1 1.148 andvar /* $NetBSD: uipc_socket2.c,v 1.148 2025/09/14 14:24:12 andvar Exp $ */ 2 1.91 ad 3 1.91 ad /*- 4 1.91 ad * Copyright (c) 2008 The NetBSD Foundation, Inc. 5 1.91 ad * All rights reserved. 6 1.91 ad * 7 1.91 ad * Redistribution and use in source and binary forms, with or without 8 1.91 ad * modification, are permitted provided that the following conditions 9 1.91 ad * are met: 10 1.91 ad * 1. Redistributions of source code must retain the above copyright 11 1.91 ad * notice, this list of conditions and the following disclaimer. 12 1.91 ad * 2. Redistributions in binary form must reproduce the above copyright 13 1.91 ad * notice, this list of conditions and the following disclaimer in the 14 1.91 ad * documentation and/or other materials provided with the distribution. 15 1.91 ad * 16 1.91 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 1.91 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 1.91 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 1.91 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 1.91 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 1.91 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 1.91 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 1.91 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 1.91 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 1.91 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 1.91 ad * POSSIBILITY OF SUCH DAMAGE. 27 1.91 ad */ 28 1.9 cgd 29 1.1 cgd /* 30 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993 31 1.7 mycroft * The Regents of the University of California. All rights reserved. 32 1.1 cgd * 33 1.1 cgd * Redistribution and use in source and binary forms, with or without 34 1.1 cgd * modification, are permitted provided that the following conditions 35 1.1 cgd * are met: 36 1.1 cgd * 1. Redistributions of source code must retain the above copyright 37 1.1 cgd * notice, this list of conditions and the following disclaimer. 38 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright 39 1.1 cgd * notice, this list of conditions and the following disclaimer in the 40 1.1 cgd * documentation and/or other materials provided with the distribution. 41 1.54 agc * 3. Neither the name of the University nor the names of its contributors 42 1.1 cgd * may be used to endorse or promote products derived from this software 43 1.1 cgd * without specific prior written permission. 44 1.1 cgd * 45 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 46 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 49 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 1.1 cgd * SUCH DAMAGE. 56 1.1 cgd * 57 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95 58 1.1 cgd */ 59 1.42 lukem 60 1.42 lukem #include <sys/cdefs.h> 61 1.148 andvar __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.148 2025/09/14 14:24:12 andvar Exp $"); 62 1.51 martin 63 1.122 pooka #ifdef _KERNEL_OPT 64 1.131 msaitoh #include "opt_ddb.h" 65 1.139 msaitoh #include "opt_inet.h" 66 1.51 martin #include "opt_mbuftrace.h" 67 1.58 thorpej #include "opt_sb_max.h" 68 1.122 pooka #endif 69 1.1 cgd 70 1.5 mycroft #include <sys/param.h> 71 1.144 riastrad #include <sys/types.h> 72 1.144 riastrad 73 1.144 riastrad #include <sys/buf.h> 74 1.144 riastrad #include <sys/domain.h> 75 1.5 mycroft #include <sys/file.h> 76 1.144 riastrad #include <sys/kauth.h> 77 1.5 mycroft #include <sys/mbuf.h> 78 1.144 riastrad #include <sys/poll.h> 79 1.144 riastrad #include <sys/pool.h> 80 1.144 riastrad #include <sys/proc.h> 81 1.5 mycroft #include <sys/protosw.h> 82 1.146 riastrad #include <sys/sdt.h> 83 1.144 riastrad #include <sys/signalvar.h> 84 1.5 mycroft #include <sys/socket.h> 85 1.5 mycroft #include <sys/socketvar.h> 86 1.144 riastrad #include <sys/systm.h> 87 1.98 pooka #include <sys/uidinfo.h> 88 1.1 cgd 89 1.131 msaitoh #ifdef DDB 90 1.131 msaitoh #include <sys/filedesc.h> 91 1.142 riastrad #include <ddb/db_active.h> 92 1.131 msaitoh #endif 93 1.131 msaitoh 94 1.1 cgd /* 95 1.91 ad * Primitive routines for operating on sockets and socket buffers. 96 1.91 ad * 97 1.116 rmind * Connection life-cycle: 98 1.116 rmind * 99 1.116 rmind * Normal sequence from the active (originating) side: 100 1.116 rmind * 101 1.116 rmind * - soisconnecting() is called during processing of connect() call, 102 1.116 rmind * - resulting in an eventual call to soisconnected() if/when the 103 1.116 rmind * connection is established. 104 1.116 rmind * 105 1.116 rmind * When the connection is torn down during processing of disconnect(): 106 1.116 rmind * 107 1.116 rmind * - soisdisconnecting() is called and, 108 1.116 rmind * - soisdisconnected() is called when the connection to the peer 109 1.116 rmind * is totally severed. 110 1.116 rmind * 111 1.116 rmind * The semantics of these routines are such that connectionless protocols 112 1.116 rmind * can call soisconnected() and soisdisconnected() only, bypassing the 113 1.116 rmind * in-progress calls when setting up a ``connection'' takes no time. 114 1.116 rmind * 115 1.116 rmind * From the passive side, a socket is created with two queues of sockets: 116 1.116 rmind * 117 1.116 rmind * - so_q0 (0) for partial connections (i.e. connections in progress) 118 1.116 rmind * - so_q (1) for connections already made and awaiting user acceptance. 119 1.116 rmind * 120 1.116 rmind * As a protocol is preparing incoming connections, it creates a socket 121 1.116 rmind * structure queued on so_q0 by calling sonewconn(). When the connection 122 1.116 rmind * is established, soisconnected() is called, and transfers the 123 1.116 rmind * socket structure to so_q, making it available to accept(). 124 1.116 rmind * 125 1.116 rmind * If a socket is closed with sockets on either so_q0 or so_q, these 126 1.116 rmind * sockets are dropped. 127 1.116 rmind * 128 1.91 ad * Locking rules and assumptions: 129 1.91 ad * 130 1.91 ad * o socket::so_lock can change on the fly. The low level routines used 131 1.91 ad * to lock sockets are aware of this. When so_lock is acquired, the 132 1.91 ad * routine locking must check to see if so_lock still points to the 133 1.91 ad * lock that was acquired. If so_lock has changed in the meantime, the 134 1.116 rmind * now irrelevant lock that was acquired must be dropped and the lock 135 1.91 ad * operation retried. Although not proven here, this is completely safe 136 1.91 ad * on a multiprocessor system, even with relaxed memory ordering, given 137 1.91 ad * the next two rules: 138 1.91 ad * 139 1.91 ad * o In order to mutate so_lock, the lock pointed to by the current value 140 1.91 ad * of so_lock must be held: i.e., the socket must be held locked by the 141 1.141 riastrad * changing thread. The thread must issue membar_release() to prevent 142 1.91 ad * memory accesses being reordered, and can set so_lock to the desired 143 1.91 ad * value. If the lock pointed to by the new value of so_lock is not 144 1.91 ad * held by the changing thread, the socket must then be considered 145 1.91 ad * unlocked. 146 1.91 ad * 147 1.91 ad * o If so_lock is mutated, and the previous lock referred to by so_lock 148 1.91 ad * could still be visible to other threads in the system (e.g. via file 149 1.91 ad * descriptor or protocol-internal reference), then the old lock must 150 1.91 ad * remain valid until the socket and/or protocol control block has been 151 1.91 ad * torn down. 152 1.91 ad * 153 1.91 ad * o If a socket has a non-NULL so_head value (i.e. is in the process of 154 1.91 ad * connecting), then locking the socket must also lock the socket pointed 155 1.91 ad * to by so_head: their lock pointers must match. 156 1.91 ad * 157 1.91 ad * o If a socket has connections in progress (so_q, so_q0 not empty) then 158 1.91 ad * locking the socket must also lock the sockets attached to both queues. 159 1.91 ad * Again, their lock pointers must match. 160 1.91 ad * 161 1.116 rmind * o Beyond the initial lock assignment in socreate(), assigning locks to 162 1.91 ad * sockets is the responsibility of the individual protocols / protocol 163 1.91 ad * domains. 