Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.93
      1 /*	$NetBSD: uipc_socket.c,v 1.93 2004/03/17 10:03:26 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.93 2004/03/17 10:03:26 yamt Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/malloc.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/domain.h>
     85 #include <sys/kernel.h>
     86 #include <sys/protosw.h>
     87 #include <sys/socket.h>
     88 #include <sys/socketvar.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/pool.h>
     92 #include <sys/event.h>
     93 #include <sys/poll.h>
     94 
     95 #include <uvm/uvm.h>
     96 
     97 struct pool	socket_pool;
     98 
     99 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    100 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    101 
    102 extern int	somaxconn;			/* patchable (XXX sysctl) */
    103 int		somaxconn = SOMAXCONN;
    104 
    105 #ifdef SOSEND_COUNTERS
    106 #include <sys/device.h>
    107 
    108 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    109     NULL, "sosend", "loan big");
    110 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    111     NULL, "sosend", "copy big");
    112 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    113     NULL, "sosend", "copy small");
    114 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    115     NULL, "sosend", "kva limit");
    116 
    117 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    118 
    119 #else
    120 
    121 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    122 
    123 #endif /* SOSEND_COUNTERS */
    124 
    125 void
    126 soinit(void)
    127 {
    128 
    129 	/* Set the initial adjusted socket buffer size. */
    130 	if (sb_max_set(sb_max))
    131 		panic("bad initial sb_max value: %lu\n", sb_max);
    132 
    133 	pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
    134 	    "sockpl", NULL);
    135 
    136 #ifdef SOSEND_COUNTERS
    137 	evcnt_attach_static(&sosend_loan_big);
    138 	evcnt_attach_static(&sosend_copy_big);
    139 	evcnt_attach_static(&sosend_copy_small);
    140 	evcnt_attach_static(&sosend_kvalimit);
    141 #endif /* SOSEND_COUNTERS */
    142 }
    143 
    144 #ifdef SOSEND_NO_LOAN
    145 int use_sosend_loan = 0;
    146 #else
    147 int use_sosend_loan = 1;
    148 #endif
    149 
    150 struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
    151 struct mbuf *so_pendfree;
    152 
    153 #ifndef SOMAXKVA
    154 #define	SOMAXKVA (16 * 1024 * 1024)
    155 #endif
    156 int somaxkva = SOMAXKVA;
    157 int socurkva;
    158 int sokvawaiters;
    159 
    160 #define	SOCK_LOAN_THRESH	4096
    161 #define	SOCK_LOAN_CHUNK		65536
    162 
    163 static size_t sodopendfree(struct socket *);
    164 static size_t sodopendfreel(struct socket *);
    165 
    166 /*
    167  * sokvaalloc: allocate kva for loan.
    168  */
    169 
    170 vaddr_t
    171 sokvaalloc(vsize_t len, struct socket *so)
    172 {
    173 	vaddr_t lva;
    174 	int s;
    175 
    176 	/*
    177 	 * reserve kva.
    178 	 */
    179 
    180 	s = splvm();
    181 	simple_lock(&so_pendfree_slock);
    182 	while (socurkva + len > somaxkva) {
    183 		size_t freed;
    184 
    185 		/*
    186 		 * try to do pendfree.
    187 		 */
    188 
    189 		freed = sodopendfreel(so);
    190 
    191 		/*
    192 		 * if some kva was freed, try again.
    193 		 */
    194 
    195 		if (freed)
    196 			continue;
    197 
    198 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    199 		sokvawaiters++;
    200 		(void) ltsleep(&socurkva, PVM, "sokva", 0, &so_pendfree_slock);
    201 		sokvawaiters--;
    202 	}
    203 	socurkva += len;
    204 	simple_unlock(&so_pendfree_slock);
    205 	splx(s);
    206 
    207 	/*
    208 	 * allocate kva.
    209 	 */
    210 
    211 	lva = uvm_km_valloc_wait(kernel_map, len);
    212 	if (lva == 0)
    213 		return (0);
    214 
    215 	return lva;
    216 }
    217 
    218 /*
    219  * sokvafree: free kva for loan.
    220  */
    221 
    222 void
    223 sokvafree(vaddr_t sva, vsize_t len)
    224 {
    225 	int s;
    226 
    227 	/*
    228 	 * free kva.
    229 	 */
    230 
    231 	uvm_km_free(kernel_map, sva, len);
    232 
    233 	/*
    234 	 * unreserve kva.
    235 	 */
    236 
    237 	s = splvm();
    238 	simple_lock(&so_pendfree_slock);
    239 	socurkva -= len;
    240 	if (sokvawaiters)
    241 		wakeup(&socurkva);
    242 	simple_unlock(&so_pendfree_slock);
    243 	splx(s);
    244 }
    245 
    246 static void
    247 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
    248 {
    249 	vaddr_t va, sva, eva;
    250 	vsize_t len;
    251 	paddr_t pa;
    252 	int i, npgs;
    253 
    254 	eva = round_page((vaddr_t) buf + size);
    255 	sva = trunc_page((vaddr_t) buf);
    256 	len = eva - sva;
    257 	npgs = len >> PAGE_SHIFT;
    258 
    259 	if (__predict_false(pgs == NULL)) {
    260 		pgs = alloca(npgs * sizeof(*pgs));
    261 
    262 		for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
    263 			if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
    264 				panic("sodoloanfree: va 0x%lx not mapped", va);
    265 			pgs[i] = PHYS_TO_VM_PAGE(pa);
    266 		}
    267 	}
    268 
    269 	pmap_kremove(sva, len);
    270 	pmap_update(pmap_kernel());
    271 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    272 	sokvafree(sva, len);
    273 }
    274 
    275 static size_t
    276 sodopendfree(struct socket *so)
    277 {
    278 	int s;
    279 	size_t rv;
    280 
    281 	s = splvm();
    282 	simple_lock(&so_pendfree_slock);
    283 	rv = sodopendfreel(so);
    284 	simple_unlock(&so_pendfree_slock);
    285 	splx(s);
    286 
    287 	return rv;
    288 }
    289 
    290 /*
    291  * sodopendfreel: free mbufs on "pendfree" list.
    292  * unlock and relock so_pendfree_slock when freeing mbufs.
    293  *
    294  * => called with so_pendfree_slock held.
    295  * => called at splvm.
    296  */
    297 
    298 static size_t
    299 sodopendfreel(struct socket *so)
    300 {
    301 	size_t rv = 0;
    302 
    303 	LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
    304 
    305 	for (;;) {
    306 		struct mbuf *m;
    307 		struct mbuf *next;
    308 
    309 		m = so_pendfree;
    310 		if (m == NULL)
    311 			break;
    312 		so_pendfree = NULL;
    313 		simple_unlock(&so_pendfree_slock);
    314 		/* XXX splx */
    315 
    316 		for (; m != NULL; m = next) {
    317 			next = m->m_next;
    318 
    319 			rv += m->m_ext.ext_size;
    320 			sodoloanfree((m->m_flags & M_EXT_PAGES) ?
