uipc_socket.c revision 1.82 1 /* $NetBSD: uipc_socket.c,v 1.82 2003/06/28 14:21:58 darrenr Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.82 2003/06/28 14:21:58 darrenr Exp $");
76
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/file.h>
85 #include <sys/malloc.h>
86 #include <sys/mbuf.h>
87 #include <sys/domain.h>
88 #include <sys/kernel.h>
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/pool.h>
95 #include <sys/event.h>
96
97 #include <uvm/uvm.h>
98
99 struct pool socket_pool;
100
101 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
102 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
103
104 extern int somaxconn; /* patchable (XXX sysctl) */
105 int somaxconn = SOMAXCONN;
106
107 #ifdef SOSEND_COUNTERS
108 #include <sys/device.h>
109
110 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "loan big");
112 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy big");
114 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "copy small");
116 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
117 NULL, "sosend", "kva limit");
118
119 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
120
121 #else
122
123 #define SOSEND_COUNTER_INCR(ev) /* nothing */
124
125 #endif /* SOSEND_COUNTERS */
126
127 void
128 soinit(void)
129 {
130
131 pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
132 "sockpl", NULL);
133
134 #ifdef SOSEND_COUNTERS
135 evcnt_attach_static(&sosend_loan_big);
136 evcnt_attach_static(&sosend_copy_big);
137 evcnt_attach_static(&sosend_copy_small);
138 evcnt_attach_static(&sosend_kvalimit);
139 #endif /* SOSEND_COUNTERS */
140 }
141
142 #ifdef SOSEND_NO_LOAN
143 int use_sosend_loan = 0;
144 #else
145 int use_sosend_loan = 1;
146 #endif
147
148 struct mbuf *so_pendfree;
149
150 int somaxkva = 16 * 1024 * 1024;
151 int socurkva;
152 int sokvawaiters;
153
154 #define SOCK_LOAN_THRESH 4096
155 #define SOCK_LOAN_CHUNK 65536
156
157 static size_t sodopendfree(struct socket *);
158
159 vaddr_t
160 sokvaalloc(vsize_t len, struct socket *so)
161 {
162 vaddr_t lva;
163 int s;
164
165 while (socurkva + len > somaxkva) {
166 if (sodopendfree(so))
167 continue;
168 SOSEND_COUNTER_INCR(&sosend_kvalimit);
169 s = splvm();
170 sokvawaiters++;
171 (void) tsleep(&socurkva, PVM, "sokva", 0);
172 sokvawaiters--;
173 splx(s);
174 }
175
176 lva = uvm_km_valloc_wait(kernel_map, len);
177 if (lva == 0)
178 return (0);
179 socurkva += len;
180
181 return lva;
182 }
183
184 void
185 sokvafree(vaddr_t sva, vsize_t len)
186 {
187
188 uvm_km_free(kernel_map, sva, len);
189 socurkva -= len;
190 if (sokvawaiters)
191 wakeup(&socurkva);
192 }
193
194 static void
195 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
196 {
197 vaddr_t va, sva, eva;
198 vsize_t len;
199 paddr_t pa;
200 int i, npgs;
201
202 eva = round_page((vaddr_t) buf + size);
203 sva = trunc_page((vaddr_t) buf);
204 len = eva - sva;
205 npgs = len >> PAGE_SHIFT;
206
207 if (__predict_false(pgs == NULL)) {
208 pgs = alloca(npgs * sizeof(*pgs));
209
210 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
211 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
212 panic("sodoloanfree: va 0x%lx not mapped", va);
213 pgs[i] = PHYS_TO_VM_PAGE(pa);
214 }
215 }
216
217 pmap_kremove(sva, len);
218 pmap_update(pmap_kernel());
219 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
220 sokvafree(sva, len);
221 }
222
223 static size_t
224 sodopendfree(struct socket *so)
225 {
226 struct mbuf *m;
227 size_t rv = 0;
228 int s;
229
230 s = splvm();
231
232 for (;;) {
233 m = so_pendfree;
234 if (m == NULL)
235 break;
236 so_pendfree = m->m_next;
237 splx(s);
238
239 rv += m->m_ext.ext_size;
240 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
241 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
242 m->m_ext.ext_size);
243 s = splvm();
244 pool_cache_put(&mbpool_cache, m);
245 }
246
247 for (;;) {
248 m = so->so_pendfree;
249 if (m == NULL)
250 break;
251 so->so_pendfree = m->m_next;
252 splx(s);
253
254 rv += m->m_ext.ext_size;
255 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
256 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
257 m->m_ext.ext_size);
258 s = splvm();
259 pool_cache_put(&mbpool_cache, m);
260 }
261
262 splx(s);
263 return (rv);
264 }
265
266 void
267 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
268 {
269 struct socket *so = arg;
270 int s;
271
272 if (m == NULL) {
273 sodoloanfree(NULL, buf, size);
274 return;
275 }
276
277 s = splvm();
278 m->m_next = so->so_pendfree;
279 so->so_pendfree = m;
280 splx(s);
281 if (sokvawaiters)
282 wakeup(&socurkva);
283 }
284
285 static long
286 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
287 {
288 struct iovec *iov = uio->uio_iov;
289 vaddr_t sva, eva;
290 vsize_t len;
291 vaddr_t lva, va;
292 int npgs, i, error;
293
294 if (uio->uio_segflg != UIO_USERSPACE)
295 return (0);
296
297 if (iov->iov_len < (size_t) space)
298 space = iov->iov_len;
299 if (space > SOCK_LOAN_CHUNK)
300 space = SOCK_LOAN_CHUNK;
301
302 eva = round_page((vaddr_t) iov->iov_base + space);
303 sva = trunc_page((vaddr_t) iov->iov_base);
304 len = eva - sva;
305 npgs = len >> PAGE_SHIFT;
306
307 /* XXX KDASSERT */
308 KASSERT(npgs <= M_EXT_MAXPAGES);
309
310 lva = sokvaalloc(len, so);
311 if (lva == 0)
312 return 0;
313
314 error = uvm_loan(&uio->uio_lwp->l_proc->p_vmspace->vm_map, sva, len,
315 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
316 if (error) {
317 sokvafree(lva, len);
318 return (0);
319 }
320
321 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
322 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
323 VM_PROT_READ);
324 pmap_update(pmap_kernel());
325
326 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
327
328 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
329 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
330
331 uio->uio_resid -= space;
332 /* uio_offset not updated, not set/used for write(2) */
333 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
334 uio->uio_iov->iov_len -= space;
335 if (uio->uio_iov->iov_len == 0) {
336 uio->uio_iov++;
337 uio->uio_iovcnt--;
338 }
339
340 return (space);
341 }
342
343 /*
344 * Socket operation routines.
