uipc_socket.c revision 1.91 1 /* $NetBSD: uipc_socket.c,v 1.91 2003/10/21 22:55:47 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.91 2003/10/21 22:55:47 thorpej Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94
95 #include <uvm/uvm.h>
96
97 struct pool socket_pool;
98
99 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
100 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
101
102 extern int somaxconn; /* patchable (XXX sysctl) */
103 int somaxconn = SOMAXCONN;
104
105 #ifdef SOSEND_COUNTERS
106 #include <sys/device.h>
107
108 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
109 NULL, "sosend", "loan big");
110 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "copy big");
112 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy small");
114 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "kva limit");
116
117 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
118
119 #else
120
121 #define SOSEND_COUNTER_INCR(ev) /* nothing */
122
123 #endif /* SOSEND_COUNTERS */
124
125 void
126 soinit(void)
127 {
128
129 /* Set the initial adjusted socket buffer size. */
130 if (sb_max_set(sb_max))
131 panic("bad initial sb_max value: %lu\n", sb_max);
132
133 pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
134 "sockpl", NULL);
135
136 #ifdef SOSEND_COUNTERS
137 evcnt_attach_static(&sosend_loan_big);
138 evcnt_attach_static(&sosend_copy_big);
139 evcnt_attach_static(&sosend_copy_small);
140 evcnt_attach_static(&sosend_kvalimit);
141 #endif /* SOSEND_COUNTERS */
142 }
143
144 #ifdef SOSEND_NO_LOAN
145 int use_sosend_loan = 0;
146 #else
147 int use_sosend_loan = 1;
148 #endif
149
150 struct mbuf *so_pendfree;
151
152 #ifndef SOMAXKVA
153 #define SOMAXKVA (16 * 1024 * 1024)
154 #endif
155 int somaxkva = SOMAXKVA;
156 int socurkva;
157 int sokvawaiters;
158
159 #define SOCK_LOAN_THRESH 4096
160 #define SOCK_LOAN_CHUNK 65536
161
162 static size_t sodopendfree(struct socket *);
163
164 vaddr_t
165 sokvaalloc(vsize_t len, struct socket *so)
166 {
167 vaddr_t lva;
168 int s;
169
170 while (socurkva + len > somaxkva) {
171 if (sodopendfree(so))
172 continue;
173 SOSEND_COUNTER_INCR(&sosend_kvalimit);
174 s = splvm();
175 sokvawaiters++;
176 (void) tsleep(&socurkva, PVM, "sokva", 0);
177 sokvawaiters--;
178 splx(s);
179 }
180
181 lva = uvm_km_valloc_wait(kernel_map, len);
182 if (lva == 0)
183 return (0);
184 socurkva += len;
185
186 return lva;
187 }
188
189 void
190 sokvafree(vaddr_t sva, vsize_t len)
191 {
192
193 uvm_km_free(kernel_map, sva, len);
194 socurkva -= len;
195 if (sokvawaiters)
196 wakeup(&socurkva);
197 }
198
199 static void
200 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
201 {
202 vaddr_t va, sva, eva;
203 vsize_t len;
204 paddr_t pa;
205 int i, npgs;
206
207 eva = round_page((vaddr_t) buf + size);
208 sva = trunc_page((vaddr_t) buf);
209 len = eva - sva;
210 npgs = len >> PAGE_SHIFT;
211
212 if (__predict_false(pgs == NULL)) {
213 pgs = alloca(npgs * sizeof(*pgs));
214
215 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
216 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
217 panic("sodoloanfree: va 0x%lx not mapped", va);
218 pgs[i] = PHYS_TO_VM_PAGE(pa);
219 }
220 }
221
222 pmap_kremove(sva, len);
223 pmap_update(pmap_kernel());
224 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
225 sokvafree(sva, len);
226 }
227
228 static size_t
229 sodopendfree(struct socket *so)
230 {
231 struct mbuf *m;
232 size_t rv = 0;
233 int s;
234
235 s = splvm();
236
237 for (;;) {
238 m = so_pendfree;
239 if (m == NULL)
240 break;
241 so_pendfree = m->m_next;
242 splx(s);
243
244 rv += m->m_ext.ext_size;
245 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
246 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
247 m->m_ext.ext_size);
248 s = splvm();
249 pool_cache_put(&mbpool_cache, m);
250 }
251
252 for (;;) {
253 m = so->so_pendfree;
254 if (m == NULL)
255 break;
256 so->so_pendfree = m->m_next;
257 splx(s);
258
259 rv += m->m_ext.ext_size;
260 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
261 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
262 m->m_ext.ext_size);
263 s = splvm();
264 pool_cache_put(&mbpool_cache, m);
265 }
266
267 splx(s);
268 return (rv);
269 }
270
271 void
272 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
273 {
274 struct socket *so = arg;
275 int s;
276
277 if (m == NULL) {
278 sodoloanfree(NULL, buf, size);
279 return;
280 }
281
282 s = splvm();
283 m->m_next = so->so_pendfree;
284 so->so_pendfree = m;
285 splx(s);
286 if (sokvawaiters)
287 wakeup(&socurkva);
288 }
289
290 static long
291 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
292 {
293 struct iovec *iov = uio->uio_iov;
294 vaddr_t sva, eva;
295 vsize_t len;
296 vaddr_t lva, va;
297 int npgs, i, error;
298
299 if (uio->uio_segflg != UIO_USERSPACE)
300 return (0);
301
302 if (iov->iov_len < (size_t) space)
303 space = iov->iov_len;
304 if (space > SOCK_LOAN_CHUNK)
305 space = SOCK_LOAN_CHUNK;
306
307 eva = round_page((vaddr_t) iov->iov_base + space);
308 sva = trunc_page((vaddr_t) iov->iov_base);
309 len = eva - sva;
310 npgs = len >> PAGE_SHIFT;
311
312 /* XXX KDASSERT */
313 KASSERT(npgs <= M_EXT_MAXPAGES);
314
315 lva = sokvaalloc(len, so);
316 if (lva == 0)
317 return 0;
318
319 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
320 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
321 if (error) {
322 sokvafree(lva, len);
323 return (0);
324 }
325
326 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
327 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
328 VM_PROT_READ);
329 pmap_update(pmap_kernel());
330
331 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
332
333 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
334 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
335
336 uio->uio_resid -= space;
337 /* uio_offset not updated, not set/used for write(2) */
338 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
339 uio->uio_iov->iov_len -= space;
340 if (uio->uio_iov->iov_len == 0) {
341 uio->uio_iov++;
342 uio->uio_iovcnt--;
343 }
344
345 return (space);
346 }
347
348 /*
349 * Socket operation routines.
