uipc_socket.c revision 1.80 1 /* $NetBSD: uipc_socket.c,v 1.80 2003/05/03 17:53:17 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.80 2003/05/03 17:53:17 yamt Exp $");
76
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/file.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/domain.h>
87 #include <sys/kernel.h>
88 #include <sys/protosw.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/signalvar.h>
92 #include <sys/resourcevar.h>
93 #include <sys/pool.h>
94 #include <sys/event.h>
95
96 #include <uvm/uvm.h>
97
98 struct pool socket_pool;
99
100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
102
103 extern int somaxconn; /* patchable (XXX sysctl) */
104 int somaxconn = SOMAXCONN;
105
106 #ifdef SOSEND_COUNTERS
107 #include <sys/device.h>
108
109 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "loan big");
111 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy big");
113 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy small");
115 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "kva limit");
117
118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
119
120 #else
121
122 #define SOSEND_COUNTER_INCR(ev) /* nothing */
123
124 #endif /* SOSEND_COUNTERS */
125
126 void
127 soinit(void)
128 {
129
130 pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
131 "sockpl", NULL);
132
133 #ifdef SOSEND_COUNTERS
134 evcnt_attach_static(&sosend_loan_big);
135 evcnt_attach_static(&sosend_copy_big);
136 evcnt_attach_static(&sosend_copy_small);
137 evcnt_attach_static(&sosend_kvalimit);
138 #endif /* SOSEND_COUNTERS */
139 }
140
141 #ifdef SOSEND_NO_LOAN
142 int use_sosend_loan = 0;
143 #else
144 int use_sosend_loan = 1;
145 #endif
146
147 struct mbuf *so_pendfree;
148
149 int somaxkva = 16 * 1024 * 1024;
150 int socurkva;
151 int sokvawaiters;
152
153 #define SOCK_LOAN_THRESH 4096
154 #define SOCK_LOAN_CHUNK 65536
155
156 static size_t sodopendfree(struct socket *);
157
158 vaddr_t
159 sokvaalloc(vsize_t len, struct socket *so)
160 {
161 vaddr_t lva;
162 int s;
163
164 while (socurkva + len > somaxkva) {
165 if (sodopendfree(so))
166 continue;
167 SOSEND_COUNTER_INCR(&sosend_kvalimit);
168 s = splvm();
169 sokvawaiters++;
170 (void) tsleep(&socurkva, PVM, "sokva", 0);
171 sokvawaiters--;
172 splx(s);
173 }
174
175 lva = uvm_km_valloc_wait(kernel_map, len);
176 if (lva == 0)
177 return (0);
178 socurkva += len;
179
180 return lva;
181 }
182
183 void
184 sokvafree(vaddr_t sva, vsize_t len)
185 {
186
187 uvm_km_free(kernel_map, sva, len);
188 socurkva -= len;
189 if (sokvawaiters)
190 wakeup(&socurkva);
191 }
192
193 static void
194 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
195 {
196 vaddr_t va, sva, eva;
197 vsize_t len;
198 paddr_t pa;
199 int i, npgs;
200
201 eva = round_page((vaddr_t) buf + size);
202 sva = trunc_page((vaddr_t) buf);
203 len = eva - sva;
204 npgs = len >> PAGE_SHIFT;
205
206 if (__predict_false(pgs == NULL)) {
207 pgs = alloca(npgs * sizeof(*pgs));
208
209 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
210 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
211 panic("sodoloanfree: va 0x%lx not mapped", va);
212 pgs[i] = PHYS_TO_VM_PAGE(pa);
213 }
214 }
215
216 pmap_kremove(sva, len);
217 pmap_update(pmap_kernel());
218 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
219 sokvafree(sva, len);
220 }
221
222 static size_t
223 sodopendfree(struct socket *so)
224 {
225 struct mbuf *m;
226 size_t rv = 0;
227 int s;
228
229 s = splvm();
230
231 for (;;) {
232 m = so_pendfree;
233 if (m == NULL)
234 break;
235 so_pendfree = m->m_next;
236 splx(s);
237
238 rv += m->m_ext.ext_size;
239 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
240 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
241 m->m_ext.ext_size);
242 s = splvm();
243 pool_cache_put(&mbpool_cache, m);
244 }
245
246 for (;;) {
247 m = so->so_pendfree;
248 if (m == NULL)
249 break;
250 so->so_pendfree = m->m_next;
251 splx(s);
252
253 rv += m->m_ext.ext_size;
254 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
255 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
256 m->m_ext.ext_size);
257 s = splvm();
258 pool_cache_put(&mbpool_cache, m);
259 }
260
261 splx(s);
262 return (rv);
263 }
264
265 void
266 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
267 {
268 struct socket *so = arg;
269 int s;
270
271 if (m == NULL) {
272 sodoloanfree(NULL, buf, size);
273 return;
274 }
275
276 s = splvm();
277 m->m_next = so->so_pendfree;
278 so->so_pendfree = m;
279 splx(s);
280 if (sokvawaiters)
281 wakeup(&socurkva);
282 }
283
284 static long
285 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
286 {
287 struct iovec *iov = uio->uio_iov;
288 vaddr_t sva, eva;
289 vsize_t len;
290 vaddr_t lva, va;
291 int npgs, i, error;
292
293 if (uio->uio_segflg != UIO_USERSPACE)
294 return (0);
295
296 if (iov->iov_len < (size_t) space)
297 space = iov->iov_len;
298 if (space > SOCK_LOAN_CHUNK)
299 space = SOCK_LOAN_CHUNK;
300
301 eva = round_page((vaddr_t) iov->iov_base + space);
302 sva = trunc_page((vaddr_t) iov->iov_base);
303 len = eva - sva;
304 npgs = len >> PAGE_SHIFT;
305
306 /* XXX KDASSERT */
307 KASSERT(npgs <= M_EXT_MAXPAGES);
308
309 lva = sokvaalloc(len, so);
310 if (lva == 0)
311 return 0;
312
313 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
314 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
315 if (error) {
316 sokvafree(lva, len);
317 return (0);
318 }
319
320 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
321 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
322 VM_PROT_READ);
323 pmap_update(pmap_kernel());
324
325 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
326
327 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
328 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
329
330 uio->uio_resid -= space;
331 /* uio_offset not updated, not set/used for write(2) */
332 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
333 uio->uio_iov->iov_len -= space;
334 if (uio->uio_iov->iov_len == 0) {
335 uio->uio_iov++;
336 uio->uio_iovcnt--;
337 }
338
339 return (space);
340 }
341
342 /*
343 * Socket operation routines.
