uipc_socket.c revision 1.84 1 /* $NetBSD: uipc_socket.c,v 1.84 2003/07/02 20:07:45 ragge Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.84 2003/07/02 20:07:45 ragge Exp $");
76
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80 #include "opt_somaxkva.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/proc.h>
85 #include <sys/file.h>
86 #include <sys/malloc.h>
87 #include <sys/mbuf.h>
88 #include <sys/domain.h>
89 #include <sys/kernel.h>
90 #include <sys/protosw.h>
91 #include <sys/socket.h>
92 #include <sys/socketvar.h>
93 #include <sys/signalvar.h>
94 #include <sys/resourcevar.h>
95 #include <sys/pool.h>
96 #include <sys/event.h>
97
98 #include <uvm/uvm.h>
99
100 struct pool socket_pool;
101
102 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
103 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
104
105 extern int somaxconn; /* patchable (XXX sysctl) */
106 int somaxconn = SOMAXCONN;
107
108 #ifdef SOSEND_COUNTERS
109 #include <sys/device.h>
110
111 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "loan big");
113 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy big");
115 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "copy small");
117 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "kva limit");
119
120 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
121
122 #else
123
124 #define SOSEND_COUNTER_INCR(ev) /* nothing */
125
126 #endif /* SOSEND_COUNTERS */
127
128 void
129 soinit(void)
130 {
131
132 pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
133 "sockpl", NULL);
134
135 #ifdef SOSEND_COUNTERS
136 evcnt_attach_static(&sosend_loan_big);
137 evcnt_attach_static(&sosend_copy_big);
138 evcnt_attach_static(&sosend_copy_small);
139 evcnt_attach_static(&sosend_kvalimit);
140 #endif /* SOSEND_COUNTERS */
141 }
142
143 #ifdef SOSEND_NO_LOAN
144 int use_sosend_loan = 0;
145 #else
146 int use_sosend_loan = 1;
147 #endif
148
149 struct mbuf *so_pendfree;
150
151 #ifndef SOMAXKVA
152 #define SOMAXKVA (16 * 1024 * 1024)
153 #endif
154 int somaxkva = SOMAXKVA;
155 int socurkva;
156 int sokvawaiters;
157
158 #define SOCK_LOAN_THRESH 4096
159 #define SOCK_LOAN_CHUNK 65536
160
161 static size_t sodopendfree(struct socket *);
162
163 vaddr_t
164 sokvaalloc(vsize_t len, struct socket *so)
165 {
166 vaddr_t lva;
167 int s;
168
169 while (socurkva + len > somaxkva) {
170 if (sodopendfree(so))
171 continue;
172 SOSEND_COUNTER_INCR(&sosend_kvalimit);
173 s = splvm();
174 sokvawaiters++;
175 (void) tsleep(&socurkva, PVM, "sokva", 0);
176 sokvawaiters--;
177 splx(s);
178 }
179
180 lva = uvm_km_valloc_wait(kernel_map, len);
181 if (lva == 0)
182 return (0);
183 socurkva += len;
184
185 return lva;
186 }
187
188 void
189 sokvafree(vaddr_t sva, vsize_t len)
190 {
191
192 uvm_km_free(kernel_map, sva, len);
193 socurkva -= len;
194 if (sokvawaiters)
195 wakeup(&socurkva);
196 }
197
198 static void
199 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
200 {
201 vaddr_t va, sva, eva;
202 vsize_t len;
203 paddr_t pa;
204 int i, npgs;
205
206 eva = round_page((vaddr_t) buf + size);
207 sva = trunc_page((vaddr_t) buf);
208 len = eva - sva;
209 npgs = len >> PAGE_SHIFT;
210
211 if (__predict_false(pgs == NULL)) {
212 pgs = alloca(npgs * sizeof(*pgs));
213
214 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
215 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
216 panic("sodoloanfree: va 0x%lx not mapped", va);
217 pgs[i] = PHYS_TO_VM_PAGE(pa);
218 }
219 }
220
221 pmap_kremove(sva, len);
222 pmap_update(pmap_kernel());
223 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
224 sokvafree(sva, len);
225 }
226
227 static size_t
228 sodopendfree(struct socket *so)
229 {
230 struct mbuf *m;
231 size_t rv = 0;
232 int s;
233
234 s = splvm();
235
236 for (;;) {
237 m = so_pendfree;
238 if (m == NULL)
239 break;
240 so_pendfree = m->m_next;
241 splx(s);
242
243 rv += m->m_ext.ext_size;
244 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
245 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
246 m->m_ext.ext_size);
247 s = splvm();
248 pool_cache_put(&mbpool_cache, m);
249 }
250
251 for (;;) {
252 m = so->so_pendfree;
253 if (m == NULL)
254 break;
255 so->so_pendfree = m->m_next;
256 splx(s);
257
258 rv += m->m_ext.ext_size;
259 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
260 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
261 m->m_ext.ext_size);
262 s = splvm();
263 pool_cache_put(&mbpool_cache, m);
264 }
265
266 splx(s);
267 return (rv);
268 }
269
270 void
271 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
272 {
273 struct socket *so = arg;
274 int s;
275
276 if (m == NULL) {
277 sodoloanfree(NULL, buf, size);
278 return;
279 }
280
281 s = splvm();
282 m->m_next = so->so_pendfree;
283 so->so_pendfree = m;
284 splx(s);
285 if (sokvawaiters)
286 wakeup(&socurkva);
287 }
288
289 static long
290 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
291 {
292 struct iovec *iov = uio->uio_iov;
293 vaddr_t sva, eva;
294 vsize_t len;
295 vaddr_t lva, va;
296 int npgs, i, error;
297
298 if (uio->uio_segflg != UIO_USERSPACE)
299 return (0);
300
301 if (iov->iov_len < (size_t) space)
302 space = iov->iov_len;
303 if (space > SOCK_LOAN_CHUNK)
304 space = SOCK_LOAN_CHUNK;
305
306 eva = round_page((vaddr_t) iov->iov_base + space);
307 sva = trunc_page((vaddr_t) iov->iov_base);
308 len = eva - sva;
309 npgs = len >> PAGE_SHIFT;
310
311 /* XXX KDASSERT */
312 KASSERT(npgs <= M_EXT_MAXPAGES);
313
314 lva = sokvaalloc(len, so);
315 if (lva == 0)
316 return 0;
317
318 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
319 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
320 if (error) {
321 sokvafree(lva, len);
322 return (0);
323 }
324
325 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
326 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
327 VM_PROT_READ);
328 pmap_update(pmap_kernel());
329
330 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
331
332 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
333 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
334
335 uio->uio_resid -= space;
336 /* uio_offset not updated, not set/used for write(2) */
337 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
338 uio->uio_iov->iov_len -= space;
339 if (uio->uio_iov->iov_len == 0) {
340 uio->uio_iov++;
341 uio->uio_iovcnt--;
342 }
343
344 return (space);
345 }
346
347 /*
348 * Socket operation routines.
