Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.106.4.2
      1  1.106.4.1     rmind /*	$NetBSD: uipc_socket2.c,v 1.106.4.2 2011/05/31 03:05:03 rmind Exp $	*/
      2       1.91        ad 
      3       1.91        ad /*-
      4       1.91        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5       1.91        ad  * All rights reserved.
      6       1.91        ad  *
      7       1.91        ad  * Redistribution and use in source and binary forms, with or without
      8       1.91        ad  * modification, are permitted provided that the following conditions
      9       1.91        ad  * are met:
     10       1.91        ad  * 1. Redistributions of source code must retain the above copyright
     11       1.91        ad  *    notice, this list of conditions and the following disclaimer.
     12       1.91        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.91        ad  *    notice, this list of conditions and the following disclaimer in the
     14       1.91        ad  *    documentation and/or other materials provided with the distribution.
     15       1.91        ad  *
     16       1.91        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17       1.91        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18       1.91        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19       1.91        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20       1.91        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21       1.91        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22       1.91        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23       1.91        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24       1.91        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25       1.91        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26       1.91        ad  * POSSIBILITY OF SUCH DAMAGE.
     27       1.91        ad  */
     28        1.9       cgd 
     29        1.1       cgd /*
     30        1.7   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31        1.7   mycroft  *	The Regents of the University of California.  All rights reserved.
     32        1.1       cgd  *
     33        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     34        1.1       cgd  * modification, are permitted provided that the following conditions
     35        1.1       cgd  * are met:
     36        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     37        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     38        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     39        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     40        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     41       1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     42        1.1       cgd  *    may be used to endorse or promote products derived from this software
     43        1.1       cgd  *    without specific prior written permission.
     44        1.1       cgd  *
     45        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55        1.1       cgd  * SUCH DAMAGE.
     56        1.1       cgd  *
     57       1.23      fvdl  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58        1.1       cgd  */
     59       1.42     lukem 
     60       1.42     lukem #include <sys/cdefs.h>
     61  1.106.4.1     rmind __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.106.4.2 2011/05/31 03:05:03 rmind Exp $");
     62       1.51    martin 
     63       1.51    martin #include "opt_mbuftrace.h"
     64       1.58   thorpej #include "opt_sb_max.h"
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/systm.h>
     68        1.5   mycroft #include <sys/proc.h>
     69        1.5   mycroft #include <sys/file.h>
     70        1.5   mycroft #include <sys/buf.h>
     71        1.5   mycroft #include <sys/mbuf.h>
     72        1.5   mycroft #include <sys/protosw.h>
     73       1.91        ad #include <sys/domain.h>
     74       1.55  christos #include <sys/poll.h>
     75        1.5   mycroft #include <sys/socket.h>
     76        1.5   mycroft #include <sys/socketvar.h>
     77       1.11  christos #include <sys/signalvar.h>
     78       1.71      elad #include <sys/kauth.h>
     79       1.91        ad #include <sys/pool.h>
     80       1.98     pooka #include <sys/uidinfo.h>
     81        1.1       cgd 
     82        1.1       cgd /*
     83       1.91        ad  * Primitive routines for operating on sockets and socket buffers.
     84       1.91        ad  *
     85       1.91        ad  * Locking rules and assumptions:
     86       1.91        ad  *
     87       1.91        ad  * o socket::so_lock can change on the fly.  The low level routines used
     88       1.91        ad  *   to lock sockets are aware of this.  When so_lock is acquired, the
     89       1.91        ad  *   routine locking must check to see if so_lock still points to the
     90       1.91        ad  *   lock that was acquired.  If so_lock has changed in the meantime, the
     91       1.91        ad  *   now irellevant lock that was acquired must be dropped and the lock
     92       1.91        ad  *   operation retried.  Although not proven here, this is completely safe
     93       1.91        ad  *   on a multiprocessor system, even with relaxed memory ordering, given
     94       1.91        ad  *   the next two rules:
     95       1.91        ad  *
     96       1.91        ad  * o In order to mutate so_lock, the lock pointed to by the current value
     97       1.91        ad  *   of so_lock must be held: i.e., the socket must be held locked by the
     98       1.91        ad  *   changing thread.  The thread must issue membar_exit() to prevent
     99       1.91        ad  *   memory accesses being reordered, and can set so_lock to the desired
    100       1.91        ad  *   value.  If the lock pointed to by the new value of so_lock is not
    101       1.91        ad  *   held by the changing thread, the socket must then be considered
    102       1.91        ad  *   unlocked.
    103       1.91        ad  *
    104       1.91        ad  * o If so_lock is mutated, and the previous lock referred to by so_lock
    105       1.91        ad  *   could still be visible to other threads in the system (e.g. via file
    106       1.91        ad  *   descriptor or protocol-internal reference), then the old lock must
    107       1.91        ad  *   remain valid until the socket and/or protocol control block has been
    108       1.91        ad  *   torn down.
    109       1.91        ad  *
    110       1.91        ad  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    111       1.91        ad  *   connecting), then locking the socket must also lock the socket pointed
    112       1.91        ad  *   to by so_head: their lock pointers must match.
    113       1.91        ad  *
    114       1.91        ad  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    115       1.91        ad  *   locking the socket must also lock the sockets attached to both queues.
    116       1.91        ad  *   Again, their lock pointers must match.
    117       1.91        ad  *
    118       1.91        ad  * o Beyond the initial lock assigment in socreate(), assigning locks to
    119       1.91        ad  *   sockets is the responsibility of the individual protocols / protocol
    120       1.91        ad  *   domains.
    121        1.1       cgd  */
    122        1.1       cgd 
    123       1.94        ad static pool_cache_t socket_cache;
    124        1.1       cgd 
    125       1.58   thorpej u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    126       1.58   thorpej static u_long sb_max_adj;	/* adjusted sb_max */
    127       1.58   thorpej 
    128        1.1       cgd /*
    129        1.1       cgd  * Procedures to manipulate state flags of socket
    130        1.1       cgd  * and do appropriate wakeups.  Normal sequence from the
    131        1.1       cgd  * active (originating) side is that soisconnecting() is
    132        1.1       cgd  * called during processing of connect() call,
    133        1.1       cgd  * resulting in an eventual call to soisconnected() if/when the
    134        1.1       cgd  * connection is established.  When the connection is torn down
    135        1.1       cgd  * soisdisconnecting() is called during processing of disconnect() call,
    136        1.1       cgd  * and soisdisconnected() is called when the connection to the peer
    137        1.1       cgd  * is totally severed.  The semantics of these routines are such that
    138        1.1       cgd  * connectionless protocols can call soisconnected() and soisdisconnected()
    139        1.1       cgd  * only, bypassing the in-progress calls when setting up a ``connection''
    140        1.1       cgd  * takes no time.
    141        1.1       cgd  *
    142        1.1       cgd  * From the passive side, a socket is created with
    143        1.1       cgd  * two queues of sockets: so_q0 for connections in progress
    144        1.1       cgd  * and so_q for connections already made and awaiting user acceptance.
    145        1.1       cgd  * As a protocol is preparing incoming connections, it creates a socket
    146        1.1       cgd  * structure queued on so_q0 by calling sonewconn().  When the connection
    147        1.1       cgd  * is established, soisconnected() is called, and transfers the
    148        1.1       cgd  * socket structure to so_q, making it available to accept().
    149       1.66     perry  *
    150        1.1       cgd  * If a socket is closed with sockets on either
    151        1.1       cgd  * so_q0 or so_q, these sockets are dropped.
    152        1.1       cgd  *
    153        1.1       cgd  * If higher level protocols are implemented in
    154        1.1       cgd  * the kernel, the wakeups done here will sometimes
    155        1.1       cgd  * cause software-interrupt process scheduling.
