uipc_socket.c revision 1.81 1 /* $NetBSD: uipc_socket.c,v 1.81 2003/06/23 11:02:07 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.81 2003/06/23 11:02:07 martin Exp $");
76
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/file.h>
85 #include <sys/malloc.h>
86 #include <sys/mbuf.h>
87 #include <sys/domain.h>
88 #include <sys/kernel.h>
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/pool.h>
95 #include <sys/event.h>
96
97 #include <uvm/uvm.h>
98
99 struct pool socket_pool;
100
101 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
102 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
103
104 extern int somaxconn; /* patchable (XXX sysctl) */
105 int somaxconn = SOMAXCONN;
106
107 #ifdef SOSEND_COUNTERS
108 #include <sys/device.h>
109
110 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "loan big");
112 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy big");
114 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "copy small");
116 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
117 NULL, "sosend", "kva limit");
118
119 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
120
121 #else
122
123 #define SOSEND_COUNTER_INCR(ev) /* nothing */
124
125 #endif /* SOSEND_COUNTERS */
126
127 void
128 soinit(void)
129 {
130
131 pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
132 "sockpl", NULL);
133
134 #ifdef SOSEND_COUNTERS
135 evcnt_attach_static(&sosend_loan_big);
136 evcnt_attach_static(&sosend_copy_big);
137 evcnt_attach_static(&sosend_copy_small);
138 evcnt_attach_static(&sosend_kvalimit);
139 #endif /* SOSEND_COUNTERS */
140 }
141
142 #ifdef SOSEND_NO_LOAN
143 int use_sosend_loan = 0;
144 #else
145 int use_sosend_loan = 1;
146 #endif
147
148 struct mbuf *so_pendfree;
149
150 int somaxkva = 16 * 1024 * 1024;
151 int socurkva;
152 int sokvawaiters;
153
154 #define SOCK_LOAN_THRESH 4096
155 #define SOCK_LOAN_CHUNK 65536
156
157 static size_t sodopendfree(struct socket *);
158
159 vaddr_t
160 sokvaalloc(vsize_t len, struct socket *so)
161 {
162 vaddr_t lva;
163 int s;
164
165 while (socurkva + len > somaxkva) {
166 if (sodopendfree(so))
167 continue;
168 SOSEND_COUNTER_INCR(&sosend_kvalimit);
169 s = splvm();
170 sokvawaiters++;
171 (void) tsleep(&socurkva, PVM, "sokva", 0);
172 sokvawaiters--;
173 splx(s);
174 }
175
176 lva = uvm_km_valloc_wait(kernel_map, len);
177 if (lva == 0)
178 return (0);
179 socurkva += len;
180
181 return lva;
182 }
183
184 void
185 sokvafree(vaddr_t sva, vsize_t len)
186 {
187
188 uvm_km_free(kernel_map, sva, len);
189 socurkva -= len;
190 if (sokvawaiters)
191 wakeup(&socurkva);
192 }
193
194 static void
195 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
196 {
197 vaddr_t va, sva, eva;
198 vsize_t len;
199 paddr_t pa;
200 int i, npgs;
201
202 eva = round_page((vaddr_t) buf + size);
203 sva = trunc_page((vaddr_t) buf);
204 len = eva - sva;
205 npgs = len >> PAGE_SHIFT;
206
207 if (__predict_false(pgs == NULL)) {
208 pgs = alloca(npgs * sizeof(*pgs));
209
210 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
211 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
212 panic("sodoloanfree: va 0x%lx not mapped", va);
213 pgs[i] = PHYS_TO_VM_PAGE(pa);
214 }
215 }
216
217 pmap_kremove(sva, len);
218 pmap_update(pmap_kernel());
219 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
220 sokvafree(sva, len);
221 }
222
223 static size_t
224 sodopendfree(struct socket *so)
225 {
226 struct mbuf *m;
227 size_t rv = 0;
228 int s;
229
230 s = splvm();
231
232 for (;;) {
233 m = so_pendfree;
234 if (m == NULL)
235 break;
236 so_pendfree = m->m_next;
237 splx(s);
238
239 rv += m->m_ext.ext_size;
240 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
241 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
242 m->m_ext.ext_size);
243 s = splvm();
244 pool_cache_put(&mbpool_cache, m);
245 }
246
247 for (;;) {
248 m = so->so_pendfree;
249 if (m == NULL)
250 break;
251 so->so_pendfree = m->m_next;
252 splx(s);
253
254 rv += m->m_ext.ext_size;
255 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
256 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
257 m->m_ext.ext_size);
258 s = splvm();
259 pool_cache_put(&mbpool_cache, m);
260 }
261
262 splx(s);
263 return (rv);
264 }
265
266 void
267 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
268 {
269 struct socket *so = arg;
270 int s;
271
272 if (m == NULL) {
273 sodoloanfree(NULL, buf, size);
274 return;
275 }
276
277 s = splvm();
278 m->m_next = so->so_pendfree;
279 so->so_pendfree = m;
280 splx(s);
281 if (sokvawaiters)
282 wakeup(&socurkva);
283 }
284
285 static long
286 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
287 {
288 struct iovec *iov = uio->uio_iov;
289 vaddr_t sva, eva;
290 vsize_t len;
291 vaddr_t lva, va;
292 int npgs, i, error;
293
294 if (uio->uio_segflg != UIO_USERSPACE)
295 return (0);
296
297 if (iov->iov_len < (size_t) space)
298 space = iov->iov_len;
299 if (space > SOCK_LOAN_CHUNK)
300 space = SOCK_LOAN_CHUNK;
301
302 eva = round_page((vaddr_t) iov->iov_base + space);
303 sva = trunc_page((vaddr_t) iov->iov_base);
304 len = eva - sva;
305 npgs = len >> PAGE_SHIFT;
306
307 /* XXX KDASSERT */
308 KASSERT(npgs <= M_EXT_MAXPAGES);
309
310 lva = sokvaalloc(len, so);
311 if (lva == 0)
312 return 0;
313
314 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
315 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
316 if (error) {
317 sokvafree(lva, len);
318 return (0);
319 }
320
321 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
322 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
323 VM_PROT_READ);
324 pmap_update(pmap_kernel());
325
326 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
327
328 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
329 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
330
331 uio->uio_resid -= space;
332 /* uio_offset not updated, not set/used for write(2) */
333 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
334 uio->uio_iov->iov_len -= space;
335 if (uio->uio_iov->iov_len == 0) {
336 uio->uio_iov++;
337 uio->uio_iovcnt--;
338 }
339
340 return (space);
341 }
342
343 /*
344 * Socket operation routines.