349 * These routines are called by the routines in
350 * sys_socket.c or from a system process, and
351 * implement the semantics of socket operations by
352 * switching out to the protocol specific routines.
353 */
354 /*ARGSUSED*/
355 int
356 socreate(int dom, struct socket **aso, int type, int proto)
357 {
358 struct proc *p;
359 struct protosw *prp;
360 struct socket *so;
361 int error, s;
362
363 p = curproc; /* XXX */
364 if (proto)
365 prp = pffindproto(dom, proto, type);
366 else
367 prp = pffindtype(dom, type);
368 if (prp == 0 || prp->pr_usrreq == 0)
369 return (EPROTONOSUPPORT);
370 if (prp->pr_type != type)
371 return (EPROTOTYPE);
372 s = splsoftnet();
373 so = pool_get(&socket_pool, PR_WAITOK);
374 memset((caddr_t)so, 0, sizeof(*so));
375 TAILQ_INIT(&so->so_q0);
376 TAILQ_INIT(&so->so_q);
377 so->so_type = type;
378 so->so_proto = prp;
379 so->so_send = sosend;
380 so->so_receive = soreceive;
381 #ifdef MBUFTRACE
382 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
383 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
384 so->so_mowner = &prp->pr_domain->dom_mowner;
385 #endif
386 if (p != 0)
387 so->so_uid = p->p_ucred->cr_uid;
388 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
389 (struct mbuf *)(long)proto, (struct mbuf *)0, p);
390 if (error) {
391 so->so_state |= SS_NOFDREF;
392 sofree(so);
393 splx(s);
394 return (error);
395 }
396 splx(s);
397 *aso = so;
398 return (0);
399 }
400
401 int
402 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
403 {
404 int s, error;
405
406 s = splsoftnet();
407 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
408 nam, (struct mbuf *)0, p);
409 splx(s);
410 return (error);
411 }
412
413 int
414 solisten(struct socket *so, int backlog)
415 {
416 int s, error;
417
418 s = splsoftnet();
419 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
420 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
421 if (error) {
422 splx(s);
423 return (error);
424 }
425 if (TAILQ_EMPTY(&so->so_q))
426 so->so_options |= SO_ACCEPTCONN;
427 if (backlog < 0)
428 backlog = 0;
429 so->so_qlimit = min(backlog, somaxconn);
430 splx(s);
431 return (0);
432 }
433
434 void
435 sofree(struct socket *so)
436 {
437 struct mbuf *m;
438
439 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
440 return;
441 if (so->so_head) {
442 /*
443 * We must not decommission a socket that's on the accept(2)
444 * queue. If we do, then accept(2) may hang after select(2)
445 * indicated that the listening socket was ready.
446 */
447 if (!soqremque(so, 0))
448 return;
449 }
450 sbrelease(&so->so_snd);
451 sorflush(so);
452 while ((m = so->so_pendfree) != NULL) {
453 so->so_pendfree = m->m_next;
454 m->m_next = so_pendfree;
455 so_pendfree = m;
456 }
457 pool_put(&socket_pool, so);
458 }
459
460 /*
461 * Close a socket on last file table reference removal.
462 * Initiate disconnect if connected.
463 * Free socket when disconnect complete.
464 */
465 int
466 soclose(struct socket *so)
467 {
468 struct socket *so2;
469 int s, error;
470
471 error = 0;
472 s = splsoftnet(); /* conservative */
473 if (so->so_options & SO_ACCEPTCONN) {
474 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
475 (void) soqremque(so2, 0);
476 (void) soabort(so2);
477 }
478 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
479 (void) soqremque(so2, 1);
480 (void) soabort(so2);
481 }
482 }
483 if (so->so_pcb == 0)
484 goto discard;
485 if (so->so_state & SS_ISCONNECTED) {
486 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
487 error = sodisconnect(so);
488 if (error)
489 goto drop;
490 }
491 if (so->so_options & SO_LINGER) {
492 if ((so->so_state & SS_ISDISCONNECTING) &&
493 (so->so_state & SS_NBIO))
494 goto drop;
495 while (so->so_state & SS_ISCONNECTED) {
496 error = tsleep((caddr_t)&so->so_timeo,
497 PSOCK | PCATCH, netcls,
498 so->so_linger * hz);
499 if (error)
500 break;
501 }
502 }
503 }
504 drop:
505 if (so->so_pcb) {
506 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
507 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
508 (struct proc *)0);
509 if (error == 0)
510 error = error2;
511 }
512 discard:
513 if (so->so_state & SS_NOFDREF)
514 panic("soclose: NOFDREF");
515 so->so_state |= SS_NOFDREF;
516 sofree(so);
517 splx(s);
518 return (error);
519 }
520
521 /*
522 * Must be called at splsoftnet...