    321 			    m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
    322 			    m->m_ext.ext_size);
    323 			pool_cache_put(&mbpool_cache, m);
    324 		}
    325 
    326 		/* XXX splvm */
    327 		simple_lock(&so_pendfree_slock);
    328 	}
    329 
    330 	return (rv);
    331 }
    332 
    333 void
    334 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
    335 {
    336 	int s;
    337 
    338 	if (m == NULL) {
    339 
    340 		/*
    341 		 * called from MEXTREMOVE.
    342 		 */
    343 
    344 		sodoloanfree(NULL, buf, size);
    345 		return;
    346 	}
    347 
    348 	/*
    349 	 * postpone freeing mbuf.
    350 	 *
    351 	 * we can't do it in interrupt context
    352 	 * because we need to put kva back to kernel_map.
    353 	 */
    354 
    355 	s = splvm();
    356 	simple_lock(&so_pendfree_slock);
    357 	m->m_next = so_pendfree;
    358 	so_pendfree = m;
    359 	if (sokvawaiters)
    360 		wakeup(&socurkva);
    361 	simple_unlock(&so_pendfree_slock);
    362 	splx(s);
    363 }
    364 
    365 static long
    366 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    367 {
    368 	struct iovec *iov = uio->uio_iov;
    369 	vaddr_t sva, eva;
    370 	vsize_t len;
    371 	vaddr_t lva, va;
    372 	int npgs, i, error;
    373 
    374 	if (uio->uio_segflg != UIO_USERSPACE)
    375 		return (0);
    376 
    377 	if (iov->iov_len < (size_t) space)
    378 		space = iov->iov_len;
    379 	if (space > SOCK_LOAN_CHUNK)
    380 		space = SOCK_LOAN_CHUNK;
    381 
    382 	eva = round_page((vaddr_t) iov->iov_base + space);
    383 	sva = trunc_page((vaddr_t) iov->iov_base);
    384 	len = eva - sva;
    385 	npgs = len >> PAGE_SHIFT;
    386 
    387 	/* XXX KDASSERT */
    388 	KASSERT(npgs <= M_EXT_MAXPAGES);
    389 
    390 	lva = sokvaalloc(len, so);
    391 	if (lva == 0)
    392 		return 0;
    393 
    394 	error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
    395 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    396 	if (error) {
    397 		sokvafree(lva, len);
    398 		return (0);
    399 	}
    400 
    401 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    402 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    403 		    VM_PROT_READ);
    404 	pmap_update(pmap_kernel());
    405 
    406 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    407 
    408 	MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
    409 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    410 
    411 	uio->uio_resid -= space;
    412 	/* uio_offset not updated, not set/used for write(2) */
    413 	uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
    414 	uio->uio_iov->iov_len -= space;
    415 	if (uio->uio_iov->iov_len == 0) {
    416 		uio->uio_iov++;
    417 		uio->uio_iovcnt--;
    418 	}
    419 
    420 	return (space);
    421 }
    422 
    423 /*
    424  * Socket operation routines.
    425  * These routines are called by the routines in
    426  * sys_socket.c or from a system process, and
    427  * implement the semantics of socket operations by
    428  * switching out to the protocol specific routines.
    429  */
    430 /*ARGSUSED*/
    431 int
    432 socreate(int dom, struct socket **aso, int type, int proto)
    433 {
    434 	struct proc	*p;
    435 	struct protosw	*prp;
    436 	struct socket	*so;
    437 	int		error, s;
    438 
    439 	p = curproc;		/* XXX */
    440 	if (proto)
    441 		prp = pffindproto(dom, proto, type);
    442 	else
    443 		prp = pffindtype(dom, type);
    444 	if (prp == 0 || prp->pr_usrreq == 0)
    445 		return (EPROTONOSUPPORT);
    446 	if (prp->pr_type != type)
    447 		return (EPROTOTYPE);
    448 	s = splsoftnet();
    449 	so = pool_get(&socket_pool, PR_WAITOK);
    450 	memset((caddr_t)so, 0, sizeof(*so));
    451 	TAILQ_INIT(&so->so_q0);
    452 	TAILQ_INIT(&so->so_q);
    453 	so->so_type = type;
    454 	so->so_proto = prp;
    455 	so->so_send = sosend;
    456 	so->so_receive = soreceive;
    457 #ifdef MBUFTRACE
    458 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    459 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    460 	so->so_mowner = &prp->pr_domain->dom_mowner;
    461 #endif
    462 	if (p != 0)
    463 		so->so_uid = p->p_ucred->cr_uid;
    464 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
    465 	    (struct mbuf *)(long)proto, (struct mbuf *)0, p);
    466 	if (error) {
    467 		so->so_state |= SS_NOFDREF;
    468 		sofree(so);
    469 		splx(s);
    470 		return (error);
    471 	}
    472 	splx(s);
    473 	*aso = so;
    474 	return (0);
    475 }
    476 
    477 int
    478 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
    479 {
    480 	int	s, error;
    481 
    482 	s = splsoftnet();
    483 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
    484 	    nam, (struct mbuf *)0, p);
    485 	splx(s);
    486 	return (error);
    487 }
    488 
    489 int
    490 solisten(struct socket *so, int backlog)
    491 {
    492 	int	s, error;
    493 
    494 	s = splsoftnet();
    495 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
    496 	    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    497 	if (error) {
    498 		splx(s);
    499 		return (error);
    500 	}
    501 	if (TAILQ_EMPTY(&so->so_q))
    502 		so->so_options |= SO_ACCEPTCONN;
    503 	if (backlog < 0)
    504 		backlog = 0;
    505 	so->so_qlimit = min(backlog, somaxconn);
    506 	splx(s);
    507 	return (0);
    508 }
    509 
    510 void
    511 sofree(struct socket *so)
    512 {
    513 
    514 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    515 		return;
    516 	if (so->so_head) {
    517 		/*
    518 		 * We must not decommission a socket that's on the accept(2)
    519 		 * queue.  If we do, then accept(2) may hang after select(2)
    520 		 * indicated that the listening socket was ready.
    521 		 */
    522 		if (!soqremque(so, 0))
    523 			return;
    524 	}
    525 	sbrelease(&so->so_snd);
    526 	sorflush(so);
    527 	pool_put(&socket_pool, so);
    528 }
    529 
    530 /*
    531  * Close a socket on last file table reference removal.
