Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.92
      1 /*	$NetBSD: uipc_socket.c,v 1.92 2004/03/17 09:58:15 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.92 2004/03/17 09:58:15 yamt Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/malloc.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/domain.h>
     85 #include <sys/kernel.h>
     86 #include <sys/protosw.h>
     87 #include <sys/socket.h>
     88 #include <sys/socketvar.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/pool.h>
     92 #include <sys/event.h>
     93 #include <sys/poll.h>
     94 
     95 #include <uvm/uvm.h>
     96 
     97 struct pool	socket_pool;
     98 
     99 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    100 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    101 
    102 extern int	somaxconn;			/* patchable (XXX sysctl) */
    103 int		somaxconn = SOMAXCONN;
    104 
    105 #ifdef SOSEND_COUNTERS
    106 #include <sys/device.h>
    107 
    108 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    109     NULL, "sosend", "loan big");
    110 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    111     NULL, "sosend", "copy big");
    112 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    113     NULL, "sosend", "copy small");
    114 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    115     NULL, "sosend", "kva limit");
    116 
    117 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    118 
    119 #else
    120 
    121 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    122 
    123 #endif /* SOSEND_COUNTERS */
    124 
    125 void
    126 soinit(void)
    127 {
    128 
    129 	/* Set the initial adjusted socket buffer size. */
    130 	if (sb_max_set(sb_max))
    131 		panic("bad initial sb_max value: %lu\n", sb_max);
    132 
    133 	pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
    134 	    "sockpl", NULL);
    135 
    136 #ifdef SOSEND_COUNTERS
    137 	evcnt_attach_static(&sosend_loan_big);
    138 	evcnt_attach_static(&sosend_copy_big);
    139 	evcnt_attach_static(&sosend_copy_small);
    140 	evcnt_attach_static(&sosend_kvalimit);
    141 #endif /* SOSEND_COUNTERS */
    142 }
    143 
    144 #ifdef SOSEND_NO_LOAN
    145 int use_sosend_loan = 0;
    146 #else
    147 int use_sosend_loan = 1;
    148 #endif
    149 
    150 struct mbuf *so_pendfree;
    151 
    152 #ifndef SOMAXKVA
    153 #define	SOMAXKVA (16 * 1024 * 1024)
    154 #endif
    155 int somaxkva = SOMAXKVA;
    156 int socurkva;
    157 int sokvawaiters;
    158 
    159 #define	SOCK_LOAN_THRESH	4096
    160 #define	SOCK_LOAN_CHUNK		65536
    161 
    162 static size_t sodopendfree(struct socket *);
    163 
    164 vaddr_t
    165 sokvaalloc(vsize_t len, struct socket *so)
    166 {
    167 	vaddr_t lva;
    168 	int s;
    169 
    170 	while (socurkva + len > somaxkva) {
    171 		if (sodopendfree(so))
    172 			continue;
    173 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    174 		s = splvm();
    175 		sokvawaiters++;
    176 		(void) tsleep(&socurkva, PVM, "sokva", 0);
    177 		sokvawaiters--;
    178 		splx(s);
    179 	}
    180 
    181 	lva = uvm_km_valloc_wait(kernel_map, len);
    182 	if (lva == 0)
    183 		return (0);
    184 	socurkva += len;
    185 
    186 	return lva;
    187 }
    188 
    189 void
    190 sokvafree(vaddr_t sva, vsize_t len)
    191 {
    192 
    193 	uvm_km_free(kernel_map, sva, len);
    194 	socurkva -= len;
    195 	if (sokvawaiters)
    196 		wakeup(&socurkva);
    197 }
    198 
    199 static void
    200 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
    201 {
    202 	vaddr_t va, sva, eva;
    203 	vsize_t len;
    204 	paddr_t pa;
    205 	int i, npgs;
    206 
    207 	eva = round_page((vaddr_t) buf + size);
    208 	sva = trunc_page((vaddr_t) buf);
    209 	len = eva - sva;
    210 	npgs = len >> PAGE_SHIFT;
    211 
    212 	if (__predict_false(pgs == NULL)) {
    213 		pgs = alloca(npgs * sizeof(*pgs));
    214 
    215 		for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
    216 			if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
    217 				panic("sodoloanfree: va 0x%lx not mapped", va);
    218 			pgs[i] = PHYS_TO_VM_PAGE(pa);
    219 		}
    220 	}
    221 
    222 	pmap_kremove(sva, len);
    223 	pmap_update(pmap_kernel());
    224 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    225 	sokvafree(sva, len);
    226 }
    227 
    228 static size_t
    229 sodopendfree(struct socket *so)
    230 {
    231 	struct mbuf *m;
    232 	size_t rv = 0;
    233 	int s;
    234 
    235 	s = splvm();
    236 
    237 	for (;;) {
    238 		m = so_pendfree;
    239 		if (m == NULL)
    240 			break;
    241 		so_pendfree = m->m_next;
    242 		splx(s);
    243 
    244 		rv += m->m_ext.ext_size;
    245 		sodoloanfree((m->m_flags & M_EXT_PAGES) ?
    246 		    m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
    247 		    m->m_ext.ext_size);
    248 		s = splvm();
    249 		pool_cache_put(&mbpool_cache, m);
    250 	}
    251 
    252 	splx(s);
    253 	return (rv);
    254 }
    255 
    256 void
    257 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
    258 {
    259 	int s;
    260 
    261 	if (m == NULL) {
    262 		sodoloanfree(NULL, buf, size);
    263 		return;
    264 	}
    265 
    266 	s = splvm();
    267 	m->m_next = so_pendfree;
    268 	so_pendfree = m;
    269 	splx(s);
    270 	if (sokvawaiters)
    271 		wakeup(&socurkva);
    272 }
    273 
    274 static long
    275 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    276 {
    277 	struct iovec *iov = uio->uio_iov;
    278 	vaddr_t sva, eva;
    279 	vsize_t len;
    280 	vaddr_t lva, va;
    281 	int npgs, i, error;
    282 
    283 	if (uio->uio_segflg != UIO_USERSPACE)
    284 		return (0);
    285 
    286 	if (iov->iov_len < (size_t) space)
    287 		space = iov->iov_len;
    288 	if (space > SOCK_LOAN_CHUNK)
    289 		space = SOCK_LOAN_CHUNK;
    290 
    291 	eva = round_page((vaddr_t) iov->iov_base + space);
    292 	sva = trunc_page((vaddr_t) iov->iov_base);
    293 	len = eva - sva;
    294 	npgs = len >> PAGE_SHIFT;
    295 
    296 	/* XXX KDASSERT */
    297 	KASSERT(npgs <= M_EXT_MAXPAGES);
    298 
    299 	lva = sokvaalloc(len, so);
    300 	if (lva == 0)
    301 		return 0;
    302 
    303 	error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
    304 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    305 	if (error) {
    306 		sokvafree(lva, len);
    307 		return (0);
    308 	}
    309 
    310 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    311 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    312 		    VM_PROT_READ);
    313 	pmap_update(pmap_kernel());
    314 
    315 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    316 
    317 	MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
    318 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    319 
    320 	uio->uio_resid -= space;
    321 	/* uio_offset not updated, not set/used for write(2) */
    322 	uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
    323 	uio->uio_iov->iov_len -= space;
    324 	if (uio->uio_iov->iov_len == 0) {
    325 		uio->uio_iov++;
    326 		uio->uio_iovcnt--;
    327 	}
    328 
    329 	return (space);
    330 }
    331 
    332 /*
    333  * Socket operation routines.
