uipc_socket2.c revision 1.1.1.2 1 1.1 cgd /*
2 1.1.1.2 fvdl * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 1.1.1.2 fvdl * The Regents of the University of California. All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the University of
16 1.1 cgd * California, Berkeley and its contributors.
17 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
18 1.1 cgd * may be used to endorse or promote products derived from this software
19 1.1 cgd * without specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.1.1.2 fvdl * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
34 1.1 cgd */
35 1.1 cgd
36 1.1.1.2 fvdl #include <sys/param.h>
37 1.1.1.2 fvdl #include <sys/systm.h>
38 1.1.1.2 fvdl #include <sys/proc.h>
39 1.1.1.2 fvdl #include <sys/file.h>
40 1.1.1.2 fvdl #include <sys/buf.h>
41 1.1.1.2 fvdl #include <sys/malloc.h>
42 1.1.1.2 fvdl #include <sys/mbuf.h>
43 1.1.1.2 fvdl #include <sys/protosw.h>
44 1.1.1.2 fvdl #include <sys/socket.h>
45 1.1.1.2 fvdl #include <sys/socketvar.h>
46 1.1 cgd
47 1.1 cgd /*
48 1.1 cgd * Primitive routines for operating on sockets and socket buffers
49 1.1 cgd */
50 1.1 cgd
51 1.1 cgd /* strings for sleep message: */
52 1.1 cgd char netio[] = "netio";
53 1.1 cgd char netcon[] = "netcon";
54 1.1 cgd char netcls[] = "netcls";
55 1.1 cgd
56 1.1 cgd u_long sb_max = SB_MAX; /* patchable */
57 1.1 cgd
58 1.1 cgd /*
59 1.1 cgd * Procedures to manipulate state flags of socket
60 1.1 cgd * and do appropriate wakeups. Normal sequence from the
61 1.1 cgd * active (originating) side is that soisconnecting() is
62 1.1 cgd * called during processing of connect() call,
63 1.1 cgd * resulting in an eventual call to soisconnected() if/when the
64 1.1 cgd * connection is established. When the connection is torn down
65 1.1 cgd * soisdisconnecting() is called during processing of disconnect() call,
66 1.1 cgd * and soisdisconnected() is called when the connection to the peer
67 1.1 cgd * is totally severed. The semantics of these routines are such that
68 1.1 cgd * connectionless protocols can call soisconnected() and soisdisconnected()
69 1.1 cgd * only, bypassing the in-progress calls when setting up a ``connection''
70 1.1 cgd * takes no time.
71 1.1 cgd *
72 1.1 cgd * From the passive side, a socket is created with
73 1.1 cgd * two queues of sockets: so_q0 for connections in progress
74 1.1 cgd * and so_q for connections already made and awaiting user acceptance.
75 1.1 cgd * As a protocol is preparing incoming connections, it creates a socket
76 1.1 cgd * structure queued on so_q0 by calling sonewconn(). When the connection
77 1.1 cgd * is established, soisconnected() is called, and transfers the
78 1.1 cgd * socket structure to so_q, making it available to accept().
79 1.1 cgd *
80 1.1 cgd * If a socket is closed with sockets on either
81 1.1 cgd * so_q0 or so_q, these sockets are dropped.
82 1.1 cgd *
83 1.1 cgd * If higher level protocols are implemented in
84 1.1 cgd * the kernel, the wakeups done here will sometimes
85 1.1 cgd * cause software-interrupt process scheduling.