    532  * Initiate disconnect if connected.
    533  * Free socket when disconnect complete.
    534  */
    535 int
    536 soclose(struct socket *so)
    537 {
    538 	struct socket	*so2;
    539 	int		s, error;
    540 
    541 	error = 0;
    542 	s = splsoftnet();		/* conservative */
    543 	if (so->so_options & SO_ACCEPTCONN) {
    544 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    545 			(void) soqremque(so2, 0);
    546 			(void) soabort(so2);
    547 		}
    548 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    549 			(void) soqremque(so2, 1);
    550 			(void) soabort(so2);
    551 		}
    552 	}
    553 	if (so->so_pcb == 0)
    554 		goto discard;
    555 	if (so->so_state & SS_ISCONNECTED) {
    556 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    557 			error = sodisconnect(so);
    558 			if (error)
    559 				goto drop;
    560 		}
    561 		if (so->so_options & SO_LINGER) {
    562 			if ((so->so_state & SS_ISDISCONNECTING) &&
    563 			    (so->so_state & SS_NBIO))
    564 				goto drop;
    565 			while (so->so_state & SS_ISCONNECTED) {
    566 				error = tsleep((caddr_t)&so->so_timeo,
    567 					       PSOCK | PCATCH, netcls,
    568 					       so->so_linger * hz);
    569 				if (error)
    570 					break;
    571 			}
    572 		}
    573 	}
    574  drop:
    575 	if (so->so_pcb) {
    576 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    577 		    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    578 		    (struct proc *)0);
    579 		if (error == 0)
    580 			error = error2;
    581 	}
    582  discard:
    583 	if (so->so_state & SS_NOFDREF)
    584 		panic("soclose: NOFDREF");
    585 	so->so_state |= SS_NOFDREF;
    586 	sofree(so);
    587 	splx(s);
    588 	return (error);
    589 }
    590 
    591 /*
    592  * Must be called at splsoftnet...
    593  */
    594 int
    595 soabort(struct socket *so)
    596 {
    597 
    598 	return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
    599 	    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    600 }
    601 
    602 int
    603 soaccept(struct socket *so, struct mbuf *nam)
    604 {
    605 	int	s, error;
    606 
    607 	error = 0;
    608 	s = splsoftnet();
    609 	if ((so->so_state & SS_NOFDREF) == 0)
    610 		panic("soaccept: !NOFDREF");
    611 	so->so_state &= ~SS_NOFDREF;
    612 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    613 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    614 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    615 		    (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
    616 	else
    617 		error = ECONNABORTED;
    618 
    619 	splx(s);
    620 	return (error);
    621 }
    622 
    623 int
    624 soconnect(struct socket *so, struct mbuf *nam)
    625 {
    626 	struct proc	*p;
    627 	int		s, error;
    628 
    629 	p = curproc;		/* XXX */
    630 	if (so->so_options & SO_ACCEPTCONN)
    631 		return (EOPNOTSUPP);
    632 	s = splsoftnet();
    633 	/*
    634 	 * If protocol is connection-based, can only connect once.
    635 	 * Otherwise, if connected, try to disconnect first.
    636 	 * This allows user to disconnect by connecting to, e.g.,
    637 	 * a null address.
    638 	 */
    639 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    640 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    641 	    (error = sodisconnect(so))))
    642 		error = EISCONN;
    643 	else
    644 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    645 		    (struct mbuf *)0, nam, (struct mbuf *)0, p);
    646 	splx(s);
    647 	return (error);
    648 }
    649 
    650 int
    651 soconnect2(struct socket *so1, struct socket *so2)
    652 {
    653 	int	s, error;
    654 
    655 	s = splsoftnet();
    656 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    657 	    (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
    658 	    (struct proc *)0);
    659 	splx(s);
    660 	return (error);
    661 }
    662 
    663 int
    664 sodisconnect(struct socket *so)
    665 {
    666 	int	s, error;
    667 
    668 	s = splsoftnet();
    669 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    670 		error = ENOTCONN;
    671 		goto bad;
    672 	}
    673 	if (so->so_state & SS_ISDISCONNECTING) {
    674 		error = EALREADY;
    675 		goto bad;
    676 	}
    677 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    678 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    679 	    (struct proc *)0);
    680  bad:
    681 	splx(s);
    682 	sodopendfree(so);
    683 	return (error);
    684 }
    685 
    686 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    687 /*
    688  * Send on a socket.
    689  * If send must go all at once and message is larger than
    690  * send buffering, then hard error.
    691  * Lock against other senders.
    692  * If must go all at once and not enough room now, then
    693  * inform user that this would block and do nothing.
    694  * Otherwise, if nonblocking, send as much as possible.
    695  * The data to be sent is described by "uio" if nonzero,
    696  * otherwise by the mbuf chain "top" (which must be null
    697  * if uio is not).  Data provided in mbuf chain must be small
    698  * enough to send all at once.
    699  *
    700  * Returns nonzero on error, timeout or signal; callers
    701  * must check for short counts if EINTR/ERESTART are returned.
    702  * Data and control buffers are freed on return.
    703  */
    704 int
    705 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    706 	struct mbuf *control, int flags)
    707 {
    708 	struct proc	*p;
    709 	struct mbuf	**mp, *m;
    710 	long		space, len, resid, clen, mlen;
    711 	int		error, s, dontroute, atomic;
    712 
    713 	sodopendfree(so);
    714 
    715 	p = curproc;		/* XXX */
    716 	clen = 0;
    717 	atomic = sosendallatonce(so) || top;
    718 	if (uio)
    719 		resid = uio->uio_resid;
    720 	else
    721 		resid = top->m_pkthdr.len;
    722 	/*
    723 	 * In theory resid should be unsigned.
    724 	 * However, space must be signed, as it might be less than 0
    725 	 * if we over-committed, and we must use a signed comparison
    726 	 * of space and resid.  On the other hand, a negative resid
    727 	 * causes us to loop sending 0-length segments to the protocol.