164 1.1 cgd */ 165 1.1 cgd 166 1.116 rmind static pool_cache_t socket_cache; 167 1.116 rmind u_long sb_max = SB_MAX;/* maximum socket buffer size */ 168 1.116 rmind static u_long sb_max_adj; /* adjusted sb_max */ 169 1.1 cgd 170 1.7 mycroft void 171 1.37 lukem soisconnecting(struct socket *so) 172 1.1 cgd { 173 1.1 cgd 174 1.91 ad KASSERT(solocked(so)); 175 1.91 ad 176 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 177 1.1 cgd so->so_state |= SS_ISCONNECTING; 178 1.1 cgd } 179 1.1 cgd 180 1.7 mycroft void 181 1.37 lukem soisconnected(struct socket *so) 182 1.1 cgd { 183 1.37 lukem struct socket *head; 184 1.1 cgd 185 1.37 lukem head = so->so_head; 186 1.91 ad 187 1.91 ad KASSERT(solocked(so)); 188 1.91 ad KASSERT(head == NULL || solocked2(so, head)); 189 1.91 ad 190 1.113 rmind so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING); 191 1.1 cgd so->so_state |= SS_ISCONNECTED; 192 1.97 tls if (head && so->so_onq == &head->so_q0) { 193 1.97 tls if ((so->so_options & SO_ACCEPTFILTER) == 0) { 194 1.116 rmind /* 195 1.116 rmind * Re-enqueue and wake up any waiters, e.g. 196 1.116 rmind * processes blocking on accept(). 197 1.116 rmind */ 198 1.97 tls soqremque(so, 0); 199 1.97 tls soqinsque(head, so, 1); 200 1.97 tls sorwakeup(head); 201 1.97 tls cv_broadcast(&head->so_cv); 202 1.97 tls } else { 203 1.97 tls so->so_upcall = 204 1.97 tls head->so_accf->so_accept_filter->accf_callback; 205 1.97 tls so->so_upcallarg = head->so_accf->so_accept_filter_arg; 206 1.97 tls so->so_rcv.sb_flags |= SB_UPCALL; 207 1.97 tls so->so_options &= ~SO_ACCEPTFILTER; 208 1.104 tls (*so->so_upcall)(so, so->so_upcallarg, 209 1.104 tls POLLIN|POLLRDNORM, M_DONTWAIT); 210 1.101 yamt } 211 1.1 cgd } else { 212 1.91 ad cv_broadcast(&so->so_cv); 213 1.1 cgd sorwakeup(so); 214 1.1 cgd sowwakeup(so); 215 1.1 cgd } 216 1.1 cgd } 217 1.1 cgd 218 1.7 mycroft void 219 1.37 lukem soisdisconnecting(struct socket *so) 220 1.1 cgd { 221 1.1 cgd 222 1.91 ad KASSERT(solocked(so)); 223 1.91 ad 224 1.1 cgd so->so_state &= ~SS_ISCONNECTING; 225 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 226 1.91 ad cv_broadcast(&so->so_cv); 227 1.1 cgd sowwakeup(so); 228 1.1 cgd sorwakeup(so); 229 1.1 cgd } 230 1.1 cgd 231 1.7 mycroft void 232 1.37 lukem soisdisconnected(struct socket *so) 233 1.1 cgd { 234 1.1 cgd 235 1.91 ad KASSERT(solocked(so)); 236 1.91 ad 237 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 238 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 239 1.91 ad cv_broadcast(&so->so_cv); 240 1.1 cgd sowwakeup(so); 241 1.1 cgd sorwakeup(so); 242 1.1 cgd } 243 1.1 cgd 244 1.94 ad void 245 1.94 ad soinit2(void) 246 1.94 ad { 247 1.94 ad 248 1.94 ad socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0, 249 1.94 ad "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL); 250 1.94 ad } 251 1.94 ad 252 1.1 cgd /* 253 1.116 rmind * sonewconn: accept a new connection. 254 1.116 rmind * 255 1.116 rmind * When an attempt at a new connection is noted on a socket which accepts 256 1.116 rmind * connections, sonewconn(9) is called. If the connection is possible 257 1.116 rmind * (subject to space constraints, etc) then we allocate a new structure, 258 1.116 rmind * properly linked into the data structure of the original socket. 259 1.116 rmind * 260 1.116 rmind * => If 'soready' is true, then socket will become ready for accept() i.e. 261 1.116 rmind * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken. 262 1.116 rmind * => May be called from soft-interrupt context. 263 1.116 rmind * => Listening socket should be locked. 264 1.116 rmind * => Returns the new socket locked. 265 1.1 cgd */ 266 1.1 cgd struct socket * 267 1.116 rmind sonewconn(struct socket *head, bool soready) 268 1.1 cgd { 269 1.116 rmind struct socket *so; 270 1.116 rmind int soqueue, error; 271 1.91 ad 272 1.91 ad KASSERT(solocked(head)); 273 1.1 cgd 274 1.116 rmind if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) { 275 1.123 tls /* 276 1.123 tls * Listen queue overflow. If there is an accept filter 277 1.123 tls * active, pass through the oldest cxn it's handling. 278 1.123 tls */ 279 1.123 tls if (head->so_accf == NULL) { 280 1.123 tls return NULL; 281 1.123 tls } else { 282 1.123 tls struct socket *so2, *next; 283 1.123 tls 284 1.123 tls /* Pass the oldest connection waiting in the 285 1.123 tls accept filter */ 286 1.123 tls for (so2 = TAILQ_FIRST(&head->so_q0); 287 1.123 tls so2 != NULL; so2 = next) { 288 1.123 tls next = TAILQ_NEXT(so2, so_qe); 289 1.123 tls if (so2->so_upcall == NULL) { 290 1.123 tls continue; 291 1.123 tls } 292 1.123 tls so2->so_upcall = NULL; 293 1.123 tls so2->so_upcallarg = NULL; 294 1.123 tls so2->so_options &= ~SO_ACCEPTFILTER; 295 1.123 tls so2->so_rcv.sb_flags &= ~SB_UPCALL; 296 1.123 tls soisconnected(so2); 297 1.123 tls break; 298 1.123 tls } 299 1.123 tls 300 1.148 andvar /* If nothing was nudged out of the accept filter, bail 301 1.123 tls * out; otherwise proceed allocating the socket. */ 302 1.123 tls if (so2 == NULL) { 303 1.123 tls return NULL; 304 1.123 tls } 305 1.123 tls } 306 1.116 rmind } 307 1.116 rmind if ((head->so_options & SO_ACCEPTFILTER) != 0) { 308 1.116 rmind soready = false; 309 1.116 rmind } 310 1.116 rmind soqueue = soready ? 1 : 0; 311 1.113 rmind 312 1.116 rmind if ((so = soget(false)) == NULL) { 313 1.100 dyoung return NULL; 314 1.116 rmind } 315 1.1 cgd so->so_type = head->so_type; 316 1.116 rmind so->so_options = head->so_options & ~SO_ACCEPTCONN; 317 1.1 cgd so->so_linger = head->so_linger; 318 1.1 cgd so->so_state = head->so_state | SS_NOFDREF; 319 1.1 cgd so->so_proto = head->so_proto; 320 1.1 cgd so->so_timeo = head->so_timeo; 321 1.1 cgd so->so_pgid = head->so_pgid; 322 1.24 matt so->so_send = head->so_send; 323 1.24 matt so->so_receive = head->so_receive; 324 1.67 christos so->so_uidinfo = head->so_uidinfo; 325 1.138 christos so->so_egid = head->so_egid; 326 1.96 yamt so->so_cpid = head->so_cpid; 327 1.119 rmind 328 1.119 rmind /* 329 1.119 rmind * Share the lock with the listening-socket, it may get unshared 330 1.119 rmind * once the connection is complete. 331 1.141 riastrad * 332 1.141 riastrad * so_lock is stable while we hold the socket locked, so no 333 1.141 riastrad * need for atomic_load_* here. 334 1.119 rmind */ 335 1.119 rmind mutex_obj_hold(head->so_lock); 336 1.119 rmind so->so_lock = head->so_lock; 337 1.119 rmind 338 1.119 rmind /* 339 1.119 rmind * Reserve the space for socket buffers. 340 1.119 rmind */ 341 1.49 matt #ifdef MBUFTRACE 342 1.49 matt so->so_mowner = head->so_mowner; 343 1.49 matt so->so_rcv.sb_mowner = head->so_rcv.sb_mowner; 344 1.49 matt so->so_snd.sb_mowner = head->so_snd.sb_mowner; 345 1.49 matt #endif 346 1.119 rmind if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 347 1.103 christos goto out; 348 1.119 rmind } 349 1.83 tls so->so_snd.sb_lowat = head->so_snd.sb_lowat; 350 1.83 tls so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 351 1.84 tls so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 352 1.84 tls so->so_snd.sb_timeo = head->so_snd.sb_timeo; 353 1.107 christos so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC); 354 1.107 christos so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC); 355 1.116 rmind 356 1.116 rmind /* 357 1.119 rmind * Finally, perform the protocol attach. Note: a new socket 358 1.119 rmind * lock may be assigned at this point (if so, it will be held). 359 1.116 rmind */ 360 1.119 rmind error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0); 361 1.116 rmind if (error) { 362 1.103 christos out: 363 1.119 rmind KASSERT(solocked(so)); 364 1.116 rmind KASSERT(so->so_accf == NULL); 365 1.91 ad soput(so); 366 1.116 rmind 367 1.116 rmind /* Note: the listening socket shall stay locked. */ 368 1.116 rmind KASSERT(solocked(head)); 369 1.100 dyoung return NULL; 370 1.1 cgd } 371 1.119 rmind KASSERT(solocked2(head, so)); 372 1.116 rmind 373 1.116 rmind /* 374 1.117 rmind * Insert into the queue. If ready, update the connection status 375 1.117 rmind * and wake up any waiters, e.g. processes blocking on accept(). 