Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.95
      1 /*	$NetBSD: uipc_socket.c,v 1.95 2004/03/17 10:30:18 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.95 2004/03/17 10:30:18 yamt Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/malloc.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/domain.h>
     85 #include <sys/kernel.h>
     86 #include <sys/protosw.h>
     87 #include <sys/socket.h>
     88 #include <sys/socketvar.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/pool.h>
     92 #include <sys/event.h>
     93 #include <sys/poll.h>
     94 
     95 #include <uvm/uvm.h>
     96 
     97 struct pool	socket_pool;
     98 
     99 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    100 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    101 
    102 extern int	somaxconn;			/* patchable (XXX sysctl) */
    103 int		somaxconn = SOMAXCONN;
    104 
    105 #ifdef SOSEND_COUNTERS
    106 #include <sys/device.h>
    107 
    108 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    109     NULL, "sosend", "loan big");
    110 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    111     NULL, "sosend", "copy big");
    112 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    113     NULL, "sosend", "copy small");
    114 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    115     NULL, "sosend", "kva limit");
    116 
    117 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    118 
    119 #else
    120 
    121 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    122 
    123 #endif /* SOSEND_COUNTERS */
    124 
    125 void
    126 soinit(void)
    127 {
    128 
    129 	/* Set the initial adjusted socket buffer size. */
    130 	if (sb_max_set(sb_max))
    131 		panic("bad initial sb_max value: %lu\n", sb_max);
    132 
    133 	pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
    134 	    "sockpl", NULL);
    135 
    136 #ifdef SOSEND_COUNTERS
    137 	evcnt_attach_static(&sosend_loan_big);
    138 	evcnt_attach_static(&sosend_copy_big);
    139 	evcnt_attach_static(&sosend_copy_small);
    140 	evcnt_attach_static(&sosend_kvalimit);
    141 #endif /* SOSEND_COUNTERS */
    142 }
    143 
    144 #ifdef SOSEND_NO_LOAN
    145 int use_sosend_loan = 0;
    146 #else
    147 int use_sosend_loan = 1;
    148 #endif
    149 
    150 struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
    151 struct mbuf *so_pendfree;
    152 
    153 #ifndef SOMAXKVA
    154 #define	SOMAXKVA (16 * 1024 * 1024)
    155 #endif
    156 int somaxkva = SOMAXKVA;
    157 int socurkva;
    158 int sokvawaiters;
    159 
    160 #define	SOCK_LOAN_THRESH	4096
    161 #define	SOCK_LOAN_CHUNK		65536
    162 
    163 static size_t sodopendfree(struct socket *);
    164 static size_t sodopendfreel(struct socket *);
    165 static __inline void sokvareserve(struct socket *, vsize_t);
    166 static __inline void sokvaunreserve(vsize_t);
    167 
    168 static __inline void
    169 sokvareserve(struct socket *so, vsize_t len)
    170 {
    171 	int s;
    172 
    173 	s = splvm();
    174 	simple_lock(&so_pendfree_slock);
    175 	while (socurkva + len > somaxkva) {
    176 		size_t freed;
    177 
    178 		/*
    179 		 * try to do pendfree.
    180 		 */
    181 
    182 		freed = sodopendfreel(so);
    183 
    184 		/*
    185 		 * if some kva was freed, try again.
    186 		 */
    187 
    188 		if (freed)
    189 			continue;
    190 
    191 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    192 		sokvawaiters++;
    193 		(void) ltsleep(&socurkva, PVM, "sokva", 0, &so_pendfree_slock);
    194 		sokvawaiters--;
    195 	}
    196 	socurkva += len;
    197 	simple_unlock(&so_pendfree_slock);
    198 	splx(s);
    199 }
    200 
    201 static __inline void
    202 sokvaunreserve(vsize_t len)
    203 {
    204 	int s;
    205 
    206 	s = splvm();
    207 	simple_lock(&so_pendfree_slock);
    208 	socurkva -= len;
    209 	if (sokvawaiters)
    210 		wakeup(&socurkva);
    211 	simple_unlock(&so_pendfree_slock);
    212 	splx(s);
    213 }
    214 
    215 /*
    216  * sokvaalloc: allocate kva for loan.
    217  */
    218 
    219 vaddr_t
    220 sokvaalloc(vsize_t len, struct socket *so)
    221 {
    222 	vaddr_t lva;
    223 
    224 	/*
    225 	 * reserve kva.
    226 	 */
    227 
    228 	sokvareserve(so, len);
    229 
    230 	/*
    231 	 * allocate kva.
    232 	 */
    233 
    234 	lva = uvm_km_valloc_wait(kernel_map, len);
    235 	if (lva == 0) {
    236 		sokvaunreserve(len);
    237 		return (0);
    238 	}
    239 
    240 	return lva;
    241 }
    242 
    243 /*
    244  * sokvafree: free kva for loan.
    245  */
    246 
    247 void
    248 sokvafree(vaddr_t sva, vsize_t len)
    249 {
    250 
    251 	/*
    252 	 * free kva.
    253 	 */
    254 
    255 	uvm_km_free(kernel_map, sva, len);
    256 
    257 	/*
    258 	 * unreserve kva.
    259 	 */
    260 
    261 	sokvaunreserve(len);
    262 }
    263 
    264 static void
    265 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
    266 {
    267 	vaddr_t va, sva, eva;
    268 	vsize_t len;
    269 	paddr_t pa;
    270 	int i, npgs;
    271 
    272 	eva = round_page((vaddr_t) buf + size);
    273 	sva = trunc_page((vaddr_t) buf);
    274 	len = eva - sva;
    275 	npgs = len >> PAGE_SHIFT;
    276 
    277 	if (__predict_false(pgs == NULL)) {
    278 		pgs = alloca(npgs * sizeof(*pgs));
    279 
    280 		for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
    281 			if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
    282 				panic("sodoloanfree: va 0x%lx not mapped", va);
    283 			pgs[i] = PHYS_TO_VM_PAGE(pa);
    284 		}
    285 	}
    286 
    287 	pmap_kremove(sva, len);
    288 	pmap_update(pmap_kernel());
    289 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    290 	sokvafree(sva, len);
    291 }
    292 
    293 static size_t
    294 sodopendfree(struct socket *so)
    295 {
    296 	int s;
    297 	size_t rv;
    298 
    299 	s = splvm();
    300 	simple_lock(&so_pendfree_slock);
    301 	rv = sodopendfreel(so);
    302 	simple_unlock(&so_pendfree_slock);
    303 	splx(s);
    304 
    305 	return rv;
    306 }
    307 
    308 /*
    309  * sodopendfreel: free mbufs on "pendfree" list.
    310  * unlock and relock so_pendfree_slock when freeing mbufs.
    311  *
    312  * => called with so_pendfree_slock held.
    313  * => called at splvm.