523 */
524 int
525 soabort(struct socket *so)
526 {
527
528 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
529 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
530 }
531
532 int
533 soaccept(struct socket *so, struct mbuf *nam)
534 {
535 int s, error;
536
537 error = 0;
538 s = splsoftnet();
539 if ((so->so_state & SS_NOFDREF) == 0)
540 panic("soaccept: !NOFDREF");
541 so->so_state &= ~SS_NOFDREF;
542 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
543 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
544 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
545 (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
546 else
547 error = ECONNABORTED;
548
549 splx(s);
550 return (error);
551 }
552
553 int
554 soconnect(struct socket *so, struct mbuf *nam)
555 {
556 struct proc *p;
557 int s, error;
558
559 p = curproc; /* XXX */
560 if (so->so_options & SO_ACCEPTCONN)
561 return (EOPNOTSUPP);
562 s = splsoftnet();
563 /*
564 * If protocol is connection-based, can only connect once.
565 * Otherwise, if connected, try to disconnect first.
566 * This allows user to disconnect by connecting to, e.g.,
567 * a null address.
568 */
569 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
570 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
571 (error = sodisconnect(so))))
572 error = EISCONN;
573 else
574 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
575 (struct mbuf *)0, nam, (struct mbuf *)0, p);
576 splx(s);
577 return (error);
578 }
579
580 int
581 soconnect2(struct socket *so1, struct socket *so2)
582 {
583 int s, error;
584
585 s = splsoftnet();
586 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
587 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
588 (struct proc *)0);
589 splx(s);
590 return (error);
591 }
592
593 int
594 sodisconnect(struct socket *so)
595 {
596 int s, error;
597
598 s = splsoftnet();
599 if ((so->so_state & SS_ISCONNECTED) == 0) {
600 error = ENOTCONN;
601 goto bad;
602 }
603 if (so->so_state & SS_ISDISCONNECTING) {
604 error = EALREADY;
605 goto bad;
606 }
607 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
608 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
609 (struct proc *)0);
610 bad:
611 splx(s);
612 sodopendfree(so);
613 return (error);
614 }
615
616 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
617 /*
618 * Send on a socket.
619 * If send must go all at once and message is larger than
620 * send buffering, then hard error.
621 * Lock against other senders.
622 * If must go all at once and not enough room now, then
623 * inform user that this would block and do nothing.
624 * Otherwise, if nonblocking, send as much as possible.
625 * The data to be sent is described by "uio" if nonzero,
626 * otherwise by the mbuf chain "top" (which must be null
627 * if uio is not). Data provided in mbuf chain must be small
628 * enough to send all at once.
629 *
630 * Returns nonzero on error, timeout or signal; callers
631 * must check for short counts if EINTR/ERESTART are returned.
632 * Data and control buffers are freed on return.
633 */
634 int
635 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
636 struct mbuf *control, int flags)
637 {
638 struct proc *p;
639 struct mbuf **mp, *m;
640 long space, len, resid, clen, mlen;
641 int error, s, dontroute, atomic;
642
643 sodopendfree(so);
644
645 p = curproc; /* XXX */
646 clen = 0;
647 atomic = sosendallatonce(so) || top;
648 if (uio)
649 resid = uio->uio_resid;
650 else
651 resid = top->m_pkthdr.len;
652 /*
653 * In theory resid should be unsigned.
654 * However, space must be signed, as it might be less than 0
655 * if we over-committed, and we must use a signed comparison
656 * of space and resid. On the other hand, a negative resid
657 * causes us to loop sending 0-length segments to the protocol.
658 */
659 if (resid < 0) {
660 error = EINVAL;
661 goto out;
662 }
663 dontroute =
664 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
665 (so->so_proto->pr_flags & PR_ATOMIC);
666 p->p_stats->p_ru.ru_msgsnd++;
667 if (control)
668 clen = control->m_len;
669 #define snderr(errno) { error = errno; splx(s); goto release; }
670
671 restart:
672 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
673 goto out;
674 do {
675 s = splsoftnet();
676 if (so->so_state & SS_CANTSENDMORE)
677 snderr(EPIPE);
678 if (so->so_error) {
679 error = so->so_error;
680 so->so_error = 0;
681 splx(s);
682 goto release;
683 }
684 if ((so->so_state & SS_ISCONNECTED) == 0) {
685 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
686 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
687 !(resid == 0 && clen != 0))
688 snderr(ENOTCONN);
689 } else if (addr == 0)
690 snderr(EDESTADDRREQ);
691 }
692 space = sbspace(&so->so_snd);
693 if (flags & MSG_OOB)
694 space += 1024;
695 if ((atomic && resid > so->so_snd.sb_hiwat) ||
696 clen > so->so_snd.sb_hiwat)
697 snderr(EMSGSIZE);
698 if (space < resid + clen && uio &&
699 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
700 if (so->so_state & SS_NBIO)
701 snderr(EWOULDBLOCK);
702 sbunlock(&so->so_snd);
703 error = sbwait(&so->so_snd);
704 splx(s);
705 if (error)
706 goto out;
707 goto restart;
708 }
709 splx(s);
710 mp = ⊤
711 space -= clen;
712 do {
713 if (uio == NULL) {
714 /*
715 * Data is prepackaged in "top".