86 1.1 cgd */
87 1.1 cgd
88 1.1 cgd soisconnecting(so)
89 1.1 cgd register struct socket *so;
90 1.1 cgd {
91 1.1 cgd
92 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
93 1.1 cgd so->so_state |= SS_ISCONNECTING;
94 1.1 cgd }
95 1.1 cgd
96 1.1 cgd soisconnected(so)
97 1.1 cgd register struct socket *so;
98 1.1 cgd {
99 1.1 cgd register struct socket *head = so->so_head;
100 1.1 cgd
101 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
102 1.1 cgd so->so_state |= SS_ISCONNECTED;
103 1.1 cgd if (head && soqremque(so, 0)) {
104 1.1 cgd soqinsque(head, so, 1);
105 1.1 cgd sorwakeup(head);
106 1.1 cgd wakeup((caddr_t)&head->so_timeo);
107 1.1 cgd } else {
108 1.1 cgd wakeup((caddr_t)&so->so_timeo);
109 1.1 cgd sorwakeup(so);
110 1.1 cgd sowwakeup(so);
111 1.1 cgd }
112 1.1 cgd }
113 1.1 cgd
114 1.1 cgd soisdisconnecting(so)
115 1.1 cgd register struct socket *so;
116 1.1 cgd {
117 1.1 cgd
118 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
119 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
120 1.1 cgd wakeup((caddr_t)&so->so_timeo);
121 1.1 cgd sowwakeup(so);
122 1.1 cgd sorwakeup(so);
123 1.1 cgd }
124 1.1 cgd
125 1.1 cgd soisdisconnected(so)
126 1.1 cgd register struct socket *so;
127 1.1 cgd {
128 1.1 cgd
129 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
130 1.1 cgd so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
131 1.1 cgd wakeup((caddr_t)&so->so_timeo);
132 1.1 cgd sowwakeup(so);
133 1.1 cgd sorwakeup(so);
134 1.1 cgd }
135 1.1 cgd
136 1.1 cgd /*
137 1.1 cgd * When an attempt at a new connection is noted on a socket
138 1.1 cgd * which accepts connections, sonewconn is called. If the
139 1.1 cgd * connection is possible (subject to space constraints, etc.)
140 1.1 cgd * then we allocate a new structure, propoerly linked into the
141 1.1 cgd * data structure of the original socket, and return this.
142 1.1 cgd * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
143 1.1 cgd *
144 1.1 cgd * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
145 1.1 cgd * to catch calls that are missing the (new) second parameter.
146 1.1 cgd */
147 1.1 cgd struct socket *
148 1.1 cgd sonewconn1(head, connstatus)
149 1.1 cgd register struct socket *head;
150 1.1 cgd int connstatus;
151 1.1 cgd {
152 1.1 cgd register struct socket *so;
153 1.1 cgd int soqueue = connstatus ? 1 : 0;
154 1.1 cgd
155 1.1 cgd if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
156 1.1 cgd return ((struct socket *)0);
157 1.1 cgd MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
158 1.1 cgd if (so == NULL)
159 1.1 cgd return ((struct socket *)0);
160 1.1 cgd bzero((caddr_t)so, sizeof(*so));
161 1.1 cgd so->so_type = head->so_type;
162 1.1 cgd so->so_options = head->so_options &~ SO_ACCEPTCONN;
163 1.1 cgd so->so_linger = head->so_linger;
164 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
165 1.1 cgd so->so_proto = head->so_proto;
166 1.1 cgd so->so_timeo = head->so_timeo;
167 1.1 cgd so->so_pgid = head->so_pgid;
168 1.1 cgd (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
169 1.1 cgd soqinsque(head, so, soqueue);
170 1.1 cgd if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
171 1.1 cgd (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
172 1.1 cgd (void) soqremque(so, soqueue);
173 1.1 cgd (void) free((caddr_t)so, M_SOCKET);
174 1.1 cgd return ((struct socket *)0);
175 1.1 cgd }
176 1.1 cgd if (connstatus) {
177 1.1 cgd sorwakeup(head);
178 1.1 cgd wakeup((caddr_t)&head->so_timeo);
