uipc_socket2.c revision 1.107 1 1.107 christos /* $NetBSD: uipc_socket2.c,v 1.107 2011/04/09 23:03:59 christos Exp $ */
2 1.91 ad
3 1.91 ad /*-
4 1.91 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.91 ad * All rights reserved.
6 1.91 ad *
7 1.91 ad * Redistribution and use in source and binary forms, with or without
8 1.91 ad * modification, are permitted provided that the following conditions
9 1.91 ad * are met:
10 1.91 ad * 1. Redistributions of source code must retain the above copyright
11 1.91 ad * notice, this list of conditions and the following disclaimer.
12 1.91 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.91 ad * notice, this list of conditions and the following disclaimer in the
14 1.91 ad * documentation and/or other materials provided with the distribution.
15 1.91 ad *
16 1.91 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.91 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.91 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.91 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.91 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.91 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.91 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.91 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.91 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.91 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.91 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.91 ad */
28 1.9 cgd
29 1.1 cgd /*
30 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 1.7 mycroft * The Regents of the University of California. All rights reserved.
32 1.1 cgd *
33 1.1 cgd * Redistribution and use in source and binary forms, with or without
34 1.1 cgd * modification, are permitted provided that the following conditions
35 1.1 cgd * are met:
36 1.1 cgd * 1. Redistributions of source code must retain the above copyright
37 1.1 cgd * notice, this list of conditions and the following disclaimer.
38 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
39 1.1 cgd * notice, this list of conditions and the following disclaimer in the
40 1.1 cgd * documentation and/or other materials provided with the distribution.
41 1.54 agc * 3. Neither the name of the University nor the names of its contributors
42 1.1 cgd * may be used to endorse or promote products derived from this software
43 1.1 cgd * without specific prior written permission.
44 1.1 cgd *
45 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 cgd * SUCH DAMAGE.
56 1.1 cgd *
57 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 1.1 cgd */
59 1.42 lukem
60 1.42 lukem #include <sys/cdefs.h>
61 1.107 christos __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.107 2011/04/09 23:03:59 christos Exp $");
62 1.51 martin
63 1.51 martin #include "opt_mbuftrace.h"
64 1.58 thorpej #include "opt_sb_max.h"
65 1.1 cgd
66 1.5 mycroft #include <sys/param.h>
67 1.5 mycroft #include <sys/systm.h>
68 1.5 mycroft #include <sys/proc.h>
69 1.5 mycroft #include <sys/file.h>
70 1.5 mycroft #include <sys/buf.h>
71 1.5 mycroft #include <sys/malloc.h>
72 1.5 mycroft #include <sys/mbuf.h>
73 1.5 mycroft #include <sys/protosw.h>
74 1.91 ad #include <sys/domain.h>
75 1.55 christos #include <sys/poll.h>
76 1.5 mycroft #include <sys/socket.h>
77 1.5 mycroft #include <sys/socketvar.h>
78 1.11 christos #include <sys/signalvar.h>
79 1.71 elad #include <sys/kauth.h>
80 1.91 ad #include <sys/pool.h>
81 1.98 pooka #include <sys/uidinfo.h>
82 1.1 cgd
83 1.1 cgd /*
84 1.91 ad * Primitive routines for operating on sockets and socket buffers.
85 1.91 ad *
86 1.91 ad * Locking rules and assumptions:
87 1.91 ad *
88 1.91 ad * o socket::so_lock can change on the fly. The low level routines used
89 1.91 ad * to lock sockets are aware of this. When so_lock is acquired, the
90 1.91 ad * routine locking must check to see if so_lock still points to the
91 1.91 ad * lock that was acquired. If so_lock has changed in the meantime, the
92 1.91 ad * now irellevant lock that was acquired must be dropped and the lock
93 1.91 ad * operation retried. Although not proven here, this is completely safe
94 1.91 ad * on a multiprocessor system, even with relaxed memory ordering, given
95 1.91 ad * the next two rules:
96 1.91 ad *
97 1.91 ad * o In order to mutate so_lock, the lock pointed to by the current value
98 1.91 ad * of so_lock must be held: i.e., the socket must be held locked by the
99 1.91 ad * changing thread. The thread must issue membar_exit() to prevent
100 1.91 ad * memory accesses being reordered, and can set so_lock to the desired
101 1.91 ad * value. If the lock pointed to by the new value of so_lock is not
102 1.91 ad * held by the changing thread, the socket must then be considered
103 1.91 ad * unlocked.
104 1.91 ad *
105 1.91 ad * o If so_lock is mutated, and the previous lock referred to by so_lock
106 1.91 ad * could still be visible to other threads in the system (e.g. via file
107 1.91 ad * descriptor or protocol-internal reference), then the old lock must
108 1.91 ad * remain valid until the socket and/or protocol control block has been
109 1.91 ad * torn down.
110 1.91 ad *
111 1.91 ad * o If a socket has a non-NULL so_head value (i.e. is in the process of
112 1.91 ad * connecting), then locking the socket must also lock the socket pointed
113 1.91 ad * to by so_head: their lock pointers must match.
114 1.91 ad *
115 1.91 ad * o If a socket has connections in progress (so_q, so_q0 not empty) then
116 1.91 ad * locking the socket must also lock the sockets attached to both queues.
117 1.91 ad * Again, their lock pointers must match.
118 1.91 ad *
119 1.91 ad * o Beyond the initial lock assigment in socreate(), assigning locks to
120 1.91 ad * sockets is the responsibility of the individual protocols / protocol
121 1.91 ad * domains.
122 1.1 cgd */
123 1.1 cgd
124 1.94 ad static pool_cache_t socket_cache;
125 1.1 cgd
126 1.58 thorpej u_long sb_max = SB_MAX; /* maximum socket buffer size */
127 1.58 thorpej static u_long sb_max_adj; /* adjusted sb_max */
128 1.58 thorpej
129 1.1 cgd /*
130 1.1 cgd * Procedures to manipulate state flags of socket
131 1.1 cgd * and do appropriate wakeups. Normal sequence from the
132 1.1 cgd * active (originating) side is that soisconnecting() is
133 1.1 cgd * called during processing of connect() call,
134 1.1 cgd * resulting in an eventual call to soisconnected() if/when the
135 1.1 cgd * connection is established. When the connection is torn down
136 1.1 cgd * soisdisconnecting() is called during processing of disconnect() call,
137 1.1 cgd * and soisdisconnected() is called when the connection to the peer
138 1.1 cgd * is totally severed. The semantics of these routines are such that
139 1.1 cgd * connectionless protocols can call soisconnected() and soisdisconnected()
140 1.1 cgd * only, bypassing the in-progress calls when setting up a ``connection''
141 1.1 cgd * takes no time.
142 1.1 cgd *
143 1.1 cgd * From the passive side, a socket is created with
144 1.1 cgd * two queues of sockets: so_q0 for connections in progress
145 1.1 cgd * and so_q for connections already made and awaiting user acceptance.
146 1.1 cgd * As a protocol is preparing incoming connections, it creates a socket
147 1.1 cgd * structure queued on so_q0 by calling sonewconn(). When the connection
148 1.1 cgd * is established, soisconnected() is called, and transfers the
149 1.1 cgd * socket structure to so_q, making it available to accept().
150 1.66 perry *
151 1.1 cgd * If a socket is closed with sockets on either
152 1.1 cgd * so_q0 or so_q, these sockets are dropped.
153 1.1 cgd *
154 1.1 cgd * If higher level protocols are implemented in
155 1.1 cgd * the kernel, the wakeups done here will sometimes
156 1.1 cgd * cause software-interrupt process scheduling.