350 * These routines are called by the routines in
351 * sys_socket.c or from a system process, and
352 * implement the semantics of socket operations by
353 * switching out to the protocol specific routines.
354 */
355 /*ARGSUSED*/
356 int
357 socreate(int dom, struct socket **aso, int type, int proto)
358 {
359 struct proc *p;
360 struct protosw *prp;
361 struct socket *so;
362 int error, s;
363
364 p = curproc; /* XXX */
365 if (proto)
366 prp = pffindproto(dom, proto, type);
367 else
368 prp = pffindtype(dom, type);
369 if (prp == 0 || prp->pr_usrreq == 0)
370 return (EPROTONOSUPPORT);
371 if (prp->pr_type != type)
372 return (EPROTOTYPE);
373 s = splsoftnet();
374 so = pool_get(&socket_pool, PR_WAITOK);
375 memset((caddr_t)so, 0, sizeof(*so));
376 TAILQ_INIT(&so->so_q0);
377 TAILQ_INIT(&so->so_q);
378 so->so_type = type;
379 so->so_proto = prp;
380 so->so_send = sosend;
381 so->so_receive = soreceive;
382 #ifdef MBUFTRACE
383 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
384 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
385 so->so_mowner = &prp->pr_domain->dom_mowner;
386 #endif
387 if (p != 0)
388 so->so_uid = p->p_ucred->cr_uid;
389 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
390 (struct mbuf *)(long)proto, (struct mbuf *)0, p);
391 if (error) {
392 so->so_state |= SS_NOFDREF;
393 sofree(so);
394 splx(s);
395 return (error);
396 }
397 splx(s);
398 *aso = so;
399 return (0);
400 }
401
402 int
403 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
404 {
405 int s, error;
406
407 s = splsoftnet();
408 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
409 nam, (struct mbuf *)0, p);
410 splx(s);
411 return (error);
412 }
413
414 int
415 solisten(struct socket *so, int backlog)
416 {
417 int s, error;
418
419 s = splsoftnet();
420 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
421 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
422 if (error) {
423 splx(s);
424 return (error);
425 }
426 if (TAILQ_EMPTY(&so->so_q))
427 so->so_options |= SO_ACCEPTCONN;
428 if (backlog < 0)
429 backlog = 0;
430 so->so_qlimit = min(backlog, somaxconn);
431 splx(s);
432 return (0);
433 }
434
435 void
436 sofree(struct socket *so)
437 {
438 struct mbuf *m;
439
440 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
441 return;
442 if (so->so_head) {
443 /*
444 * We must not decommission a socket that's on the accept(2)
445 * queue. If we do, then accept(2) may hang after select(2)
446 * indicated that the listening socket was ready.
447 */
448 if (!soqremque(so, 0))
449 return;
450 }
451 sbrelease(&so->so_snd);
452 sorflush(so);
453 while ((m = so->so_pendfree) != NULL) {
454 so->so_pendfree = m->m_next;
455 m->m_next = so_pendfree;
456 so_pendfree = m;
457 }
458 pool_put(&socket_pool, so);
459 }
460
461 /*
462 * Close a socket on last file table reference removal.
463 * Initiate disconnect if connected.
464 * Free socket when disconnect complete.
465 */
466 int
467 soclose(struct socket *so)
468 {
469 struct socket *so2;
470 int s, error;
471
472 error = 0;
473 s = splsoftnet(); /* conservative */
474 if (so->so_options & SO_ACCEPTCONN) {
475 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
476 (void) soqremque(so2, 0);
477 (void) soabort(so2);
478 }
479 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
480 (void) soqremque(so2, 1);
481 (void) soabort(so2);
482 }
483 }
484 if (so->so_pcb == 0)
485 goto discard;
486 if (so->so_state & SS_ISCONNECTED) {
487 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
488 error = sodisconnect(so);
489 if (error)
490 goto drop;
491 }
492 if (so->so_options & SO_LINGER) {
493 if ((so->so_state & SS_ISDISCONNECTING) &&
494 (so->so_state & SS_NBIO))
495 goto drop;
496 while (so->so_state & SS_ISCONNECTED) {
497 error = tsleep((caddr_t)&so->so_timeo,
498 PSOCK | PCATCH, netcls,
499 so->so_linger * hz);
500 if (error)
501 break;
502 }
503 }
504 }
505 drop:
506 if (so->so_pcb) {
507 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
508 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
509 (struct proc *)0);
510 if (error == 0)
511 error = error2;
512 }
513 discard:
514 if (so->so_state & SS_NOFDREF)
515 panic("soclose: NOFDREF");
516 so->so_state |= SS_NOFDREF;
517 sofree(so);
518 splx(s);
519 return (error);
520 }
521
522 /*
523 * Must be called at splsoftnet...