    156        1.1       cgd  */
    157        1.1       cgd 
    158        1.7   mycroft void
    159       1.37     lukem soisconnecting(struct socket *so)
    160        1.1       cgd {
    161        1.1       cgd 
    162       1.91        ad 	KASSERT(solocked(so));
    163       1.91        ad 
    164        1.1       cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    165        1.1       cgd 	so->so_state |= SS_ISCONNECTING;
    166        1.1       cgd }
    167        1.1       cgd 
    168        1.7   mycroft void
    169       1.37     lukem soisconnected(struct socket *so)
    170        1.1       cgd {
    171       1.37     lukem 	struct socket	*head;
    172        1.1       cgd 
    173       1.37     lukem 	head = so->so_head;
    174       1.91        ad 
    175       1.91        ad 	KASSERT(solocked(so));
    176       1.91        ad 	KASSERT(head == NULL || solocked2(so, head));
    177       1.91        ad 
    178        1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    179        1.1       cgd 	so->so_state |= SS_ISCONNECTED;
    180       1.97       tls 	if (head && so->so_onq == &head->so_q0) {
    181       1.97       tls 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    182       1.97       tls 			soqremque(so, 0);
    183       1.97       tls 			soqinsque(head, so, 1);
    184       1.97       tls 			sorwakeup(head);
    185       1.97       tls 			cv_broadcast(&head->so_cv);
    186       1.97       tls 		} else {
    187       1.97       tls 			so->so_upcall =
    188       1.97       tls 			    head->so_accf->so_accept_filter->accf_callback;
    189       1.97       tls 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    190       1.97       tls 			so->so_rcv.sb_flags |= SB_UPCALL;
    191       1.97       tls 			so->so_options &= ~SO_ACCEPTFILTER;
    192      1.104       tls 			(*so->so_upcall)(so, so->so_upcallarg,
    193      1.104       tls 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    194      1.101      yamt 		}
    195        1.1       cgd 	} else {
    196       1.91        ad 		cv_broadcast(&so->so_cv);
    197        1.1       cgd 		sorwakeup(so);
    198        1.1       cgd 		sowwakeup(so);
    199        1.1       cgd 	}
    200        1.1       cgd }
    201        1.1       cgd 
    202        1.7   mycroft void
    203       1.37     lukem soisdisconnecting(struct socket *so)
    204        1.1       cgd {
    205        1.1       cgd 
    206       1.91        ad 	KASSERT(solocked(so));
    207       1.91        ad 
    208        1.1       cgd 	so->so_state &= ~SS_ISCONNECTING;
    209        1.1       cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    210       1.91        ad 	cv_broadcast(&so->so_cv);
    211        1.1       cgd 	sowwakeup(so);
    212        1.1       cgd 	sorwakeup(so);
    213        1.1       cgd }
    214        1.1       cgd 
    215        1.7   mycroft void
    216       1.37     lukem soisdisconnected(struct socket *so)
    217        1.1       cgd {
    218        1.1       cgd 
    219       1.91        ad 	KASSERT(solocked(so));
    220       1.91        ad 
    221        1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    222       1.27   mycroft 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    223       1.91        ad 	cv_broadcast(&so->so_cv);
    224        1.1       cgd 	sowwakeup(so);
    225        1.1       cgd 	sorwakeup(so);
    226        1.1       cgd }
    227        1.1       cgd 
    228       1.94        ad void
    229       1.94        ad soinit2(void)
    230       1.94        ad {
    231       1.94        ad 
    232       1.94        ad 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    233       1.94        ad 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    234       1.94        ad }
    235       1.94        ad 
    236        1.1       cgd /*
    237        1.1       cgd  * When an attempt at a new connection is noted on a socket
    238        1.1       cgd  * which accepts connections, sonewconn is called.  If the
    239        1.1       cgd  * connection is possible (subject to space constraints, etc.)
    240        1.1       cgd  * then we allocate a new structure, propoerly linked into the
    241        1.1       cgd  * data structure of the original socket, and return this.
    242       1.77    plunky  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    243        1.1       cgd  */
    244        1.1       cgd struct socket *
    245       1.76    plunky sonewconn(struct socket *head, int connstatus)
    246        1.1       cgd {
    247       1.37     lukem 	struct socket	*so;
    248       1.91        ad 	int		soqueue, error;
    249       1.91        ad 
    250      1.102      yamt 	KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
    251      1.102      yamt 	    connstatus == SS_ISCONNECTED);
    252       1.91        ad 	KASSERT(solocked(head));
    253        1.1       cgd 
    254       1.97       tls 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
    255       1.97       tls 		connstatus = 0;
    256       1.37     lukem 	soqueue = connstatus ? 1 : 0;
    257        1.1       cgd 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    258      1.100    dyoung 		return NULL;
    259       1.91        ad 	so = soget(false);
    260       1.66     perry 	if (so == NULL)
    261      1.100    dyoung 		return NULL;
    262       1.91        ad 	mutex_obj_hold(head->so_lock);
    263       1.91        ad 	so->so_lock = head->so_lock;
    264        1.1       cgd 	so->so_type = head->so_type;
    265        1.1       cgd 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    266        1.1       cgd 	so->so_linger = head->so_linger;
    267        1.1       cgd 	so->so_state = head->so_state | SS_NOFDREF;
    268       1.89        ad 	so->so_nbio = head->so_nbio;
    269        1.1       cgd 	so->so_proto = head->so_proto;
    270        1.1       cgd 	so->so_timeo = head->so_timeo;
    271        1.1       cgd 	so->so_pgid = head->so_pgid;
    272       1.24      matt 	so->so_send = head->so_send;
    273       1.24      matt 	so->so_receive = head->so_receive;
    274       1.67  christos 	so->so_uidinfo = head->so_uidinfo;
    275       1.96      yamt 	so->so_cpid = head->so_cpid;
    276       1.49      matt #ifdef MBUFTRACE
    277       1.49      matt 	so->so_mowner = head->so_mowner;
    278       1.49      matt 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    279       1.49      matt 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    280       1.49      matt #endif
    281      1.103  christos 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
    282      1.103  christos 		goto out;
    283       1.83       tls 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    284       1.83       tls 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    285       1.84       tls 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    286       1.84       tls 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    287  1.106.4.1     rmind 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    288  1.106.4.1     rmind 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    289        1.1       cgd 	soqinsque(head, so, soqueue);
    290       1.91        ad 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    291       1.91        ad 	    NULL, NULL);
    292       1.91        ad 	KASSERT(solocked(so));
    293       1.91        ad 	if (error != 0) {
    294        1.1       cgd 		(void) soqremque(so, soqueue);
    295      1.103  christos out:
    296       1.99        ad 		/*
    297       1.99        ad 		 * Remove acccept filter if one is present.
    298       1.99        ad 		 * XXX Is this really needed?
    299       1.99        ad 		 */
    300       1.97       tls 		if (so->so_accf != NULL)
    301       1.99        ad 			(void)accept_filt_clear(so);
    302       1.91        ad 		soput(so);
    303      1.100    dyoung 		return NULL;
    304        1.1       cgd 	}
    305        1.1       cgd 	if (connstatus) {
    306        1.1       cgd 		sorwakeup(head);
    307       1.91        ad 		cv_broadcast(&head->so_cv);
    308        1.1       cgd 		so->so_state |= connstatus;
    309        1.1       cgd 	}
    310      1.100    dyoung 	return so;
    311        1.1       cgd }
    312        1.1       cgd 
    313       1.91        ad struct socket *
    314       1.91        ad soget(bool waitok)
    315       1.91        ad {
    316       1.91        ad 	struct socket *so;
    317       1.91        ad 
    318       1.94        ad 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    319       1.91        ad 	if (__predict_false(so == NULL))
    320       1.91        ad 		return (NULL);
    321       1.91        ad 	memset(so, 0, sizeof(*so));
    322       1.91        ad 	TAILQ_INIT(&so->so_q0);
    323       1.91        ad 	TAILQ_INIT(&so->so_q);
    324       1.91        ad 	cv_init(&so->so_cv, "socket");
    325       1.91        ad 	cv_init(&so->so_rcv.sb_cv, "netio");
    326       1.91        ad 	cv_init(&so->so_snd.sb_cv, "netio");
    327       1.91        ad 	selinit(&so->so_rcv.sb_sel);
    328       1.91        ad 	selinit(&so->so_snd.sb_sel);
    329       1.91        ad 	so->so_rcv.sb_so = so;
    330       1.91        ad 	so->so_snd.sb_so = so;
    331       1.91        ad 	return so;
    332       1.91        ad }
    333       1.91        ad 
    334       1.91        ad void
    335       1.91        ad soput(struct socket *so)
    336       1.91        ad {
    337       1.91        ad 
    338       1.91        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    339       1.91        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    340       1.91        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    341       1.91        ad 	seldestroy(&so->so_rcv.sb_sel);
    342       1.91        ad 	seldestroy(&so->so_snd.sb_sel);
    343       1.91        ad 	mutex_obj_free(so->so_lock);
    344       1.91        ad 	cv_destroy(&so->so_cv);
    345       1.91        ad 	cv_destroy(&so->so_rcv.sb_cv);
    346       1.91        ad 	cv_destroy(&so->so_snd.sb_cv);
    347       1.94        ad 	pool_cache_put(socket_cache, so);
    348       1.91        ad }
    349       1.91        ad 
    350        1.7   mycroft void
    351       1.37     lukem soqinsque(struct socket *head, struct socket *so, int q)
    352        1.1       cgd {
    353        1.1       cgd 
    354       1.91        ad 	KASSERT(solocked2(head, so));
    355       1.91        ad 
    356       1.22   thorpej #ifdef DIAGNOSTIC
    357       1.22   thorpej 	if (so->so_onq != NULL)
    358       1.22   thorpej 		panic("soqinsque");
    359       1.22   thorpej #endif
    360       1.22   thorpej 
    361        1.1       cgd 	so->so_head = head;
    362        1.1       cgd 	if (q == 0) {
    363        1.1       cgd 		head->so_q0len++;
    364       1.22   thorpej 		so->so_onq = &head->so_q0;
    365        1.1       cgd 	} else {
    366        1.1       cgd 		head->so_qlen++;
    367       1.22   thorpej 		so->so_onq = &head->so_q;
    368        1.1       cgd 	}
    369       1.22   thorpej 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    370        1.1       cgd }
    371        1.1       cgd 
    372        1.7   mycroft int
    373       1.37     lukem soqremque(struct socket *so, int q)
    374        1.1       cgd {
    375       1.37     lukem 	struct socket	*head;
    376        1.1       cgd 
    377       1.37     lukem 	head = so->so_head;
    378       1.91        ad 
    379       1.91        ad 	KASSERT(solocked(so));
    380       1.22   thorpej 	if (q == 0) {
    381       1.22   thorpej 		if (so->so_onq != &head->so_q0)
    382       1.17   thorpej 			return (0);
    383        1.1       cgd 		head->so_q0len--;
    384        1.1       cgd 	} else {
    385       1.22   thorpej 		if (so->so_onq != &head->so_q)
    386       1.22   thorpej 			return (0);
    387        1.1       cgd 		head->so_qlen--;
    388        1.1       cgd 	}
    389       1.91        ad 	KASSERT(solocked2(so, head));
    390       1.22   thorpej 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    391       1.22   thorpej 	so->so_onq = NULL;
    392       1.22   thorpej 	so->so_head = NULL;
    393        1.1       cgd 	return (1);
    394        1.1       cgd }
    395        1.1       cgd 
    396        1.1       cgd /*
    397        1.1       cgd  * Socantsendmore indicates that no more data will be sent on the
    398        1.1       cgd  * socket; it would normally be applied to a socket when the user
    399        1.1       cgd  * informs the system that no more data is to be sent, by the protocol
    400        1.1       cgd  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    401        1.1       cgd  * will be received, and will normally be applied to the socket by a
    402        1.1       cgd  * protocol when it detects that the peer will send no more data.
