || m->m_len != sizeof(struct linger)) {
   1265 				error = EINVAL;
   1266 				goto bad;
   1267 			}
   1268 			so->so_linger = mtod(m, struct linger *)->l_linger;
   1269 			/* fall thru... */
   1270 
   1271 		case SO_DEBUG:
   1272 		case SO_KEEPALIVE:
   1273 		case SO_DONTROUTE:
   1274 		case SO_USELOOPBACK:
   1275 		case SO_BROADCAST:
   1276 		case SO_REUSEADDR:
   1277 		case SO_REUSEPORT:
   1278 		case SO_OOBINLINE:
   1279 		case SO_TIMESTAMP:
   1280 			if (m == NULL || m->m_len < sizeof(int)) {
   1281 				error = EINVAL;
   1282 				goto bad;
   1283 			}
   1284 			if (*mtod(m, int *))
   1285 				so->so_options |= optname;
   1286 			else
   1287 				so->so_options &= ~optname;
   1288 			break;
   1289 
   1290 		case SO_SNDBUF:
   1291 		case SO_RCVBUF:
   1292 		case SO_SNDLOWAT:
   1293 		case SO_RCVLOWAT:
   1294 		    {
   1295 			int optval;
   1296 
   1297 			if (m == NULL || m->m_len < sizeof(int)) {
   1298 				error = EINVAL;
   1299 				goto bad;
   1300 			}
   1301 
   1302 			/*
   1303 			 * Values < 1 make no sense for any of these
   1304 			 * options, so disallow them.
   1305 			 */
   1306 			optval = *mtod(m, int *);
   1307 			if (optval < 1) {
   1308 				error = EINVAL;
   1309 				goto bad;
   1310 			}
   1311 
   1312 			switch (optname) {
   1313 
   1314 			case SO_SNDBUF:
   1315 			case SO_RCVBUF:
   1316 				if (sbreserve(optname == SO_SNDBUF ?
   1317 				    &so->so_snd : &so->so_rcv,
   1318 				    (u_long) optval) == 0) {
   1319 					error = ENOBUFS;
   1320 					goto bad;
   1321 				}
   1322 				break;
   1323 
   1324 			/*
   1325 			 * Make sure the low-water is never greater than
   1326 			 * the high-water.
   1327 			 */
   1328 			case SO_SNDLOWAT:
   1329 				so->so_snd.sb_lowat =
   1330 				    (optval > so->so_snd.sb_hiwat) ?
   1331 				    so->so_snd.sb_hiwat : optval;
   1332 				break;
   1333 			case SO_RCVLOWAT:
   1334 				so->so_rcv.sb_lowat =
   1335 				    (optval > so->so_rcv.sb_hiwat) ?
   1336 				    so->so_rcv.sb_hiwat : optval;
   1337 				break;
   1338 			}
   1339 			break;
   1340 		    }
   1341 
   1342 		case SO_SNDTIMEO:
   1343 		case SO_RCVTIMEO:
   1344 		    {
   1345 			struct timeval *tv;
   1346 			short val;
   1347 
   1348 			if (m == NULL || m->m_len < sizeof(*tv)) {
   1349 				error = EINVAL;
   1350 				goto bad;
   1351 			}
   1352 			tv = mtod(m, struct timeval *);
   1353 			if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) {
   1354 				error = EDOM;
   1355 				goto bad;
   1356 			}
   1357 			val = tv->tv_sec * hz + tv->tv_usec / tick;
   1358 			if (val == 0 && tv->tv_usec != 0)
   1359 				val = 1;
   1360 
   1361 			switch (optname) {
   1362 
   1363 			case SO_SNDTIMEO:
   1364 				so->so_snd.sb_timeo = val;
   1365 				break;
   1366 			case SO_RCVTIMEO:
   1367 				so->so_rcv.sb_timeo = val;
   1368 				break;
   1369 			}
   1370 			break;
   1371 		    }
   1372 
   1373 		default:
   1374 			error = ENOPROTOOPT;
   1375 			break;
   1376 		}
   1377 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
   1378 			(void) ((*so->so_proto->pr_ctloutput)
   1379 				  (PRCO_SETOPT, so, level, optname, &m0));
   1380 			m = NULL;	/* freed by protocol */
   1381 		}
   1382 	}
   1383  bad:
   1384 	if (m)
   1385 		(void) m_free(m);
   1386 	return (error);
   1387 }
   1388 
   1389 int
   1390 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1391 {
   1392 	struct mbuf	*m;
   1393 
   1394 	if (level != SOL_SOCKET) {
   1395 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1396 			return ((*so->so_proto->pr_ctloutput)
   1397 				  (PRCO_GETOPT, so, level, optname, mp));
   1398 		} else
   1399 			return (ENOPROTOOPT);
   1400 	} else {
   1401 		m = m_get(M_WAIT, MT_SOOPTS);
   1402 		m->m_len = sizeof(int);
   1403 
   1404 		switch (optname) {
   1405 
   1406 		case SO_LINGER:
   1407 			m->m_len = sizeof(struct linger);
   1408 			mtod(m, struct linger *)->l_onoff =
   1409 				so->so_options & SO_LINGER;
   1410 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1411 			break;
   1412 
   1413 		case SO_USELOOPBACK:
   1414 		case SO_DONTROUTE:
   1415 		case SO_DEBUG:
   1416 		case SO_KEEPALIVE:
   1417 		case SO_REUSEADDR:
   1418 		case SO_REUSEPORT:
   1419 		case SO_BROADCAST:
   1420 		case SO_OOBINLINE:
   1421 		case SO_TIMESTAMP:
   1422 			*mtod(m, int *) = so->so_options & optname;
   1423 			break;
   1424 
   1425 		case SO_TYPE:
   1426 			*mtod(m, int *) = so->so_type;
   1427 			break;
   1428 
   1429 		case SO_ERROR:
   1430 			*mtod(m, int *) = so->so_error;
   1431 			so->so_error = 0;
   1432 			break;
   1433 
   1434 		case SO_SNDBUF:
   1435 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1436 			break;
   1437 
   1438 		case SO_RCVBUF:
   1439 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1440 			break;
   1441 
   1442 		case SO_SNDLOWAT:
   1443 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1444 			break;
   1445 
   1446 		case SO_RCVLOWAT:
   1447 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1448 			break;
   1449 
   1450 		case SO_SNDTIMEO:
   1451 		case SO_RCVTIMEO:
   1452 		    {
   1453 			int val = (optname == SO_SNDTIMEO ?