524 */
525 int
526 soabort(struct socket *so)
527 {
528
529 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
530 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
531 }
532
533 int
534 soaccept(struct socket *so, struct mbuf *nam)
535 {
536 int s, error;
537
538 error = 0;
539 s = splsoftnet();
540 if ((so->so_state & SS_NOFDREF) == 0)
541 panic("soaccept: !NOFDREF");
542 so->so_state &= ~SS_NOFDREF;
543 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
544 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
545 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
546 (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
547 else
548 error = ECONNABORTED;
549
550 splx(s);
551 return (error);
552 }
553
554 int
555 soconnect(struct socket *so, struct mbuf *nam)
556 {
557 struct proc *p;
558 int s, error;
559
560 p = curproc; /* XXX */
561 if (so->so_options & SO_ACCEPTCONN)
562 return (EOPNOTSUPP);
563 s = splsoftnet();
564 /*
565 * If protocol is connection-based, can only connect once.
566 * Otherwise, if connected, try to disconnect first.
567 * This allows user to disconnect by connecting to, e.g.,
568 * a null address.
569 */
570 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
571 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
572 (error = sodisconnect(so))))
573 error = EISCONN;
574 else
575 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
576 (struct mbuf *)0, nam, (struct mbuf *)0, p);
577 splx(s);
578 return (error);
579 }
580
581 int
582 soconnect2(struct socket *so1, struct socket *so2)
583 {
584 int s, error;
585
586 s = splsoftnet();
587 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
588 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
589 (struct proc *)0);
590 splx(s);
591 return (error);
592 }
593
594 int
595 sodisconnect(struct socket *so)
596 {
597 int s, error;
598
599 s = splsoftnet();
600 if ((so->so_state & SS_ISCONNECTED) == 0) {
601 error = ENOTCONN;
602 goto bad;
603 }
604 if (so->so_state & SS_ISDISCONNECTING) {
605 error = EALREADY;
606 goto bad;
607 }
608 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
609 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
610 (struct proc *)0);
611 bad:
612 splx(s);
613 sodopendfree(so);
614 return (error);
615 }
616
617 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
618 /*
619 * Send on a socket.
620 * If send must go all at once and message is larger than
621 * send buffering, then hard error.
622 * Lock against other senders.
623 * If must go all at once and not enough room now, then
624 * inform user that this would block and do nothing.
625 * Otherwise, if nonblocking, send as much as possible.
626 * The data to be sent is described by "uio" if nonzero,
627 * otherwise by the mbuf chain "top" (which must be null
628 * if uio is not). Data provided in mbuf chain must be small
629 * enough to send all at once.
630 *
631 * Returns nonzero on error, timeout or signal; callers
632 * must check for short counts if EINTR/ERESTART are returned.
633 * Data and control buffers are freed on return.
634 */
635 int
636 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
637 struct mbuf *control, int flags)
638 {
639 struct proc *p;
640 struct mbuf **mp, *m;
641 long space, len, resid, clen, mlen;
642 int error, s, dontroute, atomic;
643
644 sodopendfree(so);
645
646 p = curproc; /* XXX */
647 clen = 0;
648 atomic = sosendallatonce(so) || top;
649 if (uio)
650 resid = uio->uio_resid;
651 else
652 resid = top->m_pkthdr.len;
653 /*
654 * In theory resid should be unsigned.
655 * However, space must be signed, as it might be less than 0
656 * if we over-committed, and we must use a signed comparison
657 * of space and resid. On the other hand, a negative resid
658 * causes us to loop sending 0-length segments to the protocol.
659 */
660 if (resid < 0) {
661 error = EINVAL;
662 goto out;
663 }
664 dontroute =
665 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
666 (so->so_proto->pr_flags & PR_ATOMIC);
667 p->p_stats->p_ru.ru_msgsnd++;
668 if (control)
669 clen = control->m_len;
670 #define snderr(errno) { error = errno; splx(s); goto release; }
671
672 restart:
673 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
674 goto out;
675 do {
676 s = splsoftnet();
677 if (so->so_state & SS_CANTSENDMORE)
678 snderr(EPIPE);
679 if (so->so_error) {
680 error = so->so_error;
681 so->so_error = 0;
682 splx(s);
683 goto release;
684 }
685 if ((so->so_state & SS_ISCONNECTED) == 0) {
686 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
687 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
688 !(resid == 0 && clen != 0))
689 snderr(ENOTCONN);
690 } else if (addr == 0)
691 snderr(EDESTADDRREQ);
692 }
693 space = sbspace(&so->so_snd);
694 if (flags & MSG_OOB)
695 space += 1024;
696 if ((atomic && resid > so->so_snd.sb_hiwat) ||
697 clen > so->so_snd.sb_hiwat)
698 snderr(EMSGSIZE);
699 if (space < resid + clen && uio &&
700 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
701 if (so->so_state & SS_NBIO)
702 snderr(EWOULDBLOCK);
703 sbunlock(&so->so_snd);
704 error = sbwait(&so->so_snd);
705 splx(s);
706 if (error)
707 goto out;
708 goto restart;
709 }
710 splx(s);
711 mp = ⊤
712 space -= clen;
713 do {
714 if (uio == NULL) {
715 /*
716 * Data is prepackaged in "top".