    314  */
    315 
    316 static size_t
    317 sodopendfreel(struct socket *so)
    318 {
    319 	size_t rv = 0;
    320 
    321 	LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
    322 
    323 	for (;;) {
    324 		struct mbuf *m;
    325 		struct mbuf *next;
    326 
    327 		m = so_pendfree;
    328 		if (m == NULL)
    329 			break;
    330 		so_pendfree = NULL;
    331 		simple_unlock(&so_pendfree_slock);
    332 		/* XXX splx */
    333 
    334 		for (; m != NULL; m = next) {
    335 			next = m->m_next;
    336 
    337 			rv += m->m_ext.ext_size;
    338 			sodoloanfree((m->m_flags & M_EXT_PAGES) ?
    339 			    m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
    340 			    m->m_ext.ext_size);
    341 			pool_cache_put(&mbpool_cache, m);
    342 		}
    343 
    344 		/* XXX splvm */
    345 		simple_lock(&so_pendfree_slock);
    346 	}
    347 
    348 	return (rv);
    349 }
    350 
    351 void
    352 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
    353 {
    354 	int s;
    355 
    356 	if (m == NULL) {
    357 
    358 		/*
    359 		 * called from MEXTREMOVE.
    360 		 */
    361 
    362 		sodoloanfree(NULL, buf, size);
    363 		return;
    364 	}
    365 
    366 	/*
    367 	 * postpone freeing mbuf.
    368 	 *
    369 	 * we can't do it in interrupt context
    370 	 * because we need to put kva back to kernel_map.
    371 	 */
    372 
    373 	s = splvm();
    374 	simple_lock(&so_pendfree_slock);
    375 	m->m_next = so_pendfree;
    376 	so_pendfree = m;
    377 	if (sokvawaiters)
    378 		wakeup(&socurkva);
    379 	simple_unlock(&so_pendfree_slock);
    380 	splx(s);
    381 }
    382 
    383 static long
    384 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    385 {
    386 	struct iovec *iov = uio->uio_iov;
    387 	vaddr_t sva, eva;
    388 	vsize_t len;
    389 	vaddr_t lva, va;
    390 	int npgs, i, error;
    391 
    392 	if (uio->uio_segflg != UIO_USERSPACE)
    393 		return (0);
    394 
    395 	if (iov->iov_len < (size_t) space)
    396 		space = iov->iov_len;
    397 	if (space > SOCK_LOAN_CHUNK)
    398 		space = SOCK_LOAN_CHUNK;
    399 
    400 	eva = round_page((vaddr_t) iov->iov_base + space);
    401 	sva = trunc_page((vaddr_t) iov->iov_base);
    402 	len = eva - sva;
    403 	npgs = len >> PAGE_SHIFT;
    404 
    405 	/* XXX KDASSERT */
    406 	KASSERT(npgs <= M_EXT_MAXPAGES);
    407 
    408 	lva = sokvaalloc(len, so);
    409 	if (lva == 0)
    410 		return 0;
    411 
    412 	error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
    413 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    414 	if (error) {
    415 		sokvafree(lva, len);
    416 		return (0);
    417 	}
    418 
    419 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    420 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    421 		    VM_PROT_READ);
    422 	pmap_update(pmap_kernel());
    423 
    424 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    425 
    426 	MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
    427 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    428 
    429 	uio->uio_resid -= space;
    430 	/* uio_offset not updated, not set/used for write(2) */
    431 	uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
    432 	uio->uio_iov->iov_len -= space;
    433 	if (uio->uio_iov->iov_len == 0) {
    434 		uio->uio_iov++;
    435 		uio->uio_iovcnt--;
    436 	}
    437 
    438 	return (space);
    439 }
    440 
    441 /*
    442  * Socket operation routines.
    443  * These routines are called by the routines in
    444  * sys_socket.c or from a system process, and
    445  * implement the semantics of socket operations by
    446  * switching out to the protocol specific routines.
    447  */
    448 /*ARGSUSED*/
    449 int
    450 socreate(int dom, struct socket **aso, int type, int proto)
    451 {
    452 	struct proc	*p;
    453 	struct protosw	*prp;
    454 	struct socket	*so;
    455 	int		error, s;
    456 
    457 	p = curproc;		/* XXX */
    458 	if (proto)
    459 		prp = pffindproto(dom, proto, type);
    460 	else
    461 		prp = pffindtype(dom, type);
    462 	if (prp == 0 || prp->pr_usrreq == 0)
    463 		return (EPROTONOSUPPORT);
    464 	if (prp->pr_type != type)
    465 		return (EPROTOTYPE);
    466 	s = splsoftnet();
    467 	so = pool_get(&socket_pool, PR_WAITOK);
    468 	memset((caddr_t)so, 0, sizeof(*so));
    469 	TAILQ_INIT(&so->so_q0);
    470 	TAILQ_INIT(&so->so_q);
    471 	so->so_type = type;
    472 	so->so_proto = prp;
    473 	so->so_send = sosend;
    474 	so->so_receive = soreceive;
    475 #ifdef MBUFTRACE
    476 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    477 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    478 	so->so_mowner = &prp->pr_domain->dom_mowner;
    479 #endif
    480 	if (p != 0)
    481 		so->so_uid = p->p_ucred->cr_uid;
    482 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
    483 	    (struct mbuf *)(long)proto, (struct mbuf *)0, p);
    484 	if (error) {
    485 		so->so_state |= SS_NOFDREF;
    486 		sofree(so);
    487 		splx(s);
    488 		return (error);
    489 	}
    490 	splx(s);
    491 	*aso = so;
    492 	return (0);
    493 }
    494 
    495 int
    496 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
    497 {
    498 	int	s, error;
    499 
    500 	s = splsoftnet();
    501 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
    502 	    nam, (struct mbuf *)0, p);
    503 	splx(s);
    504 	return (error);
    505 }
    506 
    507 int
    508 solisten(struct socket *so, int backlog)
    509 {
    510 	int	s, error;
    511 
    512 	s = splsoftnet();
    513 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
    514 	    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    515 	if (error) {
    516 		splx(s);
    517 		return (error);
    518 	}
    519 	if (TAILQ_EMPTY(&so->so_q))
    520 		so->so_options |= SO_ACCEPTCONN;
    521 	if (backlog < 0)
    522 		backlog = 0;
    523 	so->so_qlimit = min(backlog, somaxconn);
    524 	splx(s);
    525 	return (0);
    526 }
    527 
    528 void
    529 sofree(struct socket *so)
    530 {
    531 
    532 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    533 		return;
    534 	if (so->so_head) {
    535 		/*
    536 		 * We must not decommission a socket that's on the accept(2)
    537 		 * queue.  If we do, then accept(2) may hang after select(2)
    538 		 * indicated that the listening socket was ready.
    539 		 */
    540 		if (!soqremque(so, 0))
    541 			return;
    542 	}
    543 	sbrelease(&so->so_snd);
    544 	sorflush(so);
    545 	pool_put(&socket_pool, so);
    546 }
    547 
    548 /*
    549  * Close a socket on last file table reference removal.