345 * These routines are called by the routines in
346 * sys_socket.c or from a system process, and
347 * implement the semantics of socket operations by
348 * switching out to the protocol specific routines.
349 */
350 /*ARGSUSED*/
351 int
352 socreate(int dom, struct socket **aso, int type, int proto)
353 {
354 struct proc *p;
355 struct protosw *prp;
356 struct socket *so;
357 int error, s;
358
359 p = curproc; /* XXX */
360 if (proto)
361 prp = pffindproto(dom, proto, type);
362 else
363 prp = pffindtype(dom, type);
364 if (prp == 0 || prp->pr_usrreq == 0)
365 return (EPROTONOSUPPORT);
366 if (prp->pr_type != type)
367 return (EPROTOTYPE);
368 s = splsoftnet();
369 so = pool_get(&socket_pool, PR_WAITOK);
370 memset((caddr_t)so, 0, sizeof(*so));
371 TAILQ_INIT(&so->so_q0);
372 TAILQ_INIT(&so->so_q);
373 so->so_type = type;
374 so->so_proto = prp;
375 so->so_send = sosend;
376 so->so_receive = soreceive;
377 #ifdef MBUFTRACE
378 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
379 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
380 so->so_mowner = &prp->pr_domain->dom_mowner;
381 #endif
382 if (p != 0)
383 so->so_uid = p->p_ucred->cr_uid;
384 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
385 (struct mbuf *)(long)proto, (struct mbuf *)0, curlwp); /* XXX */
386 if (error) {
387 so->so_state |= SS_NOFDREF;
388 sofree(so);
389 splx(s);
390 return (error);
391 }
392 splx(s);
393 *aso = so;
394 return (0);
395 }
396
397 int
398 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
399 {
400 int s, error;
401
402 s = splsoftnet();
403 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
404 nam, (struct mbuf *)0, l);
405 splx(s);
406 return (error);
407 }
408
409 int
410 solisten(struct socket *so, int backlog)
411 {
412 int s, error;
413
414 s = splsoftnet();
415 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
416 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
417 if (error) {
418 splx(s);
419 return (error);
420 }
421 if (TAILQ_EMPTY(&so->so_q))
422 so->so_options |= SO_ACCEPTCONN;
423 if (backlog < 0)
424 backlog = 0;
425 so->so_qlimit = min(backlog, somaxconn);
426 splx(s);
427 return (0);
428 }
429
430 void
431 sofree(struct socket *so)
432 {
433 struct mbuf *m;
434
435 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
436 return;
437 if (so->so_head) {
438 /*
439 * We must not decommission a socket that's on the accept(2)
440 * queue. If we do, then accept(2) may hang after select(2)
441 * indicated that the listening socket was ready.
442 */
443 if (!soqremque(so, 0))
444 return;
445 }
446 sbrelease(&so->so_snd);
447 sorflush(so);
448 while ((m = so->so_pendfree) != NULL) {
449 so->so_pendfree = m->m_next;
450 m->m_next = so_pendfree;
451 so_pendfree = m;
452 }
453 pool_put(&socket_pool, so);
454 }
455
456 /*
457 * Close a socket on last file table reference removal.
458 * Initiate disconnect if connected.
459 * Free socket when disconnect complete.
460 */
461 int
462 soclose(struct socket *so)
463 {
464 struct socket *so2;
465 int s, error;
466
467 error = 0;
468 s = splsoftnet(); /* conservative */
469 if (so->so_options & SO_ACCEPTCONN) {
470 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
471 (void) soqremque(so2, 0);
472 (void) soabort(so2);
473 }
474 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
475 (void) soqremque(so2, 1);
476 (void) soabort(so2);
477 }
478 }
479 if (so->so_pcb == 0)
480 goto discard;
481 if (so->so_state & SS_ISCONNECTED) {
482 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
483 error = sodisconnect(so);
484 if (error)
485 goto drop;
486 }
487 if (so->so_options & SO_LINGER) {
488 if ((so->so_state & SS_ISDISCONNECTING) &&
489 (so->so_state & SS_NBIO))
490 goto drop;
491 while (so->so_state & SS_ISCONNECTED) {
492 error = tsleep((caddr_t)&so->so_timeo,
493 PSOCK | PCATCH, netcls,
494 so->so_linger * hz);
495 if (error)
496 break;
497 }
498 }
499 }
500 drop:
501 if (so->so_pcb) {
502 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
503 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
504 (struct lwp *)0);
505 if (error == 0)
506 error = error2;
507 }
508 discard:
509 if (so->so_state & SS_NOFDREF)
510 panic("soclose: NOFDREF");
511 so->so_state |= SS_NOFDREF;
512 sofree(so);
513 splx(s);
514 return (error);
515 }
516
517 /*
518 * Must be called at splsoftnet...