    403        1.1       cgd  * Data queued for reading in the socket may yet be read.
    404        1.1       cgd  */
    405        1.1       cgd 
    406        1.4    andrew void
    407       1.37     lukem socantsendmore(struct socket *so)
    408        1.1       cgd {
    409        1.1       cgd 
    410       1.91        ad 	KASSERT(solocked(so));
    411       1.91        ad 
    412        1.1       cgd 	so->so_state |= SS_CANTSENDMORE;
    413        1.1       cgd 	sowwakeup(so);
    414        1.1       cgd }
    415        1.1       cgd 
    416        1.4    andrew void
    417       1.37     lukem socantrcvmore(struct socket *so)
    418        1.1       cgd {
    419        1.1       cgd 
    420       1.91        ad 	KASSERT(solocked(so));
    421       1.91        ad 
    422        1.1       cgd 	so->so_state |= SS_CANTRCVMORE;
    423        1.1       cgd 	sorwakeup(so);
    424        1.1       cgd }
    425        1.1       cgd 
    426        1.1       cgd /*
    427        1.1       cgd  * Wait for data to arrive at/drain from a socket buffer.
    428        1.1       cgd  */
    429        1.7   mycroft int
    430       1.37     lukem sbwait(struct sockbuf *sb)
    431        1.1       cgd {
    432       1.91        ad 	struct socket *so;
    433       1.91        ad 	kmutex_t *lock;
    434       1.91        ad 	int error;
    435        1.1       cgd 
    436       1.91        ad 	so = sb->sb_so;
    437        1.1       cgd 
    438       1.91        ad 	KASSERT(solocked(so));
    439        1.1       cgd 
    440       1.91        ad 	sb->sb_flags |= SB_NOTIFY;
    441       1.91        ad 	lock = so->so_lock;
    442       1.91        ad 	if ((sb->sb_flags & SB_NOINTR) != 0)
    443       1.91        ad 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    444       1.91        ad 	else
    445       1.91        ad 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    446       1.91        ad 	if (__predict_false(lock != so->so_lock))
    447       1.91        ad 		solockretry(so, lock);
    448       1.91        ad 	return error;
    449        1.1       cgd }
    450        1.1       cgd 
    451        1.1       cgd /*
    452        1.1       cgd  * Wakeup processes waiting on a socket buffer.
    453        1.1       cgd  * Do asynchronous notification via SIGIO
    454       1.39      manu  * if the socket buffer has the SB_ASYNC flag set.
    455        1.1       cgd  */
    456        1.7   mycroft void
    457       1.55  christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
    458        1.1       cgd {
    459       1.90     rmind 	int band;
    460       1.90     rmind 
    461       1.91        ad 	KASSERT(solocked(so));
    462       1.91        ad 	KASSERT(sb->sb_so == so);
    463       1.91        ad 
    464       1.90     rmind 	if (code == POLL_IN)
    465       1.90     rmind 		band = POLLIN|POLLRDNORM;
    466       1.90     rmind 	else
    467       1.90     rmind 		band = POLLOUT|POLLWRNORM;
    468       1.91        ad 	sb->sb_flags &= ~SB_NOTIFY;
    469       1.91        ad 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    470       1.91        ad 	cv_broadcast(&sb->sb_cv);
    471       1.90     rmind 	if (sb->sb_flags & SB_ASYNC)
    472       1.57  christos 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    473       1.24      matt 	if (sb->sb_flags & SB_UPCALL)
    474      1.104       tls 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    475        1.1       cgd }
    476        1.1       cgd 
    477        1.1       cgd /*
    478       1.95        ad  * Reset a socket's lock pointer.  Wake all threads waiting on the
    479       1.95        ad  * socket's condition variables so that they can restart their waits
    480       1.95        ad  * using the new lock.  The existing lock must be held.
    481       1.95        ad  */
    482       1.95        ad void
    483       1.95        ad solockreset(struct socket *so, kmutex_t *lock)
    484       1.95        ad {
    485       1.95        ad 
    486       1.95        ad 	KASSERT(solocked(so));
    487       1.95        ad 
    488       1.95        ad 	so->so_lock = lock;
    489       1.95        ad 	cv_broadcast(&so->so_snd.sb_cv);
    490       1.95        ad 	cv_broadcast(&so->so_rcv.sb_cv);
    491       1.95        ad 	cv_broadcast(&so->so_cv);
    492       1.95        ad }
    493       1.95        ad 
    494       1.95        ad /*
    495        1.1       cgd  * Socket buffer (struct sockbuf) utility routines.
    496        1.1       cgd  *
    497        1.1       cgd  * Each socket contains two socket buffers: one for sending data and
    498        1.1       cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    499        1.1       cgd  * information about the number of mbufs and amount of data in the
    500       1.13   mycroft  * queue, and other fields allowing poll() statements and notification
    501        1.1       cgd  * on data availability to be implemented.
    502        1.1       cgd  *
    503        1.1       cgd  * Data stored in a socket buffer is maintained as a list of records.
    504        1.1       cgd  * Each record is a list of mbufs chained together with the m_next
    505        1.1       cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    506        1.1       cgd  * level routine soreceive() expects the following conventions to be
    507        1.1       cgd  * observed when placing information in the receive buffer:
    508        1.1       cgd  *
    509        1.1       cgd  * 1. If the protocol requires each message be preceded by the sender's
    510        1.1       cgd  *    name, then a record containing that name must be present before
    511        1.1       cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    512        1.1       cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    513        1.1       cgd  *    just additional data associated with the message), and there are
    514        1.1       cgd  *    ``rights'' to be received, then a record containing this data
    515       1.10   mycroft  *    should be present (mbuf's must be of type MT_CONTROL).
    516        1.1       cgd  * 3. If a name or rights record exists, then it must be followed by
    517        1.1       cgd  *    a data record, perhaps of zero length.
    518        1.1       cgd  *
    519        1.1       cgd  * Before using a new socket structure it is first necessary to reserve
    520        1.1       cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    521        1.1       cgd  * some of the available buffer space in the system buffer pool for the
    522        1.1       cgd  * socket (currently, it does nothing but enforce limits).  The space
    523        1.1       cgd  * should be released by calling sbrelease() when the socket is destroyed.
    524        1.1       cgd  */
    525        1.1       cgd 
    526        1.7   mycroft int
    527       1.58   thorpej sb_max_set(u_long new_sbmax)
    528       1.58   thorpej {
    529       1.58   thorpej 	int s;
    530       1.58   thorpej 
    531       1.58   thorpej 	if (new_sbmax < (16 * 1024))
    532       1.58   thorpej 		return (EINVAL);
    533       1.58   thorpej 
    534       1.58   thorpej 	s = splsoftnet();
    535       1.58   thorpej 	sb_max = new_sbmax;
    536       1.58   thorpej 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    537       1.58   thorpej 	splx(s);
    538       1.58   thorpej 
    539       1.58   thorpej 	return (0);
    540       1.58   thorpej }
    541       1.58   thorpej 
    542       1.58   thorpej int
    543       1.37     lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    544        1.1       cgd {
    545       1.91        ad 
    546       1.91        ad 	KASSERT(so->so_lock == NULL || solocked(so));
    547       1.91        ad 
    548       1.74  christos 	/*
    549       1.74  christos 	 * there's at least one application (a configure script of screen)
    550       1.74  christos 	 * which expects a fifo is writable even if it has "some" bytes
    551       1.74  christos 	 * in its buffer.