    334  * These routines are called by the routines in
    335  * sys_socket.c or from a system process, and
    336  * implement the semantics of socket operations by
    337  * switching out to the protocol specific routines.
    338  */
    339 /*ARGSUSED*/
    340 int
    341 socreate(int dom, struct socket **aso, int type, int proto)
    342 {
    343 	struct proc	*p;
    344 	struct protosw	*prp;
    345 	struct socket	*so;
    346 	int		error, s;
    347 
    348 	p = curproc;		/* XXX */
    349 	if (proto)
    350 		prp = pffindproto(dom, proto, type);
    351 	else
    352 		prp = pffindtype(dom, type);
    353 	if (prp == 0 || prp->pr_usrreq == 0)
    354 		return (EPROTONOSUPPORT);
    355 	if (prp->pr_type != type)
    356 		return (EPROTOTYPE);
    357 	s = splsoftnet();
    358 	so = pool_get(&socket_pool, PR_WAITOK);
    359 	memset((caddr_t)so, 0, sizeof(*so));
    360 	TAILQ_INIT(&so->so_q0);
    361 	TAILQ_INIT(&so->so_q);
    362 	so->so_type = type;
    363 	so->so_proto = prp;
    364 	so->so_send = sosend;
    365 	so->so_receive = soreceive;
    366 #ifdef MBUFTRACE
    367 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    368 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    369 	so->so_mowner = &prp->pr_domain->dom_mowner;
    370 #endif
    371 	if (p != 0)
    372 		so->so_uid = p->p_ucred->cr_uid;
    373 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
    374 	    (struct mbuf *)(long)proto, (struct mbuf *)0, p);
    375 	if (error) {
    376 		so->so_state |= SS_NOFDREF;
    377 		sofree(so);
    378 		splx(s);
    379 		return (error);
    380 	}
    381 	splx(s);
    382 	*aso = so;
    383 	return (0);
    384 }
    385 
    386 int
    387 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
    388 {
    389 	int	s, error;
    390 
    391 	s = splsoftnet();
    392 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
    393 	    nam, (struct mbuf *)0, p);
    394 	splx(s);
    395 	return (error);
    396 }
    397 
    398 int
    399 solisten(struct socket *so, int backlog)
    400 {
    401 	int	s, error;
    402 
    403 	s = splsoftnet();
    404 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
    405 	    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    406 	if (error) {
    407 		splx(s);
    408 		return (error);
    409 	}
    410 	if (TAILQ_EMPTY(&so->so_q))
    411 		so->so_options |= SO_ACCEPTCONN;
    412 	if (backlog < 0)
    413 		backlog = 0;
    414 	so->so_qlimit = min(backlog, somaxconn);
    415 	splx(s);
    416 	return (0);
    417 }
    418 
    419 void
    420 sofree(struct socket *so)
    421 {
    422 
    423 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    424 		return;
    425 	if (so->so_head) {
    426 		/*
    427 		 * We must not decommission a socket that's on the accept(2)
    428 		 * queue.  If we do, then accept(2) may hang after select(2)
    429 		 * indicated that the listening socket was ready.
    430 		 */
    431 		if (!soqremque(so, 0))
    432 			return;
    433 	}
    434 	sbrelease(&so->so_snd);
    435 	sorflush(so);
    436 	pool_put(&socket_pool, so);
    437 }
    438 
    439 /*
    440  * Close a socket on last file table reference removal.
    441  * Initiate disconnect if connected.
    442  * Free socket when disconnect complete.
    443  */
    444 int
    445 soclose(struct socket *so)
    446 {
    447 	struct socket	*so2;
    448 	int		s, error;
    449 
    450 	error = 0;
    451 	s = splsoftnet();		/* conservative */
    452 	if (so->so_options & SO_ACCEPTCONN) {
    453 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    454 			(void) soqremque(so2, 0);
    455 			(void) soabort(so2);
    456 		}
    457 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    458 			(void) soqremque(so2, 1);
    459 			(void) soabort(so2);
    460 		}
    461 	}
    462 	if (so->so_pcb == 0)
    463 		goto discard;
    464 	if (so->so_state & SS_ISCONNECTED) {
    465 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    466 			error = sodisconnect(so);
    467 			if (error)
    468 				goto drop;
    469 		}
    470 		if (so->so_options & SO_LINGER) {
    471 			if ((so->so_state & SS_ISDISCONNECTING) &&
    472 			    (so->so_state & SS_NBIO))
    473 				goto drop;
    474 			while (so->so_state & SS_ISCONNECTED) {
    475 				error = tsleep((caddr_t)&so->so_timeo,
    476 					       PSOCK | PCATCH, netcls,
    477 					       so->so_linger * hz);
    478 				if (error)
    479 					break;
    480 			}
    481 		}
    482 	}
    483  drop:
    484 	if (so->so_pcb) {
    485 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    486 		    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    487 		    (struct proc *)0);
    488 		if (error == 0)
    489 			error = error2;
    490 	}
    491  discard:
    492 	if (so->so_state & SS_NOFDREF)
    493 		panic("soclose: NOFDREF");
    494 	so->so_state |= SS_NOFDREF;
    495 	sofree(so);
    496 	splx(s);
    497 	return (error);
    498 }
    499 
    500 /*
    501  * Must be called at splsoftnet...