376 1.116 rmind */ 377 1.117 rmind soqinsque(head, so, soqueue); 378 1.116 rmind if (soready) { 379 1.116 rmind so->so_state |= SS_ISCONNECTED; 380 1.1 cgd sorwakeup(head); 381 1.91 ad cv_broadcast(&head->so_cv); 382 1.1 cgd } 383 1.100 dyoung return so; 384 1.1 cgd } 385 1.1 cgd 386 1.91 ad struct socket * 387 1.91 ad soget(bool waitok) 388 1.91 ad { 389 1.91 ad struct socket *so; 390 1.91 ad 391 1.94 ad so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT)); 392 1.91 ad if (__predict_false(so == NULL)) 393 1.91 ad return (NULL); 394 1.91 ad memset(so, 0, sizeof(*so)); 395 1.91 ad TAILQ_INIT(&so->so_q0); 396 1.91 ad TAILQ_INIT(&so->so_q); 397 1.91 ad cv_init(&so->so_cv, "socket"); 398 1.91 ad cv_init(&so->so_rcv.sb_cv, "netio"); 399 1.91 ad cv_init(&so->so_snd.sb_cv, "netio"); 400 1.91 ad selinit(&so->so_rcv.sb_sel); 401 1.91 ad selinit(&so->so_snd.sb_sel); 402 1.91 ad so->so_rcv.sb_so = so; 403 1.91 ad so->so_snd.sb_so = so; 404 1.91 ad return so; 405 1.91 ad } 406 1.91 ad 407 1.91 ad void 408 1.91 ad soput(struct socket *so) 409 1.91 ad { 410 1.91 ad 411 1.91 ad KASSERT(!cv_has_waiters(&so->so_cv)); 412 1.91 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 413 1.91 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 414 1.91 ad seldestroy(&so->so_rcv.sb_sel); 415 1.91 ad seldestroy(&so->so_snd.sb_sel); 416 1.91 ad mutex_obj_free(so->so_lock); 417 1.91 ad cv_destroy(&so->so_cv); 418 1.91 ad cv_destroy(&so->so_rcv.sb_cv); 419 1.91 ad cv_destroy(&so->so_snd.sb_cv); 420 1.94 ad pool_cache_put(socket_cache, so); 421 1.91 ad } 422 1.91 ad 423 1.116 rmind /* 424 1.116 rmind * soqinsque: insert socket of a new connection into the specified 425 1.116 rmind * accept queue of the listening socket (head). 426 1.116 rmind * 427 1.116 rmind * q = 0: queue of partial connections 428 1.116 rmind * q = 1: queue of incoming connections 429 1.116 rmind */ 430 1.7 mycroft void 431 1.37 lukem soqinsque(struct socket *head, struct socket *so, int q) 432 1.1 cgd { 433 1.116 rmind KASSERT(q == 0 || q == 1); 434 1.91 ad KASSERT(solocked2(head, so)); 435 1.116 rmind KASSERT(so->so_onq == NULL); 436 1.116 rmind KASSERT(so->so_head == NULL); 437 1.22 thorpej 438 1.1 cgd so->so_head = head; 439 1.1 cgd if (q == 0) { 440 1.1 cgd head->so_q0len++; 441 1.22 thorpej so->so_onq = &head->so_q0; 442 1.1 cgd } else { 443 1.1 cgd head->so_qlen++; 444 1.22 thorpej so->so_onq = &head->so_q; 445 1.1 cgd } 446 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe); 447 1.1 cgd } 448 1.1 cgd 449 1.116 rmind /* 450 1.116 rmind * soqremque: remove socket from the specified queue. 451 1.116 rmind * 452 1.116 rmind * => Returns true if socket was removed from the specified queue. 453 1.116 rmind * => False if socket was not removed (because it was in other queue). 454 1.116 rmind */ 455 1.116 rmind bool 456 1.37 lukem soqremque(struct socket *so, int q) 457 1.1 cgd { 458 1.116 rmind struct socket *head = so->so_head; 459 1.1 cgd 460 1.116 rmind KASSERT(q == 0 || q == 1); 461 1.116 rmind KASSERT(solocked(so)); 462 1.116 rmind KASSERT(so->so_onq != NULL); 463 1.116 rmind KASSERT(head != NULL); 464 1.91 ad 465 1.22 thorpej if (q == 0) { 466 1.22 thorpej if (so->so_onq != &head->so_q0) 467 1.116 rmind return false; 468 1.1 cgd head->so_q0len--; 469 1.1 cgd } else { 470 1.22 thorpej if (so->so_onq != &head->so_q) 471 1.116 rmind return false; 472 1.1 cgd head->so_qlen--; 473 1.1 cgd } 474 1.91 ad KASSERT(solocked2(so, head)); 475 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe); 476 1.22 thorpej so->so_onq = NULL; 477 1.22 thorpej so->so_head = NULL; 478 1.116 rmind return true; 479 1.1 cgd } 480 1.1 cgd 481 1.1 cgd /* 482 1.116 rmind * socantsendmore: indicates that no more data will be sent on the 483 1.1 cgd * socket; it would normally be applied to a socket when the user 484 1.1 cgd * informs the system that no more data is to be sent, by the protocol 485 1.120 rtr * code (in case pr_shutdown()). 486 1.1 cgd */ 487 1.4 andrew void 488 1.37 lukem socantsendmore(struct socket *so) 489 1.1 cgd { 490 1.91 ad KASSERT(solocked(so)); 491 1.91 ad 492 1.1 cgd so->so_state |= SS_CANTSENDMORE; 493 1.1 cgd sowwakeup(so); 494 1.1 cgd } 495 1.1 cgd 496 1.116 rmind /* 497 1.116 rmind * socantrcvmore(): indicates that no more data will be received and 498 1.116 rmind * will normally be applied to the socket by a protocol when it detects 499 1.116 rmind * that the peer will send no more data. Data queued for reading in 500 1.116 rmind * the socket may yet be read. 501 1.116 rmind */ 502 1.4 andrew void 503 1.37 lukem socantrcvmore(struct socket *so) 504 1.1 cgd { 505 1.91 ad KASSERT(solocked(so)); 506 1.91 ad 507 1.1 cgd so->so_state |= SS_CANTRCVMORE; 508 1.1 cgd sorwakeup(so); 509 1.1 cgd } 510 1.1 cgd 511 1.1 cgd /* 512 1.128 roy * soroverflow(): indicates that data was attempted to be sent 513 1.128 roy * but the receiving buffer overflowed. 514 1.128 roy */ 515 1.128 roy void 516 1.128 roy soroverflow(struct socket *so) 517 1.128 roy { 518 1.128 roy KASSERT(solocked(so)); 519 1.128 roy 520 1.128 roy so->so_rcv.sb_overflowed++; 521 1.133 christos if (so->so_options & SO_RERROR) { 522 1.146 riastrad so->so_rerror = SET_ERROR(ENOBUFS); 523 1.133 christos sorwakeup(so); 524 1.133 christos } 525 1.128 roy } 526 1.128 roy 527 1.128 roy /* 528 1.1 cgd * Wait for data to arrive at/drain from a socket buffer. 529 1.1 cgd */ 530 1.7 mycroft int 531 1.37 lukem sbwait(struct sockbuf *sb) 532 1.1 cgd { 533 1.91 ad struct socket *so; 534 1.91 ad kmutex_t *lock; 535 1.91 ad int error; 536 1.1 cgd 537 1.91 ad so = sb->sb_so; 538 1.1 cgd 539 1.91 ad KASSERT(solocked(so)); 540 1.1 cgd 541 1.91 ad sb->sb_flags |= SB_NOTIFY; 542 1.91 ad lock = so->so_lock; 543 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0) 544 1.91 ad error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo); 545 1.91 ad else 546 1.91 ad error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo); 547 1.141 riastrad if (__predict_false(lock != atomic_load_relaxed(&so->so_lock))) 548 1.91 ad solockretry(so, lock); 549 1.91 ad return error; 550 1.1 cgd } 551 1.1 cgd 552 1.1 cgd /* 553 1.1 cgd * Wakeup processes waiting on a socket buffer. 554 1.1 cgd * Do asynchronous notification via SIGIO 555 1.39 manu * if the socket buffer has the SB_ASYNC flag set. 556 1.1 cgd */ 557 1.7 mycroft void 558 1.55 christos sowakeup(struct socket *so, struct sockbuf *sb, int code) 559 1.1 cgd { 560 1.90 rmind int band; 561 1.90 rmind 562 1.91 ad KASSERT(solocked(so)); 563 1.91 ad KASSERT(sb->sb_so == so); 564 1.91 ad 565 1.140 thorpej switch (code) { 566 1.140 thorpej case POLL_IN: 567 1.90 rmind band = POLLIN|POLLRDNORM; 568 1.140 thorpej break; 569 1.140 thorpej 570 1.140 thorpej case POLL_OUT: 571 1.90 rmind band = POLLOUT|POLLWRNORM; 572 1.140 thorpej break; 573 1.140 thorpej 574 1.140 thorpej case POLL_HUP: 575 1.140 thorpej band = POLLHUP; 576 1.140 thorpej break; 577 1.140 thorpej 578 1.140 thorpej default: 579 1.140 thorpej band = 0; 580 1.140 thorpej #ifdef DIAGNOSTIC 581 1.140 thorpej printf("bad siginfo code %d in socket notification.\n", code); 582 1.145 riastrad #endif 583 1.140 thorpej break; 584 1.140 thorpej } 585 1.140 thorpej 586 1.91 ad sb->sb_flags &= ~SB_NOTIFY; 587 1.91 ad selnotify(&sb->sb_sel, band, NOTE_SUBMIT); 588 1.91 ad cv_broadcast(&sb->sb_cv); 589 1.90 rmind if (sb->sb_flags & SB_ASYNC) 590 1.57 christos fownsignal(so->so_pgid, SIGIO, code, band, so); 591 1.24 matt if (sb->sb_flags & SB_UPCALL) 592 1.104 tls (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT); 593 1.1 cgd } 594 1.1 cgd 595 1.1 cgd /* 596 1.95 ad * Reset a socket's lock pointer. Wake all threads waiting on the 597 1.95 ad * socket's condition variables so that they can restart their waits 598 1.95 ad * using the new lock. The existing lock must be held. 599 1.141 riastrad * 600 1.141 riastrad * Caller must have issued membar_release before this. 601 1.95 ad */ 602 1.95 ad void 603 1.95 ad solockreset(struct socket *so, kmutex_t *lock) 604 1.95 ad { 605 1.95 ad 606 1.95 ad KASSERT(solocked(so)); 607 1.95 ad 608 1.95 ad so->so_lock = lock; 609 1.95 ad cv_broadcast(&so->so_snd.sb_cv); 610 1.95 ad cv_broadcast(&so->so_rcv.sb_cv); 611 1.95 ad cv_broadcast(&so->so_cv); 612 1.95 ad } 613 1.95 ad 614 1.95 ad /* 615 1.1 cgd * Socket buffer (struct sockbuf) utility routines. 616 1.1 cgd * 617 1.1 cgd * Each socket contains two socket buffers: one for sending data and 618 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs, 619 1.1 cgd * information about the number of mbufs and amount of data in the 620 1.13 mycroft * queue, and other fields allowing poll() statements and notification 621 1.1 cgd * on data availability to be implemented. 622 1.1 cgd * 623 1.1 cgd * Data stored in a socket buffer is maintained as a list of records. 