179 1.1 cgd so->so_state |= connstatus;
180 1.1 cgd }
181 1.1 cgd return (so);
182 1.1 cgd }
183 1.1 cgd
184 1.1 cgd soqinsque(head, so, q)
185 1.1 cgd register struct socket *head, *so;
186 1.1 cgd int q;
187 1.1 cgd {
188 1.1 cgd
189 1.1 cgd register struct socket **prev;
190 1.1 cgd so->so_head = head;
191 1.1 cgd if (q == 0) {
192 1.1 cgd head->so_q0len++;
193 1.1 cgd so->so_q0 = 0;
194 1.1 cgd for (prev = &(head->so_q0); *prev; )
195 1.1 cgd prev = &((*prev)->so_q0);
196 1.1 cgd } else {
197 1.1 cgd head->so_qlen++;
198 1.1 cgd so->so_q = 0;
199 1.1 cgd for (prev = &(head->so_q); *prev; )
200 1.1 cgd prev = &((*prev)->so_q);
201 1.1 cgd }
202 1.1 cgd *prev = so;
203 1.1 cgd }
204 1.1 cgd
205 1.1 cgd soqremque(so, q)
206 1.1 cgd register struct socket *so;
207 1.1 cgd int q;
208 1.1 cgd {
209 1.1 cgd register struct socket *head, *prev, *next;
210 1.1 cgd
211 1.1 cgd head = so->so_head;
212 1.1 cgd prev = head;
213 1.1 cgd for (;;) {
214 1.1 cgd next = q ? prev->so_q : prev->so_q0;
215 1.1 cgd if (next == so)
216 1.1 cgd break;
217 1.1 cgd if (next == 0)
218 1.1 cgd return (0);
219 1.1 cgd prev = next;
220 1.1 cgd }
221 1.1 cgd if (q == 0) {
222 1.1 cgd prev->so_q0 = next->so_q0;
223 1.1 cgd head->so_q0len--;
224 1.1 cgd } else {
225 1.1 cgd prev->so_q = next->so_q;
226 1.1 cgd head->so_qlen--;
227 1.1 cgd }
228 1.1 cgd next->so_q0 = next->so_q = 0;
229 1.1 cgd next->so_head = 0;
230 1.1 cgd return (1);
231 1.1 cgd }
232 1.1 cgd
233 1.1 cgd /*
234 1.1 cgd * Socantsendmore indicates that no more data will be sent on the
235 1.1 cgd * socket; it would normally be applied to a socket when the user
236 1.1 cgd * informs the system that no more data is to be sent, by the protocol
237 1.1 cgd * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
238 1.1 cgd * will be received, and will normally be applied to the socket by a
239 1.1 cgd * protocol when it detects that the peer will send no more data.
240 1.1 cgd * Data queued for reading in the socket may yet be read.
241 1.1 cgd */
242 1.1 cgd
243 1.1 cgd socantsendmore(so)
244 1.1 cgd struct socket *so;
245 1.1 cgd {
246 1.1 cgd
247 1.1 cgd so->so_state |= SS_CANTSENDMORE;
248 1.1 cgd sowwakeup(so);
249 1.1 cgd }
250 1.1 cgd
251 1.1 cgd socantrcvmore(so)
252 1.1 cgd struct socket *so;
253 1.1 cgd {
254 1.1 cgd
255 1.1 cgd so->so_state |= SS_CANTRCVMORE;
256 1.1 cgd sorwakeup(so);
257 1.1 cgd }
258 1.1 cgd
259 1.1 cgd /*
260 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
261 1.1 cgd */
262 1.1 cgd sbwait(sb)
263 1.1 cgd struct sockbuf *sb;
264 1.1 cgd {
265 1.1 cgd
266 1.1 cgd sb->sb_flags |= SB_WAIT;
267 1.1 cgd return (tsleep((caddr_t)&sb->sb_cc,
268 1.1 cgd (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
269 1.1 cgd sb->sb_timeo));
270 1.1 cgd }
271 1.1 cgd
272 1.1 cgd /*
273 1.1 cgd * Lock a sockbuf already known to be locked;
274 1.1 cgd * return any error returned from sleep (EINTR).
275 1.1 cgd */
276 1.1 cgd sb_lock(sb)
277 1.1 cgd register struct sockbuf *sb;
278 1.1 cgd {
279 1.1 cgd int error;
280 1.1 cgd
281 1.1 cgd while (sb->sb_flags & SB_LOCK) {
282 1.1 cgd sb->sb_flags |= SB_WANT;
283 1.1 cgd if (error = tsleep((caddr_t)&sb->sb_flags,
284 1.1 cgd (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
285 1.1 cgd netio, 0))
286 1.1 cgd return (error);
287 1.1 cgd }
288 1.1 cgd sb->sb_flags |= SB_LOCK;
289 1.1 cgd return (0);
290 1.1 cgd }
291 1.1 cgd
292 1.1 cgd /*
293 1.1 cgd * Wakeup processes waiting on a socket buffer.