345 * These routines are called by the routines in
346 * sys_socket.c or from a system process, and
347 * implement the semantics of socket operations by
348 * switching out to the protocol specific routines.
349 */
350 /*ARGSUSED*/
351 int
352 socreate(int dom, struct socket **aso, int type, int proto)
353 {
354 struct proc *p;
355 struct protosw *prp;
356 struct socket *so;
357 int error, s;
358
359 p = curproc; /* XXX */
360 if (proto)
361 prp = pffindproto(dom, proto, type);
362 else
363 prp = pffindtype(dom, type);
364 if (prp == 0 || prp->pr_usrreq == 0)
365 return (EPROTONOSUPPORT);
366 if (prp->pr_type != type)
367 return (EPROTOTYPE);
368 s = splsoftnet();
369 so = pool_get(&socket_pool, PR_WAITOK);
370 memset((caddr_t)so, 0, sizeof(*so));
371 TAILQ_INIT(&so->so_q0);
372 TAILQ_INIT(&so->so_q);
373 so->so_type = type;
374 so->so_proto = prp;
375 so->so_send = sosend;
376 so->so_receive = soreceive;
377 #ifdef MBUFTRACE
378 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
379 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
380 so->so_mowner = &prp->pr_domain->dom_mowner;
381 #endif
382 if (p != 0)
383 so->so_uid = p->p_ucred->cr_uid;
384 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
385 (struct mbuf *)(long)proto, (struct mbuf *)0, p);
386 if (error) {
387 so->so_state |= SS_NOFDREF;
388 sofree(so);
389 splx(s);
390 return (error);
391 }
392 splx(s);
393 *aso = so;
394 return (0);
395 }
396
397 int
398 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
399 {
400 int s, error;
401
402 s = splsoftnet();
403 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
404 nam, (struct mbuf *)0, p);
405 splx(s);
406 return (error);
407 }
408
409 int
410 solisten(struct socket *so, int backlog)
411 {
412 int s, error;
413
414 s = splsoftnet();
415 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
416 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
417 if (error) {
418 splx(s);
419 return (error);
420 }
421 if (TAILQ_EMPTY(&so->so_q))
422 so->so_options |= SO_ACCEPTCONN;
423 if (backlog < 0)
424 backlog = 0;
425 so->so_qlimit = min(backlog, somaxconn);
426 splx(s);
427 return (0);
428 }
429
430 void
431 sofree(struct socket *so)
432 {
433 struct mbuf *m;
434
435 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
436 return;
437 if (so->so_head) {
438 /*
439 * We must not decommission a socket that's on the accept(2)
440 * queue. If we do, then accept(2) may hang after select(2)
441 * indicated that the listening socket was ready.
442 */
443 if (!soqremque(so, 0))
444 return;
445 }
446 sbrelease(&so->so_snd);
447 sorflush(so);
448 while ((m = so->so_pendfree) != NULL) {
449 so->so_pendfree = m->m_next;
450 m->m_next = so_pendfree;
451 so_pendfree = m;
452 }
453 pool_put(&socket_pool, so);
454 }
455
456 /*
457 * Close a socket on last file table reference removal.
458 * Initiate disconnect if connected.
459 * Free socket when disconnect complete.
460 */
461 int
462 soclose(struct socket *so)
463 {
464 struct socket *so2;
465 int s, error;
466
467 error = 0;
468 s = splsoftnet(); /* conservative */
469 if (so->so_options & SO_ACCEPTCONN) {
470 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
471 (void) soqremque(so2, 0);
472 (void) soabort(so2);
473 }
474 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
475 (void) soqremque(so2, 1);
476 (void) soabort(so2);
477 }
478 }
479 if (so->so_pcb == 0)
480 goto discard;
481 if (so->so_state & SS_ISCONNECTED) {
482 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
483 error = sodisconnect(so);
484 if (error)
485 goto drop;
486 }
487 if (so->so_options & SO_LINGER) {
488 if ((so->so_state & SS_ISDISCONNECTING) &&
489 (so->so_state & SS_NBIO))
490 goto drop;
491 while (so->so_state & SS_ISCONNECTED) {
492 error = tsleep((caddr_t)&so->so_timeo,
493 PSOCK | PCATCH, netcls,
494 so->so_linger * hz);
495 if (error)
496 break;
497 }
498 }
499 }
500 drop:
501 if (so->so_pcb) {
502 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
503 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
504 (struct proc *)0);
505 if (error == 0)
506 error = error2;
507 }
508 discard:
509 if (so->so_state & SS_NOFDREF)
510 panic("soclose: NOFDREF");
511 so->so_state |= SS_NOFDREF;
512 sofree(so);
513 splx(s);
514 return (error);
515 }
516
517 /*
518 * Must be called at splsoftnet...