717 */
718 resid = 0;
719 if (flags & MSG_EOR)
720 top->m_flags |= M_EOR;
721 } else do {
722 if (top == 0) {
723 m = m_gethdr(M_WAIT, MT_DATA);
724 mlen = MHLEN;
725 m->m_pkthdr.len = 0;
726 m->m_pkthdr.rcvif = (struct ifnet *)0;
727 } else {
728 m = m_get(M_WAIT, MT_DATA);
729 mlen = MLEN;
730 }
731 MCLAIM(m, so->so_snd.sb_mowner);
732 if (use_sosend_loan &&
733 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
734 space >= SOCK_LOAN_THRESH &&
735 (len = sosend_loan(so, uio, m,
736 space)) != 0) {
737 SOSEND_COUNTER_INCR(&sosend_loan_big);
738 space -= len;
739 goto have_data;
740 }
741 if (resid >= MINCLSIZE && space >= MCLBYTES) {
742 SOSEND_COUNTER_INCR(&sosend_copy_big);
743 m_clget(m, M_WAIT);
744 if ((m->m_flags & M_EXT) == 0)
745 goto nopages;
746 mlen = MCLBYTES;
747 if (atomic && top == 0) {
748 len = lmin(MCLBYTES - max_hdr,
749 resid);
750 m->m_data += max_hdr;
751 } else
752 len = lmin(MCLBYTES, resid);
753 space -= len;
754 } else {
755 nopages:
756 SOSEND_COUNTER_INCR(&sosend_copy_small);
757 len = lmin(lmin(mlen, resid), space);
758 space -= len;
759 /*
760 * For datagram protocols, leave room
761 * for protocol headers in first mbuf.
762 */
763 if (atomic && top == 0 && len < mlen)
764 MH_ALIGN(m, len);
765 }
766 error = uiomove(mtod(m, caddr_t), (int)len,
767 uio);
768 have_data:
769 resid = uio->uio_resid;
770 m->m_len = len;
771 *mp = m;
772 top->m_pkthdr.len += len;
773 if (error)
774 goto release;
775 mp = &m->m_next;
776 if (resid <= 0) {
777 if (flags & MSG_EOR)
778 top->m_flags |= M_EOR;
779 break;
780 }
781 } while (space > 0 && atomic);
782
783 s = splsoftnet();
784
785 if (so->so_state & SS_CANTSENDMORE)
786 snderr(EPIPE);
787
788 if (dontroute)
789 so->so_options |= SO_DONTROUTE;
790 if (resid > 0)
791 so->so_state |= SS_MORETOCOME;
792 error = (*so->so_proto->pr_usrreq)(so,
793 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
794 top, addr, control, p);
795 if (dontroute)
796 so->so_options &= ~SO_DONTROUTE;
797 if (resid > 0)
798 so->so_state &= ~SS_MORETOCOME;
799 splx(s);
800
801 clen = 0;
802 control = 0;
803 top = 0;
804 mp = ⊤
805 if (error)
806 goto release;
807 } while (resid && space > 0);
808 } while (resid);
809
810 release:
811 sbunlock(&so->so_snd);
812 out:
813 if (top)
814 m_freem(top);
815 if (control)
816 m_freem(control);
817 return (error);
818 }
819
820 /*
821 * Implement receive operations on a socket.
822 * We depend on the way that records are added to the sockbuf
823 * by sbappend*. In particular, each record (mbufs linked through m_next)
824 * must begin with an address if the protocol so specifies,
825 * followed by an optional mbuf or mbufs containing ancillary data,
826 * and then zero or more mbufs of data.
827 * In order to avoid blocking network interrupts for the entire time here,
828 * we splx() while doing the actual copy to user space.
829 * Although the sockbuf is locked, new data may still be appended,
830 * and thus we must maintain consistency of the sockbuf during that time.
831 *
832 * The caller may receive the data as a single mbuf chain by supplying
833 * an mbuf **mp0 for use in returning the chain. The uio is then used
834 * only for the count in uio_resid.
835 */
836 int
837 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
838 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
839 {
840 struct mbuf *m, **mp;
841 int flags, len, error, s, offset, moff, type, orig_resid;
842 struct protosw *pr;
843 struct mbuf *nextrecord;
844 int mbuf_removed = 0;
845
846 pr = so->so_proto;
847 mp = mp0;
848 type = 0;
849 orig_resid = uio->uio_resid;
850 if (paddr)
851 *paddr = 0;
852 if (controlp)
853 *controlp = 0;
854 if (flagsp)
855 flags = *flagsp &~ MSG_EOR;
856 else
857 flags = 0;
858
859 if ((flags & MSG_DONTWAIT) == 0)
860 sodopendfree(so);
861
862 if (flags & MSG_OOB) {
863 m = m_get(M_WAIT, MT_DATA);
864 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
865 (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
866 (struct proc *)0);
867 if (error)
868 goto bad;
869 do {
870 error = uiomove(mtod(m, caddr_t),
871 (int) min(uio->uio_resid, m->m_len), uio);
872 m = m_free(m);
873 } while (uio->uio_resid && error == 0 && m);
874 bad:
875 if (m)
876 m_freem(m);
877 return (error);
878 }
879 if (mp)
880 *mp = (struct mbuf *)0;
881 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
882 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
883 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
884
885 restart:
886 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
887 return (error);
888 s = splsoftnet();
889
890 m = so->so_rcv.sb_mb;
891 /*
892 * If we have less data than requested, block awaiting more
893 * (subject to any timeout) if:
894 * 1. the current count is less than the low water mark,
895 * 2. MSG_WAITALL is set, and it is possible to do the entire
896 * receive operation at once if we block (resid <= hiwat), or
897 * 3. MSG_DONTWAIT is not set.
898 * If MSG_WAITALL is set but resid is larger than the receive buffer,
899 * we have to do the receive in sections, and thus risk returning
900 * a short count if a timeout or signal occurs after we start.