    550  * Initiate disconnect if connected.
    551  * Free socket when disconnect complete.
    552  */
    553 int
    554 soclose(struct socket *so)
    555 {
    556 	struct socket	*so2;
    557 	int		s, error;
    558 
    559 	error = 0;
    560 	s = splsoftnet();		/* conservative */
    561 	if (so->so_options & SO_ACCEPTCONN) {
    562 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    563 			(void) soqremque(so2, 0);
    564 			(void) soabort(so2);
    565 		}
    566 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    567 			(void) soqremque(so2, 1);
    568 			(void) soabort(so2);
    569 		}
    570 	}
    571 	if (so->so_pcb == 0)
    572 		goto discard;
    573 	if (so->so_state & SS_ISCONNECTED) {
    574 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    575 			error = sodisconnect(so);
    576 			if (error)
    577 				goto drop;
    578 		}
    579 		if (so->so_options & SO_LINGER) {
    580 			if ((so->so_state & SS_ISDISCONNECTING) &&
    581 			    (so->so_state & SS_NBIO))
    582 				goto drop;
    583 			while (so->so_state & SS_ISCONNECTED) {
    584 				error = tsleep((caddr_t)&so->so_timeo,
    585 					       PSOCK | PCATCH, netcls,
    586 					       so->so_linger * hz);
    587 				if (error)
    588 					break;
    589 			}
    590 		}
    591 	}
    592  drop:
    593 	if (so->so_pcb) {
    594 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    595 		    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    596 		    (struct proc *)0);
    597 		if (error == 0)
    598 			error = error2;
    599 	}
    600  discard:
    601 	if (so->so_state & SS_NOFDREF)
    602 		panic("soclose: NOFDREF");
    603 	so->so_state |= SS_NOFDREF;
    604 	sofree(so);
    605 	splx(s);
    606 	return (error);
    607 }
    608 
    609 /*
    610  * Must be called at splsoftnet...
    611  */
    612 int
    613 soabort(struct socket *so)
    614 {
    615 
    616 	return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
    617 	    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    618 }
    619 
    620 int
    621 soaccept(struct socket *so, struct mbuf *nam)
    622 {
    623 	int	s, error;
    624 
    625 	error = 0;
    626 	s = splsoftnet();
    627 	if ((so->so_state & SS_NOFDREF) == 0)
    628 		panic("soaccept: !NOFDREF");
    629 	so->so_state &= ~SS_NOFDREF;
    630 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    631 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    632 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    633 		    (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
    634 	else
    635 		error = ECONNABORTED;
    636 
    637 	splx(s);
    638 	return (error);
    639 }
    640 
    641 int
    642 soconnect(struct socket *so, struct mbuf *nam)
    643 {
    644 	struct proc	*p;
    645 	int		s, error;
    646 
    647 	p = curproc;		/* XXX */
    648 	if (so->so_options & SO_ACCEPTCONN)
    649 		return (EOPNOTSUPP);
    650 	s = splsoftnet();
    651 	/*
    652 	 * If protocol is connection-based, can only connect once.
    653 	 * Otherwise, if connected, try to disconnect first.
    654 	 * This allows user to disconnect by connecting to, e.g.,
    655 	 * a null address.
    656 	 */
    657 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    658 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    659 	    (error = sodisconnect(so))))
    660 		error = EISCONN;
    661 	else
    662 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    663 		    (struct mbuf *)0, nam, (struct mbuf *)0, p);
    664 	splx(s);
    665 	return (error);
    666 }
    667 
    668 int
    669 soconnect2(struct socket *so1, struct socket *so2)
    670 {
    671 	int	s, error;
    672 
    673 	s = splsoftnet();
    674 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    675 	    (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
    676 	    (struct proc *)0);
    677 	splx(s);
    678 	return (error);
    679 }
    680 
    681 int
    682 sodisconnect(struct socket *so)
    683 {
    684 	int	s, error;
    685 
    686 	s = splsoftnet();
    687 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    688 		error = ENOTCONN;
    689 		goto bad;
    690 	}
    691 	if (so->so_state & SS_ISDISCONNECTING) {
    692 		error = EALREADY;
    693 		goto bad;
    694 	}
    695 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    696 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    697 	    (struct proc *)0);
    698  bad:
    699 	splx(s);
    700 	sodopendfree(so);
    701 	return (error);
    702 }
    703 
    704 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    705 /*
    706  * Send on a socket.
    707  * If send must go all at once and message is larger than
    708  * send buffering, then hard error.
    709  * Lock against other senders.
    710  * If must go all at once and not enough room now, then
    711  * inform user that this would block and do nothing.
    712  * Otherwise, if nonblocking, send as much as possible.
    713  * The data to be sent is described by "uio" if nonzero,
    714  * otherwise by the mbuf chain "top" (which must be null
    715  * if uio is not).  Data provided in mbuf chain must be small
    716  * enough to send all at once.
    717  *
    718  * Returns nonzero on error, timeout or signal; callers
    719  * must check for short counts if EINTR/ERESTART are returned.
    720  * Data and control buffers are freed on return.
    721  */
    722 int
    723 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    724 	struct mbuf *control, int flags)
    725 {
    726 	struct proc	*p;
    727 	struct mbuf	**mp, *m;
    728 	long		space, len, resid, clen, mlen;
    729 	int		error, s, dontroute, atomic;
    730 
    731 	sodopendfree(so);
    732 
    733 	p = curproc;		/* XXX */
    734 	clen = 0;
    735 	atomic = sosendallatonce(so) || top;
    736 	if (uio)
    737 		resid = uio->uio_resid;
    738 	else
    739 		resid = top->m_pkthdr.len;
    740 	/*
    741 	 * In theory resid should be unsigned.
    742 	 * However, space must be signed, as it might be less than 0
    743 	 * if we over-committed, and we must use a signed comparison
    744 	 * of space and resid.  On the other hand, a negative resid
    745 	 * causes us to loop sending 0-length segments to the protocol.
    746 	 */
    747 	if (resid < 0) {
    748 		error = EINVAL;
    749 		goto out;
    750 	}
    751 	dontroute =
    752 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    753 	    (so->so_proto->pr_flags & PR_ATOMIC);
    754 	p->p_stats->p_ru.ru_msgsnd++;
    755 	if (control)
    756 		clen = control->m_len;
    757 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    758 
    759  restart:
    760 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    761 		goto out;
    762 	do {
    763 		s = splsoftnet();
    764 		if (so->so_state & SS_CANTSENDMORE)
    765 			snderr(EPIPE);
    766 		if (so->so_error) {
    767 			error = so->so_error;
    768 			so->so_error = 0;
    769 			splx(s);
    770 			goto release;
    771 		}
    772 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    773 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    774 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    775 				    !(resid == 0 && clen != 0))
    776 					snderr(ENOTCONN);
    777 			} else if (addr == 0)
    778 				snderr(EDESTADDRREQ);
    779 		}
    780 		space = sbspace(&so->so_snd);
    781 		if (flags & MSG_OOB)
    782 			space += 1024;
    783 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    784 		    clen > so->so_snd.sb_hiwat)
    785 			snderr(EMSGSIZE);
    786 		if (space < resid + clen && uio &&
    787 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    788 			if (so->so_state & SS_NBIO)
    789 				snderr(EWOULDBLOCK);
    790 			sbunlock(&so->so_snd);
    791 			error = sbwait(&so->so_snd);
    792 			splx(s);
    793 			if (error)
    794 				goto out;
    795 			goto restart;
    796 		}
    797 		splx(s);
    798 		mp = &top;
    799 		space -= clen;
    800 		do {
    801 			if (uio == NULL) {
    802 				/*
    803 				 * Data is prepackaged in "top".