344 * These routines are called by the routines in
345 * sys_socket.c or from a system process, and
346 * implement the semantics of socket operations by
347 * switching out to the protocol specific routines.
348 */
349 /*ARGSUSED*/
350 int
351 socreate(int dom, struct socket **aso, int type, int proto)
352 {
353 struct proc *p;
354 struct protosw *prp;
355 struct socket *so;
356 int error, s;
357
358 p = curproc; /* XXX */
359 if (proto)
360 prp = pffindproto(dom, proto, type);
361 else
362 prp = pffindtype(dom, type);
363 if (prp == 0 || prp->pr_usrreq == 0)
364 return (EPROTONOSUPPORT);
365 if (prp->pr_type != type)
366 return (EPROTOTYPE);
367 s = splsoftnet();
368 so = pool_get(&socket_pool, PR_WAITOK);
369 memset((caddr_t)so, 0, sizeof(*so));
370 TAILQ_INIT(&so->so_q0);
371 TAILQ_INIT(&so->so_q);
372 so->so_type = type;
373 so->so_proto = prp;
374 so->so_send = sosend;
375 so->so_receive = soreceive;
376 #ifdef MBUFTRACE
377 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
378 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
379 so->so_mowner = &prp->pr_domain->dom_mowner;
380 #endif
381 if (p != 0)
382 so->so_uid = p->p_ucred->cr_uid;
383 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
384 (struct mbuf *)(long)proto, (struct mbuf *)0, p);
385 if (error) {
386 so->so_state |= SS_NOFDREF;
387 sofree(so);
388 splx(s);
389 return (error);
390 }
391 splx(s);
392 *aso = so;
393 return (0);
394 }
395
396 int
397 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
398 {
399 int s, error;
400
401 s = splsoftnet();
402 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
403 nam, (struct mbuf *)0, p);
404 splx(s);
405 return (error);
406 }
407
408 int
409 solisten(struct socket *so, int backlog)
410 {
411 int s, error;
412
413 s = splsoftnet();
414 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
415 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
416 if (error) {
417 splx(s);
418 return (error);
419 }
420 if (TAILQ_EMPTY(&so->so_q))
421 so->so_options |= SO_ACCEPTCONN;
422 if (backlog < 0)
423 backlog = 0;
424 so->so_qlimit = min(backlog, somaxconn);
425 splx(s);
426 return (0);
427 }
428
429 void
430 sofree(struct socket *so)
431 {
432 struct mbuf *m;
433
434 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
435 return;
436 if (so->so_head) {
437 /*
438 * We must not decommission a socket that's on the accept(2)
439 * queue. If we do, then accept(2) may hang after select(2)
440 * indicated that the listening socket was ready.
441 */
442 if (!soqremque(so, 0))
443 return;
444 }
445 sbrelease(&so->so_snd);
446 sorflush(so);
447 while ((m = so->so_pendfree) != NULL) {
448 so->so_pendfree = m->m_next;
449 m->m_next = so_pendfree;
450 so_pendfree = m;
451 }
452 pool_put(&socket_pool, so);
453 }
454
455 /*
456 * Close a socket on last file table reference removal.
457 * Initiate disconnect if connected.
458 * Free socket when disconnect complete.
459 */
460 int
461 soclose(struct socket *so)
462 {
463 struct socket *so2;
464 int s, error;
465
466 error = 0;
467 s = splsoftnet(); /* conservative */
468 if (so->so_options & SO_ACCEPTCONN) {
469 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
470 (void) soqremque(so2, 0);
471 (void) soabort(so2);
472 }
473 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
474 (void) soqremque(so2, 1);
475 (void) soabort(so2);
476 }
477 }
478 if (so->so_pcb == 0)
479 goto discard;
480 if (so->so_state & SS_ISCONNECTED) {
481 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
482 error = sodisconnect(so);
483 if (error)
484 goto drop;
485 }
486 if (so->so_options & SO_LINGER) {
487 if ((so->so_state & SS_ISDISCONNECTING) &&
488 (so->so_state & SS_NBIO))
489 goto drop;
490 while (so->so_state & SS_ISCONNECTED) {
491 error = tsleep((caddr_t)&so->so_timeo,
492 PSOCK | PCATCH, netcls,
493 so->so_linger * hz);
494 if (error)
495 break;
496 }
497 }
498 }
499 drop:
500 if (so->so_pcb) {
501 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
502 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
503 (struct proc *)0);
504 if (error == 0)
505 error = error2;
506 }
507 discard:
508 if (so->so_state & SS_NOFDREF)
509 panic("soclose: NOFDREF");
510 so->so_state |= SS_NOFDREF;
511 sofree(so);
512 splx(s);
513 return (error);
514 }
515
516 /*
517 * Must be called at splsoftnet...