294 1.1 cgd * Do asynchronous notification via SIGIO
295 1.1 cgd * if the socket has the SS_ASYNC flag set.
296 1.1 cgd */
297 1.1 cgd sowakeup(so, sb)
298 1.1 cgd register struct socket *so;
299 1.1 cgd register struct sockbuf *sb;
300 1.1 cgd {
301 1.1 cgd struct proc *p;
302 1.1 cgd
303 1.1.1.2 fvdl selwakeup(&sb->sb_sel);
304 1.1.1.2 fvdl sb->sb_flags &= ~SB_SEL;
305 1.1 cgd if (sb->sb_flags & SB_WAIT) {
306 1.1 cgd sb->sb_flags &= ~SB_WAIT;
307 1.1 cgd wakeup((caddr_t)&sb->sb_cc);
308 1.1 cgd }
309 1.1 cgd if (so->so_state & SS_ASYNC) {
310 1.1 cgd if (so->so_pgid < 0)
311 1.1 cgd gsignal(-so->so_pgid, SIGIO);
312 1.1 cgd else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
313 1.1 cgd psignal(p, SIGIO);
314 1.1 cgd }
315 1.1 cgd }
316 1.1 cgd
317 1.1 cgd /*
318 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
319 1.1 cgd *
320 1.1 cgd * Each socket contains two socket buffers: one for sending data and
321 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
322 1.1 cgd * information about the number of mbufs and amount of data in the
323 1.1 cgd * queue, and other fields allowing select() statements and notification
324 1.1 cgd * on data availability to be implemented.
325 1.1 cgd *
326 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
327 1.1 cgd * Each record is a list of mbufs chained together with the m_next
328 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
329 1.1 cgd * level routine soreceive() expects the following conventions to be
330 1.1 cgd * observed when placing information in the receive buffer:
331 1.1 cgd *
332 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
333 1.1 cgd * name, then a record containing that name must be present before
334 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
335 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
336 1.1 cgd * just additional data associated with the message), and there are
337 1.1 cgd * ``rights'' to be received, then a record containing this data
338 1.1 cgd * should be present (mbuf's must be of type MT_RIGHTS).
339 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
340 1.1 cgd * a data record, perhaps of zero length.
341 1.1 cgd *
342 1.1 cgd * Before using a new socket structure it is first necessary to reserve
343 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
344 1.1 cgd * some of the available buffer space in the system buffer pool for the
345 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
346 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
347 1.1 cgd */
348 1.1 cgd
349 1.1 cgd soreserve(so, sndcc, rcvcc)
350 1.1 cgd register struct socket *so;
351 1.1 cgd u_long sndcc, rcvcc;
352 1.1 cgd {
353 1.1 cgd
354 1.1 cgd if (sbreserve(&so->so_snd, sndcc) == 0)
355 1.1 cgd goto bad;
356 1.1 cgd if (sbreserve(&so->so_rcv, rcvcc) == 0)
357 1.1 cgd goto bad2;
358 1.1 cgd if (so->so_rcv.sb_lowat == 0)
359 1.1 cgd so->so_rcv.sb_lowat = 1;
360 1.1 cgd if (so->so_snd.sb_lowat == 0)
361 1.1 cgd so->so_snd.sb_lowat = MCLBYTES;
362 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
363 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
364 1.1 cgd return (0);
365 1.1 cgd bad2:
366 1.1 cgd sbrelease(&so->so_snd);
367 1.1 cgd bad:
368 1.1 cgd return (ENOBUFS);
369 1.1 cgd }
370 1.1 cgd
371 1.1 cgd /*
372 1.1 cgd * Allot mbufs to a sockbuf.
373 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
374 1.1 cgd * if buffering efficiency is near the normal case.