157 1.1 cgd */
158 1.1 cgd
159 1.7 mycroft void
160 1.37 lukem soisconnecting(struct socket *so)
161 1.1 cgd {
162 1.1 cgd
163 1.91 ad KASSERT(solocked(so));
164 1.91 ad
165 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
166 1.1 cgd so->so_state |= SS_ISCONNECTING;
167 1.1 cgd }
168 1.1 cgd
169 1.7 mycroft void
170 1.37 lukem soisconnected(struct socket *so)
171 1.1 cgd {
172 1.37 lukem struct socket *head;
173 1.1 cgd
174 1.37 lukem head = so->so_head;
175 1.91 ad
176 1.91 ad KASSERT(solocked(so));
177 1.91 ad KASSERT(head == NULL || solocked2(so, head));
178 1.91 ad
179 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
180 1.1 cgd so->so_state |= SS_ISCONNECTED;
181 1.97 tls if (head && so->so_onq == &head->so_q0) {
182 1.97 tls if ((so->so_options & SO_ACCEPTFILTER) == 0) {
183 1.97 tls soqremque(so, 0);
184 1.97 tls soqinsque(head, so, 1);
185 1.97 tls sorwakeup(head);
186 1.97 tls cv_broadcast(&head->so_cv);
187 1.97 tls } else {
188 1.97 tls so->so_upcall =
189 1.97 tls head->so_accf->so_accept_filter->accf_callback;
190 1.97 tls so->so_upcallarg = head->so_accf->so_accept_filter_arg;
191 1.97 tls so->so_rcv.sb_flags |= SB_UPCALL;
192 1.97 tls so->so_options &= ~SO_ACCEPTFILTER;
193 1.104 tls (*so->so_upcall)(so, so->so_upcallarg,
194 1.104 tls POLLIN|POLLRDNORM, M_DONTWAIT);
195 1.101 yamt }
196 1.1 cgd } else {
197 1.91 ad cv_broadcast(&so->so_cv);
198 1.1 cgd sorwakeup(so);
199 1.1 cgd sowwakeup(so);
200 1.1 cgd }
201 1.1 cgd }
202 1.1 cgd
203 1.7 mycroft void
204 1.37 lukem soisdisconnecting(struct socket *so)
205 1.1 cgd {
206 1.1 cgd
207 1.91 ad KASSERT(solocked(so));
208 1.91 ad
209 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
210 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
211 1.91 ad cv_broadcast(&so->so_cv);
212 1.1 cgd sowwakeup(so);
213 1.1 cgd sorwakeup(so);
214 1.1 cgd }
215 1.1 cgd
216 1.7 mycroft void
217 1.37 lukem soisdisconnected(struct socket *so)
218 1.1 cgd {
219 1.1 cgd
220 1.91 ad KASSERT(solocked(so));
221 1.91 ad
222 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
223 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
224 1.91 ad cv_broadcast(&so->so_cv);
225 1.1 cgd sowwakeup(so);
226 1.1 cgd sorwakeup(so);
227 1.1 cgd }
228 1.1 cgd
229 1.94 ad void
230 1.94 ad soinit2(void)
231 1.94 ad {
232 1.94 ad
233 1.94 ad socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
234 1.94 ad "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
235 1.94 ad }
236 1.94 ad
237 1.1 cgd /*
238 1.1 cgd * When an attempt at a new connection is noted on a socket
239 1.1 cgd * which accepts connections, sonewconn is called. If the
240 1.1 cgd * connection is possible (subject to space constraints, etc.)
241 1.1 cgd * then we allocate a new structure, propoerly linked into the
242 1.1 cgd * data structure of the original socket, and return this.
243 1.77 plunky * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
244 1.1 cgd */
245 1.1 cgd struct socket *
246 1.76 plunky sonewconn(struct socket *head, int connstatus)
247 1.1 cgd {
248 1.37 lukem struct socket *so;
249 1.91 ad int soqueue, error;
250 1.91 ad
251 1.102 yamt KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
252 1.102 yamt connstatus == SS_ISCONNECTED);
253 1.91 ad KASSERT(solocked(head));
254 1.1 cgd
255 1.97 tls if ((head->so_options & SO_ACCEPTFILTER) != 0)
256 1.97 tls connstatus = 0;
257 1.37 lukem soqueue = connstatus ? 1 : 0;
258 1.1 cgd if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
259 1.100 dyoung return NULL;
260 1.91 ad so = soget(false);
261 1.66 perry if (so == NULL)
262 1.100 dyoung return NULL;
263 1.91 ad mutex_obj_hold(head->so_lock);
264 1.91 ad so->so_lock = head->so_lock;
265 1.1 cgd so->so_type = head->so_type;
266 1.1 cgd so->so_options = head->so_options &~ SO_ACCEPTCONN;
267 1.1 cgd so->so_linger = head->so_linger;
268 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
269 1.89 ad so->so_nbio = head->so_nbio;
270 1.1 cgd so->so_proto = head->so_proto;
271 1.1 cgd so->so_timeo = head->so_timeo;
272 1.1 cgd so->so_pgid = head->so_pgid;
273 1.24 matt so->so_send = head->so_send;
274 1.24 matt so->so_receive = head->so_receive;
275 1.67 christos so->so_uidinfo = head->so_uidinfo;
276 1.96 yamt so->so_cpid = head->so_cpid;
277 1.49 matt #ifdef MBUFTRACE
278 1.49 matt so->so_mowner = head->so_mowner;
279 1.49 matt so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
280 1.49 matt so->so_snd.sb_mowner = head->so_snd.sb_mowner;
281 1.49 matt #endif
282 1.103 christos if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
283 1.103 christos goto out;
284 1.83 tls so->so_snd.sb_lowat = head->so_snd.sb_lowat;
285 1.83 tls so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
286 1.84 tls so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
287 1.84 tls so->so_snd.sb_timeo = head->so_snd.sb_timeo;
288 1.107 christos so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
289 1.107 christos so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
290 1.1 cgd soqinsque(head, so, soqueue);
291 1.91 ad error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
292 1.91 ad NULL, NULL);
293 1.91 ad KASSERT(solocked(so));
294 1.91 ad if (error != 0) {
295 1.1 cgd (void) soqremque(so, soqueue);
296 1.103 christos out:
297 1.99 ad /*
298 1.99 ad * Remove acccept filter if one is present.
299 1.99 ad * XXX Is this really needed?