716 */
717 resid = 0;
718 if (flags & MSG_EOR)
719 top->m_flags |= M_EOR;
720 } else do {
721 if (top == 0) {
722 m = m_gethdr(M_WAIT, MT_DATA);
723 mlen = MHLEN;
724 m->m_pkthdr.len = 0;
725 m->m_pkthdr.rcvif = (struct ifnet *)0;
726 } else {
727 m = m_get(M_WAIT, MT_DATA);
728 mlen = MLEN;
729 }
730 MCLAIM(m, so->so_snd.sb_mowner);
731 if (use_sosend_loan &&
732 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
733 space >= SOCK_LOAN_THRESH &&
734 (len = sosend_loan(so, uio, m,
735 space)) != 0) {
736 SOSEND_COUNTER_INCR(&sosend_loan_big);
737 space -= len;
738 goto have_data;
739 }
740 if (resid >= MINCLSIZE && space >= MCLBYTES) {
741 SOSEND_COUNTER_INCR(&sosend_copy_big);
742 m_clget(m, M_WAIT);
743 if ((m->m_flags & M_EXT) == 0)
744 goto nopages;
745 mlen = MCLBYTES;
746 if (atomic && top == 0) {
747 len = lmin(MCLBYTES - max_hdr,
748 resid);
749 m->m_data += max_hdr;
750 } else
751 len = lmin(MCLBYTES, resid);
752 space -= len;
753 } else {
754 nopages:
755 SOSEND_COUNTER_INCR(&sosend_copy_small);
756 len = lmin(lmin(mlen, resid), space);
757 space -= len;
758 /*
759 * For datagram protocols, leave room
760 * for protocol headers in first mbuf.
761 */
762 if (atomic && top == 0 && len < mlen)
763 MH_ALIGN(m, len);
764 }
765 error = uiomove(mtod(m, caddr_t), (int)len,
766 uio);
767 have_data:
768 resid = uio->uio_resid;
769 m->m_len = len;
770 *mp = m;
771 top->m_pkthdr.len += len;
772 if (error)
773 goto release;
774 mp = &m->m_next;
775 if (resid <= 0) {
776 if (flags & MSG_EOR)
777 top->m_flags |= M_EOR;
778 break;
779 }
780 } while (space > 0 && atomic);
781
782 s = splsoftnet();
783
784 if (so->so_state & SS_CANTSENDMORE)
785 snderr(EPIPE);
786
787 if (dontroute)
788 so->so_options |= SO_DONTROUTE;
789 if (resid > 0)
790 so->so_state |= SS_MORETOCOME;
791 error = (*so->so_proto->pr_usrreq)(so,
792 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
793 top, addr, control, p);
794 if (dontroute)
795 so->so_options &= ~SO_DONTROUTE;
796 if (resid > 0)
797 so->so_state &= ~SS_MORETOCOME;
798 splx(s);
799
800 clen = 0;
801 control = 0;
802 top = 0;
803 mp = ⊤
804 if (error)
805 goto release;
806 } while (resid && space > 0);
807 } while (resid);
808
809 release:
810 sbunlock(&so->so_snd);
811 out:
812 if (top)
813 m_freem(top);
814 if (control)
815 m_freem(control);
816 return (error);
817 }
818
819 /*
820 * Implement receive operations on a socket.
821 * We depend on the way that records are added to the sockbuf
822 * by sbappend*. In particular, each record (mbufs linked through m_next)
823 * must begin with an address if the protocol so specifies,
824 * followed by an optional mbuf or mbufs containing ancillary data,
825 * and then zero or more mbufs of data.
826 * In order to avoid blocking network interrupts for the entire time here,
827 * we splx() while doing the actual copy to user space.
828 * Although the sockbuf is locked, new data may still be appended,
829 * and thus we must maintain consistency of the sockbuf during that time.
830 *
831 * The caller may receive the data as a single mbuf chain by supplying
832 * an mbuf **mp0 for use in returning the chain. The uio is then used
833 * only for the count in uio_resid.
834 */
835 int
836 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
837 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
838 {
839 struct mbuf *m, **mp;
840 int flags, len, error, s, offset, moff, type, orig_resid;
841 struct protosw *pr;
842 struct mbuf *nextrecord;
843 int mbuf_removed = 0;
844
845 pr = so->so_proto;
846 mp = mp0;
847 type = 0;
848 orig_resid = uio->uio_resid;
849 if (paddr)
850 *paddr = 0;
851 if (controlp)
852 *controlp = 0;
853 if (flagsp)
854 flags = *flagsp &~ MSG_EOR;
855 else
856 flags = 0;
857
858 if ((flags & MSG_DONTWAIT) == 0)
859 sodopendfree(so);
860
861 if (flags & MSG_OOB) {
862 m = m_get(M_WAIT, MT_DATA);
863 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
864 (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
865 (struct proc *)0);
866 if (error)
867 goto bad;
868 do {
869 error = uiomove(mtod(m, caddr_t),
870 (int) min(uio->uio_resid, m->m_len), uio);
871 m = m_free(m);
872 } while (uio->uio_resid && error == 0 && m);
873 bad:
874 if (m)
875 m_freem(m);
876 return (error);
877 }
878 if (mp)
879 *mp = (struct mbuf *)0;
880 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
881 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
882 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
883
884 restart:
885 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
886 return (error);
887 s = splsoftnet();
888
889 m = so->so_rcv.sb_mb;
890 /*
891 * If we have less data than requested, block awaiting more
892 * (subject to any timeout) if:
893 * 1. the current count is less than the low water mark,
894 * 2. MSG_WAITALL is set, and it is possible to do the entire
895 * receive operation at once if we block (resid <= hiwat), or
896 * 3. MSG_DONTWAIT is not set.
897 * If MSG_WAITALL is set but resid is larger than the receive buffer,
898 * we have to do the receive in sections, and thus risk returning
899 * a short count if a timeout or signal occurs after we start.