    804 				 */
    805 				resid = 0;
    806 				if (flags & MSG_EOR)
    807 					top->m_flags |= M_EOR;
    808 			} else do {
    809 				if (top == 0) {
    810 					m = m_gethdr(M_WAIT, MT_DATA);
    811 					mlen = MHLEN;
    812 					m->m_pkthdr.len = 0;
    813 					m->m_pkthdr.rcvif = (struct ifnet *)0;
    814 				} else {
    815 					m = m_get(M_WAIT, MT_DATA);
    816 					mlen = MLEN;
    817 				}
    818 				MCLAIM(m, so->so_snd.sb_mowner);
    819 				if (use_sosend_loan &&
    820 				    uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
    821 				    space >= SOCK_LOAN_THRESH &&
    822 				    (len = sosend_loan(so, uio, m,
    823 						       space)) != 0) {
    824 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    825 					space -= len;
    826 					goto have_data;
    827 				}
    828 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    829 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    830 					m_clget(m, M_WAIT);
    831 					if ((m->m_flags & M_EXT) == 0)
    832 						goto nopages;
    833 					mlen = MCLBYTES;
    834 					if (atomic && top == 0) {
    835 						len = lmin(MCLBYTES - max_hdr,
    836 						    resid);
    837 						m->m_data += max_hdr;
    838 					} else
    839 						len = lmin(MCLBYTES, resid);
    840 					space -= len;
    841 				} else {
    842  nopages:
    843 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    844 					len = lmin(lmin(mlen, resid), space);
    845 					space -= len;
    846 					/*
    847 					 * For datagram protocols, leave room
    848 					 * for protocol headers in first mbuf.
    849 					 */
    850 					if (atomic && top == 0 && len < mlen)
    851 						MH_ALIGN(m, len);
    852 				}
    853 				error = uiomove(mtod(m, caddr_t), (int)len,
    854 				    uio);
    855  have_data:
    856 				resid = uio->uio_resid;
    857 				m->m_len = len;
    858 				*mp = m;
    859 				top->m_pkthdr.len += len;
    860 				if (error)
    861 					goto release;
    862 				mp = &m->m_next;
    863 				if (resid <= 0) {
    864 					if (flags & MSG_EOR)
    865 						top->m_flags |= M_EOR;
    866 					break;
    867 				}
    868 			} while (space > 0 && atomic);
    869 
    870 			s = splsoftnet();
    871 
    872 			if (so->so_state & SS_CANTSENDMORE)
    873 				snderr(EPIPE);
    874 
    875 			if (dontroute)
    876 				so->so_options |= SO_DONTROUTE;
    877 			if (resid > 0)
    878 				so->so_state |= SS_MORETOCOME;
    879 			error = (*so->so_proto->pr_usrreq)(so,
    880 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    881 			    top, addr, control, p);
    882 			if (dontroute)
    883 				so->so_options &= ~SO_DONTROUTE;
    884 			if (resid > 0)
    885 				so->so_state &= ~SS_MORETOCOME;
    886 			splx(s);
    887 
    888 			clen = 0;
    889 			control = 0;
    890 			top = 0;
    891 			mp = &top;
    892 			if (error)
    893 				goto release;
    894 		} while (resid && space > 0);
    895 	} while (resid);
    896 
    897  release:
    898 	sbunlock(&so->so_snd);
    899  out:
    900 	if (top)
    901 		m_freem(top);
    902 	if (control)
    903 		m_freem(control);
    904 	return (error);
    905 }
    906 
    907 /*
    908  * Implement receive operations on a socket.
    909  * We depend on the way that records are added to the sockbuf
    910  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    911  * must begin with an address if the protocol so specifies,
    912  * followed by an optional mbuf or mbufs containing ancillary data,
    913  * and then zero or more mbufs of data.
    914  * In order to avoid blocking network interrupts for the entire time here,
    915  * we splx() while doing the actual copy to user space.
    916  * Although the sockbuf is locked, new data may still be appended,
    917  * and thus we must maintain consistency of the sockbuf during that time.
    918  *
    919  * The caller may receive the data as a single mbuf chain by supplying
    920  * an mbuf **mp0 for use in returning the chain.  The uio is then used
    921  * only for the count in uio_resid.
    922  */
    923 int
    924 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
    925 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
    926 {
    927 	struct mbuf	*m, **mp;
    928 	int		flags, len, error, s, offset, moff, type, orig_resid;
    929 	struct protosw	*pr;
    930 	struct mbuf	*nextrecord;
    931 	int		mbuf_removed = 0;
    932 
    933 	pr = so->so_proto;
    934 	mp = mp0;
    935 	type = 0;
    936 	orig_resid = uio->uio_resid;
    937 	if (paddr)
    938 		*paddr = 0;
    939 	if (controlp)
    940 		*controlp = 0;
    941 	if (flagsp)
    942 		flags = *flagsp &~ MSG_EOR;
    943 	else
    944 		flags = 0;
    945 
    946 	if ((flags & MSG_DONTWAIT) == 0)
    947 		sodopendfree(so);
    948 
    949 	if (flags & MSG_OOB) {
    950 		m = m_get(M_WAIT, MT_DATA);
    951 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
    952 		    (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
    953 		    (struct proc *)0);
    954 		if (error)
    955 			goto bad;
    956 		do {
    957 			error = uiomove(mtod(m, caddr_t),
    958 			    (int) min(uio->uio_resid, m->m_len), uio);
    959 			m = m_free(m);
    960 		} while (uio->uio_resid && error == 0 && m);
    961  bad:
    962 		if (m)
    963 			m_freem(m);
    964 		return (error);
    965 	}
    966 	if (mp)
    967 		*mp = (struct mbuf *)0;
    968 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
    969 		(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
    970 		    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    971 
    972  restart:
    973 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
    974 		return (error);
    975 	s = splsoftnet();
    976 
    977 	m = so->so_rcv.sb_mb;
    978 	/*
    979 	 * If we have less data than requested, block awaiting more
    980 	 * (subject to any timeout) if:
    981 	 *   1. the current count is less than the low water mark,
    982 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
    983 	 *	receive operation at once if we block (resid <= hiwat), or
    984 	 *   3. MSG_DONTWAIT is not set.