519 */
520 int
521 soabort(struct socket *so)
522 {
523
524 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
525 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
526 }
527
528 int
529 soaccept(struct socket *so, struct mbuf *nam)
530 {
531 int s, error;
532
533 error = 0;
534 s = splsoftnet();
535 if ((so->so_state & SS_NOFDREF) == 0)
536 panic("soaccept: !NOFDREF");
537 so->so_state &= ~SS_NOFDREF;
538 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
539 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
540 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
541 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
542 else
543 error = ECONNABORTED;
544
545 splx(s);
546 return (error);
547 }
548
549 int
550 soconnect(struct socket *so, struct mbuf *nam)
551 {
552 int s, error;
553
554 if (so->so_options & SO_ACCEPTCONN)
555 return (EOPNOTSUPP);
556 s = splsoftnet();
557 /*
558 * If protocol is connection-based, can only connect once.
559 * Otherwise, if connected, try to disconnect first.
560 * This allows user to disconnect by connecting to, e.g.,
561 * a null address.
562 */
563 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
564 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
565 (error = sodisconnect(so))))
566 error = EISCONN;
567 else
568 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
569 (struct mbuf *)0, nam, (struct mbuf *)0, curlwp); /* XXX */
570 splx(s);
571 return (error);
572 }
573
574 int
575 soconnect2(struct socket *so1, struct socket *so2)
576 {
577 int s, error;
578
579 s = splsoftnet();
580 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
581 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
582 (struct lwp *)0);
583 splx(s);
584 return (error);
585 }
586
587 int
588 sodisconnect(struct socket *so)
589 {
590 int s, error;
591
592 s = splsoftnet();
593 if ((so->so_state & SS_ISCONNECTED) == 0) {
594 error = ENOTCONN;
595 goto bad;
596 }
597 if (so->so_state & SS_ISDISCONNECTING) {
598 error = EALREADY;
599 goto bad;
600 }
601 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
602 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
603 (struct lwp *)0);
604 bad:
605 splx(s);
606 sodopendfree(so);
607 return (error);
608 }
609
610 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
611 /*
612 * Send on a socket.
613 * If send must go all at once and message is larger than
614 * send buffering, then hard error.
615 * Lock against other senders.
616 * If must go all at once and not enough room now, then
617 * inform user that this would block and do nothing.
618 * Otherwise, if nonblocking, send as much as possible.
619 * The data to be sent is described by "uio" if nonzero,
620 * otherwise by the mbuf chain "top" (which must be null
621 * if uio is not). Data provided in mbuf chain must be small
622 * enough to send all at once.
623 *
624 * Returns nonzero on error, timeout or signal; callers
625 * must check for short counts if EINTR/ERESTART are returned.
626 * Data and control buffers are freed on return.
627 */
628 int
629 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
630 struct mbuf *control, int flags)
631 {
632 struct proc *p;
633 struct mbuf **mp, *m;
634 long space, len, resid, clen, mlen;
635 int error, s, dontroute, atomic;
636
637 sodopendfree(so);
638
639 p = curproc; /* XXX */
640 clen = 0;
641 atomic = sosendallatonce(so) || top;
642 if (uio)
643 resid = uio->uio_resid;
644 else
645 resid = top->m_pkthdr.len;
646 /*
647 * In theory resid should be unsigned.
648 * However, space must be signed, as it might be less than 0
649 * if we over-committed, and we must use a signed comparison
650 * of space and resid. On the other hand, a negative resid
651 * causes us to loop sending 0-length segments to the protocol.
652 */
653 if (resid < 0) {
654 error = EINVAL;
655 goto out;
656 }
657 dontroute =
658 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
659 (so->so_proto->pr_flags & PR_ATOMIC);
660 p->p_stats->p_ru.ru_msgsnd++;
661 if (control)
662 clen = control->m_len;
663 #define snderr(errno) { error = errno; splx(s); goto release; }
664
665 restart:
666 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
667 goto out;
668 do {
669 s = splsoftnet();
670 if (so->so_state & SS_CANTSENDMORE)
671 snderr(EPIPE);
672 if (so->so_error) {
673 error = so->so_error;
674 so->so_error = 0;
675 splx(s);
676 goto release;
677 }
678 if ((so->so_state & SS_ISCONNECTED) == 0) {
679 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
680 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
681 !(resid == 0 && clen != 0))
682 snderr(ENOTCONN);
683 } else if (addr == 0)
684 snderr(EDESTADDRREQ);
685 }
686 space = sbspace(&so->so_snd);
687 if (flags & MSG_OOB)
688 space += 1024;
689 if ((atomic && resid > so->so_snd.sb_hiwat) ||
690 clen > so->so_snd.sb_hiwat)
691 snderr(EMSGSIZE);
692 if (space < resid + clen && uio &&
693 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
694 if (so->so_state & SS_NBIO)
695 snderr(EWOULDBLOCK);
696 sbunlock(&so->so_snd);
697 error = sbwait(&so->so_snd);
698 splx(s);
699 if (error)
700 goto out;
701 goto restart;
702 }
703 splx(s);
704 mp = ⊤
705 space -= clen;
706 do {
707 if (uio == NULL) {
708 /*
709 * Data is prepackaged in "top".