300 1.99 ad */
301 1.97 tls if (so->so_accf != NULL)
302 1.99 ad (void)accept_filt_clear(so);
303 1.91 ad soput(so);
304 1.100 dyoung return NULL;
305 1.1 cgd }
306 1.1 cgd if (connstatus) {
307 1.1 cgd sorwakeup(head);
308 1.91 ad cv_broadcast(&head->so_cv);
309 1.1 cgd so->so_state |= connstatus;
310 1.1 cgd }
311 1.100 dyoung return so;
312 1.1 cgd }
313 1.1 cgd
314 1.91 ad struct socket *
315 1.91 ad soget(bool waitok)
316 1.91 ad {
317 1.91 ad struct socket *so;
318 1.91 ad
319 1.94 ad so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
320 1.91 ad if (__predict_false(so == NULL))
321 1.91 ad return (NULL);
322 1.91 ad memset(so, 0, sizeof(*so));
323 1.91 ad TAILQ_INIT(&so->so_q0);
324 1.91 ad TAILQ_INIT(&so->so_q);
325 1.91 ad cv_init(&so->so_cv, "socket");
326 1.91 ad cv_init(&so->so_rcv.sb_cv, "netio");
327 1.91 ad cv_init(&so->so_snd.sb_cv, "netio");
328 1.91 ad selinit(&so->so_rcv.sb_sel);
329 1.91 ad selinit(&so->so_snd.sb_sel);
330 1.91 ad so->so_rcv.sb_so = so;
331 1.91 ad so->so_snd.sb_so = so;
332 1.91 ad return so;
333 1.91 ad }
334 1.91 ad
335 1.91 ad void
336 1.91 ad soput(struct socket *so)
337 1.91 ad {
338 1.91 ad
339 1.91 ad KASSERT(!cv_has_waiters(&so->so_cv));
340 1.91 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
341 1.91 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
342 1.91 ad seldestroy(&so->so_rcv.sb_sel);
343 1.91 ad seldestroy(&so->so_snd.sb_sel);
344 1.91 ad mutex_obj_free(so->so_lock);
345 1.91 ad cv_destroy(&so->so_cv);
346 1.91 ad cv_destroy(&so->so_rcv.sb_cv);
347 1.91 ad cv_destroy(&so->so_snd.sb_cv);
348 1.94 ad pool_cache_put(socket_cache, so);
349 1.91 ad }
350 1.91 ad
351 1.7 mycroft void
352 1.37 lukem soqinsque(struct socket *head, struct socket *so, int q)
353 1.1 cgd {
354 1.1 cgd
355 1.91 ad KASSERT(solocked2(head, so));
356 1.91 ad
357 1.22 thorpej #ifdef DIAGNOSTIC
358 1.22 thorpej if (so->so_onq != NULL)
359 1.22 thorpej panic("soqinsque");
360 1.22 thorpej #endif
361 1.22 thorpej
362 1.1 cgd so->so_head = head;
363 1.1 cgd if (q == 0) {
364 1.1 cgd head->so_q0len++;
365 1.22 thorpej so->so_onq = &head->so_q0;
366 1.1 cgd } else {
367 1.1 cgd head->so_qlen++;
368 1.22 thorpej so->so_onq = &head->so_q;
369 1.1 cgd }
370 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
371 1.1 cgd }
372 1.1 cgd
373 1.7 mycroft int
374 1.37 lukem soqremque(struct socket *so, int q)
375 1.1 cgd {
376 1.37 lukem struct socket *head;
377 1.1 cgd
378 1.37 lukem head = so->so_head;
379 1.91 ad
380 1.91 ad KASSERT(solocked(so));
381 1.22 thorpej if (q == 0) {
382 1.22 thorpej if (so->so_onq != &head->so_q0)
383 1.17 thorpej return (0);
384 1.1 cgd head->so_q0len--;
385 1.1 cgd } else {
386 1.22 thorpej if (so->so_onq != &head->so_q)
387 1.22 thorpej return (0);
388 1.1 cgd head->so_qlen--;
389 1.1 cgd }
390 1.91 ad KASSERT(solocked2(so, head));
391 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe);
392 1.22 thorpej so->so_onq = NULL;
393 1.22 thorpej so->so_head = NULL;
394 1.1 cgd return (1);
395 1.1 cgd }
396 1.1 cgd
397 1.1 cgd /*
398 1.1 cgd * Socantsendmore indicates that no more data will be sent on the
399 1.1 cgd * socket; it would normally be applied to a socket when the user
400 1.1 cgd * informs the system that no more data is to be sent, by the protocol
401 1.1 cgd * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
402 1.1 cgd * will be received, and will normally be applied to the socket by a
403 1.1 cgd * protocol when it detects that the peer will send no more data.
404 1.1 cgd * Data queued for reading in the socket may yet be read.
405 1.1 cgd */
406 1.1 cgd
407 1.4 andrew void
408 1.37 lukem socantsendmore(struct socket *so)
409 1.1 cgd {
410 1.1 cgd
411 1.91 ad KASSERT(solocked(so));
412 1.91 ad
413 1.1 cgd so->so_state |= SS_CANTSENDMORE;
414 1.1 cgd sowwakeup(so);
415 1.1 cgd }
416 1.1 cgd
417 1.4 andrew void
418 1.37 lukem socantrcvmore(struct socket *so)
419 1.1 cgd {
420 1.1 cgd
421 1.91 ad KASSERT(solocked(so));
422 1.91 ad
423 1.1 cgd so->so_state |= SS_CANTRCVMORE;
424 1.1 cgd sorwakeup(so);
425 1.1 cgd }
426 1.1 cgd
427 1.1 cgd /*
428 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
429 1.1 cgd */
430 1.7 mycroft int
431 1.37 lukem sbwait(struct sockbuf *sb)
432 1.1 cgd {
433 1.91 ad struct socket *so;
434 1.91 ad kmutex_t *lock;
435 1.91 ad int error;
436 1.1 cgd
437 1.91 ad so = sb->sb_so;
438 1.1 cgd
439 1.91 ad KASSERT(solocked(so));
440 1.1 cgd
441 1.91 ad sb->sb_flags |= SB_NOTIFY;
442 1.91 ad lock = so->so_lock;
443 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0)
444 1.91 ad error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
445 1.91 ad else
446 1.91 ad error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
447 1.91 ad if (__predict_false(lock != so->so_lock))
448 1.91 ad solockretry(so, lock);
449 1.91 ad return error;
450 1.1 cgd }
451 1.1 cgd
452 1.1 cgd /*
453 1.1 cgd * Wakeup processes waiting on a socket buffer.
454 1.1 cgd * Do asynchronous notification via SIGIO
455 1.39 manu * if the socket buffer has the SB_ASYNC flag set.
456 1.1 cgd */
457 1.7 mycroft void
458 1.55 christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
459 1.1 cgd {
460 1.90 rmind int band;
461 1.90 rmind
462 1.91 ad KASSERT(solocked(so));
463 1.91 ad KASSERT(sb->sb_so == so);
464 1.91 ad
465 1.90 rmind if (code == POLL_IN)
466 1.90 rmind band = POLLIN|POLLRDNORM;
467 1.90 rmind else
468 1.90 rmind band = POLLOUT|POLLWRNORM;
469 1.91 ad sb->sb_flags &= ~SB_NOTIFY;
470 1.91 ad selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
471 1.91 ad cv_broadcast(&sb->sb_cv);
472 1.90 rmind if (sb->sb_flags & SB_ASYNC)
473 1.57 christos fownsignal(so->so_pgid, SIGIO, code, band, so);
474 1.24 matt if (sb->sb_flags & SB_UPCALL)
475 1.104 tls (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
476 1.1 cgd }
477 1.1 cgd
478 1.1 cgd /*
479 1.95 ad * Reset a socket's lock pointer. Wake all threads waiting on the
480 1.95 ad * socket's condition variables so that they can restart their waits
481 1.95 ad * using the new lock. The existing lock must be held.
482 1.95 ad */
483 1.95 ad void
484 1.95 ad solockreset(struct socket *so, kmutex_t *lock)
485 1.95 ad {
486 1.95 ad
487 1.95 ad KASSERT(solocked(so));
488 1.95 ad
489 1.95 ad so->so_lock = lock;
490 1.95 ad cv_broadcast(&so->so_snd.sb_cv);
491 1.95 ad cv_broadcast(&so->so_rcv.sb_cv);
492 1.95 ad cv_broadcast(&so->so_cv);
493 1.95 ad }
494 1.95 ad
495 1.95 ad /*
496 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
497 1.1 cgd *
498 1.1 cgd * Each socket contains two socket buffers: one for sending data and
499 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
500 1.1 cgd * information about the number of mbufs and amount of data in the
501 1.13 mycroft * queue, and other fields allowing poll() statements and notification
502 1.1 cgd * on data availability to be implemented.