    985 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
    986 	 * we have to do the receive in sections, and thus risk returning
    987 	 * a short count if a timeout or signal occurs after we start.
    988 	 */
    989 	if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
    990 	    so->so_rcv.sb_cc < uio->uio_resid) &&
    991 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
    992 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
    993 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
    994 #ifdef DIAGNOSTIC
    995 		if (m == 0 && so->so_rcv.sb_cc)
    996 			panic("receive 1");
    997 #endif
    998 		if (so->so_error) {
    999 			if (m)
   1000 				goto dontblock;
   1001 			error = so->so_error;
   1002 			if ((flags & MSG_PEEK) == 0)
   1003 				so->so_error = 0;
   1004 			goto release;
   1005 		}
   1006 		if (so->so_state & SS_CANTRCVMORE) {
   1007 			if (m)
   1008 				goto dontblock;
   1009 			else
   1010 				goto release;
   1011 		}
   1012 		for (; m; m = m->m_next)
   1013 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1014 				m = so->so_rcv.sb_mb;
   1015 				goto dontblock;
   1016 			}
   1017 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1018 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1019 			error = ENOTCONN;
   1020 			goto release;
   1021 		}
   1022 		if (uio->uio_resid == 0)
   1023 			goto release;
   1024 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
   1025 			error = EWOULDBLOCK;
   1026 			goto release;
   1027 		}
   1028 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1029 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1030 		sbunlock(&so->so_rcv);
   1031 		error = sbwait(&so->so_rcv);
   1032 		splx(s);
   1033 		if (error)
   1034 			return (error);
   1035 		goto restart;
   1036 	}
   1037  dontblock:
   1038 	/*
   1039 	 * On entry here, m points to the first record of the socket buffer.
   1040 	 * While we process the initial mbufs containing address and control
   1041 	 * info, we save a copy of m->m_nextpkt into nextrecord.
   1042 	 */
   1043 #ifdef notyet /* XXXX */
   1044 	if (uio->uio_procp)
   1045 		uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
   1046 #endif
   1047 	KASSERT(m == so->so_rcv.sb_mb);
   1048 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1049 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1050 	nextrecord = m->m_nextpkt;
   1051 	if (pr->pr_flags & PR_ADDR) {
   1052 #ifdef DIAGNOSTIC
   1053 		if (m->m_type != MT_SONAME)
   1054 			panic("receive 1a");
   1055 #endif
   1056 		orig_resid = 0;
   1057 		if (flags & MSG_PEEK) {
   1058 			if (paddr)
   1059 				*paddr = m_copy(m, 0, m->m_len);
   1060 			m = m->m_next;
   1061 		} else {
   1062 			sbfree(&so->so_rcv, m);
   1063 			mbuf_removed = 1;
   1064 			if (paddr) {
   1065 				*paddr = m;
   1066 				so->so_rcv.sb_mb = m->m_next;
   1067 				m->m_next = 0;
   1068 				m = so->so_rcv.sb_mb;
   1069 			} else {
   1070 				MFREE(m, so->so_rcv.sb_mb);
   1071 				m = so->so_rcv.sb_mb;
   1072 			}
   1073 		}
   1074 	}
   1075 	while (m && m->m_type == MT_CONTROL && error == 0) {
   1076 		if (flags & MSG_PEEK) {
   1077 			if (controlp)
   1078 				*controlp = m_copy(m, 0, m->m_len);
   1079 			m = m->m_next;
   1080 		} else {
   1081 			sbfree(&so->so_rcv, m);
   1082 			mbuf_removed = 1;
   1083 			if (controlp) {
   1084 				if (pr->pr_domain->dom_externalize &&
   1085 				    mtod(m, struct cmsghdr *)->cmsg_type ==
   1086 				    SCM_RIGHTS)
   1087 					error = (*pr->pr_domain->dom_externalize)(m);
   1088 				*controlp = m;
   1089 				so->so_rcv.sb_mb = m->m_next;
   1090 				m->m_next = 0;
   1091 				m = so->so_rcv.sb_mb;
   1092 			} else {
   1093 				MFREE(m, so->so_rcv.sb_mb);
   1094 				m = so->so_rcv.sb_mb;
   1095 			}
   1096 		}
   1097 		if (controlp) {
   1098 			orig_resid = 0;
   1099 			controlp = &(*controlp)->m_next;
   1100 		}
   1101 	}
   1102 
   1103 	/*
   1104 	 * If m is non-NULL, we have some data to read.  From now on,
   1105 	 * make sure to keep sb_lastrecord consistent when working on
   1106 	 * the last packet on the chain (nextrecord == NULL) and we
   1107 	 * change m->m_nextpkt.
   1108 	 */
   1109 	if (m) {
   1110 		if ((flags & MSG_PEEK) == 0) {
   1111 			m->m_nextpkt = nextrecord;
   1112 			/*
   1113 			 * If nextrecord == NULL (this is a single chain),
   1114 			 * then sb_lastrecord may not be valid here if m
   1115 			 * was changed earlier.
   1116 			 */
   1117 			if (nextrecord == NULL) {
   1118 				KASSERT(so->so_rcv.sb_mb == m);
   1119 				so->so_rcv.sb_lastrecord = m;
   1120 			}
   1121 		}
   1122 		type = m->m_type;
   1123 		if (type == MT_OOBDATA)
   1124 			flags |= MSG_OOB;
   1125 	} else {
   1126 		if ((flags & MSG_PEEK) == 0) {
   1127 			KASSERT(so->so_rcv.sb_mb == m);
   1128 			so->so_rcv.sb_mb = nextrecord;
   1129 			SB_EMPTY_FIXUP(&so->so_rcv);
   1130 		}
   1131 	}
   1132 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1133 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1134 
   1135 	moff = 0;
   1136 	offset = 0;
   1137 	while (m && uio->uio_resid > 0 && error == 0) {
   1138 		if (m->m_type == MT_OOBDATA) {
   1139 			if (type != MT_OOBDATA)
   1140 				break;
   1141 		} else if (type == MT_OOBDATA)
   1142 			break;
   1143 #ifdef DIAGNOSTIC
   1144 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1145 			panic("receive 3");
   1146 #endif
   1147 		so->so_state &= ~SS_RCVATMARK;
   1148 		len = uio->uio_resid;
   1149 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1150 			len = so->so_oobmark - offset;
   1151 		if (len > m->m_len - moff)
   1152 			len = m->m_len - moff;
   1153 		/*
   1154 		 * If mp is set, just pass back the mbufs.
   1155 		 * Otherwise copy them out via the uio, then free.
   1156 		 * Sockbuf must be consistent here (points to current mbuf,
   1157 		 * it points to next record) when we drop priority;
   1158 		 * we must note any additions to the sockbuf when we
   1159 		 * block interrupts again.