900 */
901 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
902 so->so_rcv.sb_cc < uio->uio_resid) &&
903 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
904 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
905 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
906 #ifdef DIAGNOSTIC
907 if (m == 0 && so->so_rcv.sb_cc)
908 panic("receive 1");
909 #endif
910 if (so->so_error) {
911 if (m)
912 goto dontblock;
913 error = so->so_error;
914 if ((flags & MSG_PEEK) == 0)
915 so->so_error = 0;
916 goto release;
917 }
918 if (so->so_state & SS_CANTRCVMORE) {
919 if (m)
920 goto dontblock;
921 else
922 goto release;
923 }
924 for (; m; m = m->m_next)
925 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
926 m = so->so_rcv.sb_mb;
927 goto dontblock;
928 }
929 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
930 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
931 error = ENOTCONN;
932 goto release;
933 }
934 if (uio->uio_resid == 0)
935 goto release;
936 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
937 error = EWOULDBLOCK;
938 goto release;
939 }
940 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
941 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
942 sbunlock(&so->so_rcv);
943 error = sbwait(&so->so_rcv);
944 splx(s);
945 if (error)
946 return (error);
947 goto restart;
948 }
949 dontblock:
950 /*
951 * On entry here, m points to the first record of the socket buffer.
952 * While we process the initial mbufs containing address and control
953 * info, we save a copy of m->m_nextpkt into nextrecord.
954 */
955 #ifdef notyet /* XXXX */
956 if (uio->uio_procp)
957 uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
958 #endif
959 KASSERT(m == so->so_rcv.sb_mb);
960 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
961 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
962 nextrecord = m->m_nextpkt;
963 if (pr->pr_flags & PR_ADDR) {
964 #ifdef DIAGNOSTIC
965 if (m->m_type != MT_SONAME)
966 panic("receive 1a");
967 #endif
968 orig_resid = 0;
969 if (flags & MSG_PEEK) {
970 if (paddr)
971 *paddr = m_copy(m, 0, m->m_len);
972 m = m->m_next;
973 } else {
974 sbfree(&so->so_rcv, m);
975 mbuf_removed = 1;
976 if (paddr) {
977 *paddr = m;
978 so->so_rcv.sb_mb = m->m_next;
979 m->m_next = 0;
980 m = so->so_rcv.sb_mb;
981 } else {
982 MFREE(m, so->so_rcv.sb_mb);
983 m = so->so_rcv.sb_mb;
984 }
985 }
986 }
987 while (m && m->m_type == MT_CONTROL && error == 0) {
988 if (flags & MSG_PEEK) {
989 if (controlp)
990 *controlp = m_copy(m, 0, m->m_len);
991 m = m->m_next;
992 } else {
993 sbfree(&so->so_rcv, m);
994 mbuf_removed = 1;
995 if (controlp) {
996 if (pr->pr_domain->dom_externalize &&
997 mtod(m, struct cmsghdr *)->cmsg_type ==
998 SCM_RIGHTS)
999 error = (*pr->pr_domain->dom_externalize)(m);
1000 *controlp = m;
1001 so->so_rcv.sb_mb = m->m_next;
1002 m->m_next = 0;
1003 m = so->so_rcv.sb_mb;
1004 } else {
1005 MFREE(m, so->so_rcv.sb_mb);
1006 m = so->so_rcv.sb_mb;
1007 }
1008 }
1009 if (controlp) {
1010 orig_resid = 0;
1011 controlp = &(*controlp)->m_next;
1012 }
1013 }
1014
1015 /*
1016 * If m is non-NULL, we have some data to read. From now on,
1017 * make sure to keep sb_lastrecord consistent when working on
1018 * the last packet on the chain (nextrecord == NULL) and we
1019 * change m->m_nextpkt.
1020 */
1021 if (m) {
1022 if ((flags & MSG_PEEK) == 0) {
1023 m->m_nextpkt = nextrecord;
1024 /*
1025 * If nextrecord == NULL (this is a single chain),
1026 * then sb_lastrecord may not be valid here if m
1027 * was changed earlier.
1028 */
1029 if (nextrecord == NULL) {
1030 KASSERT(so->so_rcv.sb_mb == m);
1031 so->so_rcv.sb_lastrecord = m;
1032 }
1033 }
1034 type = m->m_type;
1035 if (type == MT_OOBDATA)
1036 flags |= MSG_OOB;
1037 } else {
1038 if ((flags & MSG_PEEK) == 0) {
1039 KASSERT(so->so_rcv.sb_mb == m);
1040 so->so_rcv.sb_mb = nextrecord;
1041 SB_EMPTY_FIXUP(&so->so_rcv);
1042 }
1043 }
1044 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1045 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1046
1047 moff = 0;
1048 offset = 0;
1049 while (m && uio->uio_resid > 0 && error == 0) {
1050 if (m->m_type == MT_OOBDATA) {
1051 if (type != MT_OOBDATA)
1052 break;
1053 } else if (type == MT_OOBDATA)
1054 break;
1055 #ifdef DIAGNOSTIC
1056 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1057 panic("receive 3");
1058 #endif
1059 so->so_state &= ~SS_RCVATMARK;
1060 len = uio->uio_resid;
1061 if (so->so_oobmark && len > so->so_oobmark - offset)
1062 len = so->so_oobmark - offset;
1063 if (len > m->m_len - moff)
1064 len = m->m_len - moff;
1065 /*
1066 * If mp is set, just pass back the mbufs.
1067 * Otherwise copy them out via the uio, then free.
1068 * Sockbuf must be consistent here (points to current mbuf,
1069 * it points to next record) when we drop priority;
1070 * we must note any additions to the sockbuf when we
1071 * block interrupts again.
1072 */
1073 if (mp == 0) {
1074 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1075 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1076 splx(s);
1077 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1078 s = splsoftnet();
1079 if (error) {
1080 /*
1081 * If any part of the record has been removed
1082 * (such as the MT_SONAME mbuf, which will
1083 * happen when PR_ADDR, and thus also
1084 * PR_ATOMIC, is set), then drop the entire
1085 * record to maintain the atomicity of the
1086 * receive operation.