    502  */
    503 int
    504 soabort(struct socket *so)
    505 {
    506 
    507 	return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
    508 	    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    509 }
    510 
    511 int
    512 soaccept(struct socket *so, struct mbuf *nam)
    513 {
    514 	int	s, error;
    515 
    516 	error = 0;
    517 	s = splsoftnet();
    518 	if ((so->so_state & SS_NOFDREF) == 0)
    519 		panic("soaccept: !NOFDREF");
    520 	so->so_state &= ~SS_NOFDREF;
    521 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    522 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    523 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    524 		    (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
    525 	else
    526 		error = ECONNABORTED;
    527 
    528 	splx(s);
    529 	return (error);
    530 }
    531 
    532 int
    533 soconnect(struct socket *so, struct mbuf *nam)
    534 {
    535 	struct proc	*p;
    536 	int		s, error;
    537 
    538 	p = curproc;		/* XXX */
    539 	if (so->so_options & SO_ACCEPTCONN)
    540 		return (EOPNOTSUPP);
    541 	s = splsoftnet();
    542 	/*
    543 	 * If protocol is connection-based, can only connect once.
    544 	 * Otherwise, if connected, try to disconnect first.
    545 	 * This allows user to disconnect by connecting to, e.g.,
    546 	 * a null address.
    547 	 */
    548 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    549 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    550 	    (error = sodisconnect(so))))
    551 		error = EISCONN;
    552 	else
    553 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    554 		    (struct mbuf *)0, nam, (struct mbuf *)0, p);
    555 	splx(s);
    556 	return (error);
    557 }
    558 
    559 int
    560 soconnect2(struct socket *so1, struct socket *so2)
    561 {
    562 	int	s, error;
    563 
    564 	s = splsoftnet();
    565 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    566 	    (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
    567 	    (struct proc *)0);
    568 	splx(s);
    569 	return (error);
    570 }
    571 
    572 int
    573 sodisconnect(struct socket *so)
    574 {
    575 	int	s, error;
    576 
    577 	s = splsoftnet();
    578 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    579 		error = ENOTCONN;
    580 		goto bad;
    581 	}
    582 	if (so->so_state & SS_ISDISCONNECTING) {
    583 		error = EALREADY;
    584 		goto bad;
    585 	}
    586 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    587 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    588 	    (struct proc *)0);
    589  bad:
    590 	splx(s);
    591 	sodopendfree(so);
    592 	return (error);
    593 }
    594 
    595 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    596 /*
    597  * Send on a socket.
    598  * If send must go all at once and message is larger than
    599  * send buffering, then hard error.
    600  * Lock against other senders.
    601  * If must go all at once and not enough room now, then
    602  * inform user that this would block and do nothing.
    603  * Otherwise, if nonblocking, send as much as possible.
    604  * The data to be sent is described by "uio" if nonzero,
    605  * otherwise by the mbuf chain "top" (which must be null
    606  * if uio is not).  Data provided in mbuf chain must be small
    607  * enough to send all at once.
    608  *
    609  * Returns nonzero on error, timeout or signal; callers
    610  * must check for short counts if EINTR/ERESTART are returned.
    611  * Data and control buffers are freed on return.
    612  */
    613 int
    614 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    615 	struct mbuf *control, int flags)
    616 {
    617 	struct proc	*p;
    618 	struct mbuf	**mp, *m;
    619 	long		space, len, resid, clen, mlen;
    620 	int		error, s, dontroute, atomic;
    621 
    622 	sodopendfree(so);
    623 
    624 	p = curproc;		/* XXX */
    625 	clen = 0;
    626 	atomic = sosendallatonce(so) || top;
    627 	if (uio)
    628 		resid = uio->uio_resid;
    629 	else
    630 		resid = top->m_pkthdr.len;
    631 	/*
    632 	 * In theory resid should be unsigned.
    633 	 * However, space must be signed, as it might be less than 0
    634 	 * if we over-committed, and we must use a signed comparison
    635 	 * of space and resid.  On the other hand, a negative resid
    636 	 * causes us to loop sending 0-length segments to the protocol.
    637 	 */
    638 	if (resid < 0) {
    639 		error = EINVAL;
    640 		goto out;
    641 	}
    642 	dontroute =
    643 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    644 	    (so->so_proto->pr_flags & PR_ATOMIC);
    645 	p->p_stats->p_ru.ru_msgsnd++;
    646 	if (control)
    647 		clen = control->m_len;
    648 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    649 
    650  restart:
    651 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    652 		goto out;
    653 	do {
    654 		s = splsoftnet();
    655 		if (so->so_state & SS_CANTSENDMORE)
    656 			snderr(EPIPE);
    657 		if (so->so_error) {
    658 			error = so->so_error;
    659 			so->so_error = 0;
    660 			splx(s);
    661 			goto release;
    662 		}
    663 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    664 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    665 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    666 				    !(resid == 0 && clen != 0))
    667 					snderr(ENOTCONN);
    668 			} else if (addr == 0)
    669 				snderr(EDESTADDRREQ);
    670 		}
    671 		space = sbspace(&so->so_snd);
    672 		if (flags & MSG_OOB)
    673 			space += 1024;
    674 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    675 		    clen > so->so_snd.sb_hiwat)
    676 			snderr(EMSGSIZE);
    677 		if (space < resid + clen && uio &&
    678 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    679 			if (so->so_state & SS_NBIO)
    680 				snderr(EWOULDBLOCK);
    681 			sbunlock(&so->so_snd);
    682 			error = sbwait(&so->so_snd);
    683 			splx(s);
    684 			if (error)
    685 				goto out;
    686 			goto restart;
    687 		}
    688 		splx(s);
    689 		mp = &top;
    690 		space -= clen;
    691 		do {
    692 			if (uio == NULL) {
    693 				/*
    694 				 * Data is prepackaged in "top".