    728 	 */
    729 	if (resid < 0) {
    730 		error = EINVAL;
    731 		goto out;
    732 	}
    733 	dontroute =
    734 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    735 	    (so->so_proto->pr_flags & PR_ATOMIC);
    736 	p->p_stats->p_ru.ru_msgsnd++;
    737 	if (control)
    738 		clen = control->m_len;
    739 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    740 
    741  restart:
    742 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    743 		goto out;
    744 	do {
    745 		s = splsoftnet();
    746 		if (so->so_state & SS_CANTSENDMORE)
    747 			snderr(EPIPE);
    748 		if (so->so_error) {
    749 			error = so->so_error;
    750 			so->so_error = 0;
    751 			splx(s);
    752 			goto release;
    753 		}
    754 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    755 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    756 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    757 				    !(resid == 0 && clen != 0))
    758 					snderr(ENOTCONN);
    759 			} else if (addr == 0)
    760 				snderr(EDESTADDRREQ);
    761 		}
    762 		space = sbspace(&so->so_snd);
    763 		if (flags & MSG_OOB)
    764 			space += 1024;
    765 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    766 		    clen > so->so_snd.sb_hiwat)
    767 			snderr(EMSGSIZE);
    768 		if (space < resid + clen && uio &&
    769 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    770 			if (so->so_state & SS_NBIO)
    771 				snderr(EWOULDBLOCK);
    772 			sbunlock(&so->so_snd);
    773 			error = sbwait(&so->so_snd);
    774 			splx(s);
    775 			if (error)
    776 				goto out;
    777 			goto restart;
    778 		}
    779 		splx(s);
    780 		mp = &top;
    781 		space -= clen;
    782 		do {
    783 			if (uio == NULL) {
    784 				/*
    785 				 * Data is prepackaged in "top".
    786 				 */
    787 				resid = 0;
    788 				if (flags & MSG_EOR)
    789 					top->m_flags |= M_EOR;
    790 			} else do {
    791 				if (top == 0) {
    792 					m = m_gethdr(M_WAIT, MT_DATA);
    793 					mlen = MHLEN;
    794 					m->m_pkthdr.len = 0;
    795 					m->m_pkthdr.rcvif = (struct ifnet *)0;
    796 				} else {
    797 					m = m_get(M_WAIT, MT_DATA);
    798 					mlen = MLEN;
    799 				}
    800 				MCLAIM(m, so->so_snd.sb_mowner);
    801 				if (use_sosend_loan &&
    802 				    uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
    803 				    space >= SOCK_LOAN_THRESH &&
    804 				    (len = sosend_loan(so, uio, m,
    805 						       space)) != 0) {
    806 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    807 					space -= len;
    808 					goto have_data;
    809 				}
    810 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    811 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    812 					m_clget(m, M_WAIT);
    813 					if ((m->m_flags & M_EXT) == 0)
    814 						goto nopages;
    815 					mlen = MCLBYTES;
    816 					if (atomic && top == 0) {
    817 						len = lmin(MCLBYTES - max_hdr,
    818 						    resid);
    819 						m->m_data += max_hdr;
    820 					} else
    821 						len = lmin(MCLBYTES, resid);
    822 					space -= len;
    823 				} else {
    824  nopages:
    825 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    826 					len = lmin(lmin(mlen, resid), space);
    827 					space -= len;
    828 					/*
    829 					 * For datagram protocols, leave room
    830 					 * for protocol headers in first mbuf.
    831 					 */
    832 					if (atomic && top == 0 && len < mlen)
    833 						MH_ALIGN(m, len);
    834 				}
    835 				error = uiomove(mtod(m, caddr_t), (int)len,
    836 				    uio);
    837  have_data:
    838 				resid = uio->uio_resid;
    839 				m->m_len = len;
    840 				*mp = m;
    841 				top->m_pkthdr.len += len;
    842 				if (error)
    843 					goto release;
    844 				mp = &m->m_next;
    845 				if (resid <= 0) {
    846 					if (flags & MSG_EOR)
    847 						top->m_flags |= M_EOR;
    848 					break;
    849 				}
    850 			} while (space > 0 && atomic);
    851 
    852 			s = splsoftnet();
    853 
    854 			if (so->so_state & SS_CANTSENDMORE)
    855 				snderr(EPIPE);
    856 
    857 			if (dontroute)
    858 				so->so_options |= SO_DONTROUTE;
    859 			if (resid > 0)
    860 				so->so_state |= SS_MORETOCOME;
    861 			error = (*so->so_proto->pr_usrreq)(so,
    862 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    863 			    top, addr, control, p);
    864 			if (dontroute)
    865 				so->so_options &= ~SO_DONTROUTE;
    866 			if (resid > 0)
    867 				so->so_state &= ~SS_MORETOCOME;
    868 			splx(s);
    869 
    870 			clen = 0;
    871 			control = 0;
    872 			top = 0;
    873 			mp = &top;
    874 			if (error)
    875 				goto release;
    876 		} while (resid && space > 0);
    877 	} while (resid);
    878 
    879  release:
    880 	sbunlock(&so->so_snd);
    881  out:
    882 	if (top)
    883 		m_freem(top);
    884 	if (control)
    885 		m_freem(control);
    886 	return (error);
    887 }
    888 
    889 /*
    890  * Implement receive operations on a socket.
    891  * We depend on the way that records are added to the sockbuf
    892  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    893  * must begin with an address if the protocol so specifies,
    894  * followed by an optional mbuf or mbufs containing ancillary data,
    895  * and then zero or more mbufs of data.
    896  * In order to avoid blocking network interrupts for the entire time here,
    897  * we splx() while doing the actual copy to user space.
    898  * Although the sockbuf is locked, new data may still be appended,
    899  * and thus we must maintain consistency of the sockbuf during that time.
    900  *
    901  * The caller may receive the data as a single mbuf chain by supplying
    902  * an mbuf **mp0 for use in returning the chain.  The uio is then used
    903  * only for the count in uio_resid.
    904  */
    905 int
    906 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
    907 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
    908 {
    909 	struct mbuf	*m, **mp;
    910 	int		flags, len, error, s, offset, moff, type, orig_resid;
    911 	struct protosw	*pr;
    912 	struct mbuf	*nextrecord;
    913 	int		mbuf_removed = 0;
    914 
    915 	pr = so->so_proto;
    916 	mp = mp0;
    917 	type = 0;
    918 	orig_resid = uio->uio_resid;
    919 	if (paddr)
    920 		*paddr = 0;
    921 	if (controlp)
    922 		*controlp = 0;
    923 	if (flagsp)
    924 		flags = *flagsp &~ MSG_EOR;
    925 	else
    926 		flags = 0;
    927 
    928 	if ((flags & MSG_DONTWAIT) == 0)
    929 		sodopendfree(so);
    930 
    931 	if (flags & MSG_OOB) {
    932 		m = m_get(M_WAIT, MT_DATA);
    933 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
    934 		    (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
    935 		    (struct proc *)0);
    936 		if (error)
    937 			goto bad;
    938 		do {
    939 			error = uiomove(mtod(m, caddr_t),
    940 			    (int) min(uio->uio_resid, m->m_len), uio);
    941 			m = m_free(m);
    942 		} while (uio->uio_resid && error == 0 && m);
    943  bad:
    944 		if (m)
    945 			m_freem(m);
    946 		return (error);
    947 	}
    948 	if (mp)
    949 		*mp = (struct mbuf *)0;
    950 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
    951 		(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
    952 		    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    953 
    954  restart:
    955 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
    956 		return (error);
    957 	s = splsoftnet();
    958 
    959 	m = so->so_rcv.sb_mb;
    960 	/*
    961 	 * If we have less data than requested, block awaiting more
    962 	 * (subject to any timeout) if:
    963 	 *   1. the current count is less than the low water mark,
    964 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
    965 	 *	receive operation at once if we block (resid <= hiwat), or
    966 	 *   3. MSG_DONTWAIT is not set.