901 */
902 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
903 so->so_rcv.sb_cc < uio->uio_resid) &&
904 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
905 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
906 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
907 #ifdef DIAGNOSTIC
908 if (m == 0 && so->so_rcv.sb_cc)
909 panic("receive 1");
910 #endif
911 if (so->so_error) {
912 if (m)
913 goto dontblock;
914 error = so->so_error;
915 if ((flags & MSG_PEEK) == 0)
916 so->so_error = 0;
917 goto release;
918 }
919 if (so->so_state & SS_CANTRCVMORE) {
920 if (m)
921 goto dontblock;
922 else
923 goto release;
924 }
925 for (; m; m = m->m_next)
926 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
927 m = so->so_rcv.sb_mb;
928 goto dontblock;
929 }
930 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
931 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
932 error = ENOTCONN;
933 goto release;
934 }
935 if (uio->uio_resid == 0)
936 goto release;
937 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
938 error = EWOULDBLOCK;
939 goto release;
940 }
941 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
942 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
943 sbunlock(&so->so_rcv);
944 error = sbwait(&so->so_rcv);
945 splx(s);
946 if (error)
947 return (error);
948 goto restart;
949 }
950 dontblock:
951 /*
952 * On entry here, m points to the first record of the socket buffer.
953 * While we process the initial mbufs containing address and control
954 * info, we save a copy of m->m_nextpkt into nextrecord.
955 */
956 #ifdef notyet /* XXXX */
957 if (uio->uio_procp)
958 uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
959 #endif
960 KASSERT(m == so->so_rcv.sb_mb);
961 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
962 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
963 nextrecord = m->m_nextpkt;
964 if (pr->pr_flags & PR_ADDR) {
965 #ifdef DIAGNOSTIC
966 if (m->m_type != MT_SONAME)
967 panic("receive 1a");
968 #endif
969 orig_resid = 0;
970 if (flags & MSG_PEEK) {
971 if (paddr)
972 *paddr = m_copy(m, 0, m->m_len);
973 m = m->m_next;
974 } else {
975 sbfree(&so->so_rcv, m);
976 mbuf_removed = 1;
977 if (paddr) {
978 *paddr = m;
979 so->so_rcv.sb_mb = m->m_next;
980 m->m_next = 0;
981 m = so->so_rcv.sb_mb;
982 } else {
983 MFREE(m, so->so_rcv.sb_mb);
984 m = so->so_rcv.sb_mb;
985 }
986 }
987 }
988 while (m && m->m_type == MT_CONTROL && error == 0) {
989 if (flags & MSG_PEEK) {
990 if (controlp)
991 *controlp = m_copy(m, 0, m->m_len);
992 m = m->m_next;
993 } else {
994 sbfree(&so->so_rcv, m);
995 mbuf_removed = 1;
996 if (controlp) {
997 if (pr->pr_domain->dom_externalize &&
998 mtod(m, struct cmsghdr *)->cmsg_type ==
999 SCM_RIGHTS)
1000 error = (*pr->pr_domain->dom_externalize)(m);
1001 *controlp = m;
1002 so->so_rcv.sb_mb = m->m_next;
1003 m->m_next = 0;
1004 m = so->so_rcv.sb_mb;
1005 } else {
1006 MFREE(m, so->so_rcv.sb_mb);
1007 m = so->so_rcv.sb_mb;
1008 }
1009 }
1010 if (controlp) {
1011 orig_resid = 0;
1012 controlp = &(*controlp)->m_next;
1013 }
1014 }
1015
1016 /*
1017 * If m is non-NULL, we have some data to read. From now on,
1018 * make sure to keep sb_lastrecord consistent when working on
1019 * the last packet on the chain (nextrecord == NULL) and we
1020 * change m->m_nextpkt.
1021 */
1022 if (m) {
1023 if ((flags & MSG_PEEK) == 0) {
1024 m->m_nextpkt = nextrecord;
1025 /*
1026 * If nextrecord == NULL (this is a single chain),
1027 * then sb_lastrecord may not be valid here if m
1028 * was changed earlier.
1029 */
1030 if (nextrecord == NULL) {
1031 KASSERT(so->so_rcv.sb_mb == m);
1032 so->so_rcv.sb_lastrecord = m;
1033 }
1034 }
1035 type = m->m_type;
1036 if (type == MT_OOBDATA)
1037 flags |= MSG_OOB;
1038 } else {
1039 if ((flags & MSG_PEEK) == 0) {
1040 KASSERT(so->so_rcv.sb_mb == m);
1041 so->so_rcv.sb_mb = nextrecord;
1042 SB_EMPTY_FIXUP(&so->so_rcv);
1043 }
1044 }
1045 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1046 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1047
1048 moff = 0;
1049 offset = 0;
1050 while (m && uio->uio_resid > 0 && error == 0) {
1051 if (m->m_type == MT_OOBDATA) {
1052 if (type != MT_OOBDATA)
1053 break;
1054 } else if (type == MT_OOBDATA)
1055 break;
1056 #ifdef DIAGNOSTIC
1057 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1058 panic("receive 3");
1059 #endif
1060 so->so_state &= ~SS_RCVATMARK;
1061 len = uio->uio_resid;
1062 if (so->so_oobmark && len > so->so_oobmark - offset)
1063 len = so->so_oobmark - offset;
1064 if (len > m->m_len - moff)
1065 len = m->m_len - moff;
1066 /*
1067 * If mp is set, just pass back the mbufs.
1068 * Otherwise copy them out via the uio, then free.
1069 * Sockbuf must be consistent here (points to current mbuf,
1070 * it points to next record) when we drop priority;
1071 * we must note any additions to the sockbuf when we
1072 * block interrupts again.
1073 */
1074 if (mp == 0) {
1075 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1076 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1077 splx(s);
1078 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1079 s = splsoftnet();
1080 if (error) {
1081 /*
1082 * If any part of the record has been removed
1083 * (such as the MT_SONAME mbuf, which will
1084 * happen when PR_ADDR, and thus also
1085 * PR_ATOMIC, is set), then drop the entire
1086 * record to maintain the atomicity of the
1087 * receive operation.