624 1.1 cgd * Each record is a list of mbufs chained together with the m_next 625 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper 626 1.1 cgd * level routine soreceive() expects the following conventions to be 627 1.1 cgd * observed when placing information in the receive buffer: 628 1.1 cgd * 629 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's 630 1.1 cgd * name, then a record containing that name must be present before 631 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME). 632 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really 633 1.1 cgd * just additional data associated with the message), and there are 634 1.1 cgd * ``rights'' to be received, then a record containing this data 635 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL). 636 1.1 cgd * 3. If a name or rights record exists, then it must be followed by 637 1.1 cgd * a data record, perhaps of zero length. 638 1.1 cgd * 639 1.1 cgd * Before using a new socket structure it is first necessary to reserve 640 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit 641 1.1 cgd * some of the available buffer space in the system buffer pool for the 642 1.1 cgd * socket (currently, it does nothing but enforce limits). The space 643 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed. 644 1.1 cgd */ 645 1.1 cgd 646 1.7 mycroft int 647 1.58 thorpej sb_max_set(u_long new_sbmax) 648 1.58 thorpej { 649 1.58 thorpej int s; 650 1.58 thorpej 651 1.58 thorpej if (new_sbmax < (16 * 1024)) 652 1.146 riastrad return SET_ERROR(EINVAL); 653 1.58 thorpej 654 1.58 thorpej s = splsoftnet(); 655 1.58 thorpej sb_max = new_sbmax; 656 1.58 thorpej sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES); 657 1.58 thorpej splx(s); 658 1.58 thorpej 659 1.58 thorpej return (0); 660 1.58 thorpej } 661 1.58 thorpej 662 1.58 thorpej int 663 1.37 lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 664 1.1 cgd { 665 1.116 rmind KASSERT(so->so_pcb == NULL || solocked(so)); 666 1.91 ad 667 1.74 christos /* 668 1.74 christos * there's at least one application (a configure script of screen) 669 1.74 christos * which expects a fifo is writable even if it has "some" bytes 670 1.74 christos * in its buffer. 671 1.74 christos * so we want to make sure (hiwat - lowat) >= (some bytes). 672 1.74 christos * 673 1.74 christos * PIPE_BUF here is an arbitrary value chosen as (some bytes) above. 674 1.74 christos * we expect it's large enough for such applications. 675 1.74 christos */ 676 1.74 christos u_long lowat = MAX(sock_loan_thresh, MCLBYTES); 677 1.74 christos u_long hiwat = lowat + PIPE_BUF; 678 1.1 cgd 679 1.74 christos if (sndcc < hiwat) 680 1.74 christos sndcc = hiwat; 681 1.59 christos if (sbreserve(&so->so_snd, sndcc, so) == 0) 682 1.1 cgd goto bad; 683 1.59 christos if (sbreserve(&so->so_rcv, rcvcc, so) == 0) 684 1.1 cgd goto bad2; 685 1.1 cgd if (so->so_rcv.sb_lowat == 0) 686 1.1 cgd so->so_rcv.sb_lowat = 1; 687 1.1 cgd if (so->so_snd.sb_lowat == 0) 688 1.74 christos so->so_snd.sb_lowat = lowat; 689 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 690 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 691 1.1 cgd return (0); 692 1.37 lukem bad2: 693 1.59 christos sbrelease(&so->so_snd, so); 694 1.37 lukem bad: 695 1.146 riastrad return SET_ERROR(ENOBUFS); 696 1.1 cgd } 697 1.1 cgd 698 1.1 cgd /* 699 1.1 cgd * Allot mbufs to a sockbuf. 700 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting 701 1.1 cgd * if buffering efficiency is near the normal case. 702 1.1 cgd */ 703 1.7 mycroft int 704 1.59 christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so) 705 1.1 cgd { 706 1.75 ad struct lwp *l = curlwp; /* XXX */ 707 1.62 christos rlim_t maxcc; 708 1.67 christos struct uidinfo *uidinfo; 709 1.1 cgd 710 1.116 rmind KASSERT(so->so_pcb == NULL || solocked(so)); 711 1.91 ad KASSERT(sb->sb_so == so); 712 1.91 ad KASSERT(sb_max_adj != 0); 713 1.91 ad 714 1.58 thorpej if (cc == 0 || cc > sb_max_adj) 715 1.1 cgd return (0); 716 1.93 christos 717 1.105 elad maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur; 718 1.93 christos 719 1.93 christos uidinfo = so->so_uidinfo; 720 1.67 christos if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc)) 721 1.62 christos return 0; 722 1.132 riastrad sb->sb_mbmax = uimin(cc * 2, sb_max); 723 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat) 724 1.1 cgd sb->sb_lowat = sb->sb_hiwat; 725 1.131 msaitoh 726 1.1 cgd return (1); 727 1.1 cgd } 728 1.1 cgd 729 1.1 cgd /* 730 1.91 ad * Free mbufs held by a socket, and reserved mbuf space. We do not assert 731 1.91 ad * that the socket is held locked here: see sorflush(). 732 1.1 cgd */ 733 1.7 mycroft void 734 1.59 christos sbrelease(struct sockbuf *sb, struct socket *so) 735 1.1 cgd { 736 1.1 cgd 737 1.91 ad KASSERT(sb->sb_so == so); 738 1.91 ad 739 1.1 cgd sbflush(sb); 740 1.87 yamt (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY); 741 1.59 christos sb->sb_mbmax = 0; 742 1.1 cgd } 743 1.1 cgd 744 1.1 cgd /* 745 1.1 cgd * Routines to add and remove 746 1.1 cgd * data from an mbuf queue. 747 1.1 cgd * 748 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to 749 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate 750 1.1 cgd * space is available, comparing the function sbspace() with the amount 751 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in 752 1.1 cgd * that data supplied is treated as the beginning of a new record. 753 1.1 cgd * To place a sender's address, optional access rights, and data in a 754 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place 755 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights() 756 1.1 cgd * should be used. In either case, the new data begins a new record. 757 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check 758 1.1 cgd * for the caller that there will be enough space to store the data. 759 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs 760 1.1 cgd * to store additional information in. 761 1.1 cgd * 762 1.1 cgd * Reliable protocols may use the socket send buffer to hold data 763 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket 764 1.129 maxv * send buffer in a protocol with m_copym for output to a peer, 765 1.1 cgd * and then removing the data from the socket buffer with sbdrop() 766 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer. 767 1.1 cgd */ 768 1.1 cgd 769 1.43 thorpej #ifdef SOCKBUF_DEBUG 770 1.43 thorpej void 771 1.43 thorpej sblastrecordchk(struct sockbuf *sb, const char *where) 772 1.43 thorpej { 773 1.43 thorpej struct mbuf *m = sb->sb_mb; 774 1.43 thorpej 775 1.91 ad KASSERT(solocked(sb->sb_so)); 776 1.91 ad 777 1.43 thorpej while (m && m->m_nextpkt) 778 1.43 thorpej m = m->m_nextpkt; 779 1.43 thorpej 780 1.43 thorpej if (m != sb->sb_lastrecord) { 781 1.43 thorpej printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n", 782 1.43 thorpej sb->sb_mb, sb->sb_lastrecord, m); 783 1.43 thorpej printf("packet chain:\n"); 784 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 785 1.43 thorpej printf("\t%p\n", m); 786 1.47 provos panic("sblastrecordchk from %s", where); 787 1.43 thorpej } 788 1.43 thorpej } 789 1.43 thorpej 790 1.43 thorpej void 791 1.43 thorpej sblastmbufchk(struct sockbuf *sb, const char *where) 792 1.43 thorpej { 793 1.43 thorpej struct mbuf *m = sb->sb_mb; 794 1.43 thorpej struct mbuf *n; 795 1.43 thorpej 796 1.91 ad KASSERT(solocked(sb->sb_so)); 797 1.91 ad 798 1.43 thorpej while (m && m->m_nextpkt) 799 1.43 thorpej m = m->m_nextpkt; 800 1.43 thorpej 801 1.43 thorpej while (m && m->m_next) 802 1.43 thorpej m = m->m_next; 803 1.43 thorpej 804 1.43 thorpej if (m != sb->sb_mbtail) { 805 1.43 thorpej printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n", 806 1.43 thorpej sb->sb_mb, sb->sb_mbtail, m); 807 1.43 thorpej printf("packet tree:\n"); 808 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 809 1.43 thorpej printf("\t"); 810 1.43 thorpej for (n = m; n != NULL; n = n->m_next) 811 1.43 thorpej printf("%p ", n); 812 1.43 thorpej printf("\n"); 813 1.43 thorpej } 814 1.43 thorpej panic("sblastmbufchk from %s", where); 815 1.43 thorpej } 816 1.43 thorpej } 817 1.43 thorpej #endif /* SOCKBUF_DEBUG */ 818 1.43 thorpej 819 1.63 jonathan /* 820 1.63 jonathan * Link a chain of records onto a socket buffer 821 1.63 jonathan */ 822 1.63 jonathan #define SBLINKRECORDCHAIN(sb, m0, mlast) \ 823 1.43 thorpej do { \ 824 1.43 thorpej if ((sb)->sb_lastrecord != NULL) \ 825 1.43 thorpej (sb)->sb_lastrecord->m_nextpkt = (m0); \ 826 1.43 thorpej else \ 827 1.43 thorpej (sb)->sb_mb = (m0); \ 828 1.63 jonathan (sb)->sb_lastrecord = (mlast); \ 829 1.43 thorpej } while (/*CONSTCOND*/0) 830 1.43 thorpej 831 1.63 jonathan 832 1.63 jonathan #define SBLINKRECORD(sb, m0) \ 833 1.63 jonathan SBLINKRECORDCHAIN(sb, m0, m0) 834 1.63 jonathan 835 1.1 cgd /* 836 1.1 cgd * Append mbuf chain m to the last record in the 837 1.1 cgd * socket buffer sb. The additional space associated 838 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are 839 1.1 cgd * discarded and mbufs are compacted where possible. 