519 */
520 int
521 soabort(struct socket *so)
522 {
523
524 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
525 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
526 }
527
528 int
529 soaccept(struct socket *so, struct mbuf *nam)
530 {
531 int s, error;
532
533 error = 0;
534 s = splsoftnet();
535 if ((so->so_state & SS_NOFDREF) == 0)
536 panic("soaccept: !NOFDREF");
537 so->so_state &= ~SS_NOFDREF;
538 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
539 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
540 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
541 (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
542 else
543 error = ECONNABORTED;
544
545 splx(s);
546 return (error);
547 }
548
549 int
550 soconnect(struct socket *so, struct mbuf *nam)
551 {
552 struct proc *p;
553 int s, error;
554
555 p = curproc; /* XXX */
556 if (so->so_options & SO_ACCEPTCONN)
557 return (EOPNOTSUPP);
558 s = splsoftnet();
559 /*
560 * If protocol is connection-based, can only connect once.
561 * Otherwise, if connected, try to disconnect first.
562 * This allows user to disconnect by connecting to, e.g.,
563 * a null address.
564 */
565 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
566 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
567 (error = sodisconnect(so))))
568 error = EISCONN;
569 else
570 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
571 (struct mbuf *)0, nam, (struct mbuf *)0, p);
572 splx(s);
573 return (error);
574 }
575
576 int
577 soconnect2(struct socket *so1, struct socket *so2)
578 {
579 int s, error;
580
581 s = splsoftnet();
582 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
583 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
584 (struct proc *)0);
585 splx(s);
586 return (error);
587 }
588
589 int
590 sodisconnect(struct socket *so)
591 {
592 int s, error;
593
594 s = splsoftnet();
595 if ((so->so_state & SS_ISCONNECTED) == 0) {
596 error = ENOTCONN;
597 goto bad;
598 }
599 if (so->so_state & SS_ISDISCONNECTING) {
600 error = EALREADY;
601 goto bad;
602 }
603 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
604 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
605 (struct proc *)0);
606 bad:
607 splx(s);
608 sodopendfree(so);
609 return (error);
610 }
611
612 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
613 /*
614 * Send on a socket.
615 * If send must go all at once and message is larger than
616 * send buffering, then hard error.
617 * Lock against other senders.
618 * If must go all at once and not enough room now, then
619 * inform user that this would block and do nothing.
620 * Otherwise, if nonblocking, send as much as possible.
621 * The data to be sent is described by "uio" if nonzero,
622 * otherwise by the mbuf chain "top" (which must be null
623 * if uio is not). Data provided in mbuf chain must be small
624 * enough to send all at once.
625 *
626 * Returns nonzero on error, timeout or signal; callers
627 * must check for short counts if EINTR/ERESTART are returned.
628 * Data and control buffers are freed on return.
629 */
630 int
631 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
632 struct mbuf *control, int flags)
633 {
634 struct proc *p;
635 struct mbuf **mp, *m;
636 long space, len, resid, clen, mlen;
637 int error, s, dontroute, atomic;
638
639 sodopendfree(so);
640
641 p = curproc; /* XXX */
642 clen = 0;
643 atomic = sosendallatonce(so) || top;
644 if (uio)
645 resid = uio->uio_resid;
646 else
647 resid = top->m_pkthdr.len;
648 /*
649 * In theory resid should be unsigned.
650 * However, space must be signed, as it might be less than 0
651 * if we over-committed, and we must use a signed comparison
652 * of space and resid. On the other hand, a negative resid
653 * causes us to loop sending 0-length segments to the protocol.
654 */
655 if (resid < 0) {
656 error = EINVAL;
657 goto out;
658 }
659 dontroute =
660 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
661 (so->so_proto->pr_flags & PR_ATOMIC);
662 p->p_stats->p_ru.ru_msgsnd++;
663 if (control)
664 clen = control->m_len;
665 #define snderr(errno) { error = errno; splx(s); goto release; }
666
667 restart:
668 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
669 goto out;
670 do {
671 s = splsoftnet();
672 if (so->so_state & SS_CANTSENDMORE)
673 snderr(EPIPE);
674 if (so->so_error) {
675 error = so->so_error;
676 so->so_error = 0;
677 splx(s);
678 goto release;
679 }
680 if ((so->so_state & SS_ISCONNECTED) == 0) {
681 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
682 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
683 !(resid == 0 && clen != 0))
684 snderr(ENOTCONN);
685 } else if (addr == 0)
686 snderr(EDESTADDRREQ);
687 }
688 space = sbspace(&so->so_snd);
689 if (flags & MSG_OOB)
690 space += 1024;
691 if ((atomic && resid > so->so_snd.sb_hiwat) ||
692 clen > so->so_snd.sb_hiwat)
693 snderr(EMSGSIZE);
694 if (space < resid + clen && uio &&
695 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
696 if (so->so_state & SS_NBIO)
697 snderr(EWOULDBLOCK);
698 sbunlock(&so->so_snd);
699 error = sbwait(&so->so_snd);
700 splx(s);
701 if (error)
702 goto out;
703 goto restart;
704 }
705 splx(s);
706 mp = ⊤
707 space -= clen;
708 do {
709 if (uio == NULL) {
710 /*
711 * Data is prepackaged in "top".