518 */
519 int
520 soabort(struct socket *so)
521 {
522
523 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
524 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
525 }
526
527 int
528 soaccept(struct socket *so, struct mbuf *nam)
529 {
530 int s, error;
531
532 error = 0;
533 s = splsoftnet();
534 if ((so->so_state & SS_NOFDREF) == 0)
535 panic("soaccept: !NOFDREF");
536 so->so_state &= ~SS_NOFDREF;
537 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
538 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
539 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
540 (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
541 else
542 error = ECONNABORTED;
543
544 splx(s);
545 return (error);
546 }
547
548 int
549 soconnect(struct socket *so, struct mbuf *nam)
550 {
551 struct proc *p;
552 int s, error;
553
554 p = curproc; /* XXX */
555 if (so->so_options & SO_ACCEPTCONN)
556 return (EOPNOTSUPP);
557 s = splsoftnet();
558 /*
559 * If protocol is connection-based, can only connect once.
560 * Otherwise, if connected, try to disconnect first.
561 * This allows user to disconnect by connecting to, e.g.,
562 * a null address.
563 */
564 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
565 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
566 (error = sodisconnect(so))))
567 error = EISCONN;
568 else
569 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
570 (struct mbuf *)0, nam, (struct mbuf *)0, p);
571 splx(s);
572 return (error);
573 }
574
575 int
576 soconnect2(struct socket *so1, struct socket *so2)
577 {
578 int s, error;
579
580 s = splsoftnet();
581 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
582 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
583 (struct proc *)0);
584 splx(s);
585 return (error);
586 }
587
588 int
589 sodisconnect(struct socket *so)
590 {
591 int s, error;
592
593 s = splsoftnet();
594 if ((so->so_state & SS_ISCONNECTED) == 0) {
595 error = ENOTCONN;
596 goto bad;
597 }
598 if (so->so_state & SS_ISDISCONNECTING) {
599 error = EALREADY;
600 goto bad;
601 }
602 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
603 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
604 (struct proc *)0);
605 bad:
606 splx(s);
607 sodopendfree(so);
608 return (error);
609 }
610
611 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
612 /*
613 * Send on a socket.
614 * If send must go all at once and message is larger than
615 * send buffering, then hard error.
616 * Lock against other senders.
617 * If must go all at once and not enough room now, then
618 * inform user that this would block and do nothing.
619 * Otherwise, if nonblocking, send as much as possible.
620 * The data to be sent is described by "uio" if nonzero,
621 * otherwise by the mbuf chain "top" (which must be null
622 * if uio is not). Data provided in mbuf chain must be small
623 * enough to send all at once.
624 *
625 * Returns nonzero on error, timeout or signal; callers
626 * must check for short counts if EINTR/ERESTART are returned.
627 * Data and control buffers are freed on return.
628 */
629 int
630 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
631 struct mbuf *control, int flags)
632 {
633 struct proc *p;
634 struct mbuf **mp, *m;
635 long space, len, resid, clen, mlen;
636 int error, s, dontroute, atomic;
637
638 sodopendfree(so);
639
640 p = curproc; /* XXX */
641 clen = 0;
642 atomic = sosendallatonce(so) || top;
643 if (uio)
644 resid = uio->uio_resid;
645 else
646 resid = top->m_pkthdr.len;
647 /*
648 * In theory resid should be unsigned.
649 * However, space must be signed, as it might be less than 0
650 * if we over-committed, and we must use a signed comparison
651 * of space and resid. On the other hand, a negative resid
652 * causes us to loop sending 0-length segments to the protocol.
653 */
654 if (resid < 0) {
655 error = EINVAL;
656 goto out;
657 }
658 dontroute =
659 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
660 (so->so_proto->pr_flags & PR_ATOMIC);
661 p->p_stats->p_ru.ru_msgsnd++;
662 if (control)
663 clen = control->m_len;
664 #define snderr(errno) { error = errno; splx(s); goto release; }
665
666 restart:
667 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
668 goto out;
669 do {
670 s = splsoftnet();
671 if (so->so_state & SS_CANTSENDMORE)
672 snderr(EPIPE);
673 if (so->so_error) {
674 error = so->so_error;
675 so->so_error = 0;
676 splx(s);
677 goto release;
678 }
679 if ((so->so_state & SS_ISCONNECTED) == 0) {
680 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
681 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
682 !(resid == 0 && clen != 0))
683 snderr(ENOTCONN);
684 } else if (addr == 0)
685 snderr(EDESTADDRREQ);
686 }
687 space = sbspace(&so->so_snd);
688 if (flags & MSG_OOB)
689 space += 1024;
690 if ((atomic && resid > so->so_snd.sb_hiwat) ||
691 clen > so->so_snd.sb_hiwat)
692 snderr(EMSGSIZE);
693 if (space < resid + clen && uio &&
694 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
695 if (so->so_state & SS_NBIO)
696 snderr(EWOULDBLOCK);
697 sbunlock(&so->so_snd);
698 error = sbwait(&so->so_snd);
699 splx(s);
700 if (error)
701 goto out;
702 goto restart;
703 }
704 splx(s);
705 mp = ⊤
706 space -= clen;
707 do {
708 if (uio == NULL) {
709 /*
710 * Data is prepackaged in "top".