   1454 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1455 
   1456 			m->m_len = sizeof(struct timeval);
   1457 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1458 			mtod(m, struct timeval *)->tv_usec =
   1459 			    (val % hz) * tick;
   1460 			break;
   1461 		    }
   1462 
   1463 		default:
   1464 			(void)m_free(m);
   1465 			return (ENOPROTOOPT);
   1466 		}
   1467 		*mp = m;
   1468 		return (0);
   1469 	}
   1470 }
   1471 
   1472 void
   1473 sohasoutofband(struct socket *so)
   1474 {
   1475 	struct proc *p;
   1476 
   1477 	if (so->so_pgid < 0)
   1478 		gsignal(-so->so_pgid, SIGURG);
   1479 	else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
   1480 		psignal(p, SIGURG);
   1481 	selwakeup(&so->so_rcv.sb_sel);
   1482 }
   1483 
   1484 static void
   1485 filt_sordetach(struct knote *kn)
   1486 {
   1487 	struct socket	*so;
   1488 
   1489 	so = (struct socket *)kn->kn_fp->f_data;
   1490 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1491 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1492 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1493 }
   1494 
   1495 /*ARGSUSED*/
   1496 static int
   1497 filt_soread(struct knote *kn, long hint)
   1498 {
   1499 	struct socket	*so;
   1500 
   1501 	so = (struct socket *)kn->kn_fp->f_data;
   1502 	kn->kn_data = so->so_rcv.sb_cc;
   1503 	if (so->so_state & SS_CANTRCVMORE) {
   1504 		kn->kn_flags |= EV_EOF;
   1505 		kn->kn_fflags = so->so_error;
   1506 		return (1);
   1507 	}
   1508 	if (so->so_error)	/* temporary udp error */
   1509 		return (1);
   1510 	if (kn->kn_sfflags & NOTE_LOWAT)
   1511 		return (kn->kn_data >= kn->kn_sdata);
   1512 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1513 }
   1514 
   1515 static void
   1516 filt_sowdetach(struct knote *kn)
   1517 {
   1518 	struct socket	*so;
   1519 
   1520 	so = (struct socket *)kn->kn_fp->f_data;
   1521 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1522 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1523 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1524 }
   1525 
   1526 /*ARGSUSED*/
   1527 static int
   1528 filt_sowrite(struct knote *kn, long hint)
   1529 {
   1530 	struct socket	*so;
   1531 
   1532 	so = (struct socket *)kn->kn_fp->f_data;
   1533 	kn->kn_data = sbspace(&so->so_snd);
   1534 	if (so->so_state & SS_CANTSENDMORE) {
   1535 		kn->kn_flags |= EV_EOF;
   1536 		kn->kn_fflags = so->so_error;
   1537 		return (1);
   1538 	}
   1539 	if (so->so_error)	/* temporary udp error */
   1540 		return (1);
   1541 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1542 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1543 		return (0);
   1544 	if (kn->kn_sfflags & NOTE_LOWAT)
   1545 		return (kn->kn_data >= kn->kn_sdata);
   1546 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1547 }
   1548 
   1549 /*ARGSUSED*/
   1550 static int
   1551 filt_solisten(struct knote *kn, long hint)
   1552 {
   1553 	struct socket	*so;
   1554 
   1555 	so = (struct socket *)kn->kn_fp->f_data;
   1556 
   1557 	/*
   1558 	 * Set kn_data to number of incoming connections, not
   1559 	 * counting partial (incomplete) connections.
   1560 	 */
   1561 	kn->kn_data = so->so_qlen;
   1562 	return (kn->kn_data > 0);
   1563 }
   1564 
   1565 static const struct filterops solisten_filtops =
   1566 	{ 1, NULL, filt_sordetach, filt_solisten };
   1567 static const struct filterops soread_filtops =
   1568 	{ 1, NULL, filt_sordetach, filt_soread };
   1569 static const struct filterops sowrite_filtops =
   1570 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1571 
   1572 int
   1573 soo_kqfilter(struct file *fp, struct knote *kn)
   1574 {
   1575 	struct socket	*so;
   1576 	struct sockbuf	*sb;
   1577 
   1578 	so = (struct socket *)kn->kn_fp->f_data;
   1579 	switch (kn->kn_filter) {
   1580 	case EVFILT_READ:
   1581 		if (so->so_options & SO_ACCEPTCONN)
   1582 			kn->kn_fop = &solisten_filtops;
   1583 		else
   1584 			kn->kn_fop = &soread_filtops;
   1585 		sb = &so->so_rcv;
   1586 		break;
   1587 	case EVFILT_WRITE:
   1588 		kn->kn_fop = &sowrite_filtops;
   1589 		sb = &so->so_snd;
   1590 		break;
   1591 	default:
   1592 		return (1);
   1593 	}
   1594 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1595 	sb->sb_flags |= SB_KNOTE;
   1596 	return (0);
   1597 }
   1598 
   1599