    552       1.74  christos 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    553       1.74  christos 	 *
    554       1.74  christos 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    555       1.74  christos 	 * we expect it's large enough for such applications.
    556       1.74  christos 	 */
    557       1.74  christos 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    558       1.74  christos 	u_long  hiwat = lowat + PIPE_BUF;
    559        1.1       cgd 
    560       1.74  christos 	if (sndcc < hiwat)
    561       1.74  christos 		sndcc = hiwat;
    562       1.59  christos 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    563        1.1       cgd 		goto bad;
    564       1.59  christos 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    565        1.1       cgd 		goto bad2;
    566        1.1       cgd 	if (so->so_rcv.sb_lowat == 0)
    567        1.1       cgd 		so->so_rcv.sb_lowat = 1;
    568        1.1       cgd 	if (so->so_snd.sb_lowat == 0)
    569       1.74  christos 		so->so_snd.sb_lowat = lowat;
    570        1.1       cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    571        1.1       cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    572        1.1       cgd 	return (0);
    573       1.37     lukem  bad2:
    574       1.59  christos 	sbrelease(&so->so_snd, so);
    575       1.37     lukem  bad:
    576        1.1       cgd 	return (ENOBUFS);
    577        1.1       cgd }
    578        1.1       cgd 
    579        1.1       cgd /*
    580        1.1       cgd  * Allot mbufs to a sockbuf.
    581        1.1       cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    582        1.1       cgd  * if buffering efficiency is near the normal case.
    583        1.1       cgd  */
    584        1.7   mycroft int
    585       1.59  christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    586        1.1       cgd {
    587       1.75        ad 	struct lwp *l = curlwp; /* XXX */
    588       1.62  christos 	rlim_t maxcc;
    589       1.67  christos 	struct uidinfo *uidinfo;
    590        1.1       cgd 
    591       1.91        ad 	KASSERT(so->so_lock == NULL || solocked(so));
    592       1.91        ad 	KASSERT(sb->sb_so == so);
    593       1.91        ad 	KASSERT(sb_max_adj != 0);
    594       1.91        ad 
    595       1.58   thorpej 	if (cc == 0 || cc > sb_max_adj)
    596        1.1       cgd 		return (0);
    597       1.93  christos 
    598      1.105      elad 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    599       1.93  christos 
    600       1.93  christos 	uidinfo = so->so_uidinfo;
    601       1.67  christos 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    602       1.62  christos 		return 0;
    603        1.1       cgd 	sb->sb_mbmax = min(cc * 2, sb_max);
    604        1.1       cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    605        1.1       cgd 		sb->sb_lowat = sb->sb_hiwat;
    606        1.1       cgd 	return (1);
    607        1.1       cgd }
    608        1.1       cgd 
    609        1.1       cgd /*
    610       1.91        ad  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    611       1.91        ad  * that the socket is held locked here: see sorflush().
    612        1.1       cgd  */
    613        1.7   mycroft void
    614       1.59  christos sbrelease(struct sockbuf *sb, struct socket *so)
    615        1.1       cgd {
    616        1.1       cgd 
    617       1.91        ad 	KASSERT(sb->sb_so == so);
    618       1.91        ad 
    619        1.1       cgd 	sbflush(sb);
    620       1.87      yamt 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    621       1.59  christos 	sb->sb_mbmax = 0;
    622        1.1       cgd }
    623        1.1       cgd 
    624        1.1       cgd /*
    625        1.1       cgd  * Routines to add and remove
    626        1.1       cgd  * data from an mbuf queue.
    627        1.1       cgd  *
    628        1.1       cgd  * The routines sbappend() or sbappendrecord() are normally called to
    629        1.1       cgd  * append new mbufs to a socket buffer, after checking that adequate
    630        1.1       cgd  * space is available, comparing the function sbspace() with the amount
    631        1.1       cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    632        1.1       cgd  * that data supplied is treated as the beginning of a new record.
    633        1.1       cgd  * To place a sender's address, optional access rights, and data in a
    634        1.1       cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    635        1.1       cgd  * access rights and data in a socket receive buffer, sbappendrights()
    636        1.1       cgd  * should be used.  In either case, the new data begins a new record.
    637        1.1       cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    638        1.1       cgd  * for the caller that there will be enough space to store the data.
    639        1.1       cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    640        1.1       cgd  * to store additional information in.
    641        1.1       cgd  *
    642        1.1       cgd  * Reliable protocols may use the socket send buffer to hold data
    643        1.1       cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    644        1.1       cgd  * send buffer in a protocol with m_copy for output to a peer,
    645        1.1       cgd  * and then removing the data from the socket buffer with sbdrop()
    646        1.1       cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    647        1.1       cgd  */
    648        1.1       cgd 
    649       1.43   thorpej #ifdef SOCKBUF_DEBUG
    650       1.43   thorpej void
    651       1.43   thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
    652       1.43   thorpej {
    653       1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    654       1.43   thorpej 
    655       1.91        ad 	KASSERT(solocked(sb->sb_so));
    656       1.91        ad 
    657       1.43   thorpej 	while (m && m->m_nextpkt)
    658       1.43   thorpej 		m = m->m_nextpkt;
    659       1.43   thorpej 
    660       1.43   thorpej 	if (m != sb->sb_lastrecord) {
    661       1.43   thorpej 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    662       1.43   thorpej 		    sb->sb_mb, sb->sb_lastrecord, m);
    663       1.43   thorpej 		printf("packet chain:\n");
    664       1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    665       1.43   thorpej 			printf("\t%p\n", m);
    666       1.47    provos 		panic("sblastrecordchk from %s", where);
    667       1.43   thorpej 	}
    668       1.43   thorpej }
    669       1.43   thorpej 
    670       1.43   thorpej void
    671       1.43   thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
    672       1.43   thorpej {
    673       1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    674       1.43   thorpej 	struct mbuf *n;
    675       1.43   thorpej 
    676       1.91        ad 	KASSERT(solocked(sb->sb_so));
    677       1.91        ad 
    678       1.43   thorpej 	while (m && m->m_nextpkt)
    679       1.43   thorpej 		m = m->m_nextpkt;
    680       1.43   thorpej 
    681       1.43   thorpej 	while (m && m->m_next)
    682       1.43   thorpej 		m = m->m_next;
    683       1.43   thorpej 
    684       1.43   thorpej 	if (m != sb->sb_mbtail) {
    685       1.43   thorpej 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    686       1.43   thorpej 		    sb->sb_mb, sb->sb_mbtail, m);
    687       1.43   thorpej 		printf("packet tree:\n");
    688       1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    689       1.43   thorpej 			printf("\t");
    690       1.43   thorpej 			for (n = m; n != NULL; n = n->m_next)
    691       1.43   thorpej 				printf("%p ", n);
    692       1.43   thorpej 			printf("\n");
    693       1.43   thorpej 		}
    694       1.43   thorpej 		panic("sblastmbufchk from %s", where);
    695       1.43   thorpej 	}
    696       1.43   thorpej }
    697       1.43   thorpej #endif /* SOCKBUF_DEBUG */
    698       1.43   thorpej 
    699       1.63  jonathan /*
    700       1.63  jonathan  * Link a chain of records onto a socket buffer
    701       1.63  jonathan  */
    702       1.63  jonathan #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    703       1.43   thorpej do {									\
    704       1.43   thorpej 	if ((sb)->sb_lastrecord != NULL)				\
    705       1.43   thorpej 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    706       1.43   thorpej 	else								\
    707       1.43   thorpej 		(sb)->sb_mb = (m0);					\
    708       1.63  jonathan 	(sb)->sb_lastrecord = (mlast);					\
    709       1.43   thorpej } while (/*CONSTCOND*/0)
    710       1.43   thorpej 
    711       1.63  jonathan 
    712       1.63  jonathan #define	SBLINKRECORD(sb, m0)						\
    713       1.63  jonathan     SBLINKRECORDCHAIN(sb, m0, m0)
    714       1.63  jonathan 
    715        1.1       cgd /*
    716        1.1       cgd  * Append mbuf chain m to the last record in the
    717        1.1       cgd  * socket buffer sb.  The additional space associated
    718        1.1       cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    719        1.1       cgd  * discarded and mbufs are compacted where possible.