    695 				 */
    696 				resid = 0;
    697 				if (flags & MSG_EOR)
    698 					top->m_flags |= M_EOR;
    699 			} else do {
    700 				if (top == 0) {
    701 					m = m_gethdr(M_WAIT, MT_DATA);
    702 					mlen = MHLEN;
    703 					m->m_pkthdr.len = 0;
    704 					m->m_pkthdr.rcvif = (struct ifnet *)0;
    705 				} else {
    706 					m = m_get(M_WAIT, MT_DATA);
    707 					mlen = MLEN;
    708 				}
    709 				MCLAIM(m, so->so_snd.sb_mowner);
    710 				if (use_sosend_loan &&
    711 				    uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
    712 				    space >= SOCK_LOAN_THRESH &&
    713 				    (len = sosend_loan(so, uio, m,
    714 						       space)) != 0) {
    715 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    716 					space -= len;
    717 					goto have_data;
    718 				}
    719 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    720 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    721 					m_clget(m, M_WAIT);
    722 					if ((m->m_flags & M_EXT) == 0)
    723 						goto nopages;
    724 					mlen = MCLBYTES;
    725 					if (atomic && top == 0) {
    726 						len = lmin(MCLBYTES - max_hdr,
    727 						    resid);
    728 						m->m_data += max_hdr;
    729 					} else
    730 						len = lmin(MCLBYTES, resid);
    731 					space -= len;
    732 				} else {
    733  nopages:
    734 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    735 					len = lmin(lmin(mlen, resid), space);
    736 					space -= len;
    737 					/*
    738 					 * For datagram protocols, leave room
    739 					 * for protocol headers in first mbuf.
    740 					 */
    741 					if (atomic && top == 0 && len < mlen)
    742 						MH_ALIGN(m, len);
    743 				}
    744 				error = uiomove(mtod(m, caddr_t), (int)len,
    745 				    uio);
    746  have_data:
    747 				resid = uio->uio_resid;
    748 				m->m_len = len;
    749 				*mp = m;
    750 				top->m_pkthdr.len += len;
    751 				if (error)
    752 					goto release;
    753 				mp = &m->m_next;
    754 				if (resid <= 0) {
    755 					if (flags & MSG_EOR)
    756 						top->m_flags |= M_EOR;
    757 					break;
    758 				}
    759 			} while (space > 0 && atomic);
    760 
    761 			s = splsoftnet();
    762 
    763 			if (so->so_state & SS_CANTSENDMORE)
    764 				snderr(EPIPE);
    765 
    766 			if (dontroute)
    767 				so->so_options |= SO_DONTROUTE;
    768 			if (resid > 0)
    769 				so->so_state |= SS_MORETOCOME;
    770 			error = (*so->so_proto->pr_usrreq)(so,
    771 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    772 			    top, addr, control, p);
    773 			if (dontroute)
    774 				so->so_options &= ~SO_DONTROUTE;
    775 			if (resid > 0)
    776 				so->so_state &= ~SS_MORETOCOME;
    777 			splx(s);
    778 
    779 			clen = 0;
    780 			control = 0;
    781 			top = 0;
    782 			mp = &top;
    783 			if (error)
    784 				goto release;
    785 		} while (resid && space > 0);
    786 	} while (resid);
    787 
    788  release:
    789 	sbunlock(&so->so_snd);
    790  out:
    791 	if (top)
    792 		m_freem(top);
    793 	if (control)
    794 		m_freem(control);
    795 	return (error);
    796 }
    797 
    798 /*
    799  * Implement receive operations on a socket.
    800  * We depend on the way that records are added to the sockbuf
    801  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    802  * must begin with an address if the protocol so specifies,
    803  * followed by an optional mbuf or mbufs containing ancillary data,
    804  * and then zero or more mbufs of data.
    805  * In order to avoid blocking network interrupts for the entire time here,
    806  * we splx() while doing the actual copy to user space.
    807  * Although the sockbuf is locked, new data may still be appended,
    808  * and thus we must maintain consistency of the sockbuf during that time.
    809  *
    810  * The caller may receive the data as a single mbuf chain by supplying
    811  * an mbuf **mp0 for use in returning the chain.  The uio is then used
    812  * only for the count in uio_resid.
    813  */
    814 int
    815 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
    816 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
    817 {
    818 	struct mbuf	*m, **mp;
    819 	int		flags, len, error, s, offset, moff, type, orig_resid;
    820 	struct protosw	*pr;
    821 	struct mbuf	*nextrecord;
    822 	int		mbuf_removed = 0;
    823 
    824 	pr = so->so_proto;
    825 	mp = mp0;
    826 	type = 0;
    827 	orig_resid = uio->uio_resid;
    828 	if (paddr)
    829 		*paddr = 0;
    830 	if (controlp)
    831 		*controlp = 0;
    832 	if (flagsp)
    833 		flags = *flagsp &~ MSG_EOR;
    834 	else
    835 		flags = 0;
    836 
    837 	if ((flags & MSG_DONTWAIT) == 0)
    838 		sodopendfree(so);
    839 
    840 	if (flags & MSG_OOB) {
    841 		m = m_get(M_WAIT, MT_DATA);
    842 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
    843 		    (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
    844 		    (struct proc *)0);
    845 		if (error)
    846 			goto bad;
    847 		do {
    848 			error = uiomove(mtod(m, caddr_t),
    849 			    (int) min(uio->uio_resid, m->m_len), uio);
    850 			m = m_free(m);
    851 		} while (uio->uio_resid && error == 0 && m);
    852  bad:
    853 		if (m)
    854 			m_freem(m);
    855 		return (error);
    856 	}
    857 	if (mp)
    858 		*mp = (struct mbuf *)0;
    859 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
    860 		(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
    861 		    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    862 
    863  restart:
    864 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
    865 		return (error);
    866 	s = splsoftnet();
    867 
    868 	m = so->so_rcv.sb_mb;
    869 	/*
    870 	 * If we have less data than requested, block awaiting more
    871 	 * (subject to any timeout) if:
    872 	 *   1. the current count is less than the low water mark,
    873 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
    874 	 *	receive operation at once if we block (resid <= hiwat), or
    875 	 *   3. MSG_DONTWAIT is not set.
    876 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
    877 	 * we have to do the receive in sections, and thus risk returning
    878 	 * a short count if a timeout or signal occurs after we start.