710 */
711 resid = 0;
712 if (flags & MSG_EOR)
713 top->m_flags |= M_EOR;
714 } else do {
715 if (top == 0) {
716 m = m_gethdr(M_WAIT, MT_DATA);
717 mlen = MHLEN;
718 m->m_pkthdr.len = 0;
719 m->m_pkthdr.rcvif = (struct ifnet *)0;
720 } else {
721 m = m_get(M_WAIT, MT_DATA);
722 mlen = MLEN;
723 }
724 MCLAIM(m, so->so_snd.sb_mowner);
725 if (use_sosend_loan &&
726 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
727 space >= SOCK_LOAN_THRESH &&
728 (len = sosend_loan(so, uio, m,
729 space)) != 0) {
730 SOSEND_COUNTER_INCR(&sosend_loan_big);
731 space -= len;
732 goto have_data;
733 }
734 if (resid >= MINCLSIZE && space >= MCLBYTES) {
735 SOSEND_COUNTER_INCR(&sosend_copy_big);
736 m_clget(m, M_WAIT);
737 if ((m->m_flags & M_EXT) == 0)
738 goto nopages;
739 mlen = MCLBYTES;
740 if (atomic && top == 0) {
741 len = lmin(MCLBYTES - max_hdr,
742 resid);
743 m->m_data += max_hdr;
744 } else
745 len = lmin(MCLBYTES, resid);
746 space -= len;
747 } else {
748 nopages:
749 SOSEND_COUNTER_INCR(&sosend_copy_small);
750 len = lmin(lmin(mlen, resid), space);
751 space -= len;
752 /*
753 * For datagram protocols, leave room
754 * for protocol headers in first mbuf.
755 */
756 if (atomic && top == 0 && len < mlen)
757 MH_ALIGN(m, len);
758 }
759 error = uiomove(mtod(m, caddr_t), (int)len,
760 uio);
761 have_data:
762 resid = uio->uio_resid;
763 m->m_len = len;
764 *mp = m;
765 top->m_pkthdr.len += len;
766 if (error)
767 goto release;
768 mp = &m->m_next;
769 if (resid <= 0) {
770 if (flags & MSG_EOR)
771 top->m_flags |= M_EOR;
772 break;
773 }
774 } while (space > 0 && atomic);
775
776 s = splsoftnet();
777
778 if (so->so_state & SS_CANTSENDMORE)
779 snderr(EPIPE);
780
781 if (dontroute)
782 so->so_options |= SO_DONTROUTE;
783 if (resid > 0)
784 so->so_state |= SS_MORETOCOME;
785 error = (*so->so_proto->pr_usrreq)(so,
786 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
787 top, addr, control, curlwp); /* XXX */
788 if (dontroute)
789 so->so_options &= ~SO_DONTROUTE;
790 if (resid > 0)
791 so->so_state &= ~SS_MORETOCOME;
792 splx(s);
793
794 clen = 0;
795 control = 0;
796 top = 0;
797 mp = ⊤
798 if (error)
799 goto release;
800 } while (resid && space > 0);
801 } while (resid);
802
803 release:
804 sbunlock(&so->so_snd);
805 out:
806 if (top)
807 m_freem(top);
808 if (control)
809 m_freem(control);
810 return (error);
811 }
812
813 /*
814 * Implement receive operations on a socket.
815 * We depend on the way that records are added to the sockbuf
816 * by sbappend*. In particular, each record (mbufs linked through m_next)
817 * must begin with an address if the protocol so specifies,
818 * followed by an optional mbuf or mbufs containing ancillary data,
819 * and then zero or more mbufs of data.
820 * In order to avoid blocking network interrupts for the entire time here,
821 * we splx() while doing the actual copy to user space.
822 * Although the sockbuf is locked, new data may still be appended,
823 * and thus we must maintain consistency of the sockbuf during that time.
824 *
825 * The caller may receive the data as a single mbuf chain by supplying
826 * an mbuf **mp0 for use in returning the chain. The uio is then used
827 * only for the count in uio_resid.
828 */
829 int
830 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
831 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
832 {
833 struct mbuf *m, **mp;
834 int flags, len, error, s, offset, moff, type, orig_resid;
835 struct protosw *pr;
836 struct mbuf *nextrecord;
837 int mbuf_removed = 0;
838
839 pr = so->so_proto;
840 mp = mp0;
841 type = 0;
842 orig_resid = uio->uio_resid;
843 if (paddr)
844 *paddr = 0;
845 if (controlp)
846 *controlp = 0;
847 if (flagsp)
848 flags = *flagsp &~ MSG_EOR;
849 else
850 flags = 0;
851
852 if ((flags & MSG_DONTWAIT) == 0)
853 sodopendfree(so);
854
855 if (flags & MSG_OOB) {
856 m = m_get(M_WAIT, MT_DATA);
857 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
858 (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
859 (struct lwp *)0);
860 if (error)
861 goto bad;
862 do {
863 error = uiomove(mtod(m, caddr_t),
864 (int) min(uio->uio_resid, m->m_len), uio);
865 m = m_free(m);
866 } while (uio->uio_resid && error == 0 && m);
867 bad:
868 if (m)
869 m_freem(m);
870 return (error);
871 }
872 if (mp)
873 *mp = (struct mbuf *)0;
874 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
875 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
876 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
877
878 restart:
879 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
880 return (error);
881 s = splsoftnet();
882
883 m = so->so_rcv.sb_mb;
884 /*
885 * If we have less data than requested, block awaiting more
886 * (subject to any timeout) if:
887 * 1. the current count is less than the low water mark,
888 * 2. MSG_WAITALL is set, and it is possible to do the entire
889 * receive operation at once if we block (resid <= hiwat), or
890 * 3. MSG_DONTWAIT is not set.
891 * If MSG_WAITALL is set but resid is larger than the receive buffer,
892 * we have to do the receive in sections, and thus risk returning
893 * a short count if a timeout or signal occurs after we start.