1088 *
1089 * This avoids a later panic("receive 1a")
1090 * when compiled with DIAGNOSTIC.
1091 */
1092 if (m && mbuf_removed
1093 && (pr->pr_flags & PR_ATOMIC))
1094 (void) sbdroprecord(&so->so_rcv);
1095
1096 goto release;
1097 }
1098 } else
1099 uio->uio_resid -= len;
1100 if (len == m->m_len - moff) {
1101 if (m->m_flags & M_EOR)
1102 flags |= MSG_EOR;
1103 if (flags & MSG_PEEK) {
1104 m = m->m_next;
1105 moff = 0;
1106 } else {
1107 nextrecord = m->m_nextpkt;
1108 sbfree(&so->so_rcv, m);
1109 if (mp) {
1110 *mp = m;
1111 mp = &m->m_next;
1112 so->so_rcv.sb_mb = m = m->m_next;
1113 *mp = (struct mbuf *)0;
1114 } else {
1115 MFREE(m, so->so_rcv.sb_mb);
1116 m = so->so_rcv.sb_mb;
1117 }
1118 /*
1119 * If m != NULL, we also know that
1120 * so->so_rcv.sb_mb != NULL.
1121 */
1122 KASSERT(so->so_rcv.sb_mb == m);
1123 if (m) {
1124 m->m_nextpkt = nextrecord;
1125 if (nextrecord == NULL)
1126 so->so_rcv.sb_lastrecord = m;
1127 } else {
1128 so->so_rcv.sb_mb = nextrecord;
1129 SB_EMPTY_FIXUP(&so->so_rcv);
1130 }
1131 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1132 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1133 }
1134 } else {
1135 if (flags & MSG_PEEK)
1136 moff += len;
1137 else {
1138 if (mp)
1139 *mp = m_copym(m, 0, len, M_WAIT);
1140 m->m_data += len;
1141 m->m_len -= len;
1142 so->so_rcv.sb_cc -= len;
1143 }
1144 }
1145 if (so->so_oobmark) {
1146 if ((flags & MSG_PEEK) == 0) {
1147 so->so_oobmark -= len;
1148 if (so->so_oobmark == 0) {
1149 so->so_state |= SS_RCVATMARK;
1150 break;
1151 }
1152 } else {
1153 offset += len;
1154 if (offset == so->so_oobmark)
1155 break;
1156 }
1157 }
1158 if (flags & MSG_EOR)
1159 break;
1160 /*
1161 * If the MSG_WAITALL flag is set (for non-atomic socket),
1162 * we must not quit until "uio->uio_resid == 0" or an error
1163 * termination. If a signal/timeout occurs, return
1164 * with a short count but without error.
1165 * Keep sockbuf locked against other readers.
1166 */
1167 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1168 !sosendallatonce(so) && !nextrecord) {
1169 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1170 break;
1171 /*
1172 * If we are peeking and the socket receive buffer is
1173 * full, stop since we can't get more data to peek at.
1174 */
1175 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1176 break;
1177 /*
1178 * If we've drained the socket buffer, tell the
1179 * protocol in case it needs to do something to
1180 * get it filled again.
1181 */
1182 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1183 (*pr->pr_usrreq)(so, PRU_RCVD,
1184 (struct mbuf *)0,
1185 (struct mbuf *)(long)flags,
1186 (struct mbuf *)0,
1187 (struct proc *)0);
1188 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1189 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1190 error = sbwait(&so->so_rcv);
1191 if (error) {
1192 sbunlock(&so->so_rcv);
1193 splx(s);
1194 return (0);
1195 }
1196 if ((m = so->so_rcv.sb_mb) != NULL)
1197 nextrecord = m->m_nextpkt;
1198 }
1199 }
1200
1201 if (m && pr->pr_flags & PR_ATOMIC) {
1202 flags |= MSG_TRUNC;
1203 if ((flags & MSG_PEEK) == 0)
1204 (void) sbdroprecord(&so->so_rcv);
1205 }
1206 if ((flags & MSG_PEEK) == 0) {
1207 if (m == 0) {
1208 /*
1209 * First part is an inline SB_EMPTY_FIXUP(). Second
1210 * part makes sure sb_lastrecord is up-to-date if
1211 * there is still data in the socket buffer.
1212 */
1213 so->so_rcv.sb_mb = nextrecord;
1214 if (so->so_rcv.sb_mb == NULL) {
1215 so->so_rcv.sb_mbtail = NULL;
1216 so->so_rcv.sb_lastrecord = NULL;
1217 } else if (nextrecord->m_nextpkt == NULL)
1218 so->so_rcv.sb_lastrecord = nextrecord;
1219 }
1220 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1221 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1222 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1223 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1224 (struct mbuf *)(long)flags, (struct mbuf *)0,
1225 (struct proc *)0);
1226 }
1227 if (orig_resid == uio->uio_resid && orig_resid &&
1228 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1229 sbunlock(&so->so_rcv);
1230 splx(s);
1231 goto restart;
1232 }
1233
1234 if (flagsp)
1235 *flagsp |= flags;
1236 release:
1237 sbunlock(&so->so_rcv);
1238 splx(s);
1239 return (error);
1240 }
1241
1242 int
1243 soshutdown(struct socket *so, int how)
1244 {
1245 struct protosw *pr;
1246
1247 pr = so->so_proto;
1248 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1249 return (EINVAL);
1250
1251 if (how == SHUT_RD || how == SHUT_RDWR)
1252 sorflush(so);
1253 if (how == SHUT_WR || how == SHUT_RDWR)
1254 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1255 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1256 return (0);
1257 }
1258
1259 void
1260 sorflush(struct socket *so)
1261 {
1262 struct sockbuf *sb, asb;
1263 struct protosw *pr;
1264 int s;
1265
1266 sb = &so->so_rcv;
1267 pr = so->so_proto;
1268 sb->sb_flags |= SB_NOINTR;
1269 (void) sblock(sb, M_WAITOK);
1270 s = splnet();
1271 socantrcvmore(so);
1272 sbunlock(sb);
1273 asb = *sb;
1274 /*
1275 * Clear most of the sockbuf structure, but leave some of the
1276 * fields valid.