   1160 		 */
   1161 		if (mp == 0) {
   1162 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1163 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1164 			splx(s);
   1165 			error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
   1166 			s = splsoftnet();
   1167 			if (error) {
   1168 				/*
   1169 				 * If any part of the record has been removed
   1170 				 * (such as the MT_SONAME mbuf, which will
   1171 				 * happen when PR_ADDR, and thus also
   1172 				 * PR_ATOMIC, is set), then drop the entire
   1173 				 * record to maintain the atomicity of the
   1174 				 * receive operation.
   1175 				 *
   1176 				 * This avoids a later panic("receive 1a")
   1177 				 * when compiled with DIAGNOSTIC.
   1178 				 */
   1179 				if (m && mbuf_removed
   1180 				    && (pr->pr_flags & PR_ATOMIC))
   1181 					(void) sbdroprecord(&so->so_rcv);
   1182 
   1183 				goto release;
   1184 			}
   1185 		} else
   1186 			uio->uio_resid -= len;
   1187 		if (len == m->m_len - moff) {
   1188 			if (m->m_flags & M_EOR)
   1189 				flags |= MSG_EOR;
   1190 			if (flags & MSG_PEEK) {
   1191 				m = m->m_next;
   1192 				moff = 0;
   1193 			} else {
   1194 				nextrecord = m->m_nextpkt;
   1195 				sbfree(&so->so_rcv, m);
   1196 				if (mp) {
   1197 					*mp = m;
   1198 					mp = &m->m_next;
   1199 					so->so_rcv.sb_mb = m = m->m_next;
   1200 					*mp = (struct mbuf *)0;
   1201 				} else {
   1202 					MFREE(m, so->so_rcv.sb_mb);
   1203 					m = so->so_rcv.sb_mb;
   1204 				}
   1205 				/*
   1206 				 * If m != NULL, we also know that
   1207 				 * so->so_rcv.sb_mb != NULL.
   1208 				 */
   1209 				KASSERT(so->so_rcv.sb_mb == m);
   1210 				if (m) {
   1211 					m->m_nextpkt = nextrecord;
   1212 					if (nextrecord == NULL)
   1213 						so->so_rcv.sb_lastrecord = m;
   1214 				} else {
   1215 					so->so_rcv.sb_mb = nextrecord;
   1216 					SB_EMPTY_FIXUP(&so->so_rcv);
   1217 				}
   1218 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1219 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1220 			}
   1221 		} else {
   1222 			if (flags & MSG_PEEK)
   1223 				moff += len;
   1224 			else {
   1225 				if (mp)
   1226 					*mp = m_copym(m, 0, len, M_WAIT);
   1227 				m->m_data += len;
   1228 				m->m_len -= len;
   1229 				so->so_rcv.sb_cc -= len;
   1230 			}
   1231 		}
   1232 		if (so->so_oobmark) {
   1233 			if ((flags & MSG_PEEK) == 0) {
   1234 				so->so_oobmark -= len;
   1235 				if (so->so_oobmark == 0) {
   1236 					so->so_state |= SS_RCVATMARK;
   1237 					break;
   1238 				}
   1239 			} else {
   1240 				offset += len;
   1241 				if (offset == so->so_oobmark)
   1242 					break;
   1243 			}
   1244 		}
   1245 		if (flags & MSG_EOR)
   1246 			break;
   1247 		/*
   1248 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1249 		 * we must not quit until "uio->uio_resid == 0" or an error
   1250 		 * termination.  If a signal/timeout occurs, return
   1251 		 * with a short count but without error.
   1252 		 * Keep sockbuf locked against other readers.
   1253 		 */
   1254 		while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
   1255 		    !sosendallatonce(so) && !nextrecord) {
   1256 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1257 				break;
   1258 			/*
   1259 			 * If we are peeking and the socket receive buffer is
   1260 			 * full, stop since we can't get more data to peek at.
   1261 			 */
   1262 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1263 				break;
   1264 			/*
   1265 			 * If we've drained the socket buffer, tell the
   1266 			 * protocol in case it needs to do something to
   1267 			 * get it filled again.
   1268 			 */
   1269 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1270 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1271 				    (struct mbuf *)0,
   1272 				    (struct mbuf *)(long)flags,
   1273 				    (struct mbuf *)0,
   1274 				    (struct proc *)0);
   1275 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1276 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1277 			error = sbwait(&so->so_rcv);
   1278 			if (error) {
   1279 				sbunlock(&so->so_rcv);
   1280 				splx(s);
   1281 				return (0);
   1282 			}
   1283 			if ((m = so->so_rcv.sb_mb) != NULL)
   1284 				nextrecord = m->m_nextpkt;
   1285 		}
   1286 	}
   1287 
   1288 	if (m && pr->pr_flags & PR_ATOMIC) {
   1289 		flags |= MSG_TRUNC;
   1290 		if ((flags & MSG_PEEK) == 0)
   1291 			(void) sbdroprecord(&so->so_rcv);
   1292 	}
   1293 	if ((flags & MSG_PEEK) == 0) {
   1294 		if (m == 0) {
   1295 			/*
   1296 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1297 			 * part makes sure sb_lastrecord is up-to-date if
   1298 			 * there is still data in the socket buffer.
   1299 			 */
   1300 			so->so_rcv.sb_mb = nextrecord;
   1301 			if (so->so_rcv.sb_mb == NULL) {
   1302 				so->so_rcv.sb_mbtail = NULL;
   1303 				so->so_rcv.sb_lastrecord = NULL;
   1304 			} else if (nextrecord->m_nextpkt == NULL)
   1305 				so->so_rcv.sb_lastrecord = nextrecord;
   1306 		}
   1307 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1308 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1309 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1310 			(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1311 			    (struct mbuf *)(long)flags, (struct mbuf *)0,
   1312 			    (struct proc *)0);
   1313 	}
   1314 	if (orig_resid == uio->uio_resid && orig_resid &&
   1315 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1316 		sbunlock(&so->so_rcv);
   1317 		splx(s);
   1318 		goto restart;
   1319 	}
   1320 
   1321 	if (flagsp)
   1322 		*flagsp |= flags;
   1323  release:
   1324 	sbunlock(&so->so_rcv);
   1325 	splx(s);
   1326 	return (error);
   1327 }
   1328 
   1329 int
   1330 soshutdown(struct socket *so, int how)
   1331 {
   1332 	struct protosw	*pr;
   1333 
   1334 	pr = so->so_proto;
   1335 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1336 		return (EINVAL);
   1337 
   1338 	if (how == SHUT_RD || how == SHUT_RDWR)
   1339 		sorflush(so);
   1340 	if (how == SHUT_WR || how == SHUT_RDWR)
   1341 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
   1342 		    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
   1343 	return (0);
   1344 }
   1345 
   1346 void
   1347 sorflush(struct socket *so)
   1348 {
   1349 	struct sockbuf	*sb, asb;
   1350 	struct protosw	*pr;
   1351 	int		s;
   1352 
   1353 	sb = &so->so_rcv;
   1354 	pr = so->so_proto;
   1355 	sb->sb_flags |= SB_NOINTR;
   1356 	(void) sblock(sb, M_WAITOK);
   1357 	s = splnet();
   1358 	socantrcvmore(so);
   1359 	sbunlock(sb);
   1360 	asb = *sb;
   1361 	/*
   1362 	 * Clear most of the sockbuf structure, but leave some of the
   1363 	 * fields valid.