894 */
895 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
896 so->so_rcv.sb_cc < uio->uio_resid) &&
897 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
898 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
899 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
900 #ifdef DIAGNOSTIC
901 if (m == 0 && so->so_rcv.sb_cc)
902 panic("receive 1");
903 #endif
904 if (so->so_error) {
905 if (m)
906 goto dontblock;
907 error = so->so_error;
908 if ((flags & MSG_PEEK) == 0)
909 so->so_error = 0;
910 goto release;
911 }
912 if (so->so_state & SS_CANTRCVMORE) {
913 if (m)
914 goto dontblock;
915 else
916 goto release;
917 }
918 for (; m; m = m->m_next)
919 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
920 m = so->so_rcv.sb_mb;
921 goto dontblock;
922 }
923 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
924 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
925 error = ENOTCONN;
926 goto release;
927 }
928 if (uio->uio_resid == 0)
929 goto release;
930 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
931 error = EWOULDBLOCK;
932 goto release;
933 }
934 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
935 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
936 sbunlock(&so->so_rcv);
937 error = sbwait(&so->so_rcv);
938 splx(s);
939 if (error)
940 return (error);
941 goto restart;
942 }
943 dontblock:
944 /*
945 * On entry here, m points to the first record of the socket buffer.
946 * While we process the initial mbufs containing address and control
947 * info, we save a copy of m->m_nextpkt into nextrecord.
948 */
949 #ifdef notyet /* XXXX */
950 if (uio->uio_lwp)
951 uio->uio_lwp->l_proc->p_stats->p_ru.ru_msgrcv++;
952 #endif
953 KASSERT(m == so->so_rcv.sb_mb);
954 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
955 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
956 nextrecord = m->m_nextpkt;
957 if (pr->pr_flags & PR_ADDR) {
958 #ifdef DIAGNOSTIC
959 if (m->m_type != MT_SONAME)
960 panic("receive 1a");
961 #endif
962 orig_resid = 0;
963 if (flags & MSG_PEEK) {
964 if (paddr)
965 *paddr = m_copy(m, 0, m->m_len);
966 m = m->m_next;
967 } else {
968 sbfree(&so->so_rcv, m);
969 mbuf_removed = 1;
970 if (paddr) {
971 *paddr = m;
972 so->so_rcv.sb_mb = m->m_next;
973 m->m_next = 0;
974 m = so->so_rcv.sb_mb;
975 } else {
976 MFREE(m, so->so_rcv.sb_mb);
977 m = so->so_rcv.sb_mb;
978 }
979 }
980 }
981 while (m && m->m_type == MT_CONTROL && error == 0) {
982 if (flags & MSG_PEEK) {
983 if (controlp)
984 *controlp = m_copy(m, 0, m->m_len);
985 m = m->m_next;
986 } else {
987 sbfree(&so->so_rcv, m);
988 mbuf_removed = 1;
989 if (controlp) {
990 if (pr->pr_domain->dom_externalize &&
991 mtod(m, struct cmsghdr *)->cmsg_type ==
992 SCM_RIGHTS)
993 error = (*pr->pr_domain->dom_externalize)(m);
994 *controlp = m;
995 so->so_rcv.sb_mb = m->m_next;
996 m->m_next = 0;
997 m = so->so_rcv.sb_mb;
998 } else {
999 MFREE(m, so->so_rcv.sb_mb);
1000 m = so->so_rcv.sb_mb;
1001 }
1002 }
1003 if (controlp) {
1004 orig_resid = 0;
1005 controlp = &(*controlp)->m_next;
1006 }
1007 }
1008
1009 /*
1010 * If m is non-NULL, we have some data to read. From now on,
1011 * make sure to keep sb_lastrecord consistent when working on
1012 * the last packet on the chain (nextrecord == NULL) and we
1013 * change m->m_nextpkt.
1014 */
1015 if (m) {
1016 if ((flags & MSG_PEEK) == 0) {
1017 m->m_nextpkt = nextrecord;
1018 /*
1019 * If nextrecord == NULL (this is a single chain),
1020 * then sb_lastrecord may not be valid here if m
1021 * was changed earlier.
1022 */
1023 if (nextrecord == NULL) {
1024 KASSERT(so->so_rcv.sb_mb == m);
1025 so->so_rcv.sb_lastrecord = m;
1026 }
1027 }
1028 type = m->m_type;
1029 if (type == MT_OOBDATA)
1030 flags |= MSG_OOB;
1031 } else {
1032 if ((flags & MSG_PEEK) == 0) {
1033 KASSERT(so->so_rcv.sb_mb == m);
1034 so->so_rcv.sb_mb = nextrecord;
1035 SB_EMPTY_FIXUP(&so->so_rcv);
1036 }
1037 }
1038 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1039 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1040
1041 moff = 0;
1042 offset = 0;
1043 while (m && uio->uio_resid > 0 && error == 0) {
1044 if (m->m_type == MT_OOBDATA) {
1045 if (type != MT_OOBDATA)
1046 break;
1047 } else if (type == MT_OOBDATA)
1048 break;
1049 #ifdef DIAGNOSTIC
1050 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1051 panic("receive 3");
1052 #endif
1053 so->so_state &= ~SS_RCVATMARK;
1054 len = uio->uio_resid;
1055 if (so->so_oobmark && len > so->so_oobmark - offset)
1056 len = so->so_oobmark - offset;
1057 if (len > m->m_len - moff)
1058 len = m->m_len - moff;
1059 /*
1060 * If mp is set, just pass back the mbufs.
1061 * Otherwise copy them out via the uio, then free.
1062 * Sockbuf must be consistent here (points to current mbuf,
1063 * it points to next record) when we drop priority;
1064 * we must note any additions to the sockbuf when we
1065 * block interrupts again.
1066 */
1067 if (mp == 0) {
1068 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1069 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1070 splx(s);
1071 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1072 s = splsoftnet();
1073 if (error) {
1074 /*
1075 * If any part of the record has been removed
1076 * (such as the MT_SONAME mbuf, which will
1077 * happen when PR_ADDR, and thus also
1078 * PR_ATOMIC, is set), then drop the entire
1079 * record to maintain the atomicity of the
1080 * receive operation.