    879 	 */
    880 	if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
    881 	    so->so_rcv.sb_cc < uio->uio_resid) &&
    882 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
    883 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
    884 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
    885 #ifdef DIAGNOSTIC
    886 		if (m == 0 && so->so_rcv.sb_cc)
    887 			panic("receive 1");
    888 #endif
    889 		if (so->so_error) {
    890 			if (m)
    891 				goto dontblock;
    892 			error = so->so_error;
    893 			if ((flags & MSG_PEEK) == 0)
    894 				so->so_error = 0;
    895 			goto release;
    896 		}
    897 		if (so->so_state & SS_CANTRCVMORE) {
    898 			if (m)
    899 				goto dontblock;
    900 			else
    901 				goto release;
    902 		}
    903 		for (; m; m = m->m_next)
    904 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
    905 				m = so->so_rcv.sb_mb;
    906 				goto dontblock;
    907 			}
    908 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
    909 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
    910 			error = ENOTCONN;
    911 			goto release;
    912 		}
    913 		if (uio->uio_resid == 0)
    914 			goto release;
    915 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
    916 			error = EWOULDBLOCK;
    917 			goto release;
    918 		}
    919 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
    920 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
    921 		sbunlock(&so->so_rcv);
    922 		error = sbwait(&so->so_rcv);
    923 		splx(s);
    924 		if (error)
    925 			return (error);
    926 		goto restart;
    927 	}
    928  dontblock:
    929 	/*
    930 	 * On entry here, m points to the first record of the socket buffer.
    931 	 * While we process the initial mbufs containing address and control
    932 	 * info, we save a copy of m->m_nextpkt into nextrecord.
    933 	 */
    934 #ifdef notyet /* XXXX */
    935 	if (uio->uio_procp)
    936 		uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
    937 #endif
    938 	KASSERT(m == so->so_rcv.sb_mb);
    939 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
    940 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
    941 	nextrecord = m->m_nextpkt;
    942 	if (pr->pr_flags & PR_ADDR) {
    943 #ifdef DIAGNOSTIC
    944 		if (m->m_type != MT_SONAME)
    945 			panic("receive 1a");
    946 #endif
    947 		orig_resid = 0;
    948 		if (flags & MSG_PEEK) {
    949 			if (paddr)
    950 				*paddr = m_copy(m, 0, m->m_len);
    951 			m = m->m_next;
    952 		} else {
    953 			sbfree(&so->so_rcv, m);
    954 			mbuf_removed = 1;
    955 			if (paddr) {
    956 				*paddr = m;
    957 				so->so_rcv.sb_mb = m->m_next;
    958 				m->m_next = 0;
    959 				m = so->so_rcv.sb_mb;
    960 			} else {
    961 				MFREE(m, so->so_rcv.sb_mb);
    962 				m = so->so_rcv.sb_mb;
    963 			}
    964 		}
    965 	}
    966 	while (m && m->m_type == MT_CONTROL && error == 0) {
    967 		if (flags & MSG_PEEK) {
    968 			if (controlp)
    969 				*controlp = m_copy(m, 0, m->m_len);
    970 			m = m->m_next;
    971 		} else {
    972 			sbfree(&so->so_rcv, m);
    973 			mbuf_removed = 1;
    974 			if (controlp) {
    975 				if (pr->pr_domain->dom_externalize &&
    976 				    mtod(m, struct cmsghdr *)->cmsg_type ==
    977 				    SCM_RIGHTS)
    978 					error = (*pr->pr_domain->dom_externalize)(m);
    979 				*controlp = m;
    980 				so->so_rcv.sb_mb = m->m_next;
    981 				m->m_next = 0;
    982 				m = so->so_rcv.sb_mb;
    983 			} else {
    984 				MFREE(m, so->so_rcv.sb_mb);
    985 				m = so->so_rcv.sb_mb;
    986 			}
    987 		}
    988 		if (controlp) {
    989 			orig_resid = 0;
    990 			controlp = &(*controlp)->m_next;
    991 		}
    992 	}
    993 
    994 	/*
    995 	 * If m is non-NULL, we have some data to read.  From now on,
    996 	 * make sure to keep sb_lastrecord consistent when working on
    997 	 * the last packet on the chain (nextrecord == NULL) and we
    998 	 * change m->m_nextpkt.
    999 	 */
   1000 	if (m) {
   1001 		if ((flags & MSG_PEEK) == 0) {
   1002 			m->m_nextpkt = nextrecord;
   1003 			/*
   1004 			 * If nextrecord == NULL (this is a single chain),
   1005 			 * then sb_lastrecord may not be valid here if m
   1006 			 * was changed earlier.
   1007 			 */
   1008 			if (nextrecord == NULL) {
   1009 				KASSERT(so->so_rcv.sb_mb == m);
   1010 				so->so_rcv.sb_lastrecord = m;
   1011 			}
   1012 		}
   1013 		type = m->m_type;
   1014 		if (type == MT_OOBDATA)
   1015 			flags |= MSG_OOB;
   1016 	} else {
   1017 		if ((flags & MSG_PEEK) == 0) {
   1018 			KASSERT(so->so_rcv.sb_mb == m);
   1019 			so->so_rcv.sb_mb = nextrecord;
   1020 			SB_EMPTY_FIXUP(&so->so_rcv);
   1021 		}
   1022 	}
   1023 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1024 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1025 
   1026 	moff = 0;
   1027 	offset = 0;
   1028 	while (m && uio->uio_resid > 0 && error == 0) {
   1029 		if (m->m_type == MT_OOBDATA) {
   1030 			if (type != MT_OOBDATA)
   1031 				break;
   1032 		} else if (type == MT_OOBDATA)
   1033 			break;
   1034 #ifdef DIAGNOSTIC
   1035 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1036 			panic("receive 3");
   1037 #endif
   1038 		so->so_state &= ~SS_RCVATMARK;
   1039 		len = uio->uio_resid;
   1040 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1041 			len = so->so_oobmark - offset;
   1042 		if (len > m->m_len - moff)
   1043 			len = m->m_len - moff;
   1044 		/*
   1045 		 * If mp is set, just pass back the mbufs.
   1046 		 * Otherwise copy them out via the uio, then free.
   1047 		 * Sockbuf must be consistent here (points to current mbuf,
   1048 		 * it points to next record) when we drop priority;
   1049 		 * we must note any additions to the sockbuf when we
   1050 		 * block interrupts again.
   1051 		 */
   1052 		if (mp == 0) {
   1053 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1054 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1055 			splx(s);
   1056 			error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
   1057 			s = splsoftnet();
   1058 			if (error) {
   1059 				/*
   1060 				 * If any part of the record has been removed
   1061 				 * (such as the MT_SONAME mbuf, which will
   1062 				 * happen when PR_ADDR, and thus also
   1063 				 * PR_ATOMIC, is set), then drop the entire
   1064 				 * record to maintain the atomicity of the
   1065 				 * receive operation.