    967 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
    968 	 * we have to do the receive in sections, and thus risk returning
    969 	 * a short count if a timeout or signal occurs after we start.
    970 	 */
    971 	if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
    972 	    so->so_rcv.sb_cc < uio->uio_resid) &&
    973 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
    974 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
    975 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
    976 #ifdef DIAGNOSTIC
    977 		if (m == 0 && so->so_rcv.sb_cc)
    978 			panic("receive 1");
    979 #endif
    980 		if (so->so_error) {
    981 			if (m)
    982 				goto dontblock;
    983 			error = so->so_error;
    984 			if ((flags & MSG_PEEK) == 0)
    985 				so->so_error = 0;
    986 			goto release;
    987 		}
    988 		if (so->so_state & SS_CANTRCVMORE) {
    989 			if (m)
    990 				goto dontblock;
    991 			else
    992 				goto release;
    993 		}
    994 		for (; m; m = m->m_next)
    995 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
    996 				m = so->so_rcv.sb_mb;
    997 				goto dontblock;
    998 			}
    999 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1000 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1001 			error = ENOTCONN;
   1002 			goto release;
   1003 		}
   1004 		if (uio->uio_resid == 0)
   1005 			goto release;
   1006 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
   1007 			error = EWOULDBLOCK;
   1008 			goto release;
   1009 		}
   1010 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1011 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1012 		sbunlock(&so->so_rcv);
   1013 		error = sbwait(&so->so_rcv);
   1014 		splx(s);
   1015 		if (error)
   1016 			return (error);
   1017 		goto restart;
   1018 	}
   1019  dontblock:
   1020 	/*
   1021 	 * On entry here, m points to the first record of the socket buffer.
   1022 	 * While we process the initial mbufs containing address and control
   1023 	 * info, we save a copy of m->m_nextpkt into nextrecord.
   1024 	 */
   1025 #ifdef notyet /* XXXX */
   1026 	if (uio->uio_procp)
   1027 		uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
   1028 #endif
   1029 	KASSERT(m == so->so_rcv.sb_mb);
   1030 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1031 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1032 	nextrecord = m->m_nextpkt;
   1033 	if (pr->pr_flags & PR_ADDR) {
   1034 #ifdef DIAGNOSTIC
   1035 		if (m->m_type != MT_SONAME)
   1036 			panic("receive 1a");
   1037 #endif
   1038 		orig_resid = 0;
   1039 		if (flags & MSG_PEEK) {
   1040 			if (paddr)
   1041 				*paddr = m_copy(m, 0, m->m_len);
   1042 			m = m->m_next;
   1043 		} else {
   1044 			sbfree(&so->so_rcv, m);
   1045 			mbuf_removed = 1;
   1046 			if (paddr) {
   1047 				*paddr = m;
   1048 				so->so_rcv.sb_mb = m->m_next;
   1049 				m->m_next = 0;
   1050 				m = so->so_rcv.sb_mb;
   1051 			} else {
   1052 				MFREE(m, so->so_rcv.sb_mb);
   1053 				m = so->so_rcv.sb_mb;
   1054 			}
   1055 		}
   1056 	}
   1057 	while (m && m->m_type == MT_CONTROL && error == 0) {
   1058 		if (flags & MSG_PEEK) {
   1059 			if (controlp)
   1060 				*controlp = m_copy(m, 0, m->m_len);
   1061 			m = m->m_next;
   1062 		} else {
   1063 			sbfree(&so->so_rcv, m);
   1064 			mbuf_removed = 1;
   1065 			if (controlp) {
   1066 				if (pr->pr_domain->dom_externalize &&
   1067 				    mtod(m, struct cmsghdr *)->cmsg_type ==
   1068 				    SCM_RIGHTS)
   1069 					error = (*pr->pr_domain->dom_externalize)(m);
   1070 				*controlp = m;
   1071 				so->so_rcv.sb_mb = m->m_next;
   1072 				m->m_next = 0;
   1073 				m = so->so_rcv.sb_mb;
   1074 			} else {
   1075 				MFREE(m, so->so_rcv.sb_mb);
   1076 				m = so->so_rcv.sb_mb;
   1077 			}
   1078 		}
   1079 		if (controlp) {
   1080 			orig_resid = 0;
   1081 			controlp = &(*controlp)->m_next;
   1082 		}
   1083 	}
   1084 
   1085 	/*
   1086 	 * If m is non-NULL, we have some data to read.  From now on,
   1087 	 * make sure to keep sb_lastrecord consistent when working on
   1088 	 * the last packet on the chain (nextrecord == NULL) and we
   1089 	 * change m->m_nextpkt.
   1090 	 */
   1091 	if (m) {
   1092 		if ((flags & MSG_PEEK) == 0) {
   1093 			m->m_nextpkt = nextrecord;
   1094 			/*
   1095 			 * If nextrecord == NULL (this is a single chain),
   1096 			 * then sb_lastrecord may not be valid here if m
   1097 			 * was changed earlier.
   1098 			 */
   1099 			if (nextrecord == NULL) {
   1100 				KASSERT(so->so_rcv.sb_mb == m);
   1101 				so->so_rcv.sb_lastrecord = m;
   1102 			}
   1103 		}
   1104 		type = m->m_type;
   1105 		if (type == MT_OOBDATA)
   1106 			flags |= MSG_OOB;
   1107 	} else {
   1108 		if ((flags & MSG_PEEK) == 0) {
   1109 			KASSERT(so->so_rcv.sb_mb == m);
   1110 			so->so_rcv.sb_mb = nextrecord;
   1111 			SB_EMPTY_FIXUP(&so->so_rcv);
   1112 		}
   1113 	}
   1114 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1115 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1116 
   1117 	moff = 0;
   1118 	offset = 0;
   1119 	while (m && uio->uio_resid > 0 && error == 0) {
   1120 		if (m->m_type == MT_OOBDATA) {
   1121 			if (type != MT_OOBDATA)
   1122 				break;
   1123 		} else if (type == MT_OOBDATA)
   1124 			break;
   1125 #ifdef DIAGNOSTIC
   1126 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1127 			panic("receive 3");
   1128 #endif
   1129 		so->so_state &= ~SS_RCVATMARK;
   1130 		len = uio->uio_resid;
   1131 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1132 			len = so->so_oobmark - offset;
   1133 		if (len > m->m_len - moff)
   1134 			len = m->m_len - moff;
   1135 		/*
   1136 		 * If mp is set, just pass back the mbufs.