375 1.1 cgd */
376 1.1 cgd sbreserve(sb, cc)
377 1.1 cgd struct sockbuf *sb;
378 1.1 cgd u_long cc;
379 1.1 cgd {
380 1.1 cgd
381 1.1 cgd if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
382 1.1 cgd return (0);
383 1.1 cgd sb->sb_hiwat = cc;
384 1.1 cgd sb->sb_mbmax = min(cc * 2, sb_max);
385 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
386 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
387 1.1 cgd return (1);
388 1.1 cgd }
389 1.1 cgd
390 1.1 cgd /*
391 1.1 cgd * Free mbufs held by a socket, and reserved mbuf space.
392 1.1 cgd */
393 1.1 cgd sbrelease(sb)
394 1.1 cgd struct sockbuf *sb;
395 1.1 cgd {
396 1.1 cgd
397 1.1 cgd sbflush(sb);
398 1.1 cgd sb->sb_hiwat = sb->sb_mbmax = 0;
399 1.1 cgd }
400 1.1 cgd
401 1.1 cgd /*
402 1.1 cgd * Routines to add and remove
403 1.1 cgd * data from an mbuf queue.
404 1.1 cgd *
405 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
406 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
407 1.1 cgd * space is available, comparing the function sbspace() with the amount
408 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
409 1.1 cgd * that data supplied is treated as the beginning of a new record.
410 1.1 cgd * To place a sender's address, optional access rights, and data in a
411 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
412 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
413 1.1 cgd * should be used. In either case, the new data begins a new record.
414 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
415 1.1 cgd * for the caller that there will be enough space to store the data.
416 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
417 1.1 cgd * to store additional information in.
418 1.1 cgd *
419 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
420 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
421 1.1 cgd * send buffer in a protocol with m_copy for output to a peer,
422 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
423 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
424 1.1 cgd */
425 1.1 cgd
426 1.1 cgd /*
427 1.1 cgd * Append mbuf chain m to the last record in the
428 1.1 cgd * socket buffer sb. The additional space associated
429 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
430 1.1 cgd * discarded and mbufs are compacted where possible.
431 1.1 cgd */
432 1.1 cgd sbappend(sb, m)
433 1.1 cgd struct sockbuf *sb;
434 1.1 cgd struct mbuf *m;
435 1.1 cgd {
436 1.1 cgd register struct mbuf *n;
437 1.1 cgd
438 1.1 cgd if (m == 0)
439 1.1 cgd return;
440 1.1 cgd if (n = sb->sb_mb) {
441 1.1 cgd while (n->m_nextpkt)
442 1.1 cgd n = n->m_nextpkt;
443 1.1 cgd do {
444 1.1 cgd if (n->m_flags & M_EOR) {
445 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
446 1.1 cgd return;
447 1.1 cgd }
448 1.1 cgd } while (n->m_next && (n = n->m_next));
449 1.1 cgd }
450 1.1 cgd sbcompress(sb, m, n);
451 1.1 cgd }
452 1.1 cgd
453 1.1 cgd #ifdef SOCKBUF_DEBUG
454 1.1 cgd sbcheck(sb)
455 1.1 cgd register struct sockbuf *sb;
456 1.1 cgd {
457 1.1 cgd register struct mbuf *m;
458 1.1 cgd register int len = 0, mbcnt = 0;
459 1.1 cgd
460 1.1 cgd for (m = sb->sb_mb; m; m = m->m_next) {
461 1.1 cgd len += m->m_len;
462 1.1 cgd mbcnt += MSIZE;
463 1.1 cgd if (m->m_flags & M_EXT)
464 1.1 cgd mbcnt += m->m_ext.ext_size;
465 1.1 cgd if (m->m_nextpkt)
466 1.1 cgd panic("sbcheck nextpkt");
467 1.1 cgd }
468 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
469 1.1 cgd printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
470 1.1 cgd mbcnt, sb->sb_mbcnt);
471 1.1 cgd panic("sbcheck");
472 1.1 cgd }
473 1.1 cgd }
474 1.1 cgd #endif
475 1.1 cgd
476 1.1 cgd /*
477 1.1 cgd * As above, except the mbuf chain
478 1.1 cgd * begins a new record.