   1066 				 *
   1067 				 * This avoids a later panic("receive 1a")
   1068 				 * when compiled with DIAGNOSTIC.
   1069 				 */
   1070 				if (m && mbuf_removed
   1071 				    && (pr->pr_flags & PR_ATOMIC))
   1072 					(void) sbdroprecord(&so->so_rcv);
   1073 
   1074 				goto release;
   1075 			}
   1076 		} else
   1077 			uio->uio_resid -= len;
   1078 		if (len == m->m_len - moff) {
   1079 			if (m->m_flags & M_EOR)
   1080 				flags |= MSG_EOR;
   1081 			if (flags & MSG_PEEK) {
   1082 				m = m->m_next;
   1083 				moff = 0;
   1084 			} else {
   1085 				nextrecord = m->m_nextpkt;
   1086 				sbfree(&so->so_rcv, m);
   1087 				if (mp) {
   1088 					*mp = m;
   1089 					mp = &m->m_next;
   1090 					so->so_rcv.sb_mb = m = m->m_next;
   1091 					*mp = (struct mbuf *)0;
   1092 				} else {
   1093 					MFREE(m, so->so_rcv.sb_mb);
   1094 					m = so->so_rcv.sb_mb;
   1095 				}
   1096 				/*
   1097 				 * If m != NULL, we also know that
   1098 				 * so->so_rcv.sb_mb != NULL.
   1099 				 */
   1100 				KASSERT(so->so_rcv.sb_mb == m);
   1101 				if (m) {
   1102 					m->m_nextpkt = nextrecord;
   1103 					if (nextrecord == NULL)
   1104 						so->so_rcv.sb_lastrecord = m;
   1105 				} else {
   1106 					so->so_rcv.sb_mb = nextrecord;
   1107 					SB_EMPTY_FIXUP(&so->so_rcv);
   1108 				}
   1109 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1110 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1111 			}
   1112 		} else {
   1113 			if (flags & MSG_PEEK)
   1114 				moff += len;
   1115 			else {
   1116 				if (mp)
   1117 					*mp = m_copym(m, 0, len, M_WAIT);
   1118 				m->m_data += len;
   1119 				m->m_len -= len;
   1120 				so->so_rcv.sb_cc -= len;
   1121 			}
   1122 		}
   1123 		if (so->so_oobmark) {
   1124 			if ((flags & MSG_PEEK) == 0) {
   1125 				so->so_oobmark -= len;
   1126 				if (so->so_oobmark == 0) {
   1127 					so->so_state |= SS_RCVATMARK;
   1128 					break;
   1129 				}
   1130 			} else {
   1131 				offset += len;
   1132 				if (offset == so->so_oobmark)
   1133 					break;
   1134 			}
   1135 		}
   1136 		if (flags & MSG_EOR)
   1137 			break;
   1138 		/*
   1139 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1140 		 * we must not quit until "uio->uio_resid == 0" or an error
   1141 		 * termination.  If a signal/timeout occurs, return
   1142 		 * with a short count but without error.
   1143 		 * Keep sockbuf locked against other readers.
   1144 		 */
   1145 		while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
   1146 		    !sosendallatonce(so) && !nextrecord) {
   1147 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1148 				break;
   1149 			/*
   1150 			 * If we are peeking and the socket receive buffer is
   1151 			 * full, stop since we can't get more data to peek at.
   1152 			 */
   1153 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1154 				break;
   1155 			/*
   1156 			 * If we've drained the socket buffer, tell the
   1157 			 * protocol in case it needs to do something to
   1158 			 * get it filled again.
   1159 			 */
   1160 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1161 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1162 				    (struct mbuf *)0,
   1163 				    (struct mbuf *)(long)flags,
   1164 				    (struct mbuf *)0,
   1165 				    (struct proc *)0);
   1166 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1167 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1168 			error = sbwait(&so->so_rcv);
   1169 			if (error) {
   1170 				sbunlock(&so->so_rcv);
   1171 				splx(s);
   1172 				return (0);
   1173 			}
   1174 			if ((m = so->so_rcv.sb_mb) != NULL)
   1175 				nextrecord = m->m_nextpkt;
   1176 		}
   1177 	}
   1178 
   1179 	if (m && pr->pr_flags & PR_ATOMIC) {
   1180 		flags |= MSG_TRUNC;
   1181 		if ((flags & MSG_PEEK) == 0)
   1182 			(void) sbdroprecord(&so->so_rcv);
   1183 	}
   1184 	if ((flags & MSG_PEEK) == 0) {
   1185 		if (m == 0) {
   1186 			/*
   1187 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1188 			 * part makes sure sb_lastrecord is up-to-date if
   1189 			 * there is still data in the socket buffer.
   1190 			 */
   1191 			so->so_rcv.sb_mb = nextrecord;
   1192 			if (so->so_rcv.sb_mb == NULL) {
   1193 				so->so_rcv.sb_mbtail = NULL;
   1194 				so->so_rcv.sb_lastrecord = NULL;
   1195 			} else if (nextrecord->m_nextpkt == NULL)
   1196 				so->so_rcv.sb_lastrecord = nextrecord;
   1197 		}
   1198 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1199 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1200 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1201 			(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1202 			    (struct mbuf *)(long)flags, (struct mbuf *)0,
   1203 			    (struct proc *)0);
   1204 	}
   1205 	if (orig_resid == uio->uio_resid && orig_resid &&
   1206 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1207 		sbunlock(&so->so_rcv);
   1208 		splx(s);
   1209 		goto restart;
   1210 	}
   1211 
   1212 	if (flagsp)
   1213 		*flagsp |= flags;
   1214  release:
   1215 	sbunlock(&so->so_rcv);
   1216 	splx(s);
   1217 	return (error);
   1218 }
   1219 
   1220 int
   1221 soshutdown(struct socket *so, int how)
   1222 {
   1223 	struct protosw	*pr;
   1224 
   1225 	pr = so->so_proto;
   1226 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1227 		return (EINVAL);
   1228 
   1229 	if (how == SHUT_RD || how == SHUT_RDWR)
   1230 		sorflush(so);
   1231 	if (how == SHUT_WR || how == SHUT_RDWR)
   1232 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
   1233 		    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
   1234 	return (0);
   1235 }
   1236 
   1237 void
   1238 sorflush(struct socket *so)
   1239 {
   1240 	struct sockbuf	*sb, asb;
   1241 	struct protosw	*pr;
   1242 	int		s;
   1243 
   1244 	sb = &so->so_rcv;
   1245 	pr = so->so_proto;
   1246 	sb->sb_flags |= SB_NOINTR;
   1247 	(void) sblock(sb, M_WAITOK);
   1248 	s = splnet();
   1249 	socantrcvmore(so);
   1250 	sbunlock(sb);
   1251 	asb = *sb;
   1252 	/*
   1253 	 * Clear most of the sockbuf structure, but leave some of the
   1254 	 * fields valid.