503 1.1 cgd *
504 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
505 1.1 cgd * Each record is a list of mbufs chained together with the m_next
506 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
507 1.1 cgd * level routine soreceive() expects the following conventions to be
508 1.1 cgd * observed when placing information in the receive buffer:
509 1.1 cgd *
510 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
511 1.1 cgd * name, then a record containing that name must be present before
512 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
513 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
514 1.1 cgd * just additional data associated with the message), and there are
515 1.1 cgd * ``rights'' to be received, then a record containing this data
516 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL).
517 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
518 1.1 cgd * a data record, perhaps of zero length.
519 1.1 cgd *
520 1.1 cgd * Before using a new socket structure it is first necessary to reserve
521 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
522 1.1 cgd * some of the available buffer space in the system buffer pool for the
523 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
524 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
525 1.1 cgd */
526 1.1 cgd
527 1.7 mycroft int
528 1.58 thorpej sb_max_set(u_long new_sbmax)
529 1.58 thorpej {
530 1.58 thorpej int s;
531 1.58 thorpej
532 1.58 thorpej if (new_sbmax < (16 * 1024))
533 1.58 thorpej return (EINVAL);
534 1.58 thorpej
535 1.58 thorpej s = splsoftnet();
536 1.58 thorpej sb_max = new_sbmax;
537 1.58 thorpej sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
538 1.58 thorpej splx(s);
539 1.58 thorpej
540 1.58 thorpej return (0);
541 1.58 thorpej }
542 1.58 thorpej
543 1.58 thorpej int
544 1.37 lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
545 1.1 cgd {
546 1.91 ad
547 1.91 ad KASSERT(so->so_lock == NULL || solocked(so));
548 1.91 ad
549 1.74 christos /*
550 1.74 christos * there's at least one application (a configure script of screen)
551 1.74 christos * which expects a fifo is writable even if it has "some" bytes
552 1.74 christos * in its buffer.
553 1.74 christos * so we want to make sure (hiwat - lowat) >= (some bytes).
554 1.74 christos *
555 1.74 christos * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
556 1.74 christos * we expect it's large enough for such applications.
557 1.74 christos */
558 1.74 christos u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
559 1.74 christos u_long hiwat = lowat + PIPE_BUF;
560 1.1 cgd
561 1.74 christos if (sndcc < hiwat)
562 1.74 christos sndcc = hiwat;
563 1.59 christos if (sbreserve(&so->so_snd, sndcc, so) == 0)
564 1.1 cgd goto bad;
565 1.59 christos if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
566 1.1 cgd goto bad2;
567 1.1 cgd if (so->so_rcv.sb_lowat == 0)
568 1.1 cgd so->so_rcv.sb_lowat = 1;
569 1.1 cgd if (so->so_snd.sb_lowat == 0)
570 1.74 christos so->so_snd.sb_lowat = lowat;
571 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
572 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
573 1.1 cgd return (0);
574 1.37 lukem bad2:
575 1.59 christos sbrelease(&so->so_snd, so);
576 1.37 lukem bad:
577 1.1 cgd return (ENOBUFS);
578 1.1 cgd }
579 1.1 cgd
580 1.1 cgd /*
581 1.1 cgd * Allot mbufs to a sockbuf.
582 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
583 1.1 cgd * if buffering efficiency is near the normal case.
584 1.1 cgd */
585 1.7 mycroft int
586 1.59 christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
587 1.1 cgd {
588 1.75 ad struct lwp *l = curlwp; /* XXX */
589 1.62 christos rlim_t maxcc;
590 1.67 christos struct uidinfo *uidinfo;
591 1.1 cgd
592 1.91 ad KASSERT(so->so_lock == NULL || solocked(so));
593 1.91 ad KASSERT(sb->sb_so == so);
594 1.91 ad KASSERT(sb_max_adj != 0);
595 1.91 ad
596 1.58 thorpej if (cc == 0 || cc > sb_max_adj)
597 1.1 cgd return (0);
598 1.93 christos
599 1.105 elad maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
600 1.93 christos
601 1.93 christos uidinfo = so->so_uidinfo;
602 1.67 christos if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
603 1.62 christos return 0;
604 1.1 cgd sb->sb_mbmax = min(cc * 2, sb_max);
605 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
606 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
607 1.1 cgd return (1);
608 1.1 cgd }
609 1.1 cgd
610 1.1 cgd /*
611 1.91 ad * Free mbufs held by a socket, and reserved mbuf space. We do not assert
612 1.91 ad * that the socket is held locked here: see sorflush().
613 1.1 cgd */
614 1.7 mycroft void
615 1.59 christos sbrelease(struct sockbuf *sb, struct socket *so)
616 1.1 cgd {
617 1.1 cgd
618 1.91 ad KASSERT(sb->sb_so == so);
619 1.91 ad
620 1.1 cgd sbflush(sb);
621 1.87 yamt (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
622 1.59 christos sb->sb_mbmax = 0;
623 1.1 cgd }
624 1.1 cgd
625 1.1 cgd /*
626 1.1 cgd * Routines to add and remove
627 1.1 cgd * data from an mbuf queue.
628 1.1 cgd *
629 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
630 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
631 1.1 cgd * space is available, comparing the function sbspace() with the amount
632 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
633 1.1 cgd * that data supplied is treated as the beginning of a new record.
634 1.1 cgd * To place a sender's address, optional access rights, and data in a
635 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
636 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
637 1.1 cgd * should be used. In either case, the new data begins a new record.
638 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
639 1.1 cgd * for the caller that there will be enough space to store the data.
640 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
641 1.1 cgd * to store additional information in.
642 1.1 cgd *
643 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
644 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
645 1.1 cgd * send buffer in a protocol with m_copy for output to a peer,
646 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
647 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
648 1.1 cgd */
649 1.1 cgd
650 1.43 thorpej #ifdef SOCKBUF_DEBUG
651 1.43 thorpej void
652 1.43 thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
653 1.43 thorpej {
654 1.43 thorpej struct mbuf *m = sb->sb_mb;
655 1.43 thorpej
656 1.91 ad KASSERT(solocked(sb->sb_so));
657 1.91 ad
658 1.43 thorpej while (m && m->m_nextpkt)
659 1.43 thorpej m = m->m_nextpkt;
660 1.43 thorpej
661 1.43 thorpej if (m != sb->sb_lastrecord) {
662 1.43 thorpej printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
663 1.43 thorpej sb->sb_mb, sb->sb_lastrecord, m);
664 1.43 thorpej printf("packet chain:\n");
665 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
666 1.43 thorpej printf("\t%p\n", m);
667 1.47 provos panic("sblastrecordchk from %s", where);
668 1.43 thorpej }
669 1.43 thorpej }
670 1.43 thorpej
671 1.43 thorpej void
672 1.43 thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
673 1.43 thorpej {
674 1.43 thorpej struct mbuf *m = sb->sb_mb;
675 1.43 thorpej struct mbuf *n;
676 1.43 thorpej
677 1.91 ad KASSERT(solocked(sb->sb_so));
678 1.91 ad
679 1.43 thorpej while (m && m->m_nextpkt)
680 1.43 thorpej m = m->m_nextpkt;
681 1.43 thorpej
682 1.43 thorpej while (m && m->m_next)
683 1.43 thorpej m = m->m_next;
684 1.43 thorpej
685 1.43 thorpej if (m != sb->sb_mbtail) {
686 1.43 thorpej printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
687 1.43 thorpej sb->sb_mb, sb->sb_mbtail, m);
688 1.43 thorpej printf("packet tree:\n");
689 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
690 1.43 thorpej printf("\t");
691 1.43 thorpej for (n = m; n != NULL; n = n->m_next)
692 1.43 thorpej printf("%p ", n);
693 1.43 thorpej printf("\n");
694 1.43 thorpej }
695 1.43 thorpej panic("sblastmbufchk from %s", where);
696 1.43 thorpej }
697 1.43 thorpej }
698 1.43 thorpej #endif /* SOCKBUF_DEBUG */
699 1.43 thorpej
700 1.63 jonathan /*
701 1.63 jonathan * Link a chain of records onto a socket buffer
702 1.63 jonathan */
703 1.63 jonathan #define SBLINKRECORDCHAIN(sb, m0, mlast) \
704 1.43 thorpej do { \
705 1.43 thorpej if ((sb)->sb_lastrecord != NULL) \
706 1.43 thorpej (sb)->sb_lastrecord->m_nextpkt = (m0); \
707 1.43 thorpej else \
708 1.43 thorpej (sb)->sb_mb = (m0); \
709 1.63 jonathan (sb)->sb_lastrecord = (mlast); \
710 1.43 thorpej } while (/*CONSTCOND*/0)
711 1.43 thorpej
712 1.63 jonathan
713 1.63 jonathan #define SBLINKRECORD(sb, m0) \
714 1.63 jonathan SBLINKRECORDCHAIN(sb, m0, m0)
715 1.63 jonathan
716 1.1 cgd /*
717 1.1 cgd * Append mbuf chain m to the last record in the
718 1.1 cgd * socket buffer sb. The additional space associated
719 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
720 1.1 cgd * discarded and mbufs are compacted where possible.