479 1.1 cgd */
480 1.1 cgd sbappendrecord(sb, m0)
481 1.1 cgd register struct sockbuf *sb;
482 1.1 cgd register struct mbuf *m0;
483 1.1 cgd {
484 1.1 cgd register struct mbuf *m;
485 1.1 cgd
486 1.1 cgd if (m0 == 0)
487 1.1 cgd return;
488 1.1 cgd if (m = sb->sb_mb)
489 1.1 cgd while (m->m_nextpkt)
490 1.1 cgd m = m->m_nextpkt;
491 1.1 cgd /*
492 1.1 cgd * Put the first mbuf on the queue.
493 1.1 cgd * Note this permits zero length records.
494 1.1 cgd */
495 1.1 cgd sballoc(sb, m0);
496 1.1 cgd if (m)
497 1.1 cgd m->m_nextpkt = m0;
498 1.1 cgd else
499 1.1 cgd sb->sb_mb = m0;
500 1.1 cgd m = m0->m_next;
501 1.1 cgd m0->m_next = 0;
502 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
503 1.1 cgd m0->m_flags &= ~M_EOR;
504 1.1 cgd m->m_flags |= M_EOR;
505 1.1 cgd }
506 1.1 cgd sbcompress(sb, m, m0);
507 1.1 cgd }
508 1.1 cgd
509 1.1 cgd /*
510 1.1 cgd * As above except that OOB data
511 1.1 cgd * is inserted at the beginning of the sockbuf,
512 1.1 cgd * but after any other OOB data.
513 1.1 cgd */
514 1.1 cgd sbinsertoob(sb, m0)
515 1.1 cgd register struct sockbuf *sb;
516 1.1 cgd register struct mbuf *m0;
517 1.1 cgd {
518 1.1 cgd register struct mbuf *m;
519 1.1 cgd register struct mbuf **mp;
520 1.1 cgd
521 1.1 cgd if (m0 == 0)
522 1.1 cgd return;
523 1.1 cgd for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
524 1.1 cgd again:
525 1.1 cgd switch (m->m_type) {
526 1.1 cgd
527 1.1 cgd case MT_OOBDATA:
528 1.1 cgd continue; /* WANT next train */
529 1.1 cgd
530 1.1 cgd case MT_CONTROL:
531 1.1 cgd if (m = m->m_next)
532 1.1 cgd goto again; /* inspect THIS train further */
533 1.1 cgd }
534 1.1 cgd break;
535 1.1 cgd }
536 1.1 cgd /*
537 1.1 cgd * Put the first mbuf on the queue.
538 1.1 cgd * Note this permits zero length records.
539 1.1 cgd */
540 1.1 cgd sballoc(sb, m0);
541 1.1 cgd m0->m_nextpkt = *mp;
542 1.1 cgd *mp = m0;
543 1.1 cgd m = m0->m_next;
544 1.1 cgd m0->m_next = 0;
545 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
546 1.1 cgd m0->m_flags &= ~M_EOR;
547 1.1 cgd m->m_flags |= M_EOR;
548 1.1 cgd }
549 1.1 cgd sbcompress(sb, m, m0);
550 1.1 cgd }
551 1.1 cgd
552 1.1 cgd /*
553 1.1 cgd * Append address and data, and optionally, control (ancillary) data
554 1.1 cgd * to the receive queue of a socket. If present,
555 1.1 cgd * m0 must include a packet header with total length.