   1255 	 */
   1256 	memset(&sb->sb_startzero, 0,
   1257 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1258 	splx(s);
   1259 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1260 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1261 	sbrelease(&asb);
   1262 }
   1263 
   1264 int
   1265 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
   1266 {
   1267 	int		error;
   1268 	struct mbuf	*m;
   1269 
   1270 	error = 0;
   1271 	m = m0;
   1272 	if (level != SOL_SOCKET) {
   1273 		if (so->so_proto && so->so_proto->pr_ctloutput)
   1274 			return ((*so->so_proto->pr_ctloutput)
   1275 				  (PRCO_SETOPT, so, level, optname, &m0));
   1276 		error = ENOPROTOOPT;
   1277 	} else {
   1278 		switch (optname) {
   1279 
   1280 		case SO_LINGER:
   1281 			if (m == NULL || m->m_len != sizeof(struct linger)) {
   1282 				error = EINVAL;
   1283 				goto bad;
   1284 			}
   1285 			so->so_linger = mtod(m, struct linger *)->l_linger;
   1286 			/* fall thru... */
   1287 
   1288 		case SO_DEBUG:
   1289 		case SO_KEEPALIVE:
   1290 		case SO_DONTROUTE:
   1291 		case SO_USELOOPBACK:
   1292 		case SO_BROADCAST:
   1293 		case SO_REUSEADDR:
   1294 		case SO_REUSEPORT:
   1295 		case SO_OOBINLINE:
   1296 		case SO_TIMESTAMP:
   1297 			if (m == NULL || m->m_len < sizeof(int)) {
   1298 				error = EINVAL;
   1299 				goto bad;
   1300 			}
   1301 			if (*mtod(m, int *))
   1302 				so->so_options |= optname;
   1303 			else
   1304 				so->so_options &= ~optname;
   1305 			break;
   1306 
   1307 		case SO_SNDBUF:
   1308 		case SO_RCVBUF:
   1309 		case SO_SNDLOWAT:
   1310 		case SO_RCVLOWAT:
   1311 		    {
   1312 			int optval;
   1313 
   1314 			if (m == NULL || m->m_len < sizeof(int)) {
   1315 				error = EINVAL;
   1316 				goto bad;
   1317 			}
   1318 
   1319 			/*
   1320 			 * Values < 1 make no sense for any of these
   1321 			 * options, so disallow them.
   1322 			 */
   1323 			optval = *mtod(m, int *);
   1324 			if (optval < 1) {
   1325 				error = EINVAL;
   1326 				goto bad;
   1327 			}
   1328 
   1329 			switch (optname) {
   1330 
   1331 			case SO_SNDBUF:
   1332 			case SO_RCVBUF:
   1333 				if (sbreserve(optname == SO_SNDBUF ?
   1334 				    &so->so_snd : &so->so_rcv,
   1335 				    (u_long) optval) == 0) {
   1336 					error = ENOBUFS;
   1337 					goto bad;
   1338 				}
   1339 				break;
   1340 
   1341 			/*
   1342 			 * Make sure the low-water is never greater than
   1343 			 * the high-water.
   1344 			 */
   1345 			case SO_SNDLOWAT:
   1346 				so->so_snd.sb_lowat =
   1347 				    (optval > so->so_snd.sb_hiwat) ?
   1348 				    so->so_snd.sb_hiwat : optval;
   1349 				break;
   1350 			case SO_RCVLOWAT:
   1351 				so->so_rcv.sb_lowat =
   1352 				    (optval > so->so_rcv.sb_hiwat) ?
   1353 				    so->so_rcv.sb_hiwat : optval;
   1354 				break;
   1355 			}
   1356 			break;
   1357 		    }
   1358 
   1359 		case SO_SNDTIMEO:
   1360 		case SO_RCVTIMEO:
   1361 		    {
   1362 			struct timeval *tv;
   1363 			short val;
   1364 
   1365 			if (m == NULL || m->m_len < sizeof(*tv)) {
   1366 				error = EINVAL;
   1367 				goto bad;
   1368 			}
   1369 			tv = mtod(m, struct timeval *);
   1370 			if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) {
   1371 				error = EDOM;
   1372 				goto bad;
   1373 			}
   1374 			val = tv->tv_sec * hz + tv->tv_usec / tick;
   1375 			if (val == 0 && tv->tv_usec != 0)
   1376 				val = 1;
   1377 
   1378 			switch (optname) {
   1379 
   1380 			case SO_SNDTIMEO:
   1381 				so->so_snd.sb_timeo = val;
   1382 				break;
   1383 			case SO_RCVTIMEO:
   1384 				so->so_rcv.sb_timeo = val;
   1385 				break;
   1386 			}
   1387 			break;
   1388 		    }
   1389 
   1390 		default:
   1391 			error = ENOPROTOOPT;
   1392 			break;
   1393 		}
   1394 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
   1395 			(void) ((*so->so_proto->pr_ctloutput)
   1396 				  (PRCO_SETOPT, so, level, optname, &m0));
   1397 			m = NULL;	/* freed by protocol */
   1398 		}
   1399 	}
   1400  bad:
   1401 	if (m)
   1402 		(void) m_free(m);
   1403 	return (error);
   1404 }
   1405 
   1406 int
   1407 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1408 {
   1409 	struct mbuf	*m;
   1410 
   1411 	if (level != SOL_SOCKET) {
   1412 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1413 			return ((*so->so_proto->pr_ctloutput)
   1414 				  (PRCO_GETOPT, so, level, optname, mp));
   1415 		} else
   1416 			return (ENOPROTOOPT);
   1417 	} else {
   1418 		m = m_get(M_WAIT, MT_SOOPTS);
   1419 		m->m_len = sizeof(int);
   1420 
   1421 		switch (optname) {
   1422 
   1423 		case SO_LINGER:
   1424 			m->m_len = sizeof(struct linger);
   1425 			mtod(m, struct linger *)->l_onoff =
   1426 				so->so_options & SO_LINGER;
   1427 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1428 			break;
   1429 
   1430 		case SO_USELOOPBACK:
   1431 		case SO_DONTROUTE:
   1432 		case SO_DEBUG:
   1433 		case SO_KEEPALIVE:
   1434 		case SO_REUSEADDR:
   1435 		case SO_REUSEPORT:
   1436 		case SO_BROADCAST:
   1437 		case SO_OOBINLINE:
   1438 		case SO_TIMESTAMP:
   1439 			*mtod(m, int *) = so->so_options & optname;
   1440 			break;
   1441 
   1442 		case SO_TYPE:
   1443 			*mtod(m, int *) = so->so_type;
   1444 			break;
   1445 
   1446 		case SO_ERROR:
   1447 			*mtod(m, int *) = so->so_error;
   1448 			so->so_error = 0;
   1449 			break;
   1450 
   1451 		case SO_SNDBUF:
   1452 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1453 			break;
   1454 
   1455 		case SO_RCVBUF:
   1456 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1457 			break;
   1458 
   1459 		case SO_SNDLOWAT:
   1460 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1461 			break;
   1462 
   1463 		case SO_RCVLOWAT:
   1464 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1465 			break;
   1466 
   1467 		case SO_SNDTIMEO:
   1468 		case SO_RCVTIMEO:
   1469 		    {
   1470 			int val = (optname == SO_SNDTIMEO ?