721 1.1 cgd */
722 1.7 mycroft void
723 1.37 lukem sbappend(struct sockbuf *sb, struct mbuf *m)
724 1.1 cgd {
725 1.37 lukem struct mbuf *n;
726 1.1 cgd
727 1.91 ad KASSERT(solocked(sb->sb_so));
728 1.91 ad
729 1.1 cgd if (m == 0)
730 1.1 cgd return;
731 1.43 thorpej
732 1.49 matt #ifdef MBUFTRACE
733 1.65 jonathan m_claimm(m, sb->sb_mowner);
734 1.49 matt #endif
735 1.49 matt
736 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 1");
737 1.43 thorpej
738 1.43 thorpej if ((n = sb->sb_lastrecord) != NULL) {
739 1.43 thorpej /*
740 1.43 thorpej * XXX Would like to simply use sb_mbtail here, but
741 1.43 thorpej * XXX I need to verify that I won't miss an EOR that
742 1.43 thorpej * XXX way.
743 1.43 thorpej */
744 1.1 cgd do {
745 1.1 cgd if (n->m_flags & M_EOR) {
746 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
747 1.1 cgd return;
748 1.1 cgd }
749 1.1 cgd } while (n->m_next && (n = n->m_next));
750 1.43 thorpej } else {
751 1.43 thorpej /*
752 1.43 thorpej * If this is the first record in the socket buffer, it's
753 1.43 thorpej * also the last record.
754 1.43 thorpej */
755 1.43 thorpej sb->sb_lastrecord = m;
756 1.1 cgd }
757 1.1 cgd sbcompress(sb, m, n);
758 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 2");
759 1.43 thorpej }
760 1.43 thorpej
761 1.43 thorpej /*
762 1.43 thorpej * This version of sbappend() should only be used when the caller
763 1.43 thorpej * absolutely knows that there will never be more than one record
764 1.43 thorpej * in the socket buffer, that is, a stream protocol (such as TCP).
765 1.43 thorpej */
766 1.43 thorpej void
767 1.44 thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
768 1.43 thorpej {
769 1.43 thorpej
770 1.91 ad KASSERT(solocked(sb->sb_so));
771 1.43 thorpej KDASSERT(m->m_nextpkt == NULL);
772 1.43 thorpej KASSERT(sb->sb_mb == sb->sb_lastrecord);
773 1.43 thorpej
774 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
775 1.43 thorpej
776 1.49 matt #ifdef MBUFTRACE
777 1.65 jonathan m_claimm(m, sb->sb_mowner);
778 1.49 matt #endif
779 1.49 matt
780 1.43 thorpej sbcompress(sb, m, sb->sb_mbtail);
781 1.43 thorpej
782 1.43 thorpej sb->sb_lastrecord = sb->sb_mb;
783 1.43 thorpej SBLASTRECORDCHK(sb, __func__);
784 1.1 cgd }
785 1.1 cgd
786 1.1 cgd #ifdef SOCKBUF_DEBUG
787 1.7 mycroft void
788 1.37 lukem sbcheck(struct sockbuf *sb)
789 1.1 cgd {
790 1.91 ad struct mbuf *m, *m2;
791 1.43 thorpej u_long len, mbcnt;
792 1.1 cgd
793 1.91 ad KASSERT(solocked(sb->sb_so));
794 1.91 ad
795 1.37 lukem len = 0;
796 1.37 lukem mbcnt = 0;
797 1.91 ad for (m = sb->sb_mb; m; m = m->m_nextpkt) {
798 1.91 ad for (m2 = m; m2 != NULL; m2 = m2->m_next) {
799 1.91 ad len += m2->m_len;
800 1.91 ad mbcnt += MSIZE;
801 1.91 ad if (m2->m_flags & M_EXT)
802 1.91 ad mbcnt += m2->m_ext.ext_size;
803 1.91 ad if (m2->m_nextpkt != NULL)
804 1.91 ad panic("sbcheck nextpkt");
805 1.91 ad }
806 1.1 cgd }
807 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
808 1.43 thorpej printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
809 1.1 cgd mbcnt, sb->sb_mbcnt);
810 1.1 cgd panic("sbcheck");
811 1.1 cgd }
812 1.1 cgd }
813 1.1 cgd #endif
814 1.1 cgd
815 1.1 cgd /*
816 1.1 cgd * As above, except the mbuf chain
817 1.1 cgd * begins a new record.
818 1.1 cgd */
819 1.7 mycroft void
820 1.37 lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
821 1.1 cgd {
822 1.37 lukem struct mbuf *m;
823 1.1 cgd
824 1.91 ad KASSERT(solocked(sb->sb_so));
825 1.91 ad
826 1.1 cgd if (m0 == 0)
827 1.1 cgd return;
828 1.43 thorpej
829 1.49 matt #ifdef MBUFTRACE
830 1.65 jonathan m_claimm(m0, sb->sb_mowner);
831 1.49 matt #endif
832 1.1 cgd /*
833 1.1 cgd * Put the first mbuf on the queue.
834 1.1 cgd * Note this permits zero length records.
835 1.1 cgd */
836 1.1 cgd sballoc(sb, m0);
837 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 1");
838 1.43 thorpej SBLINKRECORD(sb, m0);
839 1.1 cgd m = m0->m_next;
840 1.1 cgd m0->m_next = 0;
841 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
842 1.1 cgd m0->m_flags &= ~M_EOR;
843 1.1 cgd m->m_flags |= M_EOR;
844 1.1 cgd }
845 1.1 cgd sbcompress(sb, m, m0);
846 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 2");
847 1.1 cgd }
848 1.1 cgd
849 1.1 cgd /*
850 1.1 cgd * As above except that OOB data
851 1.1 cgd * is inserted at the beginning of the sockbuf,
852 1.1 cgd * but after any other OOB data.