711 */
712 resid = 0;
713 if (flags & MSG_EOR)
714 top->m_flags |= M_EOR;
715 } else do {
716 if (top == 0) {
717 m = m_gethdr(M_WAIT, MT_DATA);
718 mlen = MHLEN;
719 m->m_pkthdr.len = 0;
720 m->m_pkthdr.rcvif = (struct ifnet *)0;
721 } else {
722 m = m_get(M_WAIT, MT_DATA);
723 mlen = MLEN;
724 }
725 MCLAIM(m, so->so_snd.sb_mowner);
726 if (use_sosend_loan &&
727 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
728 space >= SOCK_LOAN_THRESH &&
729 (len = sosend_loan(so, uio, m,
730 space)) != 0) {
731 SOSEND_COUNTER_INCR(&sosend_loan_big);
732 space -= len;
733 goto have_data;
734 }
735 if (resid >= MINCLSIZE && space >= MCLBYTES) {
736 SOSEND_COUNTER_INCR(&sosend_copy_big);
737 m_clget(m, M_WAIT);
738 if ((m->m_flags & M_EXT) == 0)
739 goto nopages;
740 mlen = MCLBYTES;
741 if (atomic && top == 0) {
742 len = lmin(MCLBYTES - max_hdr,
743 resid);
744 m->m_data += max_hdr;
745 } else
746 len = lmin(MCLBYTES, resid);
747 space -= len;
748 } else {
749 nopages:
750 SOSEND_COUNTER_INCR(&sosend_copy_small);
751 len = lmin(lmin(mlen, resid), space);
752 space -= len;
753 /*
754 * For datagram protocols, leave room
755 * for protocol headers in first mbuf.
756 */
757 if (atomic && top == 0 && len < mlen)
758 MH_ALIGN(m, len);
759 }
760 error = uiomove(mtod(m, caddr_t), (int)len,
761 uio);
762 have_data:
763 resid = uio->uio_resid;
764 m->m_len = len;
765 *mp = m;
766 top->m_pkthdr.len += len;
767 if (error)
768 goto release;
769 mp = &m->m_next;
770 if (resid <= 0) {
771 if (flags & MSG_EOR)
772 top->m_flags |= M_EOR;
773 break;
774 }
775 } while (space > 0 && atomic);
776
777 s = splsoftnet();
778
779 if (so->so_state & SS_CANTSENDMORE)
780 snderr(EPIPE);
781
782 if (dontroute)
783 so->so_options |= SO_DONTROUTE;
784 if (resid > 0)
785 so->so_state |= SS_MORETOCOME;
786 error = (*so->so_proto->pr_usrreq)(so,
787 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
788 top, addr, control, p);
789 if (dontroute)
790 so->so_options &= ~SO_DONTROUTE;
791 if (resid > 0)
792 so->so_state &= ~SS_MORETOCOME;
793 splx(s);
794
795 clen = 0;
796 control = 0;
797 top = 0;
798 mp = ⊤
799 if (error)
800 goto release;
801 } while (resid && space > 0);
802 } while (resid);
803
804 release:
805 sbunlock(&so->so_snd);
806 out:
807 if (top)
808 m_freem(top);
809 if (control)
810 m_freem(control);
811 return (error);
812 }
813
814 /*
815 * Implement receive operations on a socket.
816 * We depend on the way that records are added to the sockbuf
817 * by sbappend*. In particular, each record (mbufs linked through m_next)
818 * must begin with an address if the protocol so specifies,
819 * followed by an optional mbuf or mbufs containing ancillary data,
820 * and then zero or more mbufs of data.
821 * In order to avoid blocking network interrupts for the entire time here,
822 * we splx() while doing the actual copy to user space.
823 * Although the sockbuf is locked, new data may still be appended,
824 * and thus we must maintain consistency of the sockbuf during that time.
825 *
826 * The caller may receive the data as a single mbuf chain by supplying
827 * an mbuf **mp0 for use in returning the chain. The uio is then used
828 * only for the count in uio_resid.
829 */
830 int
831 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
832 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
833 {
834 struct mbuf *m, **mp;
835 int flags, len, error, s, offset, moff, type, orig_resid;
836 struct protosw *pr;
837 struct mbuf *nextrecord;
838 int mbuf_removed = 0;
839
840 pr = so->so_proto;
841 mp = mp0;
842 type = 0;
843 orig_resid = uio->uio_resid;
844 if (paddr)
845 *paddr = 0;
846 if (controlp)
847 *controlp = 0;
848 if (flagsp)
849 flags = *flagsp &~ MSG_EOR;
850 else
851 flags = 0;
852
853 if ((flags & MSG_DONTWAIT) == 0)
854 sodopendfree(so);
855
856 if (flags & MSG_OOB) {
857 m = m_get(M_WAIT, MT_DATA);
858 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
859 (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
860 (struct proc *)0);
861 if (error)
862 goto bad;
863 do {
864 error = uiomove(mtod(m, caddr_t),
865 (int) min(uio->uio_resid, m->m_len), uio);
866 m = m_free(m);
867 } while (uio->uio_resid && error == 0 && m);
868 bad:
869 if (m)
870 m_freem(m);
871 return (error);
872 }
873 if (mp)
874 *mp = (struct mbuf *)0;
875 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
876 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
877 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
878
879 restart:
880 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
881 return (error);
882 s = splsoftnet();
883
884 m = so->so_rcv.sb_mb;
885 /*
886 * If we have less data than requested, block awaiting more
887 * (subject to any timeout) if:
888 * 1. the current count is less than the low water mark,
889 * 2. MSG_WAITALL is set, and it is possible to do the entire
890 * receive operation at once if we block (resid <= hiwat), or
891 * 3. MSG_DONTWAIT is not set.
892 * If MSG_WAITALL is set but resid is larger than the receive buffer,
893 * we have to do the receive in sections, and thus risk returning
894 * a short count if a timeout or signal occurs after we start.