840 1.1 cgd */ 841 1.7 mycroft void 842 1.37 lukem sbappend(struct sockbuf *sb, struct mbuf *m) 843 1.1 cgd { 844 1.37 lukem struct mbuf *n; 845 1.1 cgd 846 1.91 ad KASSERT(solocked(sb->sb_so)); 847 1.91 ad 848 1.115 christos if (m == NULL) 849 1.1 cgd return; 850 1.43 thorpej 851 1.49 matt #ifdef MBUFTRACE 852 1.65 jonathan m_claimm(m, sb->sb_mowner); 853 1.49 matt #endif 854 1.49 matt 855 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 1"); 856 1.43 thorpej 857 1.43 thorpej if ((n = sb->sb_lastrecord) != NULL) { 858 1.43 thorpej /* 859 1.43 thorpej * XXX Would like to simply use sb_mbtail here, but 860 1.43 thorpej * XXX I need to verify that I won't miss an EOR that 861 1.43 thorpej * XXX way. 862 1.43 thorpej */ 863 1.1 cgd do { 864 1.1 cgd if (n->m_flags & M_EOR) { 865 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */ 866 1.1 cgd return; 867 1.1 cgd } 868 1.1 cgd } while (n->m_next && (n = n->m_next)); 869 1.43 thorpej } else { 870 1.43 thorpej /* 871 1.43 thorpej * If this is the first record in the socket buffer, it's 872 1.43 thorpej * also the last record. 873 1.43 thorpej */ 874 1.43 thorpej sb->sb_lastrecord = m; 875 1.1 cgd } 876 1.1 cgd sbcompress(sb, m, n); 877 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 2"); 878 1.43 thorpej } 879 1.43 thorpej 880 1.43 thorpej /* 881 1.43 thorpej * This version of sbappend() should only be used when the caller 882 1.43 thorpej * absolutely knows that there will never be more than one record 883 1.43 thorpej * in the socket buffer, that is, a stream protocol (such as TCP). 884 1.43 thorpej */ 885 1.43 thorpej void 886 1.44 thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m) 887 1.43 thorpej { 888 1.43 thorpej 889 1.91 ad KASSERT(solocked(sb->sb_so)); 890 1.43 thorpej KDASSERT(m->m_nextpkt == NULL); 891 1.43 thorpej KASSERT(sb->sb_mb == sb->sb_lastrecord); 892 1.43 thorpej 893 1.43 thorpej SBLASTMBUFCHK(sb, __func__); 894 1.43 thorpej 895 1.49 matt #ifdef MBUFTRACE 896 1.65 jonathan m_claimm(m, sb->sb_mowner); 897 1.49 matt #endif 898 1.49 matt 899 1.43 thorpej sbcompress(sb, m, sb->sb_mbtail); 900 1.43 thorpej 901 1.43 thorpej sb->sb_lastrecord = sb->sb_mb; 902 1.43 thorpej SBLASTRECORDCHK(sb, __func__); 903 1.1 cgd } 904 1.1 cgd 905 1.1 cgd #ifdef SOCKBUF_DEBUG 906 1.7 mycroft void 907 1.37 lukem sbcheck(struct sockbuf *sb) 908 1.1 cgd { 909 1.91 ad struct mbuf *m, *m2; 910 1.43 thorpej u_long len, mbcnt; 911 1.1 cgd 912 1.91 ad KASSERT(solocked(sb->sb_so)); 913 1.91 ad 914 1.37 lukem len = 0; 915 1.37 lukem mbcnt = 0; 916 1.91 ad for (m = sb->sb_mb; m; m = m->m_nextpkt) { 917 1.91 ad for (m2 = m; m2 != NULL; m2 = m2->m_next) { 918 1.91 ad len += m2->m_len; 919 1.91 ad mbcnt += MSIZE; 920 1.91 ad if (m2->m_flags & M_EXT) 921 1.91 ad mbcnt += m2->m_ext.ext_size; 922 1.91 ad if (m2->m_nextpkt != NULL) 923 1.91 ad panic("sbcheck nextpkt"); 924 1.91 ad } 925 1.1 cgd } 926 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 927 1.43 thorpej printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc, 928 1.1 cgd mbcnt, sb->sb_mbcnt); 929 1.1 cgd panic("sbcheck"); 930 1.1 cgd } 931 1.1 cgd } 932 1.1 cgd #endif 933 1.1 cgd 934 1.1 cgd /* 935 1.1 cgd * As above, except the mbuf chain 936 1.1 cgd * begins a new record. 937 1.1 cgd */ 938 1.7 mycroft void 939 1.37 lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 940 1.1 cgd { 941 1.37 lukem struct mbuf *m; 942 1.1 cgd 943 1.91 ad KASSERT(solocked(sb->sb_so)); 944 1.91 ad 945 1.115 christos if (m0 == NULL) 946 1.1 cgd return; 947 1.43 thorpej 948 1.49 matt #ifdef MBUFTRACE 949 1.65 jonathan m_claimm(m0, sb->sb_mowner); 950 1.49 matt #endif 951 1.1 cgd /* 952 1.1 cgd * Put the first mbuf on the queue. 953 1.1 cgd * Note this permits zero length records. 954 1.1 cgd */ 955 1.1 cgd sballoc(sb, m0); 956 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 1"); 957 1.43 thorpej SBLINKRECORD(sb, m0); 958 1.1 cgd m = m0->m_next; 959 1.1 cgd m0->m_next = 0; 960 1.1 cgd if (m && (m0->m_flags & M_EOR)) { 961 1.1 cgd m0->m_flags &= ~M_EOR; 962 1.1 cgd m->m_flags |= M_EOR; 963 1.1 cgd } 964 1.1 cgd sbcompress(sb, m, m0); 965 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 2"); 966 1.1 cgd } 967 1.1 cgd 968 1.1 cgd /* 969 1.1 cgd * As above except that OOB data 970 1.1 cgd * is inserted at the beginning of the sockbuf, 971 1.1 cgd * but after any other OOB data. 972 1.1 cgd */ 973 1.7 mycroft void 974 1.37 lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0) 975 1.1 cgd { 976 1.37 lukem struct mbuf *m, **mp; 977 1.1 cgd 978 1.91 ad KASSERT(solocked(sb->sb_so)); 979 1.91 ad 980 1.115 christos if (m0 == NULL) 981 1.1 cgd return; 982 1.43 thorpej 983 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 1"); 984 1.43 thorpej 985 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) { 986 1.1 cgd again: 987 1.1 cgd switch (m->m_type) { 988 1.1 cgd 989 1.1 cgd case MT_OOBDATA: 990 1.1 cgd continue; /* WANT next train */ 991 1.1 cgd 992 1.1 cgd case MT_CONTROL: 993 1.11 christos if ((m = m->m_next) != NULL) 994 1.1 cgd goto again; /* inspect THIS train further */ 995 1.1 cgd } 996 1.1 cgd break; 997 1.1 cgd } 998 1.1 cgd /* 999 1.1 cgd * Put the first mbuf on the queue. 1000 1.1 cgd * Note this permits zero length records. 1001 1.1 cgd */ 1002 1.1 cgd sballoc(sb, m0); 1003 1.1 cgd m0->m_nextpkt = *mp; 1004 1.43 thorpej if (*mp == NULL) { 1005 1.43 thorpej /* m0 is actually the new tail */ 1006 1.43 thorpej sb->sb_lastrecord = m0; 1007 1.43 thorpej } 1008 1.1 cgd *mp = m0; 1009 1.1 cgd m = m0->m_next; 1010 1.1 cgd m0->m_next = 0; 1011 1.1 cgd if (m && (m0->m_flags & M_EOR)) { 1012 1.1 cgd m0->m_flags &= ~M_EOR; 1013 1.1 cgd m->m_flags |= M_EOR; 1014 1.1 cgd } 1015 1.1 cgd sbcompress(sb, m, m0); 1016 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 2"); 1017 1.1 cgd } 1018 1.1 cgd 1019 1.1 cgd /* 1020 1.1 cgd * Append address and data, and optionally, control (ancillary) data 1021 1.1 cgd * to the receive queue of a socket. If present, 1022 1.1 cgd * m0 must include a packet header with total length. 1023 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs. 1024 1.1 cgd */ 1025 1.7 mycroft int 1026 1.61 matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0, 1027 1.37 lukem struct mbuf *control) 1028 1.1 cgd { 1029 1.43 thorpej struct mbuf *m, *n, *nlast; 1030 1.50 fvdl int space, len; 1031 1.1 cgd 1032 1.91 ad KASSERT(solocked(sb->sb_so)); 1033 1.91 ad 1034 1.37 lukem space = asa->sa_len; 1035 1.37 lukem 1036 1.49 matt if (m0 != NULL) { 1037 1.49 matt if ((m0->m_flags & M_PKTHDR) == 0) 1038 1.49 matt panic("sbappendaddr"); 1039 1.1 cgd space += m0->m_pkthdr.len; 1040 1.49 matt #ifdef MBUFTRACE 1041 1.65 jonathan m_claimm(m0, sb->sb_mowner); 1042 1.49 matt #endif 1043 1.49 matt } 1044 1.1 cgd for (n = control; n; n = n->m_next) { 1045 1.1 cgd space += n->m_len; 1046 1.49 matt MCLAIM(n, sb->sb_mowner); 1047 1.115 christos if (n->m_next == NULL) /* keep pointer to last control buf */ 1048 1.1 cgd break; 1049 1.1 cgd } 1050 1.1 cgd if (space > sbspace(sb)) 1051 1.1 cgd return (0); 1052 1.115 christos m = m_get(M_DONTWAIT, MT_SONAME); 1053 1.115 christos if (m == NULL) 1054 1.1 cgd return (0); 1055 1.49 matt MCLAIM(m, sb->sb_mowner); 1056 1.50 fvdl /* 1057 1.50 fvdl * XXX avoid 'comparison always true' warning which isn't easily 1058 1.50 fvdl * avoided. 1059 1.50 fvdl */ 1060 1.50 fvdl len = asa->sa_len; 1061 1.50 fvdl if (len > MLEN) { 1062 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT); 1063 1.20 thorpej if ((m->m_flags & M_EXT) == 0) { 1064 1.20 thorpej m_free(m); 1065 1.20 thorpej return (0); 1066 1.20 thorpej } 1067 1.20 thorpej } 1068 1.1 cgd m->m_len = asa->sa_len; 1069 1.82 christos memcpy(mtod(m, void *), asa, asa->sa_len); 1070 1.1 cgd if (n) 1071 1.1 cgd n->m_next = m0; /* concatenate data to control */ 1072 1.1 cgd else 1073 1.1 cgd control = m0; 1074 1.1 cgd m->m_next = control; 1075 1.43 thorpej 1076 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 1"); 1077 1.43 thorpej 1078 1.43 thorpej for (n = m; n->m_next != NULL; n = n->m_next) 1079 1.1 cgd sballoc(sb, n); 1080 1.43 thorpej sballoc(sb, n); 1081 1.43 thorpej nlast = n; 1082 1.43 thorpej SBLINKRECORD(sb, m); 1083 1.43 thorpej 1084 1.43 thorpej sb->sb_mbtail = nlast; 1085 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendaddr"); 1086 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 2"); 1087 1.43 thorpej 1088 1.1 cgd return (1); 1089 1.1 cgd } 1090 1.1 cgd 1091 1.63 jonathan /* 1092 1.63 jonathan * Helper for sbappendchainaddr: prepend a struct sockaddr* to 1093 1.63 jonathan * an mbuf chain. 