853 1.1 cgd */
854 1.7 mycroft void
855 1.37 lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
856 1.1 cgd {
857 1.37 lukem struct mbuf *m, **mp;
858 1.1 cgd
859 1.91 ad KASSERT(solocked(sb->sb_so));
860 1.91 ad
861 1.1 cgd if (m0 == 0)
862 1.1 cgd return;
863 1.43 thorpej
864 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 1");
865 1.43 thorpej
866 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
867 1.1 cgd again:
868 1.1 cgd switch (m->m_type) {
869 1.1 cgd
870 1.1 cgd case MT_OOBDATA:
871 1.1 cgd continue; /* WANT next train */
872 1.1 cgd
873 1.1 cgd case MT_CONTROL:
874 1.11 christos if ((m = m->m_next) != NULL)
875 1.1 cgd goto again; /* inspect THIS train further */
876 1.1 cgd }
877 1.1 cgd break;
878 1.1 cgd }
879 1.1 cgd /*
880 1.1 cgd * Put the first mbuf on the queue.
881 1.1 cgd * Note this permits zero length records.
882 1.1 cgd */
883 1.1 cgd sballoc(sb, m0);
884 1.1 cgd m0->m_nextpkt = *mp;
885 1.43 thorpej if (*mp == NULL) {
886 1.43 thorpej /* m0 is actually the new tail */
887 1.43 thorpej sb->sb_lastrecord = m0;
888 1.43 thorpej }
889 1.1 cgd *mp = m0;
890 1.1 cgd m = m0->m_next;
891 1.1 cgd m0->m_next = 0;
892 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
893 1.1 cgd m0->m_flags &= ~M_EOR;
894 1.1 cgd m->m_flags |= M_EOR;
895 1.1 cgd }
896 1.1 cgd sbcompress(sb, m, m0);
897 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 2");
898 1.1 cgd }
899 1.1 cgd
900 1.1 cgd /*
901 1.1 cgd * Append address and data, and optionally, control (ancillary) data
902 1.1 cgd * to the receive queue of a socket. If present,
903 1.1 cgd * m0 must include a packet header with total length.
904 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
905 1.1 cgd */
906 1.7 mycroft int
907 1.61 matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
908 1.37 lukem struct mbuf *control)
909 1.1 cgd {
910 1.43 thorpej struct mbuf *m, *n, *nlast;
911 1.50 fvdl int space, len;
912 1.1 cgd
913 1.91 ad KASSERT(solocked(sb->sb_so));
914 1.91 ad
915 1.37 lukem space = asa->sa_len;
916 1.37 lukem
917 1.49 matt if (m0 != NULL) {
918 1.49 matt if ((m0->m_flags & M_PKTHDR) == 0)
919 1.49 matt panic("sbappendaddr");
920 1.1 cgd space += m0->m_pkthdr.len;
921 1.49 matt #ifdef MBUFTRACE
922 1.65 jonathan m_claimm(m0, sb->sb_mowner);
923 1.49 matt #endif
924 1.49 matt }
925 1.1 cgd for (n = control; n; n = n->m_next) {
926 1.1 cgd space += n->m_len;
927 1.49 matt MCLAIM(n, sb->sb_mowner);
928 1.1 cgd if (n->m_next == 0) /* keep pointer to last control buf */
929 1.1 cgd break;
930 1.1 cgd }
931 1.1 cgd if (space > sbspace(sb))
932 1.1 cgd return (0);
933 1.1 cgd MGET(m, M_DONTWAIT, MT_SONAME);
934 1.1 cgd if (m == 0)
935 1.1 cgd return (0);
936 1.49 matt MCLAIM(m, sb->sb_mowner);
937 1.50 fvdl /*
938 1.50 fvdl * XXX avoid 'comparison always true' warning which isn't easily
939 1.50 fvdl * avoided.
940 1.50 fvdl */
941 1.50 fvdl len = asa->sa_len;
942 1.50 fvdl if (len > MLEN) {
943 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
944 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
945 1.20 thorpej m_free(m);
946 1.20 thorpej return (0);
947 1.20 thorpej }
948 1.20 thorpej }
949 1.1 cgd m->m_len = asa->sa_len;
950 1.82 christos memcpy(mtod(m, void *), asa, asa->sa_len);
951 1.1 cgd if (n)
952 1.1 cgd n->m_next = m0; /* concatenate data to control */
953 1.1 cgd else
954 1.1 cgd control = m0;
955 1.1 cgd m->m_next = control;
956 1.43 thorpej
957 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 1");
958 1.43 thorpej
959 1.43 thorpej for (n = m; n->m_next != NULL; n = n->m_next)
960 1.1 cgd sballoc(sb, n);
961 1.43 thorpej sballoc(sb, n);
962 1.43 thorpej nlast = n;
963 1.43 thorpej SBLINKRECORD(sb, m);
964 1.43 thorpej
965 1.43 thorpej sb->sb_mbtail = nlast;
966 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendaddr");
967 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 2");
968 1.43 thorpej
969 1.1 cgd return (1);
970 1.1 cgd }
971 1.1 cgd
972 1.63 jonathan /*
973 1.63 jonathan * Helper for sbappendchainaddr: prepend a struct sockaddr* to
974 1.63 jonathan * an mbuf chain.
975 1.63 jonathan */
976 1.70 perry static inline struct mbuf *
977 1.81 yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
978 1.64 jonathan const struct sockaddr *asa)
979 1.63 jonathan {
980 1.63 jonathan struct mbuf *m;
981 1.64 jonathan const int salen = asa->sa_len;
982 1.63 jonathan
983 1.91 ad KASSERT(solocked(sb->sb_so));
984 1.91 ad
985 1.63 jonathan /* only the first in each chain need be a pkthdr */
986 1.63 jonathan MGETHDR(m, M_DONTWAIT, MT_SONAME);
987 1.63 jonathan if (m == 0)
988 1.63 jonathan return (0);
989 1.63 jonathan MCLAIM(m, sb->sb_mowner);
990 1.64 jonathan #ifdef notyet
991 1.64 jonathan if (salen > MHLEN) {
992 1.64 jonathan MEXTMALLOC(m, salen, M_NOWAIT);
993 1.64 jonathan if ((m->m_flags & M_EXT) == 0) {
994 1.64 jonathan m_free(m);
995 1.64 jonathan return (0);
996 1.64 jonathan }
997 1.64 jonathan }
998 1.64 jonathan #else
999 1.64 jonathan KASSERT(salen <= MHLEN);
1000 1.64 jonathan #endif
1001 1.64 jonathan m->m_len = salen;
1002 1.82 christos memcpy(mtod(m, void *), asa, salen);
1003 1.63 jonathan m->m_next = m0;
1004 1.64 jonathan m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1005 1.63 jonathan
1006 1.63 jonathan return m;
1007 1.63 jonathan }
1008 1.63 jonathan
1009 1.63 jonathan int
1010 1.63 jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1011 1.63 jonathan struct mbuf *m0, int sbprio)
1012 1.63 jonathan {
1013 1.63 jonathan int space;
1014 1.63 jonathan struct mbuf *m, *n, *n0, *nlast;
1015 1.63 jonathan int error;
1016 1.63 jonathan
1017 1.91 ad KASSERT(solocked(sb->sb_so));
1018 1.91 ad
1019 1.63 jonathan /*
1020 1.63 jonathan * XXX sbprio reserved for encoding priority of this* request:
1021 1.63 jonathan * SB_PRIO_NONE --> honour normal sb limits
1022 1.63 jonathan * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1023 1.63 jonathan * take whole chain. Intended for large requests
1024 1.63 jonathan * that should be delivered atomically (all, or none).
1025 1.63 jonathan * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1026 1.63 jonathan * over normal socket limits, for messages indicating
1027 1.63 jonathan * buffer overflow in earlier normal/lower-priority messages
1028 1.63 jonathan * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1029 1.63 jonathan * Intended for kernel-generated messages only.