   1364 	 */
   1365 	memset(&sb->sb_startzero, 0,
   1366 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1367 	splx(s);
   1368 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1369 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1370 	sbrelease(&asb);
   1371 }
   1372 
   1373 int
   1374 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
   1375 {
   1376 	int		error;
   1377 	struct mbuf	*m;
   1378 
   1379 	error = 0;
   1380 	m = m0;
   1381 	if (level != SOL_SOCKET) {
   1382 		if (so->so_proto && so->so_proto->pr_ctloutput)
   1383 			return ((*so->so_proto->pr_ctloutput)
   1384 				  (PRCO_SETOPT, so, level, optname, &m0));
   1385 		error = ENOPROTOOPT;
   1386 	} else {
   1387 		switch (optname) {
   1388 
   1389 		case SO_LINGER:
   1390 			if (m == NULL || m->m_len != sizeof(struct linger)) {
   1391 				error = EINVAL;
   1392 				goto bad;
   1393 			}
   1394 			so->so_linger = mtod(m, struct linger *)->l_linger;
   1395 			/* fall thru... */
   1396 
   1397 		case SO_DEBUG:
   1398 		case SO_KEEPALIVE:
   1399 		case SO_DONTROUTE:
   1400 		case SO_USELOOPBACK:
   1401 		case SO_BROADCAST:
   1402 		case SO_REUSEADDR:
   1403 		case SO_REUSEPORT:
   1404 		case SO_OOBINLINE:
   1405 		case SO_TIMESTAMP:
   1406 			if (m == NULL || m->m_len < sizeof(int)) {
   1407 				error = EINVAL;
   1408 				goto bad;
   1409 			}
   1410 			if (*mtod(m, int *))
   1411 				so->so_options |= optname;
   1412 			else
   1413 				so->so_options &= ~optname;
   1414 			break;
   1415 
   1416 		case SO_SNDBUF:
   1417 		case SO_RCVBUF:
   1418 		case SO_SNDLOWAT:
   1419 		case SO_RCVLOWAT:
   1420 		    {
   1421 			int optval;
   1422 
   1423 			if (m == NULL || m->m_len < sizeof(int)) {
   1424 				error = EINVAL;
   1425 				goto bad;
   1426 			}
   1427 
   1428 			/*
   1429 			 * Values < 1 make no sense for any of these
   1430 			 * options, so disallow them.
   1431 			 */
   1432 			optval = *mtod(m, int *);
   1433 			if (optval < 1) {
   1434 				error = EINVAL;
   1435 				goto bad;
   1436 			}
   1437 
   1438 			switch (optname) {
   1439 
   1440 			case SO_SNDBUF:
   1441 			case SO_RCVBUF:
   1442 				if (sbreserve(optname == SO_SNDBUF ?
   1443 				    &so->so_snd : &so->so_rcv,
   1444 				    (u_long) optval) == 0) {
   1445 					error = ENOBUFS;
   1446 					goto bad;
   1447 				}
   1448 				break;
   1449 
   1450 			/*
   1451 			 * Make sure the low-water is never greater than
   1452 			 * the high-water.
   1453 			 */
   1454 			case SO_SNDLOWAT:
   1455 				so->so_snd.sb_lowat =
   1456 				    (optval > so->so_snd.sb_hiwat) ?
   1457 				    so->so_snd.sb_hiwat : optval;
   1458 				break;
   1459 			case SO_RCVLOWAT:
   1460 				so->so_rcv.sb_lowat =
   1461 				    (optval > so->so_rcv.sb_hiwat) ?
   1462 				    so->so_rcv.sb_hiwat : optval;
   1463 				break;
   1464 			}
   1465 			break;
   1466 		    }
   1467 
   1468 		case SO_SNDTIMEO:
   1469 		case SO_RCVTIMEO:
   1470 		    {
   1471 			struct timeval *tv;
   1472 			short val;
   1473 
   1474 			if (m == NULL || m->m_len < sizeof(*tv)) {
   1475 				error = EINVAL;
   1476 				goto bad;
   1477 			}
   1478 			tv = mtod(m, struct timeval *);
   1479 			if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) {
   1480 				error = EDOM;
   1481 				goto bad;
   1482 			}
   1483 			val = tv->tv_sec * hz + tv->tv_usec / tick;
   1484 			if (val == 0 && tv->tv_usec != 0)
   1485 				val = 1;
   1486 
   1487 			switch (optname) {
   1488 
   1489 			case SO_SNDTIMEO:
   1490 				so->so_snd.sb_timeo = val;
   1491 				break;
   1492 			case SO_RCVTIMEO:
   1493 				so->so_rcv.sb_timeo = val;
   1494 				break;
   1495 			}
   1496 			break;
   1497 		    }
   1498 
   1499 		default:
   1500 			error = ENOPROTOOPT;
   1501 			break;
   1502 		}
   1503 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
   1504 			(void) ((*so->so_proto->pr_ctloutput)
   1505 				  (PRCO_SETOPT, so, level, optname, &m0));
   1506 			m = NULL;	/* freed by protocol */
   1507 		}
   1508 	}
   1509  bad:
   1510 	if (m)
   1511 		(void) m_free(m);
   1512 	return (error);
   1513 }
   1514 
   1515 int
   1516 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1517 {
   1518 	struct mbuf	*m;
   1519 
   1520 	if (level != SOL_SOCKET) {
   1521 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1522 			return ((*so->so_proto->pr_ctloutput)
   1523 				  (PRCO_GETOPT, so, level, optname, mp));
   1524 		} else
   1525 			return (ENOPROTOOPT);
   1526 	} else {
   1527 		m = m_get(M_WAIT, MT_SOOPTS);
   1528 		m->m_len = sizeof(int);
   1529 
   1530 		switch (optname) {
   1531 
   1532 		case SO_LINGER:
   1533 			m->m_len = sizeof(struct linger);
   1534 			mtod(m, struct linger *)->l_onoff =
   1535 				so->so_options & SO_LINGER;
   1536 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1537 			break;
   1538 
   1539 		case SO_USELOOPBACK:
   1540 		case SO_DONTROUTE:
   1541 		case SO_DEBUG:
   1542 		case SO_KEEPALIVE:
   1543 		case SO_REUSEADDR:
   1544 		case SO_REUSEPORT:
   1545 		case SO_BROADCAST:
   1546 		case SO_OOBINLINE:
   1547 		case SO_TIMESTAMP:
   1548 			*mtod(m, int *) = so->so_options & optname;
   1549 			break;
   1550 
   1551 		case SO_TYPE:
   1552 			*mtod(m, int *) = so->so_type;
   1553 			break;
   1554 
   1555 		case SO_ERROR:
   1556 			*mtod(m, int *) = so->so_error;
   1557 			so->so_error = 0;
   1558 			break;
   1559 
   1560 		case SO_SNDBUF:
   1561 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1562 			break;
   1563 
   1564 		case SO_RCVBUF:
   1565 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1566 			break;
   1567 
   1568 		case SO_SNDLOWAT:
   1569 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1570 			break;
   1571 
   1572 		case SO_RCVLOWAT:
   1573 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1574 			break;
   1575 
   1576 		case SO_SNDTIMEO:
   1577 		case SO_RCVTIMEO:
   1578 		    {
   1579 			int val = (optname == SO_SNDTIMEO ?