   1137 		 * Otherwise copy them out via the uio, then free.
   1138 		 * Sockbuf must be consistent here (points to current mbuf,
   1139 		 * it points to next record) when we drop priority;
   1140 		 * we must note any additions to the sockbuf when we
   1141 		 * block interrupts again.
   1142 		 */
   1143 		if (mp == 0) {
   1144 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1145 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1146 			splx(s);
   1147 			error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
   1148 			s = splsoftnet();
   1149 			if (error) {
   1150 				/*
   1151 				 * If any part of the record has been removed
   1152 				 * (such as the MT_SONAME mbuf, which will
   1153 				 * happen when PR_ADDR, and thus also
   1154 				 * PR_ATOMIC, is set), then drop the entire
   1155 				 * record to maintain the atomicity of the
   1156 				 * receive operation.
   1157 				 *
   1158 				 * This avoids a later panic("receive 1a")
   1159 				 * when compiled with DIAGNOSTIC.
   1160 				 */
   1161 				if (m && mbuf_removed
   1162 				    && (pr->pr_flags & PR_ATOMIC))
   1163 					(void) sbdroprecord(&so->so_rcv);
   1164 
   1165 				goto release;
   1166 			}
   1167 		} else
   1168 			uio->uio_resid -= len;
   1169 		if (len == m->m_len - moff) {
   1170 			if (m->m_flags & M_EOR)
   1171 				flags |= MSG_EOR;
   1172 			if (flags & MSG_PEEK) {
   1173 				m = m->m_next;
   1174 				moff = 0;
   1175 			} else {
   1176 				nextrecord = m->m_nextpkt;
   1177 				sbfree(&so->so_rcv, m);
   1178 				if (mp) {
   1179 					*mp = m;
   1180 					mp = &m->m_next;
   1181 					so->so_rcv.sb_mb = m = m->m_next;
   1182 					*mp = (struct mbuf *)0;
   1183 				} else {
   1184 					MFREE(m, so->so_rcv.sb_mb);
   1185 					m = so->so_rcv.sb_mb;
   1186 				}
   1187 				/*
   1188 				 * If m != NULL, we also know that
   1189 				 * so->so_rcv.sb_mb != NULL.
   1190 				 */
   1191 				KASSERT(so->so_rcv.sb_mb == m);
   1192 				if (m) {
   1193 					m->m_nextpkt = nextrecord;
   1194 					if (nextrecord == NULL)
   1195 						so->so_rcv.sb_lastrecord = m;
   1196 				} else {
   1197 					so->so_rcv.sb_mb = nextrecord;
   1198 					SB_EMPTY_FIXUP(&so->so_rcv);
   1199 				}
   1200 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1201 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1202 			}
   1203 		} else {
   1204 			if (flags & MSG_PEEK)
   1205 				moff += len;
   1206 			else {
   1207 				if (mp)
   1208 					*mp = m_copym(m, 0, len, M_WAIT);
   1209 				m->m_data += len;
   1210 				m->m_len -= len;
   1211 				so->so_rcv.sb_cc -= len;
   1212 			}
   1213 		}
   1214 		if (so->so_oobmark) {
   1215 			if ((flags & MSG_PEEK) == 0) {
   1216 				so->so_oobmark -= len;
   1217 				if (so->so_oobmark == 0) {
   1218 					so->so_state |= SS_RCVATMARK;
   1219 					break;
   1220 				}
   1221 			} else {
   1222 				offset += len;
   1223 				if (offset == so->so_oobmark)
   1224 					break;
   1225 			}
   1226 		}
   1227 		if (flags & MSG_EOR)
   1228 			break;
   1229 		/*
   1230 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1231 		 * we must not quit until "uio->uio_resid == 0" or an error
   1232 		 * termination.  If a signal/timeout occurs, return
   1233 		 * with a short count but without error.
   1234 		 * Keep sockbuf locked against other readers.
   1235 		 */
   1236 		while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
   1237 		    !sosendallatonce(so) && !nextrecord) {
   1238 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1239 				break;
   1240 			/*
   1241 			 * If we are peeking and the socket receive buffer is
   1242 			 * full, stop since we can't get more data to peek at.
   1243 			 */
   1244 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1245 				break;
   1246 			/*
   1247 			 * If we've drained the socket buffer, tell the
   1248 			 * protocol in case it needs to do something to
   1249 			 * get it filled again.
   1250 			 */
   1251 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1252 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1253 				    (struct mbuf *)0,
   1254 				    (struct mbuf *)(long)flags,
   1255 				    (struct mbuf *)0,
   1256 				    (struct proc *)0);
   1257 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1258 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1259 			error = sbwait(&so->so_rcv);
   1260 			if (error) {
   1261 				sbunlock(&so->so_rcv);
   1262 				splx(s);
   1263 				return (0);
   1264 			}
   1265 			if ((m = so->so_rcv.sb_mb) != NULL)
   1266 				nextrecord = m->m_nextpkt;
   1267 		}
   1268 	}
   1269 
   1270 	if (m && pr->pr_flags & PR_ATOMIC) {
   1271 		flags |= MSG_TRUNC;
   1272 		if ((flags & MSG_PEEK) == 0)
   1273 			(void) sbdroprecord(&so->so_rcv);
   1274 	}
   1275 	if ((flags & MSG_PEEK) == 0) {
   1276 		if (m == 0) {
   1277 			/*
   1278 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1279 			 * part makes sure sb_lastrecord is up-to-date if
   1280 			 * there is still data in the socket buffer.