1030 1.63 jonathan * Up to generator to avoid total mbuf resource exhaustion.
1031 1.63 jonathan */
1032 1.63 jonathan (void)sbprio;
1033 1.63 jonathan
1034 1.63 jonathan if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1035 1.63 jonathan panic("sbappendaddrchain");
1036 1.63 jonathan
1037 1.63 jonathan space = sbspace(sb);
1038 1.66 perry
1039 1.63 jonathan #ifdef notyet
1040 1.66 perry /*
1041 1.63 jonathan * Enforce SB_PRIO_* limits as described above.
1042 1.63 jonathan */
1043 1.63 jonathan #endif
1044 1.63 jonathan
1045 1.63 jonathan n0 = NULL;
1046 1.63 jonathan nlast = NULL;
1047 1.63 jonathan for (m = m0; m; m = m->m_nextpkt) {
1048 1.63 jonathan struct mbuf *np;
1049 1.63 jonathan
1050 1.64 jonathan #ifdef MBUFTRACE
1051 1.65 jonathan m_claimm(m, sb->sb_mowner);
1052 1.64 jonathan #endif
1053 1.64 jonathan
1054 1.63 jonathan /* Prepend sockaddr to this record (m) of input chain m0 */
1055 1.64 jonathan n = m_prepend_sockaddr(sb, m, asa);
1056 1.63 jonathan if (n == NULL) {
1057 1.63 jonathan error = ENOBUFS;
1058 1.63 jonathan goto bad;
1059 1.63 jonathan }
1060 1.63 jonathan
1061 1.63 jonathan /* Append record (asa+m) to end of new chain n0 */
1062 1.63 jonathan if (n0 == NULL) {
1063 1.63 jonathan n0 = n;
1064 1.63 jonathan } else {
1065 1.63 jonathan nlast->m_nextpkt = n;
1066 1.63 jonathan }
1067 1.63 jonathan /* Keep track of last record on new chain */
1068 1.63 jonathan nlast = n;
1069 1.63 jonathan
1070 1.63 jonathan for (np = n; np; np = np->m_next)
1071 1.63 jonathan sballoc(sb, np);
1072 1.63 jonathan }
1073 1.63 jonathan
1074 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1075 1.64 jonathan
1076 1.63 jonathan /* Drop the entire chain of (asa+m) records onto the socket */
1077 1.63 jonathan SBLINKRECORDCHAIN(sb, n0, nlast);
1078 1.64 jonathan
1079 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1080 1.64 jonathan
1081 1.63 jonathan for (m = nlast; m->m_next; m = m->m_next)
1082 1.63 jonathan ;
1083 1.63 jonathan sb->sb_mbtail = m;
1084 1.64 jonathan SBLASTMBUFCHK(sb, "sbappendaddrchain");
1085 1.64 jonathan
1086 1.63 jonathan return (1);
1087 1.63 jonathan
1088 1.63 jonathan bad:
1089 1.64 jonathan /*
1090 1.64 jonathan * On error, free the prepended addreseses. For consistency
1091 1.64 jonathan * with sbappendaddr(), leave it to our caller to free
1092 1.64 jonathan * the input record chain passed to us as m0.
1093 1.64 jonathan */
1094 1.64 jonathan while ((n = n0) != NULL) {
1095 1.64 jonathan struct mbuf *np;
1096 1.64 jonathan
1097 1.64 jonathan /* Undo the sballoc() of this record */
1098 1.64 jonathan for (np = n; np; np = np->m_next)
1099 1.64 jonathan sbfree(sb, np);
1100 1.64 jonathan
1101 1.64 jonathan n0 = n->m_nextpkt; /* iterate at next prepended address */
1102 1.64 jonathan MFREE(n, np); /* free prepended address (not data) */
1103 1.64 jonathan }
1104 1.66 perry return 0;
1105 1.63 jonathan }
1106 1.63 jonathan
1107 1.63 jonathan
1108 1.7 mycroft int
1109 1.37 lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1110 1.1 cgd {
1111 1.43 thorpej struct mbuf *m, *mlast, *n;
1112 1.37 lukem int space;
1113 1.1 cgd
1114 1.91 ad KASSERT(solocked(sb->sb_so));
1115 1.91 ad
1116 1.37 lukem space = 0;
1117 1.1 cgd if (control == 0)
1118 1.1 cgd panic("sbappendcontrol");
1119 1.1 cgd for (m = control; ; m = m->m_next) {
1120 1.1 cgd space += m->m_len;
1121 1.49 matt MCLAIM(m, sb->sb_mowner);
1122 1.1 cgd if (m->m_next == 0)
1123 1.1 cgd break;
1124 1.1 cgd }
1125 1.1 cgd n = m; /* save pointer to last control buffer */
1126 1.49 matt for (m = m0; m; m = m->m_next) {
1127 1.49 matt MCLAIM(m, sb->sb_mowner);
1128 1.1 cgd space += m->m_len;
1129 1.49 matt }
1130 1.1 cgd if (space > sbspace(sb))
1131 1.1 cgd return (0);
1132 1.1 cgd n->m_next = m0; /* concatenate data to control */
1133 1.43 thorpej
1134 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1135 1.43 thorpej
1136 1.43 thorpej for (m = control; m->m_next != NULL; m = m->m_next)
1137 1.1 cgd sballoc(sb, m);
1138 1.43 thorpej sballoc(sb, m);
1139 1.43 thorpej mlast = m;
1140 1.43 thorpej SBLINKRECORD(sb, control);
1141 1.43 thorpej
1142 1.43 thorpej sb->sb_mbtail = mlast;
1143 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendcontrol");
1144 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1145 1.43 thorpej
1146 1.1 cgd return (1);
1147 1.1 cgd }
1148 1.1 cgd
1149 1.1 cgd /*
1150 1.1 cgd * Compress mbuf chain m into the socket
1151 1.1 cgd * buffer sb following mbuf n. If n
1152 1.1 cgd * is null, the buffer is presumed empty.
1153 1.1 cgd */
1154 1.7 mycroft void
1155 1.37 lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1156 1.1 cgd {
1157 1.37 lukem int eor;
1158 1.37 lukem struct mbuf *o;
1159 1.1 cgd
1160 1.91 ad KASSERT(solocked(sb->sb_so));
1161 1.91 ad
1162 1.37 lukem eor = 0;
1163 1.1 cgd while (m) {
1164 1.1 cgd eor |= m->m_flags & M_EOR;
1165 1.1 cgd if (m->m_len == 0 &&
1166 1.1 cgd (eor == 0 ||
1167 1.1 cgd (((o = m->m_next) || (o = n)) &&
1168 1.1 cgd o->m_type == m->m_type))) {
1169 1.46 thorpej if (sb->sb_lastrecord == m)
1170 1.46 thorpej sb->sb_lastrecord = m->m_next;
1171 1.1 cgd m = m_free(m);
1172 1.1 cgd continue;
1173 1.1 cgd }
1174 1.40 thorpej if (n && (n->m_flags & M_EOR) == 0 &&
1175 1.40 thorpej /* M_TRAILINGSPACE() checks buffer writeability */
1176 1.40 thorpej m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1177 1.40 thorpej m->m_len <= M_TRAILINGSPACE(n) &&
1178 1.40 thorpej n->m_type == m->m_type) {
1179 1.82 christos memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1180 1.1 cgd (unsigned)m->m_len);
1181 1.1 cgd n->m_len += m->m_len;
1182 1.1 cgd sb->sb_cc += m->m_len;
1183 1.1 cgd m = m_free(m);
1184 1.1 cgd continue;
1185 1.1 cgd }
1186 1.1 cgd if (n)
1187 1.1 cgd n->m_next = m;
1188 1.1 cgd else
1189 1.1 cgd sb->sb_mb = m;
1190 1.43 thorpej sb->sb_mbtail = m;
1191 1.1 cgd sballoc(sb, m);
1192 1.1 cgd n = m;
1193 1.1 cgd m->m_flags &= ~M_EOR;
1194 1.1 cgd m = m->m_next;
1195 1.1 cgd n->m_next = 0;
1196 1.1 cgd }
1197 1.1 cgd if (eor) {
1198 1.1 cgd if (n)
1199 1.1 cgd n->m_flags |= eor;
1200 1.1 cgd else
1201 1.15 christos printf("semi-panic: sbcompress\n");
1202 1.1 cgd }
1203 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
1204 1.1 cgd }
1205 1.1 cgd
1206 1.1 cgd /*
1207 1.1 cgd * Free all mbufs in a sockbuf.