712 */
713 resid = 0;
714 if (flags & MSG_EOR)
715 top->m_flags |= M_EOR;
716 } else do {
717 if (top == 0) {
718 m = m_gethdr(M_WAIT, MT_DATA);
719 mlen = MHLEN;
720 m->m_pkthdr.len = 0;
721 m->m_pkthdr.rcvif = (struct ifnet *)0;
722 } else {
723 m = m_get(M_WAIT, MT_DATA);
724 mlen = MLEN;
725 }
726 MCLAIM(m, so->so_snd.sb_mowner);
727 if (use_sosend_loan &&
728 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
729 space >= SOCK_LOAN_THRESH &&
730 (len = sosend_loan(so, uio, m,
731 space)) != 0) {
732 SOSEND_COUNTER_INCR(&sosend_loan_big);
733 space -= len;
734 goto have_data;
735 }
736 if (resid >= MINCLSIZE && space >= MCLBYTES) {
737 SOSEND_COUNTER_INCR(&sosend_copy_big);
738 m_clget(m, M_WAIT);
739 if ((m->m_flags & M_EXT) == 0)
740 goto nopages;
741 mlen = MCLBYTES;
742 if (atomic && top == 0) {
743 len = lmin(MCLBYTES - max_hdr,
744 resid);
745 m->m_data += max_hdr;
746 } else
747 len = lmin(MCLBYTES, resid);
748 space -= len;
749 } else {
750 nopages:
751 SOSEND_COUNTER_INCR(&sosend_copy_small);
752 len = lmin(lmin(mlen, resid), space);
753 space -= len;
754 /*
755 * For datagram protocols, leave room
756 * for protocol headers in first mbuf.
757 */
758 if (atomic && top == 0 && len < mlen)
759 MH_ALIGN(m, len);
760 }
761 error = uiomove(mtod(m, caddr_t), (int)len,
762 uio);
763 have_data:
764 resid = uio->uio_resid;
765 m->m_len = len;
766 *mp = m;
767 top->m_pkthdr.len += len;
768 if (error)
769 goto release;
770 mp = &m->m_next;
771 if (resid <= 0) {
772 if (flags & MSG_EOR)
773 top->m_flags |= M_EOR;
774 break;
775 }
776 } while (space > 0 && atomic);
777
778 s = splsoftnet();
779
780 if (so->so_state & SS_CANTSENDMORE)
781 snderr(EPIPE);
782
783 if (dontroute)
784 so->so_options |= SO_DONTROUTE;
785 if (resid > 0)
786 so->so_state |= SS_MORETOCOME;
787 error = (*so->so_proto->pr_usrreq)(so,
788 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
789 top, addr, control, p);
790 if (dontroute)
791 so->so_options &= ~SO_DONTROUTE;
792 if (resid > 0)
793 so->so_state &= ~SS_MORETOCOME;
794 splx(s);
795
796 clen = 0;
797 control = 0;
798 top = 0;
799 mp = ⊤
800 if (error)
801 goto release;
802 } while (resid && space > 0);
803 } while (resid);
804
805 release:
806 sbunlock(&so->so_snd);
807 out:
808 if (top)
809 m_freem(top);
810 if (control)
811 m_freem(control);
812 return (error);
813 }
814
815 /*
816 * Implement receive operations on a socket.
817 * We depend on the way that records are added to the sockbuf
818 * by sbappend*. In particular, each record (mbufs linked through m_next)
819 * must begin with an address if the protocol so specifies,
820 * followed by an optional mbuf or mbufs containing ancillary data,
821 * and then zero or more mbufs of data.
822 * In order to avoid blocking network interrupts for the entire time here,
823 * we splx() while doing the actual copy to user space.
824 * Although the sockbuf is locked, new data may still be appended,
825 * and thus we must maintain consistency of the sockbuf during that time.
826 *
827 * The caller may receive the data as a single mbuf chain by supplying
828 * an mbuf **mp0 for use in returning the chain. The uio is then used
829 * only for the count in uio_resid.
830 */
831 int
832 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
833 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
834 {
835 struct mbuf *m, **mp;
836 int flags, len, error, s, offset, moff, type, orig_resid;
837 struct protosw *pr;
838 struct mbuf *nextrecord;
839 int mbuf_removed = 0;
840
841 pr = so->so_proto;
842 mp = mp0;
843 type = 0;
844 orig_resid = uio->uio_resid;
845 if (paddr)
846 *paddr = 0;
847 if (controlp)
848 *controlp = 0;
849 if (flagsp)
850 flags = *flagsp &~ MSG_EOR;
851 else
852 flags = 0;
853
854 if ((flags & MSG_DONTWAIT) == 0)
855 sodopendfree(so);
856
857 if (flags & MSG_OOB) {
858 m = m_get(M_WAIT, MT_DATA);
859 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
860 (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
861 (struct proc *)0);
862 if (error)
863 goto bad;
864 do {
865 error = uiomove(mtod(m, caddr_t),
866 (int) min(uio->uio_resid, m->m_len), uio);
867 m = m_free(m);
868 } while (uio->uio_resid && error == 0 && m);
869 bad:
870 if (m)
871 m_freem(m);
872 return (error);
873 }
874 if (mp)
875 *mp = (struct mbuf *)0;
876 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
877 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
878 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
879
880 restart:
881 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
882 return (error);
883 s = splsoftnet();
884
885 m = so->so_rcv.sb_mb;
886 /*
887 * If we have less data than requested, block awaiting more
888 * (subject to any timeout) if:
889 * 1. the current count is less than the low water mark,
890 * 2. MSG_WAITALL is set, and it is possible to do the entire
891 * receive operation at once if we block (resid <= hiwat), or
892 * 3. MSG_DONTWAIT is not set.
893 * If MSG_WAITALL is set but resid is larger than the receive buffer,
894 * we have to do the receive in sections, and thus risk returning
895 * a short count if a timeout or signal occurs after we start.