   1281 			 */
   1282 			so->so_rcv.sb_mb = nextrecord;
   1283 			if (so->so_rcv.sb_mb == NULL) {
   1284 				so->so_rcv.sb_mbtail = NULL;
   1285 				so->so_rcv.sb_lastrecord = NULL;
   1286 			} else if (nextrecord->m_nextpkt == NULL)
   1287 				so->so_rcv.sb_lastrecord = nextrecord;
   1288 		}
   1289 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1290 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1291 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1292 			(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1293 			    (struct mbuf *)(long)flags, (struct mbuf *)0,
   1294 			    (struct proc *)0);
   1295 	}
   1296 	if (orig_resid == uio->uio_resid && orig_resid &&
   1297 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1298 		sbunlock(&so->so_rcv);
   1299 		splx(s);
   1300 		goto restart;
   1301 	}
   1302 
   1303 	if (flagsp)
   1304 		*flagsp |= flags;
   1305  release:
   1306 	sbunlock(&so->so_rcv);
   1307 	splx(s);
   1308 	return (error);
   1309 }
   1310 
   1311 int
   1312 soshutdown(struct socket *so, int how)
   1313 {
   1314 	struct protosw	*pr;
   1315 
   1316 	pr = so->so_proto;
   1317 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1318 		return (EINVAL);
   1319 
   1320 	if (how == SHUT_RD || how == SHUT_RDWR)
   1321 		sorflush(so);
   1322 	if (how == SHUT_WR || how == SHUT_RDWR)
   1323 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
   1324 		    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
   1325 	return (0);
   1326 }
   1327 
   1328 void
   1329 sorflush(struct socket *so)
   1330 {
   1331 	struct sockbuf	*sb, asb;
   1332 	struct protosw	*pr;
   1333 	int		s;
   1334 
   1335 	sb = &so->so_rcv;
   1336 	pr = so->so_proto;
   1337 	sb->sb_flags |= SB_NOINTR;
   1338 	(void) sblock(sb, M_WAITOK);
   1339 	s = splnet();
   1340 	socantrcvmore(so);
   1341 	sbunlock(sb);
   1342 	asb = *sb;
   1343 	/*
   1344 	 * Clear most of the sockbuf structure, but leave some of the
   1345 	 * fields valid.
   1346 	 */
   1347 	memset(&sb->sb_startzero, 0,
   1348 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1349 	splx(s);
   1350 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1351 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1352 	sbrelease(&asb);
   1353 }
   1354 
   1355 int
   1356 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
   1357 {
   1358 	int		error;
   1359 	struct mbuf	*m;
   1360 
   1361 	error = 0;
   1362 	m = m0;
   1363 	if (level != SOL_SOCKET) {
   1364 		if (so->so_proto && so->so_proto->pr_ctloutput)
   1365 			return ((*so->so_proto->pr_ctloutput)
   1366 				  (PRCO_SETOPT, so, level, optname, &m0));
   1367 		error = ENOPROTOOPT;
   1368 	} else {
   1369 		switch (optname) {
   1370 
   1371 		case SO_LINGER:
   1372 			if (m == NULL || m->m_len != sizeof(struct linger)) {
   1373 				error = EINVAL;
   1374 				goto bad;
   1375 			}
   1376 			so->so_linger = mtod(m, struct linger *)->l_linger;
   1377 			/* fall thru... */
   1378 
   1379 		case SO_DEBUG:
   1380 		case SO_KEEPALIVE:
   1381 		case SO_DONTROUTE:
   1382 		case SO_USELOOPBACK:
   1383 		case SO_BROADCAST:
   1384 		case SO_REUSEADDR:
   1385 		case SO_REUSEPORT:
   1386 		case SO_OOBINLINE:
   1387 		case SO_TIMESTAMP:
   1388 			if (m == NULL || m->m_len < sizeof(int)) {
   1389 				error = EINVAL;
   1390 				goto bad;
   1391 			}
   1392 			if (*mtod(m, int *))
   1393 				so->so_options |= optname;
   1394 			else
   1395 				so->so_options &= ~optname;
   1396 			break;
   1397 
   1398 		case SO_SNDBUF:
   1399 		case SO_RCVBUF:
   1400 		case SO_SNDLOWAT:
   1401 		case SO_RCVLOWAT:
   1402 		    {
   1403 			int optval;
   1404 
   1405 			if (m == NULL || m->m_len < sizeof(int)) {
   1406 				error = EINVAL;
   1407 				goto bad;
   1408 			}
   1409 
   1410 			/*
   1411 			 * Values < 1 make no sense for any of these
   1412 			 * options, so disallow them.
   1413 			 */
   1414 			optval = *mtod(m, int *);
   1415 			if (optval < 1) {
   1416 				error = EINVAL;
   1417 				goto bad;
   1418 			}
   1419 
   1420 			switch (optname) {
   1421 
   1422 			case SO_SNDBUF:
   1423 			case SO_RCVBUF:
   1424 				if (sbreserve(optname == SO_SNDBUF ?
   1425 				    &so->so_snd : &so->so_rcv,
   1426 				    (u_long) optval) == 0) {
   1427 					error = ENOBUFS;
   1428 					goto bad;
   1429 				}
   1430 				break;
   1431 
   1432 			/*
   1433 			 * Make sure the low-water is never greater than
   1434 			 * the high-water.
   1435 			 */
   1436 			case SO_SNDLOWAT:
   1437 				so->so_snd.sb_lowat =
   1438 				    (optval > so->so_snd.sb_hiwat) ?
   1439 				    so->so_snd.sb_hiwat : optval;
   1440 				break;
   1441 			case SO_RCVLOWAT:
   1442 				so->so_rcv.sb_lowat =
   1443 				    (optval > so->so_rcv.sb_hiwat) ?