895 */
896 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
897 so->so_rcv.sb_cc < uio->uio_resid) &&
898 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
899 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
900 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
901 #ifdef DIAGNOSTIC
902 if (m == 0 && so->so_rcv.sb_cc)
903 panic("receive 1");
904 #endif
905 if (so->so_error) {
906 if (m)
907 goto dontblock;
908 error = so->so_error;
909 if ((flags & MSG_PEEK) == 0)
910 so->so_error = 0;
911 goto release;
912 }
913 if (so->so_state & SS_CANTRCVMORE) {
914 if (m)
915 goto dontblock;
916 else
917 goto release;
918 }
919 for (; m; m = m->m_next)
920 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
921 m = so->so_rcv.sb_mb;
922 goto dontblock;
923 }
924 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
925 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
926 error = ENOTCONN;
927 goto release;
928 }
929 if (uio->uio_resid == 0)
930 goto release;
931 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
932 error = EWOULDBLOCK;
933 goto release;
934 }
935 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
936 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
937 sbunlock(&so->so_rcv);
938 error = sbwait(&so->so_rcv);
939 splx(s);
940 if (error)
941 return (error);
942 goto restart;
943 }
944 dontblock:
945 /*
946 * On entry here, m points to the first record of the socket buffer.
947 * While we process the initial mbufs containing address and control
948 * info, we save a copy of m->m_nextpkt into nextrecord.
949 */
950 #ifdef notyet /* XXXX */
951 if (uio->uio_procp)
952 uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
953 #endif
954 KASSERT(m == so->so_rcv.sb_mb);
955 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
956 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
957 nextrecord = m->m_nextpkt;
958 if (pr->pr_flags & PR_ADDR) {
959 #ifdef DIAGNOSTIC
960 if (m->m_type != MT_SONAME)
961 panic("receive 1a");
962 #endif
963 orig_resid = 0;
964 if (flags & MSG_PEEK) {
965 if (paddr)
966 *paddr = m_copy(m, 0, m->m_len);
967 m = m->m_next;
968 } else {
969 sbfree(&so->so_rcv, m);
970 mbuf_removed = 1;
971 if (paddr) {
972 *paddr = m;
973 so->so_rcv.sb_mb = m->m_next;
974 m->m_next = 0;
975 m = so->so_rcv.sb_mb;
976 } else {
977 MFREE(m, so->so_rcv.sb_mb);
978 m = so->so_rcv.sb_mb;
979 }
980 }
981 }
982 while (m && m->m_type == MT_CONTROL && error == 0) {
983 if (flags & MSG_PEEK) {
984 if (controlp)
985 *controlp = m_copy(m, 0, m->m_len);
986 m = m->m_next;
987 } else {
988 sbfree(&so->so_rcv, m);
989 mbuf_removed = 1;
990 if (controlp) {
991 if (pr->pr_domain->dom_externalize &&
992 mtod(m, struct cmsghdr *)->cmsg_type ==
993 SCM_RIGHTS)
994 error = (*pr->pr_domain->dom_externalize)(m);
995 *controlp = m;
996 so->so_rcv.sb_mb = m->m_next;
997 m->m_next = 0;
998 m = so->so_rcv.sb_mb;
999 } else {
1000 MFREE(m, so->so_rcv.sb_mb);
1001 m = so->so_rcv.sb_mb;
1002 }
1003 }
1004 if (controlp) {
1005 orig_resid = 0;
1006 controlp = &(*controlp)->m_next;
1007 }
1008 }
1009
1010 /*
1011 * If m is non-NULL, we have some data to read. From now on,
1012 * make sure to keep sb_lastrecord consistent when working on
1013 * the last packet on the chain (nextrecord == NULL) and we
1014 * change m->m_nextpkt.
1015 */
1016 if (m) {
1017 if ((flags & MSG_PEEK) == 0) {
1018 m->m_nextpkt = nextrecord;
1019 /*
1020 * If nextrecord == NULL (this is a single chain),
1021 * then sb_lastrecord may not be valid here if m
1022 * was changed earlier.
1023 */
1024 if (nextrecord == NULL) {
1025 KASSERT(so->so_rcv.sb_mb == m);
1026 so->so_rcv.sb_lastrecord = m;
1027 }
1028 }
1029 type = m->m_type;
1030 if (type == MT_OOBDATA)
1031 flags |= MSG_OOB;
1032 } else {
1033 if ((flags & MSG_PEEK) == 0) {
1034 KASSERT(so->so_rcv.sb_mb == m);
1035 so->so_rcv.sb_mb = nextrecord;
1036 SB_EMPTY_FIXUP(&so->so_rcv);
1037 }
1038 }
1039 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1040 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1041
1042 moff = 0;
1043 offset = 0;
1044 while (m && uio->uio_resid > 0 && error == 0) {
1045 if (m->m_type == MT_OOBDATA) {
1046 if (type != MT_OOBDATA)
1047 break;
1048 } else if (type == MT_OOBDATA)
1049 break;
1050 #ifdef DIAGNOSTIC
1051 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1052 panic("receive 3");
1053 #endif
1054 so->so_state &= ~SS_RCVATMARK;
1055 len = uio->uio_resid;
1056 if (so->so_oobmark && len > so->so_oobmark - offset)
1057 len = so->so_oobmark - offset;
1058 if (len > m->m_len - moff)
1059 len = m->m_len - moff;
1060 /*
1061 * If mp is set, just pass back the mbufs.
1062 * Otherwise copy them out via the uio, then free.
1063 * Sockbuf must be consistent here (points to current mbuf,
1064 * it points to next record) when we drop priority;
1065 * we must note any additions to the sockbuf when we
1066 * block interrupts again.
1067 */
1068 if (mp == 0) {
1069 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1070 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1071 splx(s);
1072 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1073 s = splsoftnet();
1074 if (error) {
1075 /*
1076 * If any part of the record has been removed
1077 * (such as the MT_SONAME mbuf, which will
1078 * happen when PR_ADDR, and thus also
1079 * PR_ATOMIC, is set), then drop the entire
1080 * record to maintain the atomicity of the
1081 * receive operation.
1082 *
1083 * This avoids a later panic("receive 1a")
1084 * when compiled with DIAGNOSTIC.