1081 *
1082 * This avoids a later panic("receive 1a")
1083 * when compiled with DIAGNOSTIC.
1084 */
1085 if (m && mbuf_removed
1086 && (pr->pr_flags & PR_ATOMIC))
1087 (void) sbdroprecord(&so->so_rcv);
1088
1089 goto release;
1090 }
1091 } else
1092 uio->uio_resid -= len;
1093 if (len == m->m_len - moff) {
1094 if (m->m_flags & M_EOR)
1095 flags |= MSG_EOR;
1096 if (flags & MSG_PEEK) {
1097 m = m->m_next;
1098 moff = 0;
1099 } else {
1100 nextrecord = m->m_nextpkt;
1101 sbfree(&so->so_rcv, m);
1102 if (mp) {
1103 *mp = m;
1104 mp = &m->m_next;
1105 so->so_rcv.sb_mb = m = m->m_next;
1106 *mp = (struct mbuf *)0;
1107 } else {
1108 MFREE(m, so->so_rcv.sb_mb);
1109 m = so->so_rcv.sb_mb;
1110 }
1111 /*
1112 * If m != NULL, we also know that
1113 * so->so_rcv.sb_mb != NULL.
1114 */
1115 KASSERT(so->so_rcv.sb_mb == m);
1116 if (m) {
1117 m->m_nextpkt = nextrecord;
1118 if (nextrecord == NULL)
1119 so->so_rcv.sb_lastrecord = m;
1120 } else {
1121 so->so_rcv.sb_mb = nextrecord;
1122 SB_EMPTY_FIXUP(&so->so_rcv);
1123 }
1124 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1125 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1126 }
1127 } else {
1128 if (flags & MSG_PEEK)
1129 moff += len;
1130 else {
1131 if (mp)
1132 *mp = m_copym(m, 0, len, M_WAIT);
1133 m->m_data += len;
1134 m->m_len -= len;
1135 so->so_rcv.sb_cc -= len;
1136 }
1137 }
1138 if (so->so_oobmark) {
1139 if ((flags & MSG_PEEK) == 0) {
1140 so->so_oobmark -= len;
1141 if (so->so_oobmark == 0) {
1142 so->so_state |= SS_RCVATMARK;
1143 break;
1144 }
1145 } else {
1146 offset += len;
1147 if (offset == so->so_oobmark)
1148 break;
1149 }
1150 }
1151 if (flags & MSG_EOR)
1152 break;
1153 /*
1154 * If the MSG_WAITALL flag is set (for non-atomic socket),
1155 * we must not quit until "uio->uio_resid == 0" or an error
1156 * termination. If a signal/timeout occurs, return
1157 * with a short count but without error.
1158 * Keep sockbuf locked against other readers.
1159 */
1160 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1161 !sosendallatonce(so) && !nextrecord) {
1162 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1163 break;
1164 /*
1165 * If we are peeking and the socket receive buffer is
1166 * full, stop since we can't get more data to peek at.
1167 */
1168 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1169 break;
1170 /*
1171 * If we've drained the socket buffer, tell the
1172 * protocol in case it needs to do something to
1173 * get it filled again.
1174 */
1175 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1176 (*pr->pr_usrreq)(so, PRU_RCVD,
1177 (struct mbuf *)0,
1178 (struct mbuf *)(long)flags,
1179 (struct mbuf *)0,
1180 (struct lwp *)0);
1181 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1182 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1183 error = sbwait(&so->so_rcv);
1184 if (error) {
1185 sbunlock(&so->so_rcv);
1186 splx(s);
1187 return (0);
1188 }
1189 if ((m = so->so_rcv.sb_mb) != NULL)
1190 nextrecord = m->m_nextpkt;
1191 }
1192 }
1193
1194 if (m && pr->pr_flags & PR_ATOMIC) {
1195 flags |= MSG_TRUNC;
1196 if ((flags & MSG_PEEK) == 0)
1197 (void) sbdroprecord(&so->so_rcv);
1198 }
1199 if ((flags & MSG_PEEK) == 0) {
1200 if (m == 0) {
1201 /*
1202 * First part is an inline SB_EMPTY_FIXUP(). Second
1203 * part makes sure sb_lastrecord is up-to-date if
1204 * there is still data in the socket buffer.