   1444 				    so->so_rcv.sb_hiwat : optval;
   1445 				break;
   1446 			}
   1447 			break;
   1448 		    }
   1449 
   1450 		case SO_SNDTIMEO:
   1451 		case SO_RCVTIMEO:
   1452 		    {
   1453 			struct timeval *tv;
   1454 			short val;
   1455 
   1456 			if (m == NULL || m->m_len < sizeof(*tv)) {
   1457 				error = EINVAL;
   1458 				goto bad;
   1459 			}
   1460 			tv = mtod(m, struct timeval *);
   1461 			if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) {
   1462 				error = EDOM;
   1463 				goto bad;
   1464 			}
   1465 			val = tv->tv_sec * hz + tv->tv_usec / tick;
   1466 			if (val == 0 && tv->tv_usec != 0)
   1467 				val = 1;
   1468 
   1469 			switch (optname) {
   1470 
   1471 			case SO_SNDTIMEO:
   1472 				so->so_snd.sb_timeo = val;
   1473 				break;
   1474 			case SO_RCVTIMEO:
   1475 				so->so_rcv.sb_timeo = val;
   1476 				break;
   1477 			}
   1478 			break;
   1479 		    }
   1480 
   1481 		default:
   1482 			error = ENOPROTOOPT;
   1483 			break;
   1484 		}
   1485 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
   1486 			(void) ((*so->so_proto->pr_ctloutput)
   1487 				  (PRCO_SETOPT, so, level, optname, &m0));
   1488 			m = NULL;	/* freed by protocol */
   1489 		}
   1490 	}
   1491  bad:
   1492 	if (m)
   1493 		(void) m_free(m);
   1494 	return (error);
   1495 }
   1496 
   1497 int
   1498 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1499 {
   1500 	struct mbuf	*m;
   1501 
   1502 	if (level != SOL_SOCKET) {
   1503 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1504 			return ((*so->so_proto->pr_ctloutput)
   1505 				  (PRCO_GETOPT, so, level, optname, mp));
   1506 		} else
   1507 			return (ENOPROTOOPT);
   1508 	} else {
   1509 		m = m_get(M_WAIT, MT_SOOPTS);
   1510 		m->m_len = sizeof(int);
   1511 
   1512 		switch (optname) {
   1513 
   1514 		case SO_LINGER:
   1515 			m->m_len = sizeof(struct linger);
   1516 			mtod(m, struct linger *)->l_onoff =
   1517 				so->so_options & SO_LINGER;
   1518 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1519 			break;
   1520 
   1521 		case SO_USELOOPBACK:
   1522 		case SO_DONTROUTE:
   1523 		case SO_DEBUG:
   1524 		case SO_KEEPALIVE:
   1525 		case SO_REUSEADDR:
   1526 		case SO_REUSEPORT:
   1527 		case SO_BROADCAST:
   1528 		case SO_OOBINLINE:
   1529 		case SO_TIMESTAMP:
   1530 			*mtod(m, int *) = so->so_options & optname;
   1531 			break;
   1532 
   1533 		case SO_TYPE:
   1534 			*mtod(m, int *) = so->so_type;
   1535 			break;
   1536 
   1537 		case SO_ERROR:
   1538 			*mtod(m, int *) = so->so_error;
   1539 			so->so_error = 0;
   1540 			break;
   1541 
   1542 		case SO_SNDBUF:
   1543 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1544 			break;
   1545 
   1546 		case SO_RCVBUF:
   1547 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1548 			break;
   1549 
   1550 		case SO_SNDLOWAT:
   1551 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1552 			break;
   1553 
   1554 		case SO_RCVLOWAT:
   1555 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1556 			break;
   1557 
   1558 		case SO_SNDTIMEO:
   1559 		case SO_RCVTIMEO:
   1560 		    {
   1561 			int val = (optname == SO_SNDTIMEO ?
   1562 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1563 
   1564 			m->m_len = sizeof(struct timeval);
   1565 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1566 			mtod(m, struct timeval *)->tv_usec =
   1567 			    (val % hz) * tick;
   1568 			break;
   1569 		    }
   1570 
   1571 		default:
   1572 			(void)m_free(m);
   1573 			return (ENOPROTOOPT);
   1574 		}
   1575 		*mp = m;
   1576 		return (0);
   1577 	}
   1578 }
   1579 
   1580 void
   1581 sohasoutofband(struct socket *so)
   1582 {
   1583 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1584 	selwakeup(&so->so_rcv.sb_sel);
   1585 }
   1586 
   1587 static void
   1588 filt_sordetach(struct knote *kn)
   1589 {
   1590 	struct socket	*so;
   1591 
   1592 	so = (struct socket *)kn->kn_fp->f_data;
   1593 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1594 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1595 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1596 }
   1597 
   1598 /*ARGSUSED*/
   1599 static int
   1600 filt_soread(struct knote *kn, long hint)
   1601 {
   1602 	struct socket	*so;
   1603 
   1604 	so = (struct socket *)kn->kn_fp->f_data;
   1605 	kn->kn_data = so->so_rcv.sb_cc;
   1606 	if (so->so_state & SS_CANTRCVMORE) {
   1607 		kn->kn_flags |= EV_EOF;
   1608 		kn->kn_fflags = so->so_error;
   1609 		return (1);
   1610 	}
   1611 	if (so->so_error)	/* temporary udp error */
   1612 		return (1);
   1613 	if (kn->kn_sfflags & NOTE_LOWAT)
   1614 		return (kn->kn_data >= kn->kn_sdata);
   1615 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1616 }
   1617 
   1618 static void
   1619 filt_sowdetach(struct knote *kn)
   1620 {
   1621 	struct socket	*so;
   1622 
   1623 	so = (struct socket *)kn->kn_fp->f_data;
   1624 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1625 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1626 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1627 }
   1628 
   1629 /*ARGSUSED*/
   1630 static int
   1631 filt_sowrite(struct knote *kn, long hint)
   1632 {
   1633 	struct socket	*so;
   1634 
   1635 	so = (struct socket *)kn->kn_fp->f_data;
   1636 	kn->kn_data = sbspace(&so->so_snd);
   1637 	if (so->so_state & SS_CANTSENDMORE) {
   1638 		kn->kn_flags |= EV_EOF;
   1639 		kn->kn_fflags = so->so_error;
   1640 		return (1);
   1641 	}
   1642 	if (so->so_error)	/* temporary udp error */
   1643 		return (1);
   1644 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1645 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1646 		return (0);
   1647 	if (kn->kn_sfflags & NOTE_LOWAT)
   1648 		return (kn->kn_data >= kn->kn_sdata);
   1649 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1650 }
   1651 
   1652 /*ARGSUSED*/
   1653 static int
   1654 filt_solisten(struct knote *kn, long hint)
   1655 {
   1656 	struct socket	*so;
   1657 
   1658 	so = (struct socket *)kn->kn_fp->f_data;
   1659 
   1660 	/*
   1661 	 * Set kn_data to number of incoming connections, not
   1662 	 * counting partial (incomplete) connections.
   1663 	 */
   1664 	kn->kn_data = so->so_qlen;
   1665 	return (kn->kn_data > 0);
   1666 }
   1667 
   1668 static const struct filterops solisten_filtops =
   1669 	{ 1, NULL, filt_sordetach, filt_solisten };
   1670 static const struct filterops soread_filtops =
   1671 	{ 1, NULL, filt_sordetach, filt_soread };
   1672 static const struct filterops sowrite_filtops =
   1673 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1674 
   1675 int
   1676 soo_kqfilter(struct file *fp, struct knote *kn)
   1677 {
   1678 	struct socket	*so;
   1679 	struct sockbuf	*sb;
   1680 
   1681 	so = (struct socket *)kn->kn_fp->f_data;
   1682 	switch (kn->kn_filter) {
   1683 	case EVFILT_READ:
   1684 		if (so->so_options & SO_ACCEPTCONN)
   1685 			kn->kn_fop = &solisten_filtops;
   1686 		else
   1687 			kn->kn_fop = &soread_filtops;
   1688 		sb = &so->so_rcv;
   1689 		break;
   1690 	case EVFILT_WRITE:
   1691 		kn->kn_fop = &sowrite_filtops;
   1692 		sb = &so->so_snd;
   1693 		break;
   1694 	default:
   1695 		return (1);
   1696 	}
   1697 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1698 	sb->sb_flags |= SB_KNOTE;
   1699 	return (0);
   1700 }
   1701 
   1702