896 */
897 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
898 so->so_rcv.sb_cc < uio->uio_resid) &&
899 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
900 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
901 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
902 #ifdef DIAGNOSTIC
903 if (m == 0 && so->so_rcv.sb_cc)
904 panic("receive 1");
905 #endif
906 if (so->so_error) {
907 if (m)
908 goto dontblock;
909 error = so->so_error;
910 if ((flags & MSG_PEEK) == 0)
911 so->so_error = 0;
912 goto release;
913 }
914 if (so->so_state & SS_CANTRCVMORE) {
915 if (m)
916 goto dontblock;
917 else
918 goto release;
919 }
920 for (; m; m = m->m_next)
921 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
922 m = so->so_rcv.sb_mb;
923 goto dontblock;
924 }
925 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
926 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
927 error = ENOTCONN;
928 goto release;
929 }
930 if (uio->uio_resid == 0)
931 goto release;
932 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
933 error = EWOULDBLOCK;
934 goto release;
935 }
936 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
937 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
938 sbunlock(&so->so_rcv);
939 error = sbwait(&so->so_rcv);
940 splx(s);
941 if (error)
942 return (error);
943 goto restart;
944 }
945 dontblock:
946 /*
947 * On entry here, m points to the first record of the socket buffer.
948 * While we process the initial mbufs containing address and control
949 * info, we save a copy of m->m_nextpkt into nextrecord.
950 */
951 #ifdef notyet /* XXXX */
952 if (uio->uio_procp)
953 uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
954 #endif
955 KASSERT(m == so->so_rcv.sb_mb);
956 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
957 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
958 nextrecord = m->m_nextpkt;
959 if (pr->pr_flags & PR_ADDR) {
960 #ifdef DIAGNOSTIC
961 if (m->m_type != MT_SONAME)
962 panic("receive 1a");
963 #endif
964 orig_resid = 0;
965 if (flags & MSG_PEEK) {
966 if (paddr)
967 *paddr = m_copy(m, 0, m->m_len);
968 m = m->m_next;
969 } else {
970 sbfree(&so->so_rcv, m);
971 mbuf_removed = 1;
972 if (paddr) {
973 *paddr = m;
974 so->so_rcv.sb_mb = m->m_next;
975 m->m_next = 0;
976 m = so->so_rcv.sb_mb;
977 } else {
978 MFREE(m, so->so_rcv.sb_mb);
979 m = so->so_rcv.sb_mb;
980 }
981 }
982 }
983 while (m && m->m_type == MT_CONTROL && error == 0) {
984 if (flags & MSG_PEEK) {
985 if (controlp)
986 *controlp = m_copy(m, 0, m->m_len);
987 m = m->m_next;
988 } else {
989 sbfree(&so->so_rcv, m);
990 mbuf_removed = 1;
991 if (controlp) {
992 if (pr->pr_domain->dom_externalize &&
993 mtod(m, struct cmsghdr *)->cmsg_type ==
994 SCM_RIGHTS)
995 error = (*pr->pr_domain->dom_externalize)(m);
996 *controlp = m;
997 so->so_rcv.sb_mb = m->m_next;
998 m->m_next = 0;
999 m = so->so_rcv.sb_mb;
1000 } else {
1001 MFREE(m, so->so_rcv.sb_mb);
1002 m = so->so_rcv.sb_mb;
1003 }
1004 }
1005 if (controlp) {
1006 orig_resid = 0;
1007 controlp = &(*controlp)->m_next;
1008 }
1009 }
1010
1011 /*
1012 * If m is non-NULL, we have some data to read. From now on,
1013 * make sure to keep sb_lastrecord consistent when working on
1014 * the last packet on the chain (nextrecord == NULL) and we
1015 * change m->m_nextpkt.
1016 */
1017 if (m) {
1018 if ((flags & MSG_PEEK) == 0) {
1019 m->m_nextpkt = nextrecord;
1020 /*
1021 * If nextrecord == NULL (this is a single chain),
1022 * then sb_lastrecord may not be valid here if m
1023 * was changed earlier.
1024 */
1025 if (nextrecord == NULL) {
1026 KASSERT(so->so_rcv.sb_mb == m);
1027 so->so_rcv.sb_lastrecord = m;
1028 }
1029 }
1030 type = m->m_type;
1031 if (type == MT_OOBDATA)
1032 flags |= MSG_OOB;
1033 } else {
1034 if ((flags & MSG_PEEK) == 0) {
1035 KASSERT(so->so_rcv.sb_mb == m);
1036 so->so_rcv.sb_mb = nextrecord;
1037 SB_EMPTY_FIXUP(&so->so_rcv);
1038 }
1039 }
1040 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1041 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1042
1043 moff = 0;
1044 offset = 0;
1045 while (m && uio->uio_resid > 0 && error == 0) {
1046 if (m->m_type == MT_OOBDATA) {
1047 if (type != MT_OOBDATA)
1048 break;
1049 } else if (type == MT_OOBDATA)
1050 break;
1051 #ifdef DIAGNOSTIC
1052 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1053 panic("receive 3");
1054 #endif
1055 so->so_state &= ~SS_RCVATMARK;
1056 len = uio->uio_resid;
1057 if (so->so_oobmark && len > so->so_oobmark - offset)
1058 len = so->so_oobmark - offset;
1059 if (len > m->m_len - moff)
1060 len = m->m_len - moff;
1061 /*
1062 * If mp is set, just pass back the mbufs.
1063 * Otherwise copy them out via the uio, then free.
1064 * Sockbuf must be consistent here (points to current mbuf,
1065 * it points to next record) when we drop priority;
1066 * we must note any additions to the sockbuf when we
1067 * block interrupts again.
1068 */
1069 if (mp == 0) {
1070 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1071 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1072 splx(s);
1073 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1074 s = splsoftnet();
1075 if (error) {
1076 /*
1077 * If any part of the record has been removed
1078 * (such as the MT_SONAME mbuf, which will
1079 * happen when PR_ADDR, and thus also
1080 * PR_ATOMIC, is set), then drop the entire
1081 * record to maintain the atomicity of the
1082 * receive operation.
1083 *
1084 * This avoids a later panic("receive 1a")
1085 * when compiled with DIAGNOSTIC.