1085 */
1086 if (m && mbuf_removed
1087 && (pr->pr_flags & PR_ATOMIC))
1088 (void) sbdroprecord(&so->so_rcv);
1089
1090 goto release;
1091 }
1092 } else
1093 uio->uio_resid -= len;
1094 if (len == m->m_len - moff) {
1095 if (m->m_flags & M_EOR)
1096 flags |= MSG_EOR;
1097 if (flags & MSG_PEEK) {
1098 m = m->m_next;
1099 moff = 0;
1100 } else {
1101 nextrecord = m->m_nextpkt;
1102 sbfree(&so->so_rcv, m);
1103 if (mp) {
1104 *mp = m;
1105 mp = &m->m_next;
1106 so->so_rcv.sb_mb = m = m->m_next;
1107 *mp = (struct mbuf *)0;
1108 } else {
1109 MFREE(m, so->so_rcv.sb_mb);
1110 m = so->so_rcv.sb_mb;
1111 }
1112 /*
1113 * If m != NULL, we also know that
1114 * so->so_rcv.sb_mb != NULL.
1115 */
1116 KASSERT(so->so_rcv.sb_mb == m);
1117 if (m) {
1118 m->m_nextpkt = nextrecord;
1119 if (nextrecord == NULL)
1120 so->so_rcv.sb_lastrecord = m;
1121 } else {
1122 so->so_rcv.sb_mb = nextrecord;
1123 SB_EMPTY_FIXUP(&so->so_rcv);
1124 }
1125 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1126 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1127 }
1128 } else {
1129 if (flags & MSG_PEEK)
1130 moff += len;
1131 else {
1132 if (mp)
1133 *mp = m_copym(m, 0, len, M_WAIT);
1134 m->m_data += len;
1135 m->m_len -= len;
1136 so->so_rcv.sb_cc -= len;
1137 }
1138 }
1139 if (so->so_oobmark) {
1140 if ((flags & MSG_PEEK) == 0) {
1141 so->so_oobmark -= len;
1142 if (so->so_oobmark == 0) {
1143 so->so_state |= SS_RCVATMARK;
1144 break;
1145 }
1146 } else {
1147 offset += len;
1148 if (offset == so->so_oobmark)
1149 break;
1150 }
1151 }
1152 if (flags & MSG_EOR)
1153 break;
1154 /*
1155 * If the MSG_WAITALL flag is set (for non-atomic socket),
1156 * we must not quit until "uio->uio_resid == 0" or an error
1157 * termination. If a signal/timeout occurs, return
1158 * with a short count but without error.
1159 * Keep sockbuf locked against other readers.
1160 */
1161 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1162 !sosendallatonce(so) && !nextrecord) {
1163 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1164 break;
1165 /*
1166 * If we are peeking and the socket receive buffer is
1167 * full, stop since we can't get more data to peek at.
1168 */
1169 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1170 break;
1171 /*
1172 * If we've drained the socket buffer, tell the
1173 * protocol in case it needs to do something to
1174 * get it filled again.
1175 */
1176 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1177 (*pr->pr_usrreq)(so, PRU_RCVD,
1178 (struct mbuf *)0,
1179 (struct mbuf *)(long)flags,
1180 (struct mbuf *)0,
1181 (struct proc *)0);
1182 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1183 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1184 error = sbwait(&so->so_rcv);
1185 if (error) {
1186 sbunlock(&so->so_rcv);
1187 splx(s);
1188 return (0);
1189 }
1190 if ((m = so->so_rcv.sb_mb) != NULL)
1191 nextrecord = m->m_nextpkt;
1192 }
1193 }
1194
1195 if (m && pr->pr_flags & PR_ATOMIC) {
1196 flags |= MSG_TRUNC;
1197 if ((flags & MSG_PEEK) == 0)
1198 (void) sbdroprecord(&so->so_rcv);
1199 }
1200 if ((flags & MSG_PEEK) == 0) {
1201 if (m == 0) {
1202 /*
1203 * First part is an inline SB_EMPTY_FIXUP(). Second
1204 * part makes sure sb_lastrecord is up-to-date if
1205 * there is still data in the socket buffer.