1277 */
1278 memset(&sb->sb_startzero, 0,
1279 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1280 splx(s);
1281 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1282 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1283 sbrelease(&asb);
1284 }
1285
1286 int
1287 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1288 {
1289 int error;
1290 struct mbuf *m;
1291
1292 error = 0;
1293 m = m0;
1294 if (level != SOL_SOCKET) {
1295 if (so->so_proto && so->so_proto->pr_ctloutput)
1296 return ((*so->so_proto->pr_ctloutput)
1297 (PRCO_SETOPT, so, level, optname, &m0));
1298 error = ENOPROTOOPT;
1299 } else {
1300 switch (optname) {
1301
1302 case SO_LINGER:
1303 if (m == NULL || m->m_len != sizeof(struct linger)) {
1304 error = EINVAL;
1305 goto bad;
1306 }
1307 so->so_linger = mtod(m, struct linger *)->l_linger;
1308 /* fall thru... */
1309
1310 case SO_DEBUG:
1311 case SO_KEEPALIVE:
1312 case SO_DONTROUTE:
1313 case SO_USELOOPBACK:
1314 case SO_BROADCAST:
1315 case SO_REUSEADDR:
1316 case SO_REUSEPORT:
1317 case SO_OOBINLINE:
1318 case SO_TIMESTAMP:
1319 if (m == NULL || m->m_len < sizeof(int)) {
1320 error = EINVAL;
1321 goto bad;
1322 }
1323 if (*mtod(m, int *))
1324 so->so_options |= optname;
1325 else
1326 so->so_options &= ~optname;
1327 break;
1328
1329 case SO_SNDBUF:
1330 case SO_RCVBUF:
1331 case SO_SNDLOWAT:
1332 case SO_RCVLOWAT:
1333 {
1334 int optval;
1335
1336 if (m == NULL || m->m_len < sizeof(int)) {
1337 error = EINVAL;
1338 goto bad;
1339 }
1340
1341 /*
1342 * Values < 1 make no sense for any of these
1343 * options, so disallow them.
1344 */
1345 optval = *mtod(m, int *);
1346 if (optval < 1) {
1347 error = EINVAL;
1348 goto bad;
1349 }
1350
1351 switch (optname) {
1352
1353 case SO_SNDBUF:
1354 case SO_RCVBUF:
1355 if (sbreserve(optname == SO_SNDBUF ?
1356 &so->so_snd : &so->so_rcv,
1357 (u_long) optval) == 0) {
1358 error = ENOBUFS;
1359 goto bad;
1360 }
1361 break;
1362
1363 /*
1364 * Make sure the low-water is never greater than
1365 * the high-water.
1366 */
1367 case SO_SNDLOWAT:
1368 so->so_snd.sb_lowat =
1369 (optval > so->so_snd.sb_hiwat) ?
1370 so->so_snd.sb_hiwat : optval;
1371 break;
1372 case SO_RCVLOWAT:
1373 so->so_rcv.sb_lowat =
1374 (optval > so->so_rcv.sb_hiwat) ?
1375 so->so_rcv.sb_hiwat : optval;
1376 break;
1377 }
1378 break;
1379 }
1380
1381 case SO_SNDTIMEO:
1382 case SO_RCVTIMEO:
1383 {
1384 struct timeval *tv;
1385 short val;
1386
1387 if (m == NULL || m->m_len < sizeof(*tv)) {
1388 error = EINVAL;
1389 goto bad;
1390 }
1391 tv = mtod(m, struct timeval *);
1392 if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) {
1393 error = EDOM;
1394 goto bad;
1395 }
1396 val = tv->tv_sec * hz + tv->tv_usec / tick;
1397 if (val == 0 && tv->tv_usec != 0)
1398 val = 1;
1399
1400 switch (optname) {
1401
1402 case SO_SNDTIMEO:
1403 so->so_snd.sb_timeo = val;
1404 break;
1405 case SO_RCVTIMEO:
1406 so->so_rcv.sb_timeo = val;
1407 break;
1408 }
1409 break;
1410 }
1411
1412 default:
1413 error = ENOPROTOOPT;
1414 break;
1415 }
1416 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1417 (void) ((*so->so_proto->pr_ctloutput)
1418 (PRCO_SETOPT, so, level, optname, &m0));
1419 m = NULL; /* freed by protocol */
1420 }
1421 }
1422 bad:
1423 if (m)
1424 (void) m_free(m);
1425 return (error);
1426 }
1427
1428 int
1429 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1430 {
1431 struct mbuf *m;
1432
1433 if (level != SOL_SOCKET) {
1434 if (so->so_proto && so->so_proto->pr_ctloutput) {
1435 return ((*so->so_proto->pr_ctloutput)
1436 (PRCO_GETOPT, so, level, optname, mp));
1437 } else
1438 return (ENOPROTOOPT);
1439 } else {
1440 m = m_get(M_WAIT, MT_SOOPTS);
1441 m->m_len = sizeof(int);
1442
1443 switch (optname) {
1444
1445 case SO_LINGER:
1446 m->m_len = sizeof(struct linger);
1447 mtod(m, struct linger *)->l_onoff =
1448 so->so_options & SO_LINGER;
1449 mtod(m, struct linger *)->l_linger = so->so_linger;
1450 break;
1451
1452 case SO_USELOOPBACK:
1453 case SO_DONTROUTE:
1454 case SO_DEBUG:
1455 case SO_KEEPALIVE:
1456 case SO_REUSEADDR:
1457 case SO_REUSEPORT:
1458 case SO_BROADCAST:
1459 case SO_OOBINLINE:
1460 case SO_TIMESTAMP:
1461 *mtod(m, int *) = so->so_options & optname;
1462 break;
1463
1464 case SO_TYPE:
1465 *mtod(m, int *) = so->so_type;
1466 break;
1467
1468 case SO_ERROR:
1469 *mtod(m, int *) = so->so_error;
1470 so->so_error = 0;
1471 break;
1472
1473 case SO_SNDBUF:
1474 *mtod(m, int *) = so->so_snd.sb_hiwat;
1475 break;
1476
1477 case SO_RCVBUF:
1478 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1479 break;
1480
1481 case SO_SNDLOWAT:
1482 *mtod(m, int *) = so->so_snd.sb_lowat;
1483 break;
1484
1485 case SO_RCVLOWAT:
1486 *mtod(m, int *) = so->so_rcv.sb_lowat;
1487 break;
1488
1489 case SO_SNDTIMEO:
1490 case SO_RCVTIMEO:
1491 {
1492 int val = (optname == SO_SNDTIMEO ?