1086 */
1087 if (m && mbuf_removed
1088 && (pr->pr_flags & PR_ATOMIC))
1089 (void) sbdroprecord(&so->so_rcv);
1090
1091 goto release;
1092 }
1093 } else
1094 uio->uio_resid -= len;
1095 if (len == m->m_len - moff) {
1096 if (m->m_flags & M_EOR)
1097 flags |= MSG_EOR;
1098 if (flags & MSG_PEEK) {
1099 m = m->m_next;
1100 moff = 0;
1101 } else {
1102 nextrecord = m->m_nextpkt;
1103 sbfree(&so->so_rcv, m);
1104 if (mp) {
1105 *mp = m;
1106 mp = &m->m_next;
1107 so->so_rcv.sb_mb = m = m->m_next;
1108 *mp = (struct mbuf *)0;
1109 } else {
1110 MFREE(m, so->so_rcv.sb_mb);
1111 m = so->so_rcv.sb_mb;
1112 }
1113 /*
1114 * If m != NULL, we also know that
1115 * so->so_rcv.sb_mb != NULL.
1116 */
1117 KASSERT(so->so_rcv.sb_mb == m);
1118 if (m) {
1119 m->m_nextpkt = nextrecord;
1120 if (nextrecord == NULL)
1121 so->so_rcv.sb_lastrecord = m;
1122 } else {
1123 so->so_rcv.sb_mb = nextrecord;
1124 SB_EMPTY_FIXUP(&so->so_rcv);
1125 }
1126 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1127 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1128 }
1129 } else {
1130 if (flags & MSG_PEEK)
1131 moff += len;
1132 else {
1133 if (mp)
1134 *mp = m_copym(m, 0, len, M_WAIT);
1135 m->m_data += len;
1136 m->m_len -= len;
1137 so->so_rcv.sb_cc -= len;
1138 }
1139 }
1140 if (so->so_oobmark) {
1141 if ((flags & MSG_PEEK) == 0) {
1142 so->so_oobmark -= len;
1143 if (so->so_oobmark == 0) {
1144 so->so_state |= SS_RCVATMARK;
1145 break;
1146 }
1147 } else {
1148 offset += len;
1149 if (offset == so->so_oobmark)
1150 break;
1151 }
1152 }
1153 if (flags & MSG_EOR)
1154 break;
1155 /*
1156 * If the MSG_WAITALL flag is set (for non-atomic socket),
1157 * we must not quit until "uio->uio_resid == 0" or an error
1158 * termination. If a signal/timeout occurs, return
1159 * with a short count but without error.
1160 * Keep sockbuf locked against other readers.
1161 */
1162 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1163 !sosendallatonce(so) && !nextrecord) {
1164 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1165 break;
1166 /*
1167 * If we are peeking and the socket receive buffer is
1168 * full, stop since we can't get more data to peek at.
1169 */
1170 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1171 break;
1172 /*
1173 * If we've drained the socket buffer, tell the
1174 * protocol in case it needs to do something to
1175 * get it filled again.
1176 */
1177 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1178 (*pr->pr_usrreq)(so, PRU_RCVD,
1179 (struct mbuf *)0,
1180 (struct mbuf *)(long)flags,
1181 (struct mbuf *)0,
1182 (struct proc *)0);
1183 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1184 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1185 error = sbwait(&so->so_rcv);
1186 if (error) {
1187 sbunlock(&so->so_rcv);
1188 splx(s);
1189 return (0);
1190 }
1191 if ((m = so->so_rcv.sb_mb) != NULL)
1192 nextrecord = m->m_nextpkt;
1193 }
1194 }
1195
1196 if (m && pr->pr_flags & PR_ATOMIC) {
1197 flags |= MSG_TRUNC;
1198 if ((flags & MSG_PEEK) == 0)
1199 (void) sbdroprecord(&so->so_rcv);
1200 }
1201 if ((flags & MSG_PEEK) == 0) {
1202 if (m == 0) {
1203 /*
1204 * First part is an inline SB_EMPTY_FIXUP(). Second
1205 * part makes sure sb_lastrecord is up-to-date if
1206 * there is still data in the socket buffer.