556 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
557 1.1 cgd */
558 1.1 cgd sbappendaddr(sb, asa, m0, control)
559 1.1 cgd register struct sockbuf *sb;
560 1.1 cgd struct sockaddr *asa;
561 1.1 cgd struct mbuf *m0, *control;
562 1.1 cgd {
563 1.1 cgd register struct mbuf *m, *n;
564 1.1 cgd int space = asa->sa_len;
565 1.1 cgd
566 1.1 cgd if (m0 && (m0->m_flags & M_PKTHDR) == 0)
567 1.1 cgd panic("sbappendaddr");
568 1.1 cgd if (m0)
569 1.1 cgd space += m0->m_pkthdr.len;
570 1.1 cgd for (n = control; n; n = n->m_next) {
571 1.1 cgd space += n->m_len;
572 1.1 cgd if (n->m_next == 0) /* keep pointer to last control buf */
573 1.1 cgd break;
574 1.1 cgd }
575 1.1 cgd if (space > sbspace(sb))
576 1.1 cgd return (0);
577 1.1 cgd if (asa->sa_len > MLEN)
578 1.1 cgd return (0);
579 1.1 cgd MGET(m, M_DONTWAIT, MT_SONAME);
580 1.1 cgd if (m == 0)
581 1.1 cgd return (0);
582 1.1 cgd m->m_len = asa->sa_len;
583 1.1 cgd bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
584 1.1 cgd if (n)
585 1.1 cgd n->m_next = m0; /* concatenate data to control */
586 1.1 cgd else
587 1.1 cgd control = m0;
588 1.1 cgd m->m_next = control;
589 1.1 cgd for (n = m; n; n = n->m_next)
590 1.1 cgd sballoc(sb, n);
591 1.1 cgd if (n = sb->sb_mb) {
592 1.1 cgd while (n->m_nextpkt)
593 1.1 cgd n = n->m_nextpkt;
594 1.1 cgd n->m_nextpkt = m;
595 1.1 cgd } else
596 1.1 cgd sb->sb_mb = m;
597 1.1 cgd return (1);
598 1.1 cgd }
599 1.1 cgd
600 1.1 cgd sbappendcontrol(sb, m0, control)
601 1.1 cgd struct sockbuf *sb;
602 1.1 cgd struct mbuf *control, *m0;
603 1.1 cgd {
604 1.1 cgd register struct mbuf *m, *n;
605 1.1 cgd int space = 0;
606 1.1 cgd
607 1.1 cgd if (control == 0)
608 1.1 cgd panic("sbappendcontrol");
609 1.1 cgd for (m = control; ; m = m->m_next) {
610 1.1 cgd space += m->m_len;
611 1.1 cgd if (m->m_next == 0)
612 1.1 cgd break;
613 1.1 cgd }
614 1.1 cgd n = m; /* save pointer to last control buffer */
615 1.1 cgd for (m = m0; m; m = m->m_next)
616 1.1 cgd space += m->m_len;
617 1.1 cgd if (space > sbspace(sb))
618 1.1 cgd return (0);
619 1.1 cgd n->m_next = m0; /* concatenate data to control */
620 1.1 cgd for (m = control; m; m = m->m_next)
621 1.1 cgd sballoc(sb, m);
622 1.1 cgd if (n = sb->sb_mb) {
623 1.1 cgd while (n->m_nextpkt)
624 1.1 cgd n = n->m_nextpkt;
625 1.1 cgd n->m_nextpkt = control;
626 1.1 cgd } else
627 1.1 cgd sb->sb_mb = control;
628 1.1 cgd return (1);
629 1.1 cgd }
630 1.1 cgd
631 1.1 cgd /*
632 1.1 cgd * Compress mbuf chain m into the socket
633 1.1 cgd * buffer sb following mbuf n. If n
634 1.1 cgd * is null, the buffer is presumed empty.
635 1.1 cgd */
636 1.1 cgd sbcompress(sb, m, n)
637 1.1 cgd register struct sockbuf *sb;
638 1.1 cgd register struct mbuf *m, *n;
639 1.1 cgd {
640 1.1 cgd register int eor = 0;
641 1.1 cgd register struct mbuf *o;
642 1.1 cgd
643 1.1 cgd while (m) {
644 1.1 cgd eor |= m->m_flags & M_EOR;
645 1.1 cgd if (m->m_len == 0 &&
646 1.1 cgd (eor == 0 ||
647 1.1 cgd (((o = m->m_next) || (o = n)) &&
648 1.1 cgd o->m_type == m->m_type))) {
649 1.1 cgd m = m_free(m);
650 1.1 cgd continue;
651 1.1 cgd }
652 1.1 cgd if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
653 1.1 cgd (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
654 1.1 cgd n->m_type == m->m_type) {
655 1.1 cgd bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
656 1.1 cgd (unsigned)m->m_len);
657 1.1 cgd n->m_len += m->m_len;
658 1.1 cgd sb->sb_cc += m->m_len;
659 1.1 cgd m = m_free(m);
660 1.1 cgd continue;
661 1.1 cgd }
662 1.1 cgd if (n)
663 1.1 cgd n->m_next = m;
664 1.1 cgd else
665 1.1 cgd sb->sb_mb = m;
666 1.1 cgd sballoc(sb, m);
667 1.1 cgd n = m;
668 1.1 cgd m->m_flags &= ~M_EOR;
669 1.1 cgd m = m->m_next;
670 1.1 cgd n->m_next = 0;
671 1.1 cgd }
672 1.1 cgd if (eor) {
673 1.1 cgd if (n)
674 1.1 cgd n->m_flags |= eor;
675 1.1 cgd else
676 1.1 cgd printf("semi-panic: sbcompress\n");
677 1.1 cgd }
678 1.1 cgd }
679 1.1 cgd
680 1.1 cgd /*
681 1.1 cgd * Free all mbufs in a sockbuf.