    720        1.1       cgd  */
    721        1.7   mycroft void
    722       1.37     lukem sbappend(struct sockbuf *sb, struct mbuf *m)
    723        1.1       cgd {
    724       1.37     lukem 	struct mbuf	*n;
    725        1.1       cgd 
    726       1.91        ad 	KASSERT(solocked(sb->sb_so));
    727       1.91        ad 
    728        1.1       cgd 	if (m == 0)
    729        1.1       cgd 		return;
    730       1.43   thorpej 
    731       1.49      matt #ifdef MBUFTRACE
    732       1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    733       1.49      matt #endif
    734       1.49      matt 
    735       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 1");
    736       1.43   thorpej 
    737       1.43   thorpej 	if ((n = sb->sb_lastrecord) != NULL) {
    738       1.43   thorpej 		/*
    739       1.43   thorpej 		 * XXX Would like to simply use sb_mbtail here, but
    740       1.43   thorpej 		 * XXX I need to verify that I won't miss an EOR that
    741       1.43   thorpej 		 * XXX way.
    742       1.43   thorpej 		 */
    743        1.1       cgd 		do {
    744        1.1       cgd 			if (n->m_flags & M_EOR) {
    745        1.1       cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    746        1.1       cgd 				return;
    747        1.1       cgd 			}
    748        1.1       cgd 		} while (n->m_next && (n = n->m_next));
    749       1.43   thorpej 	} else {
    750       1.43   thorpej 		/*
    751       1.43   thorpej 		 * If this is the first record in the socket buffer, it's
    752       1.43   thorpej 		 * also the last record.
    753       1.43   thorpej 		 */
    754       1.43   thorpej 		sb->sb_lastrecord = m;
    755        1.1       cgd 	}
    756        1.1       cgd 	sbcompress(sb, m, n);
    757       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 2");
    758       1.43   thorpej }
    759       1.43   thorpej 
    760       1.43   thorpej /*
    761       1.43   thorpej  * This version of sbappend() should only be used when the caller
    762       1.43   thorpej  * absolutely knows that there will never be more than one record
    763       1.43   thorpej  * in the socket buffer, that is, a stream protocol (such as TCP).
    764       1.43   thorpej  */
    765       1.43   thorpej void
    766       1.44   thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
    767       1.43   thorpej {
    768       1.43   thorpej 
    769       1.91        ad 	KASSERT(solocked(sb->sb_so));
    770       1.43   thorpej 	KDASSERT(m->m_nextpkt == NULL);
    771       1.43   thorpej 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    772       1.43   thorpej 
    773       1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
    774       1.43   thorpej 
    775       1.49      matt #ifdef MBUFTRACE
    776       1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    777       1.49      matt #endif
    778       1.49      matt 
    779       1.43   thorpej 	sbcompress(sb, m, sb->sb_mbtail);
    780       1.43   thorpej 
    781       1.43   thorpej 	sb->sb_lastrecord = sb->sb_mb;
    782       1.43   thorpej 	SBLASTRECORDCHK(sb, __func__);
    783        1.1       cgd }
    784        1.1       cgd 
    785        1.1       cgd #ifdef SOCKBUF_DEBUG
    786        1.7   mycroft void
    787       1.37     lukem sbcheck(struct sockbuf *sb)
    788        1.1       cgd {
    789       1.91        ad 	struct mbuf	*m, *m2;
    790       1.43   thorpej 	u_long		len, mbcnt;
    791        1.1       cgd 
    792       1.91        ad 	KASSERT(solocked(sb->sb_so));
    793       1.91        ad 
    794       1.37     lukem 	len = 0;
    795       1.37     lukem 	mbcnt = 0;
    796       1.91        ad 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    797       1.91        ad 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    798       1.91        ad 			len += m2->m_len;
    799       1.91        ad 			mbcnt += MSIZE;
    800       1.91        ad 			if (m2->m_flags & M_EXT)
    801       1.91        ad 				mbcnt += m2->m_ext.ext_size;
    802       1.91        ad 			if (m2->m_nextpkt != NULL)
    803       1.91        ad 				panic("sbcheck nextpkt");
    804       1.91        ad 		}
    805        1.1       cgd 	}
    806        1.1       cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    807       1.43   thorpej 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    808        1.1       cgd 		    mbcnt, sb->sb_mbcnt);
    809        1.1       cgd 		panic("sbcheck");
    810        1.1       cgd 	}
    811        1.1       cgd }
    812        1.1       cgd #endif
    813        1.1       cgd 
    814        1.1       cgd /*
    815        1.1       cgd  * As above, except the mbuf chain
    816        1.1       cgd  * begins a new record.
    817        1.1       cgd  */
    818        1.7   mycroft void
    819       1.37     lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    820        1.1       cgd {
    821       1.37     lukem 	struct mbuf	*m;
    822        1.1       cgd 
    823       1.91        ad 	KASSERT(solocked(sb->sb_so));
    824       1.91        ad 
    825        1.1       cgd 	if (m0 == 0)
    826        1.1       cgd 		return;
    827       1.43   thorpej 
    828       1.49      matt #ifdef MBUFTRACE
    829       1.65  jonathan 	m_claimm(m0, sb->sb_mowner);
    830       1.49      matt #endif
    831        1.1       cgd 	/*
    832        1.1       cgd 	 * Put the first mbuf on the queue.
    833        1.1       cgd 	 * Note this permits zero length records.
    834        1.1       cgd 	 */
    835        1.1       cgd 	sballoc(sb, m0);
    836       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    837       1.43   thorpej 	SBLINKRECORD(sb, m0);
    838        1.1       cgd 	m = m0->m_next;
    839        1.1       cgd 	m0->m_next = 0;
    840        1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    841        1.1       cgd 		m0->m_flags &= ~M_EOR;
    842        1.1       cgd 		m->m_flags |= M_EOR;
    843        1.1       cgd 	}
    844        1.1       cgd 	sbcompress(sb, m, m0);
    845       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    846        1.1       cgd }
    847        1.1       cgd 
    848        1.1       cgd /*
    849        1.1       cgd  * As above except that OOB data
    850        1.1       cgd  * is inserted at the beginning of the sockbuf,
    851        1.1       cgd  * but after any other OOB data.
    852        1.1       cgd  */
    853        1.7   mycroft void
    854       1.37     lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    855        1.1       cgd {
    856       1.37     lukem 	struct mbuf	*m, **mp;
    857        1.1       cgd 
    858       1.91        ad 	KASSERT(solocked(sb->sb_so));
    859       1.91        ad 
    860        1.1       cgd 	if (m0 == 0)
    861        1.1       cgd 		return;
    862       1.43   thorpej 
    863       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    864       1.43   thorpej 
    865       1.11  christos 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    866        1.1       cgd 	    again:
    867        1.1       cgd 		switch (m->m_type) {
    868        1.1       cgd 
    869        1.1       cgd 		case MT_OOBDATA:
    870        1.1       cgd 			continue;		/* WANT next train */
    871        1.1       cgd 
    872        1.1       cgd 		case MT_CONTROL:
    873       1.11  christos 			if ((m = m->m_next) != NULL)
    874        1.1       cgd 				goto again;	/* inspect THIS train further */
    875        1.1       cgd 		}
    876        1.1       cgd 		break;
    877        1.1       cgd 	}
    878        1.1       cgd 	/*
    879        1.1       cgd 	 * Put the first mbuf on the queue.
    880        1.1       cgd 	 * Note this permits zero length records.
    881        1.1       cgd 	 */
    882        1.1       cgd 	sballoc(sb, m0);
    883        1.1       cgd 	m0->m_nextpkt = *mp;
    884       1.43   thorpej 	if (*mp == NULL) {
    885       1.43   thorpej 		/* m0 is actually the new tail */
    886       1.43   thorpej 		sb->sb_lastrecord = m0;
    887       1.43   thorpej 	}
    888        1.1       cgd 	*mp = m0;
    889        1.1       cgd 	m = m0->m_next;
    890        1.1       cgd 	m0->m_next = 0;
    891        1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    892        1.1       cgd 		m0->m_flags &= ~M_EOR;
    893        1.1       cgd 		m->m_flags |= M_EOR;
    894        1.1       cgd 	}
    895        1.1       cgd 	sbcompress(sb, m, m0);
    896       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    897        1.1       cgd }
    898        1.1       cgd 
    899        1.1       cgd /*
    900        1.1       cgd  * Append address and data, and optionally, control (ancillary) data
    901        1.1       cgd  * to the receive queue of a socket.  If present,
    902        1.1       cgd  * m0 must include a packet header with total length.