1207 */
1208 so->so_rcv.sb_mb = nextrecord;
1209 if (so->so_rcv.sb_mb == NULL) {
1210 so->so_rcv.sb_mbtail = NULL;
1211 so->so_rcv.sb_lastrecord = NULL;
1212 } else if (nextrecord->m_nextpkt == NULL)
1213 so->so_rcv.sb_lastrecord = nextrecord;
1214 }
1215 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1216 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1217 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1218 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1219 (struct mbuf *)(long)flags, (struct mbuf *)0,
1220 (struct proc *)0);
1221 }
1222 if (orig_resid == uio->uio_resid && orig_resid &&
1223 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1224 sbunlock(&so->so_rcv);
1225 splx(s);
1226 goto restart;
1227 }
1228
1229 if (flagsp)
1230 *flagsp |= flags;
1231 release:
1232 sbunlock(&so->so_rcv);
1233 splx(s);
1234 return (error);
1235 }
1236
1237 int
1238 soshutdown(struct socket *so, int how)
1239 {
1240 struct protosw *pr;
1241
1242 pr = so->so_proto;
1243 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1244 return (EINVAL);
1245
1246 if (how == SHUT_RD || how == SHUT_RDWR)
1247 sorflush(so);
1248 if (how == SHUT_WR || how == SHUT_RDWR)
1249 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1250 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1251 return (0);
1252 }
1253
1254 void
1255 sorflush(struct socket *so)
1256 {
1257 struct sockbuf *sb, asb;
1258 struct protosw *pr;
1259 int s;
1260
1261 sb = &so->so_rcv;
1262 pr = so->so_proto;
1263 sb->sb_flags |= SB_NOINTR;
1264 (void) sblock(sb, M_WAITOK);
1265 s = splnet();
1266 socantrcvmore(so);
1267 sbunlock(sb);
1268 asb = *sb;
1269 memset((caddr_t)sb, 0, sizeof(*sb));
1270 splx(s);
1271 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1272 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1273 sbrelease(&asb);
1274 }
1275
1276 int
1277 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1278 {
1279 int error;
1280 struct mbuf *m;
1281
1282 error = 0;
1283 m = m0;
1284 if (level != SOL_SOCKET) {
1285 if (so->so_proto && so->so_proto->pr_ctloutput)
1286 return ((*so->so_proto->pr_ctloutput)
1287 (PRCO_SETOPT, so, level, optname, &m0));
1288 error = ENOPROTOOPT;
1289 } else {
1290 switch (optname) {
1291
1292 case SO_LINGER:
1293 if (m == NULL || m->m_len != sizeof(struct linger)) {
1294 error = EINVAL;
1295 goto bad;
1296 }
1297 so->so_linger = mtod(m, struct linger *)->l_linger;
1298 /* fall thru... */
1299
1300 case SO_DEBUG:
1301 case SO_KEEPALIVE:
1302 case SO_DONTROUTE:
1303 case SO_USELOOPBACK:
1304 case SO_BROADCAST:
1305 case SO_REUSEADDR:
1306 case SO_REUSEPORT:
1307 case SO_OOBINLINE:
1308 case SO_TIMESTAMP:
1309 if (m == NULL || m->m_len < sizeof(int)) {
1310 error = EINVAL;
1311 goto bad;
1312 }
1313 if (*mtod(m, int *))
1314 so->so_options |= optname;
1315 else
1316 so->so_options &= ~optname;
1317 break;
1318
1319 case SO_SNDBUF:
1320 case SO_RCVBUF:
1321 case SO_SNDLOWAT:
1322 case SO_RCVLOWAT:
1323 {
1324 int optval;
1325
1326 if (m == NULL || m->m_len < sizeof(int)) {
1327 error = EINVAL;
1328 goto bad;
1329 }
1330
1331 /*
1332 * Values < 1 make no sense for any of these
1333 * options, so disallow them.
1334 */
1335 optval = *mtod(m, int *);
1336 if (optval < 1) {
1337 error = EINVAL;
1338 goto bad;
1339 }
1340
1341 switch (optname) {
1342
1343 case SO_SNDBUF:
1344 case SO_RCVBUF:
1345 if (sbreserve(optname == SO_SNDBUF ?
1346 &so->so_snd : &so->so_rcv,
1347 (u_long) optval) == 0) {
1348 error = ENOBUFS;
1349 goto bad;
1350 }
1351 break;
1352
1353 /*
1354 * Make sure the low-water is never greater than
1355 * the high-water.
1356 */
1357 case SO_SNDLOWAT:
1358 so->so_snd.sb_lowat =
1359 (optval > so->so_snd.sb_hiwat) ?
1360 so->so_snd.sb_hiwat : optval;
1361 break;
1362 case SO_RCVLOWAT:
1363 so->so_rcv.sb_lowat =
1364 (optval > so->so_rcv.sb_hiwat) ?
1365 so->so_rcv.sb_hiwat : optval;
1366 break;
1367 }
1368 break;
1369 }
1370
1371 case SO_SNDTIMEO:
1372 case SO_RCVTIMEO:
1373 {
1374 struct timeval *tv;
1375 short val;
1376
1377 if (m == NULL || m->m_len < sizeof(*tv)) {
1378 error = EINVAL;
1379 goto bad;
1380 }
1381 tv = mtod(m, struct timeval *);
1382 if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) {
1383 error = EDOM;
1384 goto bad;
1385 }
1386 val = tv->tv_sec * hz + tv->tv_usec / tick;
1387 if (val == 0 && tv->tv_usec != 0)
1388 val = 1;
1389
1390 switch (optname) {
1391
1392 case SO_SNDTIMEO:
1393 so->so_snd.sb_timeo = val;
1394 break;
1395 case SO_RCVTIMEO:
1396 so->so_rcv.sb_timeo = val;
1397 break;
1398 }
1399 break;
1400 }
1401
1402 default:
1403 error = ENOPROTOOPT;
1404 break;
1405 }
1406 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1407 (void) ((*so->so_proto->pr_ctloutput)
1408 (PRCO_SETOPT, so, level, optname, &m0));
1409 m = NULL; /* freed by protocol */
1410 }
1411 }
1412 bad:
1413 if (m)
1414 (void) m_free(m);
1415 return (error);
1416 }
1417
1418 int
1419 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1420 {
1421 struct mbuf *m;
1422
1423 if (level != SOL_SOCKET) {
1424 if (so->so_proto && so->so_proto->pr_ctloutput) {
1425 return ((*so->so_proto->pr_ctloutput)
1426 (PRCO_GETOPT, so, level, optname, mp));
1427 } else
1428 return (ENOPROTOOPT);
1429 } else {
1430 m = m_get(M_WAIT, MT_SOOPTS);
1431 m->m_len = sizeof(int);
1432
1433 switch (optname) {
1434
1435 case SO_LINGER:
1436 m->m_len = sizeof(struct linger);
1437 mtod(m, struct linger *)->l_onoff =
1438 so->so_options & SO_LINGER;
1439 mtod(m, struct linger *)->l_linger = so->so_linger;
1440 break;
1441
1442 case SO_USELOOPBACK:
1443 case SO_DONTROUTE:
1444 case SO_DEBUG:
1445 case SO_KEEPALIVE:
1446 case SO_REUSEADDR:
1447 case SO_REUSEPORT:
1448 case SO_BROADCAST:
1449 case SO_OOBINLINE:
1450 case SO_TIMESTAMP:
1451 *mtod(m, int *) = so->so_options & optname;
1452 break;
1453
1454 case SO_TYPE:
1455 *mtod(m, int *) = so->so_type;
1456 break;
1457
1458 case SO_ERROR:
1459 *mtod(m, int *) = so->so_error;
1460 so->so_error = 0;
1461 break;
1462
1463 case SO_SNDBUF:
1464 *mtod(m, int *) = so->so_snd.sb_hiwat;
1465 break;
1466
1467 case SO_RCVBUF:
1468 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1469 break;
1470
1471 case SO_SNDLOWAT:
1472 *mtod(m, int *) = so->so_snd.sb_lowat;
1473 break;
1474
1475 case SO_RCVLOWAT:
1476 *mtod(m, int *) = so->so_rcv.sb_lowat;
1477 break;
1478
1479 case SO_SNDTIMEO:
1480 case SO_RCVTIMEO:
1481 {
1482 int val = (optname == SO_SNDTIMEO ?