1094 1.63 jonathan */ 1095 1.70 perry static inline struct mbuf * 1096 1.81 yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0, 1097 1.64 jonathan const struct sockaddr *asa) 1098 1.63 jonathan { 1099 1.63 jonathan struct mbuf *m; 1100 1.64 jonathan const int salen = asa->sa_len; 1101 1.63 jonathan 1102 1.91 ad KASSERT(solocked(sb->sb_so)); 1103 1.91 ad 1104 1.63 jonathan /* only the first in each chain need be a pkthdr */ 1105 1.115 christos m = m_gethdr(M_DONTWAIT, MT_SONAME); 1106 1.115 christos if (m == NULL) 1107 1.115 christos return NULL; 1108 1.63 jonathan MCLAIM(m, sb->sb_mowner); 1109 1.64 jonathan #ifdef notyet 1110 1.64 jonathan if (salen > MHLEN) { 1111 1.64 jonathan MEXTMALLOC(m, salen, M_NOWAIT); 1112 1.64 jonathan if ((m->m_flags & M_EXT) == 0) { 1113 1.64 jonathan m_free(m); 1114 1.115 christos return NULL; 1115 1.64 jonathan } 1116 1.64 jonathan } 1117 1.64 jonathan #else 1118 1.64 jonathan KASSERT(salen <= MHLEN); 1119 1.64 jonathan #endif 1120 1.64 jonathan m->m_len = salen; 1121 1.82 christos memcpy(mtod(m, void *), asa, salen); 1122 1.63 jonathan m->m_next = m0; 1123 1.64 jonathan m->m_pkthdr.len = salen + m0->m_pkthdr.len; 1124 1.63 jonathan 1125 1.63 jonathan return m; 1126 1.63 jonathan } 1127 1.63 jonathan 1128 1.63 jonathan int 1129 1.63 jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa, 1130 1.63 jonathan struct mbuf *m0, int sbprio) 1131 1.63 jonathan { 1132 1.63 jonathan struct mbuf *m, *n, *n0, *nlast; 1133 1.63 jonathan int error; 1134 1.63 jonathan 1135 1.91 ad KASSERT(solocked(sb->sb_so)); 1136 1.91 ad 1137 1.63 jonathan /* 1138 1.63 jonathan * XXX sbprio reserved for encoding priority of this* request: 1139 1.63 jonathan * SB_PRIO_NONE --> honour normal sb limits 1140 1.63 jonathan * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space, 1141 1.63 jonathan * take whole chain. Intended for large requests 1142 1.63 jonathan * that should be delivered atomically (all, or none). 1143 1.63 jonathan * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow 1144 1.63 jonathan * over normal socket limits, for messages indicating 1145 1.63 jonathan * buffer overflow in earlier normal/lower-priority messages 1146 1.63 jonathan * SB_PRIO_BESTEFFORT --> ignore limits entirely. 1147 1.63 jonathan * Intended for kernel-generated messages only. 1148 1.63 jonathan * Up to generator to avoid total mbuf resource exhaustion. 1149 1.63 jonathan */ 1150 1.63 jonathan (void)sbprio; 1151 1.63 jonathan 1152 1.63 jonathan if (m0 && (m0->m_flags & M_PKTHDR) == 0) 1153 1.63 jonathan panic("sbappendaddrchain"); 1154 1.63 jonathan 1155 1.114 martin #ifdef notyet 1156 1.63 jonathan space = sbspace(sb); 1157 1.66 perry 1158 1.66 perry /* 1159 1.63 jonathan * Enforce SB_PRIO_* limits as described above. 1160 1.63 jonathan */ 1161 1.63 jonathan #endif 1162 1.63 jonathan 1163 1.63 jonathan n0 = NULL; 1164 1.63 jonathan nlast = NULL; 1165 1.63 jonathan for (m = m0; m; m = m->m_nextpkt) { 1166 1.63 jonathan struct mbuf *np; 1167 1.63 jonathan 1168 1.64 jonathan #ifdef MBUFTRACE 1169 1.65 jonathan m_claimm(m, sb->sb_mowner); 1170 1.64 jonathan #endif 1171 1.64 jonathan 1172 1.63 jonathan /* Prepend sockaddr to this record (m) of input chain m0 */ 1173 1.147 riastrad n = m_prepend_sockaddr(sb, m, asa); 1174 1.63 jonathan if (n == NULL) { 1175 1.146 riastrad error = SET_ERROR(ENOBUFS); 1176 1.63 jonathan goto bad; 1177 1.63 jonathan } 1178 1.63 jonathan 1179 1.63 jonathan /* Append record (asa+m) to end of new chain n0 */ 1180 1.63 jonathan if (n0 == NULL) { 1181 1.63 jonathan n0 = n; 1182 1.63 jonathan } else { 1183 1.63 jonathan nlast->m_nextpkt = n; 1184 1.63 jonathan } 1185 1.63 jonathan /* Keep track of last record on new chain */ 1186 1.63 jonathan nlast = n; 1187 1.63 jonathan 1188 1.63 jonathan for (np = n; np; np = np->m_next) 1189 1.63 jonathan sballoc(sb, np); 1190 1.63 jonathan } 1191 1.63 jonathan 1192 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 1"); 1193 1.64 jonathan 1194 1.63 jonathan /* Drop the entire chain of (asa+m) records onto the socket */ 1195 1.63 jonathan SBLINKRECORDCHAIN(sb, n0, nlast); 1196 1.64 jonathan 1197 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 2"); 1198 1.64 jonathan 1199 1.63 jonathan for (m = nlast; m->m_next; m = m->m_next) 1200 1.63 jonathan ; 1201 1.63 jonathan sb->sb_mbtail = m; 1202 1.64 jonathan SBLASTMBUFCHK(sb, "sbappendaddrchain"); 1203 1.64 jonathan 1204 1.63 jonathan return (1); 1205 1.63 jonathan 1206 1.63 jonathan bad: 1207 1.64 jonathan /* 1208 1.143 andvar * On error, free the prepended addresses. For consistency 1209 1.64 jonathan * with sbappendaddr(), leave it to our caller to free 1210 1.64 jonathan * the input record chain passed to us as m0. 1211 1.64 jonathan */ 1212 1.64 jonathan while ((n = n0) != NULL) { 1213 1.147 riastrad struct mbuf *np; 1214 1.64 jonathan 1215 1.64 jonathan /* Undo the sballoc() of this record */ 1216 1.64 jonathan for (np = n; np; np = np->m_next) 1217 1.64 jonathan sbfree(sb, np); 1218 1.64 jonathan 1219 1.64 jonathan n0 = n->m_nextpkt; /* iterate at next prepended address */ 1220 1.124 christos np = m_free(n); /* free prepended address (not data) */ 1221 1.64 jonathan } 1222 1.114 martin return error; 1223 1.63 jonathan } 1224 1.63 jonathan 1225 1.63 jonathan 1226 1.7 mycroft int 1227 1.37 lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control) 1228 1.1 cgd { 1229 1.43 thorpej struct mbuf *m, *mlast, *n; 1230 1.37 lukem int space; 1231 1.1 cgd 1232 1.91 ad KASSERT(solocked(sb->sb_so)); 1233 1.91 ad 1234 1.37 lukem space = 0; 1235 1.115 christos if (control == NULL) 1236 1.1 cgd panic("sbappendcontrol"); 1237 1.1 cgd for (m = control; ; m = m->m_next) { 1238 1.1 cgd space += m->m_len; 1239 1.49 matt MCLAIM(m, sb->sb_mowner); 1240 1.115 christos if (m->m_next == NULL) 1241 1.1 cgd break; 1242 1.1 cgd } 1243 1.1 cgd n = m; /* save pointer to last control buffer */ 1244 1.49 matt for (m = m0; m; m = m->m_next) { 1245 1.49 matt MCLAIM(m, sb->sb_mowner); 1246 1.1 cgd space += m->m_len; 1247 1.49 matt } 1248 1.1 cgd if (space > sbspace(sb)) 1249 1.1 cgd return (0); 1250 1.1 cgd n->m_next = m0; /* concatenate data to control */ 1251 1.43 thorpej 1252 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 1"); 1253 1.43 thorpej 1254 1.43 thorpej for (m = control; m->m_next != NULL; m = m->m_next) 1255 1.1 cgd sballoc(sb, m); 1256 1.43 thorpej sballoc(sb, m); 1257 1.43 thorpej mlast = m; 1258 1.43 thorpej SBLINKRECORD(sb, control); 1259 1.43 thorpej 1260 1.43 thorpej sb->sb_mbtail = mlast; 1261 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendcontrol"); 1262 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 2"); 1263 1.43 thorpej 1264 1.1 cgd return (1); 1265 1.1 cgd } 1266 1.1 cgd 1267 1.1 cgd /* 1268 1.1 cgd * Compress mbuf chain m into the socket 1269 1.1 cgd * buffer sb following mbuf n. If n 1270 1.1 cgd * is null, the buffer is presumed empty. 