    903        1.1       cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
    904        1.1       cgd  */
    905        1.7   mycroft int
    906       1.61      matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    907       1.37     lukem 	struct mbuf *control)
    908        1.1       cgd {
    909       1.43   thorpej 	struct mbuf	*m, *n, *nlast;
    910       1.50      fvdl 	int		space, len;
    911        1.1       cgd 
    912       1.91        ad 	KASSERT(solocked(sb->sb_so));
    913       1.91        ad 
    914       1.37     lukem 	space = asa->sa_len;
    915       1.37     lukem 
    916       1.49      matt 	if (m0 != NULL) {
    917       1.49      matt 		if ((m0->m_flags & M_PKTHDR) == 0)
    918       1.49      matt 			panic("sbappendaddr");
    919        1.1       cgd 		space += m0->m_pkthdr.len;
    920       1.49      matt #ifdef MBUFTRACE
    921       1.65  jonathan 		m_claimm(m0, sb->sb_mowner);
    922       1.49      matt #endif
    923       1.49      matt 	}
    924        1.1       cgd 	for (n = control; n; n = n->m_next) {
    925        1.1       cgd 		space += n->m_len;
    926       1.49      matt 		MCLAIM(n, sb->sb_mowner);
    927        1.1       cgd 		if (n->m_next == 0)	/* keep pointer to last control buf */
    928        1.1       cgd 			break;
    929        1.1       cgd 	}
    930        1.1       cgd 	if (space > sbspace(sb))
    931        1.1       cgd 		return (0);
    932        1.1       cgd 	MGET(m, M_DONTWAIT, MT_SONAME);
    933        1.1       cgd 	if (m == 0)
    934        1.1       cgd 		return (0);
    935       1.49      matt 	MCLAIM(m, sb->sb_mowner);
    936       1.50      fvdl 	/*
    937       1.50      fvdl 	 * XXX avoid 'comparison always true' warning which isn't easily
    938       1.50      fvdl 	 * avoided.
    939       1.50      fvdl 	 */
    940       1.50      fvdl 	len = asa->sa_len;
    941       1.50      fvdl 	if (len > MLEN) {
    942       1.20   thorpej 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    943       1.20   thorpej 		if ((m->m_flags & M_EXT) == 0) {
    944       1.20   thorpej 			m_free(m);
    945       1.20   thorpej 			return (0);
    946       1.20   thorpej 		}
    947       1.20   thorpej 	}
    948        1.1       cgd 	m->m_len = asa->sa_len;
    949       1.82  christos 	memcpy(mtod(m, void *), asa, asa->sa_len);
    950        1.1       cgd 	if (n)
    951        1.1       cgd 		n->m_next = m0;		/* concatenate data to control */
    952        1.1       cgd 	else
    953        1.1       cgd 		control = m0;
    954        1.1       cgd 	m->m_next = control;
    955       1.43   thorpej 
    956       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    957       1.43   thorpej 
    958       1.43   thorpej 	for (n = m; n->m_next != NULL; n = n->m_next)
    959        1.1       cgd 		sballoc(sb, n);
    960       1.43   thorpej 	sballoc(sb, n);
    961       1.43   thorpej 	nlast = n;
    962       1.43   thorpej 	SBLINKRECORD(sb, m);
    963       1.43   thorpej 
    964       1.43   thorpej 	sb->sb_mbtail = nlast;
    965       1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendaddr");
    966       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    967       1.43   thorpej 
    968        1.1       cgd 	return (1);
    969        1.1       cgd }
    970        1.1       cgd 
    971       1.63  jonathan /*
    972       1.63  jonathan  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    973       1.63  jonathan  * an mbuf chain.
    974       1.63  jonathan  */
    975       1.70     perry static inline struct mbuf *
    976       1.81      yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    977       1.64  jonathan 		   const struct sockaddr *asa)
    978       1.63  jonathan {
    979       1.63  jonathan 	struct mbuf *m;
    980       1.64  jonathan 	const int salen = asa->sa_len;
    981       1.63  jonathan 
    982       1.91        ad 	KASSERT(solocked(sb->sb_so));
    983       1.91        ad 
    984       1.63  jonathan 	/* only the first in each chain need be a pkthdr */
    985       1.63  jonathan 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    986       1.63  jonathan 	if (m == 0)
    987       1.63  jonathan 		return (0);
    988       1.63  jonathan 	MCLAIM(m, sb->sb_mowner);
    989       1.64  jonathan #ifdef notyet
    990       1.64  jonathan 	if (salen > MHLEN) {
    991       1.64  jonathan 		MEXTMALLOC(m, salen, M_NOWAIT);
    992       1.64  jonathan 		if ((m->m_flags & M_EXT) == 0) {
    993       1.64  jonathan 			m_free(m);
    994       1.64  jonathan 			return (0);
    995       1.64  jonathan 		}
    996       1.64  jonathan 	}
    997       1.64  jonathan #else
    998       1.64  jonathan 	KASSERT(salen <= MHLEN);
    999       1.64  jonathan #endif
   1000       1.64  jonathan 	m->m_len = salen;
   1001       1.82  christos 	memcpy(mtod(m, void *), asa, salen);
   1002       1.63  jonathan 	m->m_next = m0;
   1003       1.64  jonathan 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1004       1.63  jonathan 
   1005       1.63  jonathan 	return m;
   1006       1.63  jonathan }
   1007       1.63  jonathan 
   1008       1.63  jonathan int
   1009       1.63  jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1010       1.63  jonathan 		  struct mbuf *m0, int sbprio)
   1011       1.63  jonathan {
   1012       1.63  jonathan 	int space;
   1013       1.63  jonathan 	struct mbuf *m, *n, *n0, *nlast;
   1014       1.63  jonathan 	int error;
   1015       1.63  jonathan 
   1016       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1017       1.91        ad 
   1018       1.63  jonathan 	/*
   1019       1.63  jonathan 	 * XXX sbprio reserved for encoding priority of this* request:
   1020       1.63  jonathan 	 *  SB_PRIO_NONE --> honour normal sb limits
   1021       1.63  jonathan 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1022       1.63  jonathan 	 *	take whole chain. Intended for large requests
   1023       1.63  jonathan 	 *      that should be delivered atomically (all, or none).
   1024       1.63  jonathan 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1025       1.63  jonathan 	 *       over normal socket limits, for messages indicating
   1026       1.63  jonathan 	 *       buffer overflow in earlier normal/lower-priority messages
   1027       1.63  jonathan 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1028       1.63  jonathan 	 *       Intended for  kernel-generated messages only.
   1029       1.63  jonathan 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1030       1.63  jonathan 	 */
   1031       1.63  jonathan 	(void)sbprio;
   1032       1.63  jonathan 
   1033       1.63  jonathan 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1034       1.63  jonathan 		panic("sbappendaddrchain");
   1035       1.63  jonathan 
   1036       1.63  jonathan 	space = sbspace(sb);
   1037       1.66     perry 
   1038       1.63  jonathan #ifdef notyet
   1039       1.66     perry 	/*
   1040       1.63  jonathan 	 * Enforce SB_PRIO_* limits as described above.
   1041       1.63  jonathan 	 */
   1042       1.63  jonathan #endif
   1043       1.63  jonathan 
   1044       1.63  jonathan 	n0 = NULL;
   1045       1.63  jonathan 	nlast = NULL;
   1046       1.63  jonathan 	for (m = m0; m; m = m->m_nextpkt) {
   1047       1.63  jonathan 		struct mbuf *np;
   1048       1.63  jonathan 
   1049       1.64  jonathan #ifdef MBUFTRACE
   1050       1.65  jonathan 		m_claimm(m, sb->sb_mowner);
   1051       1.64  jonathan #endif
   1052       1.64  jonathan 
   1053       1.63  jonathan 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1054       1.64  jonathan 	  	n = m_prepend_sockaddr(sb, m, asa);
   1055       1.63  jonathan 		if (n == NULL) {
   1056       1.63  jonathan 			error = ENOBUFS;
   1057       1.63  jonathan 			goto bad;
   1058       1.63  jonathan 		}
   1059       1.63  jonathan 
   1060       1.63  jonathan 		/* Append record (asa+m) to end of new chain n0 */
   1061       1.63  jonathan 		if (n0 == NULL) {
   1062       1.63  jonathan 			n0 = n;
   1063       1.63  jonathan 		} else {
   1064       1.63  jonathan 			nlast->m_nextpkt = n;
   1065       1.63  jonathan 		}
   1066       1.63  jonathan 		/* Keep track of last record on new chain */
   1067       1.63  jonathan 		nlast = n;
   1068       1.63  jonathan 
   1069       1.63  jonathan 		for (np = n; np; np = np->m_next)
   1070       1.63  jonathan 			sballoc(sb, np);
   1071       1.63  jonathan 	}
   1072       1.63  jonathan 
   1073       1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1074       1.64  jonathan 
   1075       1.63  jonathan 	/* Drop the entire chain of (asa+m) records onto the socket */
   1076       1.63  jonathan 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1077       1.64  jonathan 
   1078       1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1079       1.64  jonathan 
   1080       1.63  jonathan 	for (m = nlast; m->m_next; m = m->m_next)
   1081       1.63  jonathan 		;
   1082       1.63  jonathan 	sb->sb_mbtail = m;
   1083       1.64  jonathan 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1084       1.64  jonathan 
   1085       1.63  jonathan 	return (1);
   1086       1.63  jonathan 
   1087       1.63  jonathan bad:
   1088       1.64  jonathan 	/*
   1089       1.64  jonathan 	 * On error, free the prepended addreseses. For consistency
   1090       1.64  jonathan 	 * with sbappendaddr(), leave it to our caller to free
   1091       1.64  jonathan 	 * the input record chain passed to us as m0.