1087 *
1088 * This avoids a later panic("receive 1a")
1089 * when compiled with DIAGNOSTIC.
1090 */
1091 if (m && mbuf_removed
1092 && (pr->pr_flags & PR_ATOMIC))
1093 (void) sbdroprecord(&so->so_rcv);
1094
1095 goto release;
1096 }
1097 } else
1098 uio->uio_resid -= len;
1099 if (len == m->m_len - moff) {
1100 if (m->m_flags & M_EOR)
1101 flags |= MSG_EOR;
1102 if (flags & MSG_PEEK) {
1103 m = m->m_next;
1104 moff = 0;
1105 } else {
1106 nextrecord = m->m_nextpkt;
1107 sbfree(&so->so_rcv, m);
1108 if (mp) {
1109 *mp = m;
1110 mp = &m->m_next;
1111 so->so_rcv.sb_mb = m = m->m_next;
1112 *mp = (struct mbuf *)0;
1113 } else {
1114 MFREE(m, so->so_rcv.sb_mb);
1115 m = so->so_rcv.sb_mb;
1116 }
1117 /*
1118 * If m != NULL, we also know that
1119 * so->so_rcv.sb_mb != NULL.
1120 */
1121 KASSERT(so->so_rcv.sb_mb == m);
1122 if (m) {
1123 m->m_nextpkt = nextrecord;
1124 if (nextrecord == NULL)
1125 so->so_rcv.sb_lastrecord = m;
1126 } else {
1127 so->so_rcv.sb_mb = nextrecord;
1128 SB_EMPTY_FIXUP(&so->so_rcv);
1129 }
1130 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1131 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1132 }
1133 } else {
1134 if (flags & MSG_PEEK)
1135 moff += len;
1136 else {
1137 if (mp)
1138 *mp = m_copym(m, 0, len, M_WAIT);
1139 m->m_data += len;
1140 m->m_len -= len;
1141 so->so_rcv.sb_cc -= len;
1142 }
1143 }
1144 if (so->so_oobmark) {
1145 if ((flags & MSG_PEEK) == 0) {
1146 so->so_oobmark -= len;
1147 if (so->so_oobmark == 0) {
1148 so->so_state |= SS_RCVATMARK;
1149 break;
1150 }
1151 } else {
1152 offset += len;
1153 if (offset == so->so_oobmark)
1154 break;
1155 }
1156 }
1157 if (flags & MSG_EOR)
1158 break;
1159 /*
1160 * If the MSG_WAITALL flag is set (for non-atomic socket),
1161 * we must not quit until "uio->uio_resid == 0" or an error
1162 * termination. If a signal/timeout occurs, return
1163 * with a short count but without error.
1164 * Keep sockbuf locked against other readers.
1165 */
1166 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1167 !sosendallatonce(so) && !nextrecord) {
1168 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1169 break;
1170 /*
1171 * If we are peeking and the socket receive buffer is
1172 * full, stop since we can't get more data to peek at.
1173 */
1174 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1175 break;
1176 /*
1177 * If we've drained the socket buffer, tell the
1178 * protocol in case it needs to do something to
1179 * get it filled again.
1180 */
1181 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1182 (*pr->pr_usrreq)(so, PRU_RCVD,
1183 (struct mbuf *)0,
1184 (struct mbuf *)(long)flags,
1185 (struct mbuf *)0,
1186 (struct proc *)0);
1187 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1188 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1189 error = sbwait(&so->so_rcv);
1190 if (error) {
1191 sbunlock(&so->so_rcv);
1192 splx(s);
1193 return (0);
1194 }
1195 if ((m = so->so_rcv.sb_mb) != NULL)
1196 nextrecord = m->m_nextpkt;
1197 }
1198 }
1199
1200 if (m && pr->pr_flags & PR_ATOMIC) {
1201 flags |= MSG_TRUNC;
1202 if ((flags & MSG_PEEK) == 0)
1203 (void) sbdroprecord(&so->so_rcv);
1204 }
1205 if ((flags & MSG_PEEK) == 0) {
1206 if (m == 0) {
1207 /*
1208 * First part is an inline SB_EMPTY_FIXUP(). Second
1209 * part makes sure sb_lastrecord is up-to-date if
1210 * there is still data in the socket buffer.