682 1.1 cgd * Check that all resources are reclaimed.
683 1.1 cgd */
684 1.1 cgd sbflush(sb)
685 1.1 cgd register struct sockbuf *sb;
686 1.1 cgd {
687 1.1 cgd
688 1.1 cgd if (sb->sb_flags & SB_LOCK)
689 1.1 cgd panic("sbflush");
690 1.1 cgd while (sb->sb_mbcnt)
691 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
692 1.1 cgd if (sb->sb_cc || sb->sb_mb)
693 1.1 cgd panic("sbflush 2");
694 1.1 cgd }
695 1.1 cgd
696 1.1 cgd /*
697 1.1 cgd * Drop data from (the front of) a sockbuf.
698 1.1 cgd */
699 1.1 cgd sbdrop(sb, len)
700 1.1 cgd register struct sockbuf *sb;
701 1.1 cgd register int len;
702 1.1 cgd {
703 1.1 cgd register struct mbuf *m, *mn;
704 1.1 cgd struct mbuf *next;
705 1.1 cgd
706 1.1 cgd next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
707 1.1 cgd while (len > 0) {
708 1.1 cgd if (m == 0) {
709 1.1 cgd if (next == 0)
710 1.1 cgd panic("sbdrop");
711 1.1 cgd m = next;
712 1.1 cgd next = m->m_nextpkt;
713 1.1 cgd continue;
714 1.1 cgd }
715 1.1 cgd if (m->m_len > len) {
716 1.1 cgd m->m_len -= len;
717 1.1 cgd m->m_data += len;
718 1.1 cgd sb->sb_cc -= len;
719 1.1 cgd break;
720 1.1 cgd }
721 1.1 cgd len -= m->m_len;
722 1.1 cgd sbfree(sb, m);
723 1.1 cgd MFREE(m, mn);
724 1.1 cgd m = mn;
725 1.1 cgd }
726 1.1 cgd while (m && m->m_len == 0) {
727 1.1 cgd sbfree(sb, m);
728 1.1 cgd MFREE(m, mn);
729 1.1 cgd m = mn;
730 1.1 cgd }
731 1.1 cgd if (m) {
732 1.1 cgd sb->sb_mb = m;
733 1.1 cgd m->m_nextpkt = next;
734 1.1 cgd } else
735 1.1 cgd sb->sb_mb = next;
736 1.1 cgd }
737 1.1 cgd
738 1.1 cgd /*
739 1.1 cgd * Drop a record off the front of a sockbuf
740 1.1 cgd * and move the next record to the front.
741 1.1 cgd */
742 1.1 cgd sbdroprecord(sb)
743 1.1 cgd register struct sockbuf *sb;
744 1.1 cgd {
745 1.1 cgd register struct mbuf *m, *mn;
746 1.1 cgd
747 1.1 cgd m = sb->sb_mb;
748 1.1 cgd if (m) {
749 1.1 cgd sb->sb_mb = m->m_nextpkt;
750 1.1 cgd do {
751 1.1 cgd sbfree(sb, m);
752 1.1 cgd MFREE(m, mn);
753 1.1 cgd } while (m = mn);
754 1.1 cgd }
755 1.1 cgd }
756