1271 1.1 cgd */ 1272 1.7 mycroft void 1273 1.37 lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 1274 1.1 cgd { 1275 1.37 lukem int eor; 1276 1.37 lukem struct mbuf *o; 1277 1.1 cgd 1278 1.91 ad KASSERT(solocked(sb->sb_so)); 1279 1.91 ad 1280 1.37 lukem eor = 0; 1281 1.1 cgd while (m) { 1282 1.1 cgd eor |= m->m_flags & M_EOR; 1283 1.1 cgd if (m->m_len == 0 && 1284 1.1 cgd (eor == 0 || 1285 1.1 cgd (((o = m->m_next) || (o = n)) && 1286 1.1 cgd o->m_type == m->m_type))) { 1287 1.46 thorpej if (sb->sb_lastrecord == m) 1288 1.46 thorpej sb->sb_lastrecord = m->m_next; 1289 1.1 cgd m = m_free(m); 1290 1.1 cgd continue; 1291 1.1 cgd } 1292 1.40 thorpej if (n && (n->m_flags & M_EOR) == 0 && 1293 1.40 thorpej /* M_TRAILINGSPACE() checks buffer writeability */ 1294 1.40 thorpej m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */ 1295 1.40 thorpej m->m_len <= M_TRAILINGSPACE(n) && 1296 1.40 thorpej n->m_type == m->m_type) { 1297 1.82 christos memcpy(mtod(n, char *) + n->m_len, mtod(m, void *), 1298 1.1 cgd (unsigned)m->m_len); 1299 1.1 cgd n->m_len += m->m_len; 1300 1.1 cgd sb->sb_cc += m->m_len; 1301 1.1 cgd m = m_free(m); 1302 1.1 cgd continue; 1303 1.1 cgd } 1304 1.1 cgd if (n) 1305 1.1 cgd n->m_next = m; 1306 1.1 cgd else 1307 1.1 cgd sb->sb_mb = m; 1308 1.43 thorpej sb->sb_mbtail = m; 1309 1.1 cgd sballoc(sb, m); 1310 1.1 cgd n = m; 1311 1.1 cgd m->m_flags &= ~M_EOR; 1312 1.1 cgd m = m->m_next; 1313 1.1 cgd n->m_next = 0; 1314 1.1 cgd } 1315 1.1 cgd if (eor) { 1316 1.1 cgd if (n) 1317 1.1 cgd n->m_flags |= eor; 1318 1.1 cgd else 1319 1.15 christos printf("semi-panic: sbcompress\n"); 1320 1.1 cgd } 1321 1.43 thorpej SBLASTMBUFCHK(sb, __func__); 1322 1.1 cgd } 1323 1.1 cgd 1324 1.1 cgd /* 1325 1.1 cgd * Free all mbufs in a sockbuf. 1326 1.1 cgd * Check that all resources are reclaimed. 1327 1.1 cgd */ 1328 1.7 mycroft void 1329 1.37 lukem sbflush(struct sockbuf *sb) 1330 1.1 cgd { 1331 1.1 cgd 1332 1.91 ad KASSERT(solocked(sb->sb_so)); 1333 1.43 thorpej KASSERT((sb->sb_flags & SB_LOCK) == 0); 1334 1.43 thorpej 1335 1.1 cgd while (sb->sb_mbcnt) 1336 1.1 cgd sbdrop(sb, (int)sb->sb_cc); 1337 1.43 thorpej 1338 1.43 thorpej KASSERT(sb->sb_cc == 0); 1339 1.43 thorpej KASSERT(sb->sb_mb == NULL); 1340 1.43 thorpej KASSERT(sb->sb_mbtail == NULL); 1341 1.43 thorpej KASSERT(sb->sb_lastrecord == NULL); 1342 1.1 cgd } 1343 1.1 cgd 1344 1.1 cgd /* 1345 1.1 cgd * Drop data from (the front of) a sockbuf. 1346 1.1 cgd */ 1347 1.7 mycroft void 1348 1.37 lukem sbdrop(struct sockbuf *sb, int len) 1349 1.1 cgd { 1350 1.124 christos struct mbuf *m, *next; 1351 1.1 cgd 1352 1.91 ad KASSERT(solocked(sb->sb_so)); 1353 1.91 ad 1354 1.115 christos next = (m = sb->sb_mb) ? m->m_nextpkt : NULL; 1355 1.1 cgd while (len > 0) { 1356 1.115 christos if (m == NULL) { 1357 1.115 christos if (next == NULL) 1358 1.112 matt panic("sbdrop(%p,%d): cc=%lu", 1359 1.112 matt sb, len, sb->sb_cc); 1360 1.1 cgd m = next; 1361 1.1 cgd next = m->m_nextpkt; 1362 1.1 cgd continue; 1363 1.1 cgd } 1364 1.1 cgd if (m->m_len > len) { 1365 1.1 cgd m->m_len -= len; 1366 1.1 cgd m->m_data += len; 1367 1.1 cgd sb->sb_cc -= len; 1368 1.1 cgd break; 1369 1.1 cgd } 1370 1.1 cgd len -= m->m_len; 1371 1.1 cgd sbfree(sb, m); 1372 1.124 christos m = m_free(m); 1373 1.1 cgd } 1374 1.1 cgd while (m && m->m_len == 0) { 1375 1.1 cgd sbfree(sb, m); 1376 1.124 christos m = m_free(m); 1377 1.1 cgd } 1378 1.1 cgd if (m) { 1379 1.1 cgd sb->sb_mb = m; 1380 1.1 cgd m->m_nextpkt = next; 1381 1.1 cgd } else 1382 1.1 cgd sb->sb_mb = next; 1383 1.43 thorpej /* 1384 1.45 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second part 1385 1.43 thorpej * makes sure sb_lastrecord is up-to-date if we dropped 1386 1.43 thorpej * part of the last record. 1387 1.43 thorpej */ 1388 1.43 thorpej m = sb->sb_mb; 1389 1.43 thorpej if (m == NULL) { 1390 1.43 thorpej sb->sb_mbtail = NULL; 1391 1.43 thorpej sb->sb_lastrecord = NULL; 1392 1.43 thorpej } else if (m->m_nextpkt == NULL) 1393 1.43 thorpej sb->sb_lastrecord = m; 1394 1.1 cgd } 1395 1.1 cgd 1396 1.1 cgd /* 1397 1.1 cgd * Drop a record off the front of a sockbuf 1398 1.1 cgd * and move the next record to the front. 1399 1.1 cgd */ 1400 1.7 mycroft void 1401 1.37 lukem sbdroprecord(struct sockbuf *sb) 1402 1.1 cgd { 1403 1.37 lukem struct mbuf *m, *mn; 1404 1.1 cgd 1405 1.91 ad KASSERT(solocked(sb->sb_so)); 1406 1.91 ad 1407 1.1 cgd m = sb->sb_mb; 1408 1.1 cgd if (m) { 1409 1.1 cgd sb->sb_mb = m->m_nextpkt; 1410 1.1 cgd do { 1411 1.1 cgd sbfree(sb, m); 1412 1.124 christos mn = m_free(m); 1413 1.11 christos } while ((m = mn) != NULL); 1414 1.1 cgd } 1415 1.45 thorpej SB_EMPTY_FIXUP(sb); 1416 1.19 thorpej } 1417 1.19 thorpej 1418 1.19 thorpej /* 1419 1.19 thorpej * Create a "control" mbuf containing the specified data 1420 1.19 thorpej * with the specified type for presentation on a socket buffer. 1421 1.19 thorpej */ 1422 1.19 thorpej struct mbuf * 1423 1.111 christos sbcreatecontrol1(void **p, int size, int type, int level, int flags) 1424 1.19 thorpej { 1425 1.37 lukem struct cmsghdr *cp; 1426 1.37 lukem struct mbuf *m; 1427 1.111 christos int space = CMSG_SPACE(size); 1428 1.19 thorpej 1429 1.111 christos if ((flags & M_DONTWAIT) && space > MCLBYTES) { 1430 1.111 christos printf("%s: message too large %d\n", __func__, space); 1431 1.30 itojun return NULL; 1432 1.30 itojun } 1433 1.30 itojun 1434 1.111 christos if ((m = m_get(flags, MT_CONTROL)) == NULL) 1435 1.111 christos return NULL; 1436 1.111 christos if (space > MLEN) { 1437 1.111 christos if (space > MCLBYTES) 1438 1.111 christos MEXTMALLOC(m, space, M_WAITOK); 1439 1.111 christos else 1440 1.111 christos MCLGET(m, flags); 1441 1.30 itojun if ((m->m_flags & M_EXT) == 0) { 1442 1.30 itojun m_free(m); 1443 1.30 itojun return NULL; 1444 1.30 itojun } 1445 1.30 itojun } 1446 1.19 thorpej cp = mtod(m, struct cmsghdr *); 1447 1.111 christos *p = CMSG_DATA(cp); 1448 1.111 christos m->m_len = space; 1449 1.35 itojun cp->cmsg_len = CMSG_LEN(size); 1450 1.19 thorpej cp->cmsg_level = level; 1451 1.19 thorpej cp->cmsg_type = type; 1452 1.134 maxv 1453 1.134 maxv memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp)); 1454 1.134 maxv memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size); 1455 1.134 maxv 1456 1.111 christos return m; 1457 1.111 christos } 1458 1.111 christos 1459 1.111 christos struct mbuf * 1460 1.111 christos sbcreatecontrol(void *p, int size, int type, int level) 1461 1.111 christos { 1462 1.111 christos struct mbuf *m; 1463 1.111 christos void *v; 1464 1.111 christos 1465 1.111 christos m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT); 1466 1.111 christos if (m == NULL) 1467 1.111 christos return NULL; 1468 1.111 christos memcpy(v, p, size); 1469 1.111 christos return m; 1470 1.1 cgd } 1471 1.91 ad 1472 1.91 ad void 1473 1.91 ad solockretry(struct socket *so, kmutex_t *lock) 1474 1.91 ad { 1475 1.91 ad 1476 1.141 riastrad while (lock != atomic_load_relaxed(&so->so_lock)) { 1477 1.91 ad mutex_exit(lock); 1478 1.141 riastrad lock = atomic_load_consume(&so->so_lock); 1479 1.91 ad mutex_enter(lock); 1480 1.91 ad } 1481 1.91 ad } 1482 1.91 ad 1483 1.91 ad bool 1484 1.127 christos solocked(const struct socket *so) 1485 1.91 ad { 1486 1.91 ad 1487 1.141 riastrad /* 1488 1.141 riastrad * Used only for diagnostic assertions, so so_lock should be 1489 1.141 riastrad * stable at this point, hence on need for atomic_load_*. 1490 1.141 riastrad */ 1491 1.91 ad return mutex_owned(so->so_lock); 1492 1.91 ad } 1493 1.91 ad 1494 1.91 ad bool 1495 1.127 christos solocked2(const struct socket *so1, const struct socket *so2) 1496 1.91 ad { 1497 1.127 christos const kmutex_t *lock; 1498 1.91 ad 1499 1.141 riastrad /* 1500 1.141 riastrad * Used only for diagnostic assertions, so so_lock should be 1501 1.141 riastrad * stable at this point, hence on need for atomic_load_*. 1502 1.141 riastrad */ 1503 1.91 ad lock = so1->so_lock; 1504 1.91 ad if (lock != so2->so_lock) 1505 1.91 ad return false; 1506 1.91 ad return mutex_owned(lock); 1507 1.91 ad } 1508 1.91 ad 1509 1.91 ad /* 1510 1.116 rmind * sosetlock: assign a default lock to a new socket. 1511 1.91 ad */ 1512 1.91 ad void 1513 1.91 ad sosetlock(struct socket *so) 1514 1.91 ad { 1515 1.116 rmind if (so->so_lock == NULL) { 1516 1.116 rmind kmutex_t *lock = softnet_lock; 1517 1.91 ad 1518 1.91 ad so->so_lock = lock; 1519 1.91 ad mutex_obj_hold(lock); 1520 1.91 ad mutex_enter(lock); 1521 1.91 ad } 1522 1.91 ad KASSERT(solocked(so)); 1523 1.91 ad } 1524 1.91 ad 1525 1.91 ad /* 1526 1.91 ad * Set lock on sockbuf sb; sleep if lock is already held. 1527 1.91 ad * Unless SB_NOINTR is set on sockbuf, sleep is interruptible. 1528 1.91 ad * Returns error without lock if sleep is interrupted. 