1211 */
1212 so->so_rcv.sb_mb = nextrecord;
1213 if (so->so_rcv.sb_mb == NULL) {
1214 so->so_rcv.sb_mbtail = NULL;
1215 so->so_rcv.sb_lastrecord = NULL;
1216 } else if (nextrecord->m_nextpkt == NULL)
1217 so->so_rcv.sb_lastrecord = nextrecord;
1218 }
1219 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1220 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1221 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1222 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1223 (struct mbuf *)(long)flags, (struct mbuf *)0,
1224 (struct proc *)0);
1225 }
1226 if (orig_resid == uio->uio_resid && orig_resid &&
1227 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1228 sbunlock(&so->so_rcv);
1229 splx(s);
1230 goto restart;
1231 }
1232
1233 if (flagsp)
1234 *flagsp |= flags;
1235 release:
1236 sbunlock(&so->so_rcv);
1237 splx(s);
1238 return (error);
1239 }
1240
1241 int
1242 soshutdown(struct socket *so, int how)
1243 {
1244 struct protosw *pr;
1245
1246 pr = so->so_proto;
1247 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1248 return (EINVAL);
1249
1250 if (how == SHUT_RD || how == SHUT_RDWR)
1251 sorflush(so);
1252 if (how == SHUT_WR || how == SHUT_RDWR)
1253 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1254 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1255 return (0);
1256 }
1257
1258 void
1259 sorflush(struct socket *so)
1260 {
1261 struct sockbuf *sb, asb;
1262 struct protosw *pr;
1263 int s;
1264
1265 sb = &so->so_rcv;
1266 pr = so->so_proto;
1267 sb->sb_flags |= SB_NOINTR;
1268 (void) sblock(sb, M_WAITOK);
1269 s = splnet();
1270 socantrcvmore(so);
1271 sbunlock(sb);
1272 asb = *sb;
1273 memset((caddr_t)sb, 0, sizeof(*sb));
1274 splx(s);
1275 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1276 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1277 sbrelease(&asb);
1278 }
1279
1280 int
1281 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1282 {
1283 int error;
1284 struct mbuf *m;
1285
1286 error = 0;
1287 m = m0;
1288 if (level != SOL_SOCKET) {
1289 if (so->so_proto && so->so_proto->pr_ctloutput)
1290 return ((*so->so_proto->pr_ctloutput)
1291 (PRCO_SETOPT, so, level, optname, &m0));
1292 error = ENOPROTOOPT;
1293 } else {
1294 switch (optname) {
1295
1296 case SO_LINGER:
1297 if (m == NULL || m->m_len != sizeof(struct linger)) {
1298 error = EINVAL;
1299 goto bad;
1300 }
1301 so->so_linger = mtod(m, struct linger *)->l_linger;
1302 /* fall thru... */
1303
1304 case SO_DEBUG:
1305 case SO_KEEPALIVE:
1306 case SO_DONTROUTE:
1307 case SO_USELOOPBACK:
1308 case SO_BROADCAST:
1309 case SO_REUSEADDR:
1310 case SO_REUSEPORT:
1311 case SO_OOBINLINE:
1312 case SO_TIMESTAMP:
1313 if (m == NULL || m->m_len < sizeof(int)) {
1314 error = EINVAL;
1315 goto bad;
1316 }
1317 if (*mtod(m, int *))
1318 so->so_options |= optname;
1319 else
1320 so->so_options &= ~optname;
1321 break;
1322
1323 case SO_SNDBUF:
1324 case SO_RCVBUF:
1325 case SO_SNDLOWAT:
1326 case SO_RCVLOWAT:
1327 {
1328 int optval;
1329
1330 if (m == NULL || m->m_len < sizeof(int)) {
1331 error = EINVAL;
1332 goto bad;
1333 }
1334
1335 /*
1336 * Values < 1 make no sense for any of these
1337 * options, so disallow them.
1338 */
1339 optval = *mtod(m, int *);
1340 if (optval < 1) {
1341 error = EINVAL;
1342 goto bad;
1343 }
1344
1345 switch (optname) {
1346
1347 case SO_SNDBUF:
1348 case SO_RCVBUF:
1349 if (sbreserve(optname == SO_SNDBUF ?
1350 &so->so_snd : &so->so_rcv,
1351 (u_long) optval) == 0) {
1352 error = ENOBUFS;
1353 goto bad;
1354 }
1355 break;
1356
1357 /*
1358 * Make sure the low-water is never greater than
1359 * the high-water.
1360 */
1361 case SO_SNDLOWAT:
1362 so->so_snd.sb_lowat =
1363 (optval > so->so_snd.sb_hiwat) ?
1364 so->so_snd.sb_hiwat : optval;
1365 break;
1366 case SO_RCVLOWAT:
1367 so->so_rcv.sb_lowat =
1368 (optval > so->so_rcv.sb_hiwat) ?
1369 so->so_rcv.sb_hiwat : optval;
1370 break;
1371 }
1372 break;
1373 }
1374
1375 case SO_SNDTIMEO:
1376 case SO_RCVTIMEO:
1377 {
1378 struct timeval *tv;
1379 short val;
1380
1381 if (m == NULL || m->m_len < sizeof(*tv)) {
1382 error = EINVAL;
1383 goto bad;
1384 }
1385 tv = mtod(m, struct timeval *);
1386 if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) {
1387 error = EDOM;
1388 goto bad;
1389 }
1390 val = tv->tv_sec * hz + tv->tv_usec / tick;
1391 if (val == 0 && tv->tv_usec != 0)
1392 val = 1;
1393
1394 switch (optname) {
1395
1396 case SO_SNDTIMEO:
1397 so->so_snd.sb_timeo = val;
1398 break;
1399 case SO_RCVTIMEO:
1400 so->so_rcv.sb_timeo = val;
1401 break;
1402 }
1403 break;
1404 }
1405
1406 default:
1407 error = ENOPROTOOPT;
1408 break;
1409 }
1410 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1411 (void) ((*so->so_proto->pr_ctloutput)
1412 (PRCO_SETOPT, so, level, optname, &m0));
1413 m = NULL; /* freed by protocol */
1414 }
1415 }
1416 bad:
1417 if (m)
1418 (void) m_free(m);
1419 return (error);
1420 }
1421
1422 int
1423 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1424 {
1425 struct mbuf *m;
1426
1427 if (level != SOL_SOCKET) {
1428 if (so->so_proto && so->so_proto->pr_ctloutput) {
1429 return ((*so->so_proto->pr_ctloutput)
1430 (PRCO_GETOPT, so, level, optname, mp));
1431 } else
1432 return (ENOPROTOOPT);
1433 } else {
1434 m = m_get(M_WAIT, MT_SOOPTS);
1435 m->m_len = sizeof(int);
1436
1437 switch (optname) {
1438
1439 case SO_LINGER:
1440 m->m_len = sizeof(struct linger);
1441 mtod(m, struct linger *)->l_onoff =
1442 so->so_options & SO_LINGER;
1443 mtod(m, struct linger *)->l_linger = so->so_linger;
1444 break;
1445
1446 case SO_USELOOPBACK:
1447 case SO_DONTROUTE:
1448 case SO_DEBUG:
1449 case SO_KEEPALIVE:
1450 case SO_REUSEADDR:
1451 case SO_REUSEPORT:
1452 case SO_BROADCAST:
1453 case SO_OOBINLINE:
1454 case SO_TIMESTAMP:
1455 *mtod(m, int *) = so->so_options & optname;
1456 break;
1457
1458 case SO_TYPE:
1459 *mtod(m, int *) = so->so_type;
1460 break;
1461
1462 case SO_ERROR:
1463 *mtod(m, int *) = so->so_error;
1464 so->so_error = 0;
1465 break;
1466
1467 case SO_SNDBUF:
1468 *mtod(m, int *) = so->so_snd.sb_hiwat;
1469 break;
1470
1471 case SO_RCVBUF:
1472 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1473 break;
1474
1475 case SO_SNDLOWAT:
1476 *mtod(m, int *) = so->so_snd.sb_lowat;
1477 break;
1478
1479 case SO_RCVLOWAT:
1480 *mtod(m, int *) = so->so_rcv.sb_lowat;
1481 break;
1482
1483 case SO_SNDTIMEO:
1484 case SO_RCVTIMEO:
1485 {
1486 int val = (optname == SO_SNDTIMEO ?