   1092       1.64  jonathan 	 */
   1093       1.64  jonathan 	while ((n = n0) != NULL) {
   1094       1.64  jonathan 	  	struct mbuf *np;
   1095       1.64  jonathan 
   1096       1.64  jonathan 		/* Undo the sballoc() of this record */
   1097       1.64  jonathan 		for (np = n; np; np = np->m_next)
   1098       1.64  jonathan 			sbfree(sb, np);
   1099       1.64  jonathan 
   1100       1.64  jonathan 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1101       1.64  jonathan 		MFREE(n, np);		/* free prepended address (not data) */
   1102       1.64  jonathan 	}
   1103       1.66     perry 	return 0;
   1104       1.63  jonathan }
   1105       1.63  jonathan 
   1106       1.63  jonathan 
   1107        1.7   mycroft int
   1108       1.37     lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1109        1.1       cgd {
   1110       1.43   thorpej 	struct mbuf	*m, *mlast, *n;
   1111       1.37     lukem 	int		space;
   1112        1.1       cgd 
   1113       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1114       1.91        ad 
   1115       1.37     lukem 	space = 0;
   1116        1.1       cgd 	if (control == 0)
   1117        1.1       cgd 		panic("sbappendcontrol");
   1118        1.1       cgd 	for (m = control; ; m = m->m_next) {
   1119        1.1       cgd 		space += m->m_len;
   1120       1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1121        1.1       cgd 		if (m->m_next == 0)
   1122        1.1       cgd 			break;
   1123        1.1       cgd 	}
   1124        1.1       cgd 	n = m;			/* save pointer to last control buffer */
   1125       1.49      matt 	for (m = m0; m; m = m->m_next) {
   1126       1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1127        1.1       cgd 		space += m->m_len;
   1128       1.49      matt 	}
   1129        1.1       cgd 	if (space > sbspace(sb))
   1130        1.1       cgd 		return (0);
   1131        1.1       cgd 	n->m_next = m0;			/* concatenate data to control */
   1132       1.43   thorpej 
   1133       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1134       1.43   thorpej 
   1135       1.43   thorpej 	for (m = control; m->m_next != NULL; m = m->m_next)
   1136        1.1       cgd 		sballoc(sb, m);
   1137       1.43   thorpej 	sballoc(sb, m);
   1138       1.43   thorpej 	mlast = m;
   1139       1.43   thorpej 	SBLINKRECORD(sb, control);
   1140       1.43   thorpej 
   1141       1.43   thorpej 	sb->sb_mbtail = mlast;
   1142       1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1143       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1144       1.43   thorpej 
   1145        1.1       cgd 	return (1);
   1146        1.1       cgd }
   1147        1.1       cgd 
   1148        1.1       cgd /*
   1149        1.1       cgd  * Compress mbuf chain m into the socket
   1150        1.1       cgd  * buffer sb following mbuf n.  If n
   1151        1.1       cgd  * is null, the buffer is presumed empty.
   1152        1.1       cgd  */
   1153        1.7   mycroft void
   1154       1.37     lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1155        1.1       cgd {
   1156       1.37     lukem 	int		eor;
   1157       1.37     lukem 	struct mbuf	*o;
   1158        1.1       cgd 
   1159       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1160       1.91        ad 
   1161       1.37     lukem 	eor = 0;
   1162        1.1       cgd 	while (m) {
   1163        1.1       cgd 		eor |= m->m_flags & M_EOR;
   1164        1.1       cgd 		if (m->m_len == 0 &&
   1165        1.1       cgd 		    (eor == 0 ||
   1166        1.1       cgd 		     (((o = m->m_next) || (o = n)) &&
   1167        1.1       cgd 		      o->m_type == m->m_type))) {
   1168       1.46   thorpej 			if (sb->sb_lastrecord == m)
   1169       1.46   thorpej 				sb->sb_lastrecord = m->m_next;
   1170        1.1       cgd 			m = m_free(m);
   1171        1.1       cgd 			continue;
   1172        1.1       cgd 		}
   1173       1.40   thorpej 		if (n && (n->m_flags & M_EOR) == 0 &&
   1174       1.40   thorpej 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1175       1.40   thorpej 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1176       1.40   thorpej 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1177       1.40   thorpej 		    n->m_type == m->m_type) {
   1178       1.82  christos 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1179        1.1       cgd 			    (unsigned)m->m_len);
   1180        1.1       cgd 			n->m_len += m->m_len;
   1181        1.1       cgd 			sb->sb_cc += m->m_len;
   1182        1.1       cgd 			m = m_free(m);
   1183        1.1       cgd 			continue;
   1184        1.1       cgd 		}
   1185        1.1       cgd 		if (n)
   1186        1.1       cgd 			n->m_next = m;
   1187        1.1       cgd 		else
   1188        1.1       cgd 			sb->sb_mb = m;
   1189       1.43   thorpej 		sb->sb_mbtail = m;
   1190        1.1       cgd 		sballoc(sb, m);
   1191        1.1       cgd 		n = m;
   1192        1.1       cgd 		m->m_flags &= ~M_EOR;
   1193        1.1       cgd 		m = m->m_next;
   1194        1.1       cgd 		n->m_next = 0;
   1195        1.1       cgd 	}
   1196        1.1       cgd 	if (eor) {
   1197        1.1       cgd 		if (n)
   1198        1.1       cgd 			n->m_flags |= eor;
   1199        1.1       cgd 		else
   1200       1.15  christos 			printf("semi-panic: sbcompress\n");
   1201        1.1       cgd 	}
   1202       1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
   1203        1.1       cgd }
   1204        1.1       cgd 
   1205        1.1       cgd /*
   1206        1.1       cgd  * Free all mbufs in a sockbuf.
   1207        1.1       cgd  * Check that all resources are reclaimed.
   1208        1.1       cgd  */
   1209        1.7   mycroft void
   1210       1.37     lukem sbflush(struct sockbuf *sb)
   1211        1.1       cgd {
   1212        1.1       cgd 
   1213       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1214       1.43   thorpej 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1215       1.43   thorpej 
   1216        1.1       cgd 	while (sb->sb_mbcnt)
   1217        1.1       cgd 		sbdrop(sb, (int)sb->sb_cc);
   1218       1.43   thorpej 
   1219       1.43   thorpej 	KASSERT(sb->sb_cc == 0);
   1220       1.43   thorpej 	KASSERT(sb->sb_mb == NULL);
   1221       1.43   thorpej 	KASSERT(sb->sb_mbtail == NULL);
   1222       1.43   thorpej 	KASSERT(sb->sb_lastrecord == NULL);
   1223        1.1       cgd }
   1224        1.1       cgd 
   1225        1.1       cgd /*
   1226        1.1       cgd  * Drop data from (the front of) a sockbuf.
   1227        1.1       cgd  */
   1228        1.7   mycroft void
   1229       1.37     lukem sbdrop(struct sockbuf *sb, int len)
   1230        1.1       cgd {
   1231       1.37     lukem 	struct mbuf	*m, *mn, *next;
   1232        1.1       cgd 
   1233       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1234       1.91        ad 
   1235        1.1       cgd 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1236        1.1       cgd 	while (len > 0) {
   1237        1.1       cgd 		if (m == 0) {
   1238        1.1       cgd 			if (next == 0)
   1239        1.1       cgd 				panic("sbdrop");
   1240        1.1       cgd 			m = next;
   1241        1.1       cgd 			next = m->m_nextpkt;
   1242        1.1       cgd 			continue;
   1243        1.1       cgd 		}
   1244        1.1       cgd 		if (m->m_len > len) {
   1245        1.1       cgd 			m->m_len -= len;
   1246        1.1       cgd 			m->m_data += len;
   1247        1.1       cgd 			sb->sb_cc -= len;
   1248        1.1       cgd 			break;
   1249        1.1       cgd 		}
   1250        1.1       cgd 		len -= m->m_len;
   1251        1.1       cgd 		sbfree(sb, m);
   1252        1.1       cgd 		MFREE(m, mn);
   1253        1.1       cgd 		m = mn;
   1254        1.1       cgd 	}
   1255        1.1       cgd 	while (m && m->m_len == 0) {
   1256        1.1       cgd 		sbfree(sb, m);
   1257        1.1       cgd 		MFREE(m, mn);
   1258        1.1       cgd 		m = mn;
   1259        1.1       cgd 	}
   1260        1.1       cgd 	if (m) {
   1261        1.1       cgd 		sb->sb_mb = m;
   1262        1.1       cgd 		m->m_nextpkt = next;
   1263        1.1       cgd 	} else
   1264        1.1       cgd 		sb->sb_mb = next;
   1265       1.43   thorpej 	/*
   1266       1.45   thorpej 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1267       1.43   thorpej 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1268       1.43   thorpej 	 * part of the last record.