1493 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1494
1495 m->m_len = sizeof(struct timeval);
1496 mtod(m, struct timeval *)->tv_sec = val / hz;
1497 mtod(m, struct timeval *)->tv_usec =
1498 (val % hz) * tick;
1499 break;
1500 }
1501
1502 default:
1503 (void)m_free(m);
1504 return (ENOPROTOOPT);
1505 }
1506 *mp = m;
1507 return (0);
1508 }
1509 }
1510
1511 void
1512 sohasoutofband(struct socket *so)
1513 {
1514 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1515 selwakeup(&so->so_rcv.sb_sel);
1516 }
1517
1518 static void
1519 filt_sordetach(struct knote *kn)
1520 {
1521 struct socket *so;
1522
1523 so = (struct socket *)kn->kn_fp->f_data;
1524 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1525 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1526 so->so_rcv.sb_flags &= ~SB_KNOTE;
1527 }
1528
1529 /*ARGSUSED*/
1530 static int
1531 filt_soread(struct knote *kn, long hint)
1532 {
1533 struct socket *so;
1534
1535 so = (struct socket *)kn->kn_fp->f_data;
1536 kn->kn_data = so->so_rcv.sb_cc;
1537 if (so->so_state & SS_CANTRCVMORE) {
1538 kn->kn_flags |= EV_EOF;
1539 kn->kn_fflags = so->so_error;
1540 return (1);
1541 }
1542 if (so->so_error) /* temporary udp error */
1543 return (1);
1544 if (kn->kn_sfflags & NOTE_LOWAT)
1545 return (kn->kn_data >= kn->kn_sdata);
1546 return (kn->kn_data >= so->so_rcv.sb_lowat);
1547 }
1548
1549 static void
1550 filt_sowdetach(struct knote *kn)
1551 {
1552 struct socket *so;
1553
1554 so = (struct socket *)kn->kn_fp->f_data;
1555 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1556 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1557 so->so_snd.sb_flags &= ~SB_KNOTE;
1558 }
1559
1560 /*ARGSUSED*/
1561 static int
1562 filt_sowrite(struct knote *kn, long hint)
1563 {
1564 struct socket *so;
1565
1566 so = (struct socket *)kn->kn_fp->f_data;
1567 kn->kn_data = sbspace(&so->so_snd);
1568 if (so->so_state & SS_CANTSENDMORE) {
1569 kn->kn_flags |= EV_EOF;
1570 kn->kn_fflags = so->so_error;
1571 return (1);
1572 }
1573 if (so->so_error) /* temporary udp error */
1574 return (1);
1575 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1576 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1577 return (0);
1578 if (kn->kn_sfflags & NOTE_LOWAT)
1579 return (kn->kn_data >= kn->kn_sdata);
1580 return (kn->kn_data >= so->so_snd.sb_lowat);
1581 }
1582
1583 /*ARGSUSED*/
1584 static int
1585 filt_solisten(struct knote *kn, long hint)
1586 {
1587 struct socket *so;
1588
1589 so = (struct socket *)kn->kn_fp->f_data;
1590
1591 /*
1592 * Set kn_data to number of incoming connections, not
1593 * counting partial (incomplete) connections.
1594 */
1595 kn->kn_data = so->so_qlen;
1596 return (kn->kn_data > 0);
1597 }
1598
1599 static const struct filterops solisten_filtops =
1600 { 1, NULL, filt_sordetach, filt_solisten };
1601 static const struct filterops soread_filtops =
1602 { 1, NULL, filt_sordetach, filt_soread };
1603 static const struct filterops sowrite_filtops =
1604 { 1, NULL, filt_sowdetach, filt_sowrite };
1605
1606 int
1607 soo_kqfilter(struct file *fp, struct knote *kn)
1608 {
1609 struct socket *so;
1610 struct sockbuf *sb;
1611
1612 so = (struct socket *)kn->kn_fp->f_data;
1613 switch (kn->kn_filter) {
1614 case EVFILT_READ:
1615 if (so->so_options & SO_ACCEPTCONN)
1616 kn->kn_fop = &solisten_filtops;
1617 else
1618 kn->kn_fop = &soread_filtops;
1619 sb = &so->so_rcv;
1620 break;
1621 case EVFILT_WRITE:
1622 kn->kn_fop = &sowrite_filtops;
1623 sb = &so->so_snd;
1624 break;
1625 default:
1626 return (1);
1627 }
1628 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1629 sb->sb_flags |= SB_KNOTE;
1630 return (0);
1631 }
1632
1633