1487 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1488
1489 m->m_len = sizeof(struct timeval);
1490 mtod(m, struct timeval *)->tv_sec = val / hz;
1491 mtod(m, struct timeval *)->tv_usec =
1492 (val % hz) * tick;
1493 break;
1494 }
1495
1496 default:
1497 (void)m_free(m);
1498 return (ENOPROTOOPT);
1499 }
1500 *mp = m;
1501 return (0);
1502 }
1503 }
1504
1505 void
1506 sohasoutofband(struct socket *so)
1507 {
1508 struct proc *p;
1509
1510 if (so->so_pgid < 0)
1511 gsignal(-so->so_pgid, SIGURG);
1512 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
1513 psignal(p, SIGURG);
1514 selwakeup(&so->so_rcv.sb_sel);
1515 }
1516
1517 static void
1518 filt_sordetach(struct knote *kn)
1519 {
1520 struct socket *so;
1521
1522 so = (struct socket *)kn->kn_fp->f_data;
1523 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1524 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1525 so->so_rcv.sb_flags &= ~SB_KNOTE;
1526 }
1527
1528 /*ARGSUSED*/
1529 static int
1530 filt_soread(struct knote *kn, long hint)
1531 {
1532 struct socket *so;
1533
1534 so = (struct socket *)kn->kn_fp->f_data;
1535 kn->kn_data = so->so_rcv.sb_cc;
1536 if (so->so_state & SS_CANTRCVMORE) {
1537 kn->kn_flags |= EV_EOF;
1538 kn->kn_fflags = so->so_error;
1539 return (1);
1540 }
1541 if (so->so_error) /* temporary udp error */
1542 return (1);
1543 if (kn->kn_sfflags & NOTE_LOWAT)
1544 return (kn->kn_data >= kn->kn_sdata);
1545 return (kn->kn_data >= so->so_rcv.sb_lowat);
1546 }
1547
1548 static void
1549 filt_sowdetach(struct knote *kn)
1550 {
1551 struct socket *so;
1552
1553 so = (struct socket *)kn->kn_fp->f_data;
1554 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1555 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1556 so->so_snd.sb_flags &= ~SB_KNOTE;
1557 }
1558
1559 /*ARGSUSED*/
1560 static int
1561 filt_sowrite(struct knote *kn, long hint)
1562 {
1563 struct socket *so;
1564
1565 so = (struct socket *)kn->kn_fp->f_data;
1566 kn->kn_data = sbspace(&so->so_snd);
1567 if (so->so_state & SS_CANTSENDMORE) {
1568 kn->kn_flags |= EV_EOF;
1569 kn->kn_fflags = so->so_error;
1570 return (1);
1571 }
1572 if (so->so_error) /* temporary udp error */
1573 return (1);
1574 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1575 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1576 return (0);
1577 if (kn->kn_sfflags & NOTE_LOWAT)
1578 return (kn->kn_data >= kn->kn_sdata);
1579 return (kn->kn_data >= so->so_snd.sb_lowat);
1580 }
1581
1582 /*ARGSUSED*/
1583 static int
1584 filt_solisten(struct knote *kn, long hint)
1585 {
1586 struct socket *so;
1587
1588 so = (struct socket *)kn->kn_fp->f_data;
1589
1590 /*
1591 * Set kn_data to number of incoming connections, not
1592 * counting partial (incomplete) connections.
1593 */
1594 kn->kn_data = so->so_qlen;
1595 return (kn->kn_data > 0);
1596 }
1597
1598 static const struct filterops solisten_filtops =
1599 { 1, NULL, filt_sordetach, filt_solisten };
1600 static const struct filterops soread_filtops =
1601 { 1, NULL, filt_sordetach, filt_soread };
1602 static const struct filterops sowrite_filtops =
1603 { 1, NULL, filt_sowdetach, filt_sowrite };
1604
1605 int
1606 soo_kqfilter(struct file *fp, struct knote *kn)
1607 {
1608 struct socket *so;
1609 struct sockbuf *sb;
1610
1611 so = (struct socket *)kn->kn_fp->f_data;
1612 switch (kn->kn_filter) {
1613 case EVFILT_READ:
1614 if (so->so_options & SO_ACCEPTCONN)
1615 kn->kn_fop = &solisten_filtops;
1616 else
1617 kn->kn_fop = &soread_filtops;
1618 sb = &so->so_rcv;
1619 break;
1620 case EVFILT_WRITE:
1621 kn->kn_fop = &sowrite_filtops;
1622 sb = &so->so_snd;
1623 break;
1624 default:
1625 return (1);
1626 }
1627 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1628 sb->sb_flags |= SB_KNOTE;
1629 return (0);
1630 }
1631
1632