   1580 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1581 
   1582 			m->m_len = sizeof(struct timeval);
   1583 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1584 			mtod(m, struct timeval *)->tv_usec =
   1585 			    (val % hz) * tick;
   1586 			break;
   1587 		    }
   1588 
   1589 		default:
   1590 			(void)m_free(m);
   1591 			return (ENOPROTOOPT);
   1592 		}
   1593 		*mp = m;
   1594 		return (0);
   1595 	}
   1596 }
   1597 
   1598 void
   1599 sohasoutofband(struct socket *so)
   1600 {
   1601 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1602 	selwakeup(&so->so_rcv.sb_sel);
   1603 }
   1604 
   1605 static void
   1606 filt_sordetach(struct knote *kn)
   1607 {
   1608 	struct socket	*so;
   1609 
   1610 	so = (struct socket *)kn->kn_fp->f_data;
   1611 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1612 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1613 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1614 }
   1615 
   1616 /*ARGSUSED*/
   1617 static int
   1618 filt_soread(struct knote *kn, long hint)
   1619 {
   1620 	struct socket	*so;
   1621 
   1622 	so = (struct socket *)kn->kn_fp->f_data;
   1623 	kn->kn_data = so->so_rcv.sb_cc;
   1624 	if (so->so_state & SS_CANTRCVMORE) {
   1625 		kn->kn_flags |= EV_EOF;
   1626 		kn->kn_fflags = so->so_error;
   1627 		return (1);
   1628 	}
   1629 	if (so->so_error)	/* temporary udp error */
   1630 		return (1);
   1631 	if (kn->kn_sfflags & NOTE_LOWAT)
   1632 		return (kn->kn_data >= kn->kn_sdata);
   1633 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1634 }
   1635 
   1636 static void
   1637 filt_sowdetach(struct knote *kn)
   1638 {
   1639 	struct socket	*so;
   1640 
   1641 	so = (struct socket *)kn->kn_fp->f_data;
   1642 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1643 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1644 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1645 }
   1646 
   1647 /*ARGSUSED*/
   1648 static int
   1649 filt_sowrite(struct knote *kn, long hint)
   1650 {
   1651 	struct socket	*so;
   1652 
   1653 	so = (struct socket *)kn->kn_fp->f_data;
   1654 	kn->kn_data = sbspace(&so->so_snd);
   1655 	if (so->so_state & SS_CANTSENDMORE) {
   1656 		kn->kn_flags |= EV_EOF;
   1657 		kn->kn_fflags = so->so_error;
   1658 		return (1);
   1659 	}
   1660 	if (so->so_error)	/* temporary udp error */
   1661 		return (1);
   1662 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1663 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1664 		return (0);
   1665 	if (kn->kn_sfflags & NOTE_LOWAT)
   1666 		return (kn->kn_data >= kn->kn_sdata);
   1667 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1668 }
   1669 
   1670 /*ARGSUSED*/
   1671 static int
   1672 filt_solisten(struct knote *kn, long hint)
   1673 {
   1674 	struct socket	*so;
   1675 
   1676 	so = (struct socket *)kn->kn_fp->f_data;
   1677 
   1678 	/*
   1679 	 * Set kn_data to number of incoming connections, not
   1680 	 * counting partial (incomplete) connections.
   1681 	 */
   1682 	kn->kn_data = so->so_qlen;
   1683 	return (kn->kn_data > 0);
   1684 }
   1685 
   1686 static const struct filterops solisten_filtops =
   1687 	{ 1, NULL, filt_sordetach, filt_solisten };
   1688 static const struct filterops soread_filtops =
   1689 	{ 1, NULL, filt_sordetach, filt_soread };
   1690 static const struct filterops sowrite_filtops =
   1691 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1692 
   1693 int
   1694 soo_kqfilter(struct file *fp, struct knote *kn)
   1695 {
   1696 	struct socket	*so;
   1697 	struct sockbuf	*sb;
   1698 
   1699 	so = (struct socket *)kn->kn_fp->f_data;
   1700 	switch (kn->kn_filter) {
   1701 	case EVFILT_READ:
   1702 		if (so->so_options & SO_ACCEPTCONN)
   1703 			kn->kn_fop = &solisten_filtops;
   1704 		else
   1705 			kn->kn_fop = &soread_filtops;
   1706 		sb = &so->so_rcv;
   1707 		break;
   1708 	case EVFILT_WRITE:
   1709 		kn->kn_fop = &sowrite_filtops;
   1710 		sb = &so->so_snd;
   1711 		break;
   1712 	default:
   1713 		return (1);
   1714 	}
   1715 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1716 	sb->sb_flags |= SB_KNOTE;
   1717 	return (0);
   1718 }
   1719 
   1720 #include <sys/sysctl.h>
   1721 
   1722 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   1723 
   1724 /*
   1725  * sysctl helper routine for kern.somaxkva.  ensures that the given
   1726  * value is not too small.
   1727  * (XXX should we maybe make sure it's not too large as well?)
   1728  */
   1729 static int
   1730 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   1731 {
   1732 	int error, new_somaxkva;
   1733 	struct sysctlnode node;
   1734 	int s;
   1735 
   1736 	new_somaxkva = somaxkva;
   1737 	node = *rnode;
   1738 	node.sysctl_data = &new_somaxkva;
   1739 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1740 	if (error || newp == NULL)
   1741 		return (error);
   1742 
   1743 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   1744 		return (EINVAL);
   1745 
   1746 	s = splvm();
   1747 	simple_lock(&so_pendfree_slock);
   1748 	somaxkva = new_somaxkva;
   1749 	wakeup(&socurkva);
   1750 	simple_unlock(&so_pendfree_slock);
   1751 	splx(s);
   1752 
   1753 	return (error);
   1754 }
   1755 
   1756 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   1757 {
   1758 
   1759 	sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
   1760 		       CTLTYPE_INT, "somaxkva", NULL,
   1761 		       sysctl_kern_somaxkva, 0, NULL, 0,
   1762 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   1763 }
   1764