1206 */
1207 so->so_rcv.sb_mb = nextrecord;
1208 if (so->so_rcv.sb_mb == NULL) {
1209 so->so_rcv.sb_mbtail = NULL;
1210 so->so_rcv.sb_lastrecord = NULL;
1211 } else if (nextrecord->m_nextpkt == NULL)
1212 so->so_rcv.sb_lastrecord = nextrecord;
1213 }
1214 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1215 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1216 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1217 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1218 (struct mbuf *)(long)flags, (struct mbuf *)0,
1219 (struct proc *)0);
1220 }
1221 if (orig_resid == uio->uio_resid && orig_resid &&
1222 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1223 sbunlock(&so->so_rcv);
1224 splx(s);
1225 goto restart;
1226 }
1227
1228 if (flagsp)
1229 *flagsp |= flags;
1230 release:
1231 sbunlock(&so->so_rcv);
1232 splx(s);
1233 return (error);
1234 }
1235
1236 int
1237 soshutdown(struct socket *so, int how)
1238 {
1239 struct protosw *pr;
1240
1241 pr = so->so_proto;
1242 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1243 return (EINVAL);
1244
1245 if (how == SHUT_RD || how == SHUT_RDWR)
1246 sorflush(so);
1247 if (how == SHUT_WR || how == SHUT_RDWR)
1248 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1249 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1250 return (0);
1251 }
1252
1253 void
1254 sorflush(struct socket *so)
1255 {
1256 struct sockbuf *sb, asb;
1257 struct protosw *pr;
1258 int s;
1259
1260 sb = &so->so_rcv;
1261 pr = so->so_proto;
1262 sb->sb_flags |= SB_NOINTR;
1263 (void) sblock(sb, M_WAITOK);
1264 s = splnet();
1265 socantrcvmore(so);
1266 sbunlock(sb);
1267 asb = *sb;
1268 memset((caddr_t)sb, 0, sizeof(*sb));
1269 splx(s);
1270 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1271 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1272 sbrelease(&asb);
1273 }
1274
1275 int
1276 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1277 {
1278 int error;
1279 struct mbuf *m;
1280
1281 error = 0;
1282 m = m0;
1283 if (level != SOL_SOCKET) {
1284 if (so->so_proto && so->so_proto->pr_ctloutput)
1285 return ((*so->so_proto->pr_ctloutput)
1286 (PRCO_SETOPT, so, level, optname, &m0));
1287 error = ENOPROTOOPT;
1288 } else {
1289 switch (optname) {
1290
1291 case SO_LINGER:
1292 if (m == NULL || m->m_len != sizeof(struct linger)) {
1293 error = EINVAL;
1294 goto bad;
1295 }
1296 so->so_linger = mtod(m, struct linger *)->l_linger;
1297 /* fall thru... */
1298
1299 case SO_DEBUG:
1300 case SO_KEEPALIVE:
1301 case SO_DONTROUTE:
1302 case SO_USELOOPBACK:
1303 case SO_BROADCAST:
1304 case SO_REUSEADDR:
1305 case SO_REUSEPORT:
1306 case SO_OOBINLINE:
1307 case SO_TIMESTAMP:
1308 if (m == NULL || m->m_len < sizeof(int)) {
1309 error = EINVAL;
1310 goto bad;
1311 }
1312 if (*mtod(m, int *))
1313 so->so_options |= optname;
1314 else
1315 so->so_options &= ~optname;
1316 break;
1317
1318 case SO_SNDBUF:
1319 case SO_RCVBUF:
1320 case SO_SNDLOWAT:
1321 case SO_RCVLOWAT:
1322 {
1323 int optval;
1324
1325 if (m == NULL || m->m_len < sizeof(int)) {
1326 error = EINVAL;
1327 goto bad;
1328 }
1329
1330 /*
1331 * Values < 1 make no sense for any of these
1332 * options, so disallow them.
1333 */
1334 optval = *mtod(m, int *);
1335 if (optval < 1) {
1336 error = EINVAL;
1337 goto bad;
1338 }
1339
1340 switch (optname) {
1341
1342 case SO_SNDBUF:
1343 case SO_RCVBUF:
1344 if (sbreserve(optname == SO_SNDBUF ?
1345 &so->so_snd : &so->so_rcv,
1346 (u_long) optval) == 0) {
1347 error = ENOBUFS;
1348 goto bad;
1349 }
1350 break;
1351
1352 /*
1353 * Make sure the low-water is never greater than
1354 * the high-water.
1355 */
1356 case SO_SNDLOWAT:
1357 so->so_snd.sb_lowat =
1358 (optval > so->so_snd.sb_hiwat) ?
1359 so->so_snd.sb_hiwat : optval;
1360 break;
1361 case SO_RCVLOWAT:
1362 so->so_rcv.sb_lowat =
1363 (optval > so->so_rcv.sb_hiwat) ?
1364 so->so_rcv.sb_hiwat : optval;
1365 break;
1366 }
1367 break;
1368 }
1369
1370 case SO_SNDTIMEO:
1371 case SO_RCVTIMEO:
1372 {
1373 struct timeval *tv;
1374 short val;
1375
1376 if (m == NULL || m->m_len < sizeof(*tv)) {
1377 error = EINVAL;
1378 goto bad;
1379 }
1380 tv = mtod(m, struct timeval *);
1381 if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) {
1382 error = EDOM;
1383 goto bad;
1384 }
1385 val = tv->tv_sec * hz + tv->tv_usec / tick;
1386 if (val == 0 && tv->tv_usec != 0)
1387 val = 1;
1388
1389 switch (optname) {
1390
1391 case SO_SNDTIMEO:
1392 so->so_snd.sb_timeo = val;
1393 break;
1394 case SO_RCVTIMEO:
1395 so->so_rcv.sb_timeo = val;
1396 break;
1397 }
1398 break;
1399 }
1400
1401 default:
1402 error = ENOPROTOOPT;
1403 break;
1404 }
1405 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1406 (void) ((*so->so_proto->pr_ctloutput)
1407 (PRCO_SETOPT, so, level, optname, &m0));
1408 m = NULL; /* freed by protocol */
1409 }
1410 }
1411 bad:
1412 if (m)
1413 (void) m_free(m);
1414 return (error);
1415 }
1416
1417 int
1418 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1419 {
1420 struct mbuf *m;
1421
1422 if (level != SOL_SOCKET) {
1423 if (so->so_proto && so->so_proto->pr_ctloutput) {
1424 return ((*so->so_proto->pr_ctloutput)
1425 (PRCO_GETOPT, so, level, optname, mp));
1426 } else
1427 return (ENOPROTOOPT);
1428 } else {
1429 m = m_get(M_WAIT, MT_SOOPTS);
1430 m->m_len = sizeof(int);
1431
1432 switch (optname) {
1433
1434 case SO_LINGER:
1435 m->m_len = sizeof(struct linger);
1436 mtod(m, struct linger *)->l_onoff =
1437 so->so_options & SO_LINGER;
1438 mtod(m, struct linger *)->l_linger = so->so_linger;
1439 break;
1440
1441 case SO_USELOOPBACK:
1442 case SO_DONTROUTE:
1443 case SO_DEBUG:
1444 case SO_KEEPALIVE:
1445 case SO_REUSEADDR:
1446 case SO_REUSEPORT:
1447 case SO_BROADCAST:
1448 case SO_OOBINLINE:
1449 case SO_TIMESTAMP:
1450 *mtod(m, int *) = so->so_options & optname;
1451 break;
1452
1453 case SO_TYPE:
1454 *mtod(m, int *) = so->so_type;
1455 break;
1456
1457 case SO_ERROR:
1458 *mtod(m, int *) = so->so_error;
1459 so->so_error = 0;
1460 break;
1461
1462 case SO_SNDBUF:
1463 *mtod(m, int *) = so->so_snd.sb_hiwat;
1464 break;
1465
1466 case SO_RCVBUF:
1467 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1468 break;
1469
1470 case SO_SNDLOWAT:
1471 *mtod(m, int *) = so->so_snd.sb_lowat;
1472 break;
1473
1474 case SO_RCVLOWAT:
1475 *mtod(m, int *) = so->so_rcv.sb_lowat;
1476 break;
1477
1478 case SO_SNDTIMEO:
1479 case SO_RCVTIMEO:
1480 {
1481 int val = (optname == SO_SNDTIMEO ?