   1471 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1472 
   1473 			m->m_len = sizeof(struct timeval);
   1474 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1475 			mtod(m, struct timeval *)->tv_usec =
   1476 			    (val % hz) * tick;
   1477 			break;
   1478 		    }
   1479 
   1480 		default:
   1481 			(void)m_free(m);
   1482 			return (ENOPROTOOPT);
   1483 		}
   1484 		*mp = m;
   1485 		return (0);
   1486 	}
   1487 }
   1488 
   1489 void
   1490 sohasoutofband(struct socket *so)
   1491 {
   1492 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1493 	selwakeup(&so->so_rcv.sb_sel);
   1494 }
   1495 
   1496 static void
   1497 filt_sordetach(struct knote *kn)
   1498 {
   1499 	struct socket	*so;
   1500 
   1501 	so = (struct socket *)kn->kn_fp->f_data;
   1502 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1503 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1504 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1505 }
   1506 
   1507 /*ARGSUSED*/
   1508 static int
   1509 filt_soread(struct knote *kn, long hint)
   1510 {
   1511 	struct socket	*so;
   1512 
   1513 	so = (struct socket *)kn->kn_fp->f_data;
   1514 	kn->kn_data = so->so_rcv.sb_cc;
   1515 	if (so->so_state & SS_CANTRCVMORE) {
   1516 		kn->kn_flags |= EV_EOF;
   1517 		kn->kn_fflags = so->so_error;
   1518 		return (1);
   1519 	}
   1520 	if (so->so_error)	/* temporary udp error */
   1521 		return (1);
   1522 	if (kn->kn_sfflags & NOTE_LOWAT)
   1523 		return (kn->kn_data >= kn->kn_sdata);
   1524 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1525 }
   1526 
   1527 static void
   1528 filt_sowdetach(struct knote *kn)
   1529 {
   1530 	struct socket	*so;
   1531 
   1532 	so = (struct socket *)kn->kn_fp->f_data;
   1533 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1534 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1535 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1536 }
   1537 
   1538 /*ARGSUSED*/
   1539 static int
   1540 filt_sowrite(struct knote *kn, long hint)
   1541 {
   1542 	struct socket	*so;
   1543 
   1544 	so = (struct socket *)kn->kn_fp->f_data;
   1545 	kn->kn_data = sbspace(&so->so_snd);
   1546 	if (so->so_state & SS_CANTSENDMORE) {
   1547 		kn->kn_flags |= EV_EOF;
   1548 		kn->kn_fflags = so->so_error;
   1549 		return (1);
   1550 	}
   1551 	if (so->so_error)	/* temporary udp error */
   1552 		return (1);
   1553 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1554 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1555 		return (0);
   1556 	if (kn->kn_sfflags & NOTE_LOWAT)
   1557 		return (kn->kn_data >= kn->kn_sdata);
   1558 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1559 }
   1560 
   1561 /*ARGSUSED*/
   1562 static int
   1563 filt_solisten(struct knote *kn, long hint)
   1564 {
   1565 	struct socket	*so;
   1566 
   1567 	so = (struct socket *)kn->kn_fp->f_data;
   1568 
   1569 	/*
   1570 	 * Set kn_data to number of incoming connections, not
   1571 	 * counting partial (incomplete) connections.
   1572 	 */
   1573 	kn->kn_data = so->so_qlen;
   1574 	return (kn->kn_data > 0);
   1575 }
   1576 
   1577 static const struct filterops solisten_filtops =
   1578 	{ 1, NULL, filt_sordetach, filt_solisten };
   1579 static const struct filterops soread_filtops =
   1580 	{ 1, NULL, filt_sordetach, filt_soread };
   1581 static const struct filterops sowrite_filtops =
   1582 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1583 
   1584 int
   1585 soo_kqfilter(struct file *fp, struct knote *kn)
   1586 {
   1587 	struct socket	*so;
   1588 	struct sockbuf	*sb;
   1589 
   1590 	so = (struct socket *)kn->kn_fp->f_data;
   1591 	switch (kn->kn_filter) {
   1592 	case EVFILT_READ:
   1593 		if (so->so_options & SO_ACCEPTCONN)
   1594 			kn->kn_fop = &solisten_filtops;
   1595 		else
   1596 			kn->kn_fop = &soread_filtops;
   1597 		sb = &so->so_rcv;
   1598 		break;
   1599 	case EVFILT_WRITE:
   1600 		kn->kn_fop = &sowrite_filtops;
   1601 		sb = &so->so_snd;
   1602 		break;
   1603 	default:
   1604 		return (1);
   1605 	}
   1606 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1607 	sb->sb_flags |= SB_KNOTE;
   1608 	return (0);
   1609 }
   1610 
   1611