1529 1.91 ad */ 1530 1.91 ad int 1531 1.91 ad sblock(struct sockbuf *sb, int wf) 1532 1.91 ad { 1533 1.91 ad struct socket *so; 1534 1.91 ad kmutex_t *lock; 1535 1.91 ad int error; 1536 1.91 ad 1537 1.91 ad KASSERT(solocked(sb->sb_so)); 1538 1.91 ad 1539 1.91 ad for (;;) { 1540 1.91 ad if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) { 1541 1.91 ad sb->sb_flags |= SB_LOCK; 1542 1.91 ad return 0; 1543 1.91 ad } 1544 1.91 ad if (wf != M_WAITOK) 1545 1.146 riastrad return SET_ERROR(EWOULDBLOCK); 1546 1.91 ad so = sb->sb_so; 1547 1.91 ad lock = so->so_lock; 1548 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0) { 1549 1.91 ad cv_wait(&so->so_cv, lock); 1550 1.91 ad error = 0; 1551 1.91 ad } else 1552 1.91 ad error = cv_wait_sig(&so->so_cv, lock); 1553 1.141 riastrad if (__predict_false(lock != atomic_load_relaxed(&so->so_lock))) 1554 1.91 ad solockretry(so, lock); 1555 1.91 ad if (error != 0) 1556 1.91 ad return error; 1557 1.91 ad } 1558 1.91 ad } 1559 1.91 ad 1560 1.91 ad void 1561 1.91 ad sbunlock(struct sockbuf *sb) 1562 1.91 ad { 1563 1.91 ad struct socket *so; 1564 1.91 ad 1565 1.91 ad so = sb->sb_so; 1566 1.91 ad 1567 1.91 ad KASSERT(solocked(so)); 1568 1.91 ad KASSERT((sb->sb_flags & SB_LOCK) != 0); 1569 1.91 ad 1570 1.91 ad sb->sb_flags &= ~SB_LOCK; 1571 1.91 ad cv_broadcast(&so->so_cv); 1572 1.91 ad } 1573 1.91 ad 1574 1.91 ad int 1575 1.121 matt sowait(struct socket *so, bool catch_p, int timo) 1576 1.91 ad { 1577 1.91 ad kmutex_t *lock; 1578 1.91 ad int error; 1579 1.91 ad 1580 1.91 ad KASSERT(solocked(so)); 1581 1.121 matt KASSERT(catch_p || timo != 0); 1582 1.91 ad 1583 1.91 ad lock = so->so_lock; 1584 1.121 matt if (catch_p) 1585 1.101 yamt error = cv_timedwait_sig(&so->so_cv, lock, timo); 1586 1.101 yamt else 1587 1.101 yamt error = cv_timedwait(&so->so_cv, lock, timo); 1588 1.141 riastrad if (__predict_false(lock != atomic_load_relaxed(&so->so_lock))) 1589 1.91 ad solockretry(so, lock); 1590 1.91 ad return error; 1591 1.91 ad } 1592 1.131 msaitoh 1593 1.131 msaitoh #ifdef DDB 1594 1.131 msaitoh 1595 1.131 msaitoh /* 1596 1.131 msaitoh * Currently, sofindproc() is used only from DDB. It could be used from others 1597 1.131 msaitoh * by using db_mutex_enter() 1598 1.131 msaitoh */ 1599 1.131 msaitoh 1600 1.131 msaitoh static inline int 1601 1.131 msaitoh db_mutex_enter(kmutex_t *mtx) 1602 1.131 msaitoh { 1603 1.131 msaitoh int rv; 1604 1.131 msaitoh 1605 1.131 msaitoh if (!db_active) { 1606 1.131 msaitoh mutex_enter(mtx); 1607 1.131 msaitoh rv = 1; 1608 1.131 msaitoh } else 1609 1.131 msaitoh rv = mutex_tryenter(mtx); 1610 1.131 msaitoh 1611 1.131 msaitoh return rv; 1612 1.131 msaitoh } 1613 1.131 msaitoh 1614 1.131 msaitoh int 1615 1.131 msaitoh sofindproc(struct socket *so, int all, void (*pr)(const char *, ...)) 1616 1.131 msaitoh { 1617 1.131 msaitoh proc_t *p; 1618 1.131 msaitoh filedesc_t *fdp; 1619 1.131 msaitoh fdtab_t *dt; 1620 1.131 msaitoh fdfile_t *ff; 1621 1.131 msaitoh file_t *fp = NULL; 1622 1.131 msaitoh int found = 0; 1623 1.131 msaitoh int i, t; 1624 1.131 msaitoh 1625 1.131 msaitoh if (so == NULL) 1626 1.131 msaitoh return 0; 1627 1.131 msaitoh 1628 1.137 ad t = db_mutex_enter(&proc_lock); 1629 1.131 msaitoh if (!t) { 1630 1.131 msaitoh pr("could not acquire proc_lock mutex\n"); 1631 1.131 msaitoh return 0; 1632 1.131 msaitoh } 1633 1.131 msaitoh PROCLIST_FOREACH(p, &allproc) { 1634 1.131 msaitoh if (p->p_stat == SIDL) 1635 1.131 msaitoh continue; 1636 1.131 msaitoh fdp = p->p_fd; 1637 1.131 msaitoh t = db_mutex_enter(&fdp->fd_lock); 1638 1.131 msaitoh if (!t) { 1639 1.131 msaitoh pr("could not acquire fd_lock mutex\n"); 1640 1.131 msaitoh continue; 1641 1.131 msaitoh } 1642 1.135 riastrad dt = atomic_load_consume(&fdp->fd_dt); 1643 1.131 msaitoh for (i = 0; i < dt->dt_nfiles; i++) { 1644 1.131 msaitoh ff = dt->dt_ff[i]; 1645 1.131 msaitoh if (ff == NULL) 1646 1.131 msaitoh continue; 1647 1.131 msaitoh 1648 1.136 riastrad fp = atomic_load_consume(&ff->ff_file); 1649 1.131 msaitoh if (fp == NULL) 1650 1.131 msaitoh continue; 1651 1.131 msaitoh 1652 1.131 msaitoh t = db_mutex_enter(&fp->f_lock); 1653 1.131 msaitoh if (!t) { 1654 1.131 msaitoh pr("could not acquire f_lock mutex\n"); 1655 1.131 msaitoh continue; 1656 1.131 msaitoh } 1657 1.131 msaitoh if ((struct socket *)fp->f_data != so) { 1658 1.131 msaitoh mutex_exit(&fp->f_lock); 1659 1.131 msaitoh continue; 1660 1.131 msaitoh } 1661 1.131 msaitoh found++; 1662 1.131 msaitoh if (pr) 1663 1.131 msaitoh pr("socket %p: owner %s(pid=%d)\n", 1664 1.131 msaitoh so, p->p_comm, p->p_pid); 1665 1.131 msaitoh mutex_exit(&fp->f_lock); 1666 1.131 msaitoh if (all == 0) 1667 1.131 msaitoh break; 1668 1.131 msaitoh } 1669 1.131 msaitoh mutex_exit(&fdp->fd_lock); 1670 1.131 msaitoh if (all == 0 && found != 0) 1671 1.131 msaitoh break; 1672 1.131 msaitoh } 1673 1.137 ad mutex_exit(&proc_lock); 1674 1.131 msaitoh 1675 1.131 msaitoh return found; 1676 1.131 msaitoh } 1677 1.131 msaitoh 1678 1.131 msaitoh void 1679 1.131 msaitoh socket_print(const char *modif, void (*pr)(const char *, ...)) 1680 1.131 msaitoh { 1681 1.131 msaitoh file_t *fp; 1682 1.131 msaitoh struct socket *so; 1683 1.131 msaitoh struct sockbuf *sb_snd, *sb_rcv; 1684 1.131 msaitoh struct mbuf *m_rec, *m; 1685 1.131 msaitoh bool opt_v = false; 1686 1.131 msaitoh bool opt_m = false; 1687 1.131 msaitoh bool opt_a = false; 1688 1.131 msaitoh bool opt_p = false; 1689 1.131 msaitoh int nrecs, nmbufs; 1690 1.131 msaitoh char ch; 1691 1.131 msaitoh const char *family; 1692 1.131 msaitoh 1693 1.131 msaitoh while ( (ch = *(modif++)) != '\0') { 1694 1.131 msaitoh switch (ch) { 1695 1.131 msaitoh case 'v': 1696 1.131 msaitoh opt_v = true; 1697 1.131 msaitoh break; 1698 1.131 msaitoh case 'm': 1699 1.131 msaitoh opt_m = true; 1700 1.131 msaitoh break; 1701 1.131 msaitoh case 'a': 1702 1.131 msaitoh opt_a = true; 1703 1.131 msaitoh break; 1704 1.131 msaitoh case 'p': 1705 1.131 msaitoh opt_p = true; 1706 1.131 msaitoh break; 1707 1.131 msaitoh } 1708 1.131 msaitoh } 1709 1.131 msaitoh if (opt_v == false && pr) 1710 1.131 msaitoh (pr)("Ignore empty sockets. use /v to print all.\n"); 1711 1.131 msaitoh if (opt_p == true && pr) 1712 1.131 msaitoh (pr)("Don't search owner process.\n"); 1713 1.131 msaitoh 1714 1.131 msaitoh LIST_FOREACH(fp, &filehead, f_list) { 1715 1.131 msaitoh if (fp->f_type != DTYPE_SOCKET) 1716 1.131 msaitoh continue; 1717 1.131 msaitoh so = (struct socket *)fp->f_data; 1718 1.131 msaitoh if (so == NULL) 1719 1.131 msaitoh continue; 1720 1.131 msaitoh 1721 1.131 msaitoh if (so->so_proto->pr_domain->dom_family == AF_INET) 1722 1.131 msaitoh family = "INET"; 1723 1.131 msaitoh #ifdef INET6 1724 1.131 msaitoh else if (so->so_proto->pr_domain->dom_family == AF_INET6) 1725 1.131 msaitoh family = "INET6"; 1726 1.131 msaitoh #endif 1727 1.131 msaitoh else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY) 1728 1.131 msaitoh family = "KEY"; 1729 1.131 msaitoh else if (so->so_proto->pr_domain->dom_family == AF_ROUTE) 1730 1.131 msaitoh family = "ROUTE"; 1731 1.131 msaitoh else 1732 1.131 msaitoh continue; 1733 1.131 msaitoh 1734 1.131 msaitoh sb_snd = &so->so_snd; 1735 1.131 msaitoh sb_rcv = &so->so_rcv; 1736 1.131 msaitoh 1737 1.131 msaitoh if (opt_v != true && 1738 1.131 msaitoh sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0) 1739 1.131 msaitoh continue; 1740 1.131 msaitoh 1741 1.131 msaitoh pr("---SOCKET %p: type %s\n", so, family); 1742 1.131 msaitoh if (opt_p != true) 1743 1.131 msaitoh sofindproc(so, opt_a == true ? 1 : 0, pr); 1744 1.131 msaitoh pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc); 1745 1.131 msaitoh pr("Send Buffer mbufs:\n"); 1746 1.131 msaitoh m_rec = m = sb_snd->sb_mb; 1747 1.131 msaitoh nrecs = 0; 1748 1.131 msaitoh nmbufs = 0; 1749 1.131 msaitoh while (m_rec) { 1750 1.131 msaitoh nrecs++; 1751 1.131 msaitoh if (opt_m == true) 1752 1.131 msaitoh pr(" mbuf chain %p\n", m_rec); 1753 1.131 msaitoh while (m) { 1754 1.131 msaitoh nmbufs++; 1755 1.131 msaitoh m = m->m_next; 1756 1.131 msaitoh } 1757 1.131 msaitoh m_rec = m = m_rec->m_nextpkt; 1758 1.131 msaitoh } 1759 1.131 msaitoh pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs); 1760 1.131 msaitoh 1761 1.131 msaitoh pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc); 1762 1.131 msaitoh pr("Recv Buffer mbufs:\n"); 1763 1.131 msaitoh m_rec = m = sb_rcv->sb_mb; 1764 1.131 msaitoh nrecs = 0; 1765 1.131 msaitoh nmbufs = 0; 1766 1.131 msaitoh while (m_rec) { 1767 1.131 msaitoh nrecs++; 1768 1.131 msaitoh if (opt_m == true) 1769 1.131 msaitoh pr(" mbuf chain %p\n", m_rec); 1770 1.131 msaitoh while (m) { 1771 1.131 msaitoh nmbufs++; 1772 1.131 msaitoh m = m->m_next; 1773 1.131 msaitoh } 1774 1.131 msaitoh m_rec = m = m_rec->m_nextpkt; 1775 1.131 msaitoh } 1776 1.131 msaitoh pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs); 1777 1.131 msaitoh } 1778 1.131 msaitoh } 1779 1.131 msaitoh #endif /* DDB */ 1780