1483 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1484
1485 m->m_len = sizeof(struct timeval);
1486 mtod(m, struct timeval *)->tv_sec = val / hz;
1487 mtod(m, struct timeval *)->tv_usec =
1488 (val % hz) * tick;
1489 break;
1490 }
1491
1492 default:
1493 (void)m_free(m);
1494 return (ENOPROTOOPT);
1495 }
1496 *mp = m;
1497 return (0);
1498 }
1499 }
1500
1501 void
1502 sohasoutofband(struct socket *so)
1503 {
1504 struct proc *p;
1505
1506 if (so->so_pgid < 0)
1507 gsignal(-so->so_pgid, SIGURG);
1508 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
1509 psignal(p, SIGURG);
1510 selwakeup(&so->so_rcv.sb_sel);
1511 }
1512
1513 static void
1514 filt_sordetach(struct knote *kn)
1515 {
1516 struct socket *so;
1517
1518 so = (struct socket *)kn->kn_fp->f_data;
1519 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1520 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1521 so->so_rcv.sb_flags &= ~SB_KNOTE;
1522 }
1523
1524 /*ARGSUSED*/
1525 static int
1526 filt_soread(struct knote *kn, long hint)
1527 {
1528 struct socket *so;
1529
1530 so = (struct socket *)kn->kn_fp->f_data;
1531 kn->kn_data = so->so_rcv.sb_cc;
1532 if (so->so_state & SS_CANTRCVMORE) {
1533 kn->kn_flags |= EV_EOF;
1534 kn->kn_fflags = so->so_error;
1535 return (1);
1536 }
1537 if (so->so_error) /* temporary udp error */
1538 return (1);
1539 if (kn->kn_sfflags & NOTE_LOWAT)
1540 return (kn->kn_data >= kn->kn_sdata);
1541 return (kn->kn_data >= so->so_rcv.sb_lowat);
1542 }
1543
1544 static void
1545 filt_sowdetach(struct knote *kn)
1546 {
1547 struct socket *so;
1548
1549 so = (struct socket *)kn->kn_fp->f_data;
1550 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1551 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1552 so->so_snd.sb_flags &= ~SB_KNOTE;
1553 }
1554
1555 /*ARGSUSED*/
1556 static int
1557 filt_sowrite(struct knote *kn, long hint)
1558 {
1559 struct socket *so;
1560
1561 so = (struct socket *)kn->kn_fp->f_data;
1562 kn->kn_data = sbspace(&so->so_snd);
1563 if (so->so_state & SS_CANTSENDMORE) {
1564 kn->kn_flags |= EV_EOF;
1565 kn->kn_fflags = so->so_error;
1566 return (1);
1567 }
1568 if (so->so_error) /* temporary udp error */
1569 return (1);
1570 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1571 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1572 return (0);
1573 if (kn->kn_sfflags & NOTE_LOWAT)
1574 return (kn->kn_data >= kn->kn_sdata);
1575 return (kn->kn_data >= so->so_snd.sb_lowat);
1576 }
1577
1578 /*ARGSUSED*/
1579 static int
1580 filt_solisten(struct knote *kn, long hint)
1581 {
1582 struct socket *so;
1583
1584 so = (struct socket *)kn->kn_fp->f_data;
1585
1586 /*
1587 * Set kn_data to number of incoming connections, not
1588 * counting partial (incomplete) connections.
1589 */
1590 kn->kn_data = so->so_qlen;
1591 return (kn->kn_data > 0);
1592 }
1593
1594 static const struct filterops solisten_filtops =
1595 { 1, NULL, filt_sordetach, filt_solisten };
1596 static const struct filterops soread_filtops =
1597 { 1, NULL, filt_sordetach, filt_soread };
1598 static const struct filterops sowrite_filtops =
1599 { 1, NULL, filt_sowdetach, filt_sowrite };
1600
1601 int
1602 soo_kqfilter(struct file *fp, struct knote *kn)
1603 {
1604 struct socket *so;
1605 struct sockbuf *sb;
1606
1607 so = (struct socket *)kn->kn_fp->f_data;
1608 switch (kn->kn_filter) {
1609 case EVFILT_READ:
1610 if (so->so_options & SO_ACCEPTCONN)
1611 kn->kn_fop = &solisten_filtops;
1612 else
1613 kn->kn_fop = &soread_filtops;
1614 sb = &so->so_rcv;
1615 break;
1616 case EVFILT_WRITE:
1617 kn->kn_fop = &sowrite_filtops;
1618 sb = &so->so_snd;
1619 break;
1620 default:
1621 return (1);
1622 }
1623 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1624 sb->sb_flags |= SB_KNOTE;
1625 return (0);
1626 }
1627
1628