   1269       1.43   thorpej 	 */
   1270       1.43   thorpej 	m = sb->sb_mb;
   1271       1.43   thorpej 	if (m == NULL) {
   1272       1.43   thorpej 		sb->sb_mbtail = NULL;
   1273       1.43   thorpej 		sb->sb_lastrecord = NULL;
   1274       1.43   thorpej 	} else if (m->m_nextpkt == NULL)
   1275       1.43   thorpej 		sb->sb_lastrecord = m;
   1276        1.1       cgd }
   1277        1.1       cgd 
   1278        1.1       cgd /*
   1279        1.1       cgd  * Drop a record off the front of a sockbuf
   1280        1.1       cgd  * and move the next record to the front.
   1281        1.1       cgd  */
   1282        1.7   mycroft void
   1283       1.37     lukem sbdroprecord(struct sockbuf *sb)
   1284        1.1       cgd {
   1285       1.37     lukem 	struct mbuf	*m, *mn;
   1286        1.1       cgd 
   1287       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1288       1.91        ad 
   1289        1.1       cgd 	m = sb->sb_mb;
   1290        1.1       cgd 	if (m) {
   1291        1.1       cgd 		sb->sb_mb = m->m_nextpkt;
   1292        1.1       cgd 		do {
   1293        1.1       cgd 			sbfree(sb, m);
   1294        1.1       cgd 			MFREE(m, mn);
   1295       1.11  christos 		} while ((m = mn) != NULL);
   1296        1.1       cgd 	}
   1297       1.45   thorpej 	SB_EMPTY_FIXUP(sb);
   1298       1.19   thorpej }
   1299       1.19   thorpej 
   1300       1.19   thorpej /*
   1301       1.19   thorpej  * Create a "control" mbuf containing the specified data
   1302       1.19   thorpej  * with the specified type for presentation on a socket buffer.
   1303       1.19   thorpej  */
   1304       1.19   thorpej struct mbuf *
   1305       1.82  christos sbcreatecontrol(void *p, int size, int type, int level)
   1306       1.19   thorpej {
   1307       1.37     lukem 	struct cmsghdr	*cp;
   1308       1.37     lukem 	struct mbuf	*m;
   1309       1.19   thorpej 
   1310       1.35    itojun 	if (CMSG_SPACE(size) > MCLBYTES) {
   1311       1.30    itojun 		printf("sbcreatecontrol: message too large %d\n", size);
   1312       1.30    itojun 		return NULL;
   1313       1.30    itojun 	}
   1314       1.30    itojun 
   1315       1.19   thorpej 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1316       1.19   thorpej 		return ((struct mbuf *) NULL);
   1317       1.35    itojun 	if (CMSG_SPACE(size) > MLEN) {
   1318       1.30    itojun 		MCLGET(m, M_DONTWAIT);
   1319       1.30    itojun 		if ((m->m_flags & M_EXT) == 0) {
   1320       1.30    itojun 			m_free(m);
   1321       1.30    itojun 			return NULL;
   1322       1.30    itojun 		}
   1323       1.30    itojun 	}
   1324       1.19   thorpej 	cp = mtod(m, struct cmsghdr *);
   1325       1.26     perry 	memcpy(CMSG_DATA(cp), p, size);
   1326       1.35    itojun 	m->m_len = CMSG_SPACE(size);
   1327       1.35    itojun 	cp->cmsg_len = CMSG_LEN(size);
   1328       1.19   thorpej 	cp->cmsg_level = level;
   1329       1.19   thorpej 	cp->cmsg_type = type;
   1330       1.19   thorpej 	return (m);
   1331        1.1       cgd }
   1332       1.91        ad 
   1333       1.91        ad void
   1334       1.91        ad solockretry(struct socket *so, kmutex_t *lock)
   1335       1.91        ad {
   1336       1.91        ad 
   1337       1.91        ad 	while (lock != so->so_lock) {
   1338       1.91        ad 		mutex_exit(lock);
   1339       1.91        ad 		lock = so->so_lock;
   1340       1.91        ad 		mutex_enter(lock);
   1341       1.91        ad 	}
   1342       1.91        ad }
   1343       1.91        ad 
   1344       1.91        ad bool
   1345       1.91        ad solocked(struct socket *so)
   1346       1.91        ad {
   1347       1.91        ad 
   1348       1.91        ad 	return mutex_owned(so->so_lock);
   1349       1.91        ad }
   1350       1.91        ad 
   1351       1.91        ad bool
   1352       1.91        ad solocked2(struct socket *so1, struct socket *so2)
   1353       1.91        ad {
   1354       1.91        ad 	kmutex_t *lock;
   1355       1.91        ad 
   1356       1.91        ad 	lock = so1->so_lock;
   1357       1.91        ad 	if (lock != so2->so_lock)
   1358       1.91        ad 		return false;
   1359       1.91        ad 	return mutex_owned(lock);
   1360       1.91        ad }
   1361       1.91        ad 
   1362       1.91        ad /*
   1363       1.91        ad  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1364       1.91        ad  * protocols that do not have special locking requirements.
   1365       1.91        ad  */
   1366       1.91        ad void
   1367       1.91        ad sosetlock(struct socket *so)
   1368       1.91        ad {
   1369       1.91        ad 	kmutex_t *lock;
   1370       1.91        ad 
   1371       1.91        ad 	if (so->so_lock == NULL) {
   1372       1.91        ad 		lock = softnet_lock;
   1373       1.91        ad 		so->so_lock = lock;
   1374       1.91        ad 		mutex_obj_hold(lock);
   1375       1.91        ad 		mutex_enter(lock);
   1376       1.91        ad 	}
   1377       1.91        ad 
   1378       1.91        ad 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1379       1.91        ad 	KASSERT(solocked(so));
   1380       1.91        ad }
   1381       1.91        ad 
   1382       1.91        ad /*
   1383       1.91        ad  * Set lock on sockbuf sb; sleep if lock is already held.
   1384       1.91        ad  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1385       1.91        ad  * Returns error without lock if sleep is interrupted.
   1386       1.91        ad  */
   1387       1.91        ad int
   1388       1.91        ad sblock(struct sockbuf *sb, int wf)
   1389       1.91        ad {
   1390       1.91        ad 	struct socket *so;
   1391       1.91        ad 	kmutex_t *lock;
   1392       1.91        ad 	int error;
   1393       1.91        ad 
   1394       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1395       1.91        ad 
   1396       1.91        ad 	for (;;) {
   1397       1.91        ad 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1398       1.91        ad 			sb->sb_flags |= SB_LOCK;
   1399       1.91        ad 			return 0;
   1400       1.91        ad 		}
   1401       1.91        ad 		if (wf != M_WAITOK)
   1402       1.91        ad 			return EWOULDBLOCK;
   1403       1.91        ad 		so = sb->sb_so;
   1404       1.91        ad 		lock = so->so_lock;
   1405       1.91        ad 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1406       1.91        ad 			cv_wait(&so->so_cv, lock);
   1407       1.91        ad 			error = 0;
   1408       1.91        ad 		} else
   1409       1.91        ad 			error = cv_wait_sig(&so->so_cv, lock);
   1410       1.91        ad 		if (__predict_false(lock != so->so_lock))
   1411       1.91        ad 			solockretry(so, lock);
   1412       1.91        ad 		if (error != 0)
   1413       1.91        ad 			return error;
   1414       1.91        ad 	}
   1415       1.91        ad }
   1416       1.91        ad 
   1417       1.91        ad void
   1418       1.91        ad sbunlock(struct sockbuf *sb)
   1419       1.91        ad {
   1420       1.91        ad 	struct socket *so;
   1421       1.91        ad 
   1422       1.91        ad 	so = sb->sb_so;
   1423       1.91        ad 
   1424       1.91        ad 	KASSERT(solocked(so));
   1425       1.91        ad 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1426       1.91        ad 
   1427       1.91        ad 	sb->sb_flags &= ~SB_LOCK;
   1428       1.91        ad 	cv_broadcast(&so->so_cv);
   1429       1.91        ad }
   1430       1.91        ad 
   1431       1.91        ad int
   1432      1.101      yamt sowait(struct socket *so, bool catch, int timo)
   1433       1.91        ad {
   1434       1.91        ad 	kmutex_t *lock;
   1435       1.91        ad 	int error;
   1436       1.91        ad 
   1437       1.91        ad 	KASSERT(solocked(so));
   1438      1.101      yamt 	KASSERT(catch || timo != 0);
   1439       1.91        ad 
   1440       1.91        ad 	lock = so->so_lock;
   1441      1.101      yamt 	if (catch)
   1442      1.101      yamt 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1443      1.101      yamt 	else
   1444      1.101      yamt 		error = cv_timedwait(&so->so_cv, lock, timo);
   1445       1.91        ad 	if (__predict_false(lock != so->so_lock))
   1446       1.91        ad 		solockretry(so, lock);
   1447       1.91        ad 	return error;
   1448       1.91        ad }
   1449