1205 */
1206 so->so_rcv.sb_mb = nextrecord;
1207 if (so->so_rcv.sb_mb == NULL) {
1208 so->so_rcv.sb_mbtail = NULL;
1209 so->so_rcv.sb_lastrecord = NULL;
1210 } else if (nextrecord->m_nextpkt == NULL)
1211 so->so_rcv.sb_lastrecord = nextrecord;
1212 }
1213 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1214 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1215 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1216 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1217 (struct mbuf *)(long)flags, (struct mbuf *)0,
1218 (struct lwp *)0);
1219 }
1220 if (orig_resid == uio->uio_resid && orig_resid &&
1221 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1222 sbunlock(&so->so_rcv);
1223 splx(s);
1224 goto restart;
1225 }
1226
1227 if (flagsp)
1228 *flagsp |= flags;
1229 release:
1230 sbunlock(&so->so_rcv);
1231 splx(s);
1232 return (error);
1233 }
1234
1235 int
1236 soshutdown(struct socket *so, int how)
1237 {
1238 struct protosw *pr;
1239
1240 pr = so->so_proto;
1241 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1242 return (EINVAL);
1243
1244 if (how == SHUT_RD || how == SHUT_RDWR)
1245 sorflush(so);
1246 if (how == SHUT_WR || how == SHUT_RDWR)
1247 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1248 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1249 return (0);
1250 }
1251
1252 void
1253 sorflush(struct socket *so)
1254 {
1255 struct sockbuf *sb, asb;
1256 struct protosw *pr;
1257 int s;
1258
1259 sb = &so->so_rcv;
1260 pr = so->so_proto;
1261 sb->sb_flags |= SB_NOINTR;
1262 (void) sblock(sb, M_WAITOK);
1263 s = splnet();
1264 socantrcvmore(so);
1265 sbunlock(sb);
1266 asb = *sb;
1267 memset((caddr_t)sb, 0, sizeof(*sb));
1268 splx(s);
1269 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1270 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1271 sbrelease(&asb);
1272 }
1273
1274 int
1275 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1276 {
1277 int error;
1278 struct mbuf *m;
1279
1280 error = 0;
1281 m = m0;
1282 if (level != SOL_SOCKET) {
1283 if (so->so_proto && so->so_proto->pr_ctloutput)
1284 return ((*so->so_proto->pr_ctloutput)
1285 (PRCO_SETOPT, so, level, optname, &m0));
1286 error = ENOPROTOOPT;
1287 } else {
1288 switch (optname) {
1289
1290 case SO_LINGER:
1291 if (m == NULL || m->m_len != sizeof(struct linger)) {
1292 error = EINVAL;
1293 goto bad;
1294 }
1295 so->so_linger = mtod(m, struct linger *)->l_linger;
1296 /* fall thru... */
1297
1298 case SO_DEBUG:
1299 case SO_KEEPALIVE:
1300 case SO_DONTROUTE:
1301 case SO_USELOOPBACK:
1302 case SO_BROADCAST:
1303 case SO_REUSEADDR:
1304 case SO_REUSEPORT:
1305 case SO_OOBINLINE:
1306 case SO_TIMESTAMP:
1307 if (m == NULL || m->m_len < sizeof(int)) {
1308 error = EINVAL;
1309 goto bad;
1310 }
1311 if (*mtod(m, int *))
1312 so->so_options |= optname;
1313 else
1314 so->so_options &= ~optname;
1315 break;
1316
1317 case SO_SNDBUF:
1318 case SO_RCVBUF:
1319 case SO_SNDLOWAT:
1320 case SO_RCVLOWAT:
1321 {
1322 int optval;
1323
1324 if (m == NULL || m->m_len < sizeof(int)) {
1325 error = EINVAL;
1326 goto bad;
1327 }
1328
1329 /*
1330 * Values < 1 make no sense for any of these
1331 * options, so disallow them.
1332 */
1333 optval = *mtod(m, int *);
1334 if (optval < 1) {
1335 error = EINVAL;
1336 goto bad;
1337 }
1338
1339 switch (optname) {
1340
1341 case SO_SNDBUF:
1342 case SO_RCVBUF:
1343 if (sbreserve(optname == SO_SNDBUF ?
1344 &so->so_snd : &so->so_rcv,
1345 (u_long) optval) == 0) {
1346 error = ENOBUFS;
1347 goto bad;
1348 }
1349 break;
1350
1351 /*
1352 * Make sure the low-water is never greater than
1353 * the high-water.
1354 */
1355 case SO_SNDLOWAT:
1356 so->so_snd.sb_lowat =
1357 (optval > so->so_snd.sb_hiwat) ?
1358 so->so_snd.sb_hiwat : optval;
1359 break;
1360 case SO_RCVLOWAT:
1361 so->so_rcv.sb_lowat =
1362 (optval > so->so_rcv.sb_hiwat) ?
1363 so->so_rcv.sb_hiwat : optval;
1364 break;
1365 }
1366 break;
1367 }
1368
1369 case SO_SNDTIMEO:
1370 case SO_RCVTIMEO:
1371 {
1372 struct timeval *tv;
1373 short val;
1374
1375 if (m == NULL || m->m_len < sizeof(*tv)) {
1376 error = EINVAL;
1377 goto bad;
1378 }
1379 tv = mtod(m, struct timeval *);
1380 if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) {
1381 error = EDOM;
1382 goto bad;
1383 }
1384 val = tv->tv_sec * hz + tv->tv_usec / tick;
1385 if (val == 0 && tv->tv_usec != 0)
1386 val = 1;
1387
1388 switch (optname) {
1389
1390 case SO_SNDTIMEO:
1391 so->so_snd.sb_timeo = val;
1392 break;
1393 case SO_RCVTIMEO:
1394 so->so_rcv.sb_timeo = val;
1395 break;
1396 }
1397 break;
1398 }
1399
1400 default:
1401 error = ENOPROTOOPT;
1402 break;
1403 }
1404 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1405 (void) ((*so->so_proto->pr_ctloutput)
1406 (PRCO_SETOPT, so, level, optname, &m0));
1407 m = NULL; /* freed by protocol */
1408 }
1409 }
1410 bad:
1411 if (m)
1412 (void) m_free(m);
1413 return (error);
1414 }
1415
1416 int
1417 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1418 {
1419 struct mbuf *m;
1420
1421 if (level != SOL_SOCKET) {
1422 if (so->so_proto && so->so_proto->pr_ctloutput) {
1423 return ((*so->so_proto->pr_ctloutput)
1424 (PRCO_GETOPT, so, level, optname, mp));
1425 } else
1426 return (ENOPROTOOPT);
1427 } else {
1428 m = m_get(M_WAIT, MT_SOOPTS);
1429 m->m_len = sizeof(int);
1430
1431 switch (optname) {
1432
1433 case SO_LINGER:
1434 m->m_len = sizeof(struct linger);
1435 mtod(m, struct linger *)->l_onoff =
1436 so->so_options & SO_LINGER;
1437 mtod(m, struct linger *)->l_linger = so->so_linger;
1438 break;
1439
1440 case SO_USELOOPBACK:
1441 case SO_DONTROUTE:
1442 case SO_DEBUG:
1443 case SO_KEEPALIVE:
1444 case SO_REUSEADDR:
1445 case SO_REUSEPORT:
1446 case SO_BROADCAST:
1447 case SO_OOBINLINE:
1448 case SO_TIMESTAMP:
1449 *mtod(m, int *) = so->so_options & optname;
1450 break;
1451
1452 case SO_TYPE:
1453 *mtod(m, int *) = so->so_type;
1454 break;
1455
1456 case SO_ERROR:
1457 *mtod(m, int *) = so->so_error;
1458 so->so_error = 0;
1459 break;
1460
1461 case SO_SNDBUF:
1462 *mtod(m, int *) = so->so_snd.sb_hiwat;
1463 break;
1464
1465 case SO_RCVBUF:
1466 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1467 break;
1468
1469 case SO_SNDLOWAT:
1470 *mtod(m, int *) = so->so_snd.sb_lowat;
1471 break;
1472
1473 case SO_RCVLOWAT:
1474 *mtod(m, int *) = so->so_rcv.sb_lowat;
1475 break;
1476
1477 case SO_SNDTIMEO:
1478 case SO_RCVTIMEO:
1479 {
1480 int val = (optname == SO_SNDTIMEO ?