1482 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1483
1484 m->m_len = sizeof(struct timeval);
1485 mtod(m, struct timeval *)->tv_sec = val / hz;
1486 mtod(m, struct timeval *)->tv_usec =
1487 (val % hz) * tick;
1488 break;
1489 }
1490
1491 default:
1492 (void)m_free(m);
1493 return (ENOPROTOOPT);
1494 }
1495 *mp = m;
1496 return (0);
1497 }
1498 }
1499
1500 void
1501 sohasoutofband(struct socket *so)
1502 {
1503 struct proc *p;
1504
1505 if (so->so_pgid < 0)
1506 gsignal(-so->so_pgid, SIGURG);
1507 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
1508 psignal(p, SIGURG);
1509 selwakeup(&so->so_rcv.sb_sel);
1510 }
1511
1512 static void
1513 filt_sordetach(struct knote *kn)
1514 {
1515 struct socket *so;
1516
1517 so = (struct socket *)kn->kn_fp->f_data;
1518 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1519 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1520 so->so_rcv.sb_flags &= ~SB_KNOTE;
1521 }
1522
1523 /*ARGSUSED*/
1524 static int
1525 filt_soread(struct knote *kn, long hint)
1526 {
1527 struct socket *so;
1528
1529 so = (struct socket *)kn->kn_fp->f_data;
1530 kn->kn_data = so->so_rcv.sb_cc;
1531 if (so->so_state & SS_CANTRCVMORE) {
1532 kn->kn_flags |= EV_EOF;
1533 kn->kn_fflags = so->so_error;
1534 return (1);
1535 }
1536 if (so->so_error) /* temporary udp error */
1537 return (1);
1538 if (kn->kn_sfflags & NOTE_LOWAT)
1539 return (kn->kn_data >= kn->kn_sdata);
1540 return (kn->kn_data >= so->so_rcv.sb_lowat);
1541 }
1542
1543 static void
1544 filt_sowdetach(struct knote *kn)
1545 {
1546 struct socket *so;
1547
1548 so = (struct socket *)kn->kn_fp->f_data;
1549 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1550 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1551 so->so_snd.sb_flags &= ~SB_KNOTE;
1552 }
1553
1554 /*ARGSUSED*/
1555 static int
1556 filt_sowrite(struct knote *kn, long hint)
1557 {
1558 struct socket *so;
1559
1560 so = (struct socket *)kn->kn_fp->f_data;
1561 kn->kn_data = sbspace(&so->so_snd);
1562 if (so->so_state & SS_CANTSENDMORE) {
1563 kn->kn_flags |= EV_EOF;
1564 kn->kn_fflags = so->so_error;
1565 return (1);
1566 }
1567 if (so->so_error) /* temporary udp error */
1568 return (1);
1569 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1570 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1571 return (0);
1572 if (kn->kn_sfflags & NOTE_LOWAT)
1573 return (kn->kn_data >= kn->kn_sdata);
1574 return (kn->kn_data >= so->so_snd.sb_lowat);
1575 }
1576
1577 /*ARGSUSED*/
1578 static int
1579 filt_solisten(struct knote *kn, long hint)
1580 {
1581 struct socket *so;
1582
1583 so = (struct socket *)kn->kn_fp->f_data;
1584
1585 /*
1586 * Set kn_data to number of incoming connections, not
1587 * counting partial (incomplete) connections.
1588 */
1589 kn->kn_data = so->so_qlen;
1590 return (kn->kn_data > 0);
1591 }
1592
1593 static const struct filterops solisten_filtops =
1594 { 1, NULL, filt_sordetach, filt_solisten };
1595 static const struct filterops soread_filtops =
1596 { 1, NULL, filt_sordetach, filt_soread };
1597 static const struct filterops sowrite_filtops =
1598 { 1, NULL, filt_sowdetach, filt_sowrite };
1599
1600 int
1601 soo_kqfilter(struct file *fp, struct knote *kn)
1602 {
1603 struct socket *so;
1604 struct sockbuf *sb;
1605
1606 so = (struct socket *)kn->kn_fp->f_data;
1607 switch (kn->kn_filter) {
1608 case EVFILT_READ:
1609 if (so->so_options & SO_ACCEPTCONN)
1610 kn->kn_fop = &solisten_filtops;
1611 else
1612 kn->kn_fop = &soread_filtops;
1613 sb = &so->so_rcv;
1614 break;
1615 case EVFILT_WRITE:
1616 kn->kn_fop = &sowrite_filtops;
1617 sb = &so->so_snd;
1618 break;
1619 default:
1620 return (1);
1621 }
1622 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1623 sb->sb_flags |= SB_KNOTE;
1624 return (0);
1625 }
1626
1627