1481 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1482
1483 m->m_len = sizeof(struct timeval);
1484 mtod(m, struct timeval *)->tv_sec = val / hz;
1485 mtod(m, struct timeval *)->tv_usec =
1486 (val % hz) * tick;
1487 break;
1488 }
1489
1490 default:
1491 (void)m_free(m);
1492 return (ENOPROTOOPT);
1493 }
1494 *mp = m;
1495 return (0);
1496 }
1497 }
1498
1499 void
1500 sohasoutofband(struct socket *so)
1501 {
1502 struct proc *p;
1503
1504 if (so->so_pgid < 0)
1505 gsignal(-so->so_pgid, SIGURG);
1506 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
1507 psignal(p, SIGURG);
1508 selwakeup(&so->so_rcv.sb_sel);
1509 }
1510
1511 static void
1512 filt_sordetach(struct knote *kn)
1513 {
1514 struct socket *so;
1515
1516 so = (struct socket *)kn->kn_fp->f_data;
1517 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1518 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1519 so->so_rcv.sb_flags &= ~SB_KNOTE;
1520 }
1521
1522 /*ARGSUSED*/
1523 static int
1524 filt_soread(struct knote *kn, long hint)
1525 {
1526 struct socket *so;
1527
1528 so = (struct socket *)kn->kn_fp->f_data;
1529 kn->kn_data = so->so_rcv.sb_cc;
1530 if (so->so_state & SS_CANTRCVMORE) {
1531 kn->kn_flags |= EV_EOF;
1532 kn->kn_fflags = so->so_error;
1533 return (1);
1534 }
1535 if (so->so_error) /* temporary udp error */
1536 return (1);
1537 if (kn->kn_sfflags & NOTE_LOWAT)
1538 return (kn->kn_data >= kn->kn_sdata);
1539 return (kn->kn_data >= so->so_rcv.sb_lowat);
1540 }
1541
1542 static void
1543 filt_sowdetach(struct knote *kn)
1544 {
1545 struct socket *so;
1546
1547 so = (struct socket *)kn->kn_fp->f_data;
1548 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1549 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1550 so->so_snd.sb_flags &= ~SB_KNOTE;
1551 }
1552
1553 /*ARGSUSED*/
1554 static int
1555 filt_sowrite(struct knote *kn, long hint)
1556 {
1557 struct socket *so;
1558
1559 so = (struct socket *)kn->kn_fp->f_data;
1560 kn->kn_data = sbspace(&so->so_snd);
1561 if (so->so_state & SS_CANTSENDMORE) {
1562 kn->kn_flags |= EV_EOF;
1563 kn->kn_fflags = so->so_error;
1564 return (1);
1565 }
1566 if (so->so_error) /* temporary udp error */
1567 return (1);
1568 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1569 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1570 return (0);
1571 if (kn->kn_sfflags & NOTE_LOWAT)
1572 return (kn->kn_data >= kn->kn_sdata);
1573 return (kn->kn_data >= so->so_snd.sb_lowat);
1574 }
1575
1576 /*ARGSUSED*/
1577 static int
1578 filt_solisten(struct knote *kn, long hint)
1579 {
1580 struct socket *so;
1581
1582 so = (struct socket *)kn->kn_fp->f_data;
1583
1584 /*
1585 * Set kn_data to number of incoming connections, not
1586 * counting partial (incomplete) connections.
1587 */
1588 kn->kn_data = so->so_qlen;
1589 return (kn->kn_data > 0);
1590 }
1591
1592 static const struct filterops solisten_filtops =
1593 { 1, NULL, filt_sordetach, filt_solisten };
1594 static const struct filterops soread_filtops =
1595 { 1, NULL, filt_sordetach, filt_soread };
1596 static const struct filterops sowrite_filtops =
1597 { 1, NULL, filt_sowdetach, filt_sowrite };
1598
1599 int
1600 soo_kqfilter(struct file *fp, struct knote *kn)
1601 {
1602 struct socket *so;
1603 struct sockbuf *sb;
1604
1605 so = (struct socket *)kn->kn_fp->f_data;
1606 switch (kn->kn_filter) {
1607 case EVFILT_READ:
1608 if (so->so_options & SO_ACCEPTCONN)
1609 kn->kn_fop = &solisten_filtops;
1610 else
1611 kn->kn_fop = &soread_filtops;
1612 sb = &so->so_rcv;
1613 break;
1614 case EVFILT_WRITE:
1615 kn->kn_fop = &sowrite_filtops;
1616 sb = &so->so_snd;
1617 break;
1618 default:
1619 return (1);
1620 }
1621 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1622 sb->sb_flags |= SB_KNOTE;
1623 return (0);
1624 }
1625
1626