1208 1.1 cgd * Check that all resources are reclaimed.
1209 1.1 cgd */
1210 1.7 mycroft void
1211 1.37 lukem sbflush(struct sockbuf *sb)
1212 1.1 cgd {
1213 1.1 cgd
1214 1.91 ad KASSERT(solocked(sb->sb_so));
1215 1.43 thorpej KASSERT((sb->sb_flags & SB_LOCK) == 0);
1216 1.43 thorpej
1217 1.1 cgd while (sb->sb_mbcnt)
1218 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
1219 1.43 thorpej
1220 1.43 thorpej KASSERT(sb->sb_cc == 0);
1221 1.43 thorpej KASSERT(sb->sb_mb == NULL);
1222 1.43 thorpej KASSERT(sb->sb_mbtail == NULL);
1223 1.43 thorpej KASSERT(sb->sb_lastrecord == NULL);
1224 1.1 cgd }
1225 1.1 cgd
1226 1.1 cgd /*
1227 1.1 cgd * Drop data from (the front of) a sockbuf.
1228 1.1 cgd */
1229 1.7 mycroft void
1230 1.37 lukem sbdrop(struct sockbuf *sb, int len)
1231 1.1 cgd {
1232 1.37 lukem struct mbuf *m, *mn, *next;
1233 1.1 cgd
1234 1.91 ad KASSERT(solocked(sb->sb_so));
1235 1.91 ad
1236 1.1 cgd next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1237 1.1 cgd while (len > 0) {
1238 1.1 cgd if (m == 0) {
1239 1.1 cgd if (next == 0)
1240 1.1 cgd panic("sbdrop");
1241 1.1 cgd m = next;
1242 1.1 cgd next = m->m_nextpkt;
1243 1.1 cgd continue;
1244 1.1 cgd }
1245 1.1 cgd if (m->m_len > len) {
1246 1.1 cgd m->m_len -= len;
1247 1.1 cgd m->m_data += len;
1248 1.1 cgd sb->sb_cc -= len;
1249 1.1 cgd break;
1250 1.1 cgd }
1251 1.1 cgd len -= m->m_len;
1252 1.1 cgd sbfree(sb, m);
1253 1.1 cgd MFREE(m, mn);
1254 1.1 cgd m = mn;
1255 1.1 cgd }
1256 1.1 cgd while (m && m->m_len == 0) {
1257 1.1 cgd sbfree(sb, m);
1258 1.1 cgd MFREE(m, mn);
1259 1.1 cgd m = mn;
1260 1.1 cgd }
1261 1.1 cgd if (m) {
1262 1.1 cgd sb->sb_mb = m;
1263 1.1 cgd m->m_nextpkt = next;
1264 1.1 cgd } else
1265 1.1 cgd sb->sb_mb = next;
1266 1.43 thorpej /*
1267 1.45 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second part
1268 1.43 thorpej * makes sure sb_lastrecord is up-to-date if we dropped
1269 1.43 thorpej * part of the last record.
1270 1.43 thorpej */
1271 1.43 thorpej m = sb->sb_mb;
1272 1.43 thorpej if (m == NULL) {
1273 1.43 thorpej sb->sb_mbtail = NULL;
1274 1.43 thorpej sb->sb_lastrecord = NULL;
1275 1.43 thorpej } else if (m->m_nextpkt == NULL)
1276 1.43 thorpej sb->sb_lastrecord = m;
1277 1.1 cgd }
1278 1.1 cgd
1279 1.1 cgd /*
1280 1.1 cgd * Drop a record off the front of a sockbuf
1281 1.1 cgd * and move the next record to the front.
1282 1.1 cgd */
1283 1.7 mycroft void
1284 1.37 lukem sbdroprecord(struct sockbuf *sb)
1285 1.1 cgd {
1286 1.37 lukem struct mbuf *m, *mn;
1287 1.1 cgd
1288 1.91 ad KASSERT(solocked(sb->sb_so));
1289 1.91 ad
1290 1.1 cgd m = sb->sb_mb;
1291 1.1 cgd if (m) {
1292 1.1 cgd sb->sb_mb = m->m_nextpkt;
1293 1.1 cgd do {
1294 1.1 cgd sbfree(sb, m);
1295 1.1 cgd MFREE(m, mn);
1296 1.11 christos } while ((m = mn) != NULL);
1297 1.1 cgd }
1298 1.45 thorpej SB_EMPTY_FIXUP(sb);
1299 1.19 thorpej }
1300 1.19 thorpej
1301 1.19 thorpej /*
1302 1.19 thorpej * Create a "control" mbuf containing the specified data
1303 1.19 thorpej * with the specified type for presentation on a socket buffer.
1304 1.19 thorpej */
1305 1.19 thorpej struct mbuf *
1306 1.82 christos sbcreatecontrol(void *p, int size, int type, int level)
1307 1.19 thorpej {
1308 1.37 lukem struct cmsghdr *cp;
1309 1.37 lukem struct mbuf *m;
1310 1.19 thorpej
1311 1.35 itojun if (CMSG_SPACE(size) > MCLBYTES) {
1312 1.30 itojun printf("sbcreatecontrol: message too large %d\n", size);
1313 1.30 itojun return NULL;
1314 1.30 itojun }
1315 1.30 itojun
1316 1.19 thorpej if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1317 1.19 thorpej return ((struct mbuf *) NULL);
1318 1.35 itojun if (CMSG_SPACE(size) > MLEN) {
1319 1.30 itojun MCLGET(m, M_DONTWAIT);
1320 1.30 itojun if ((m->m_flags & M_EXT) == 0) {
1321 1.30 itojun m_free(m);
1322 1.30 itojun return NULL;
1323 1.30 itojun }
1324 1.30 itojun }
1325 1.19 thorpej cp = mtod(m, struct cmsghdr *);
1326 1.26 perry memcpy(CMSG_DATA(cp), p, size);
1327 1.35 itojun m->m_len = CMSG_SPACE(size);
1328 1.35 itojun cp->cmsg_len = CMSG_LEN(size);
1329 1.19 thorpej cp->cmsg_level = level;
1330 1.19 thorpej cp->cmsg_type = type;
1331 1.19 thorpej return (m);
1332 1.1 cgd }
1333 1.91 ad
1334 1.91 ad void
1335 1.91 ad solockretry(struct socket *so, kmutex_t *lock)
1336 1.91 ad {
1337 1.91 ad
1338 1.91 ad while (lock != so->so_lock) {
1339 1.91 ad mutex_exit(lock);
1340 1.91 ad lock = so->so_lock;
1341 1.91 ad mutex_enter(lock);
1342 1.91 ad }
1343 1.91 ad }
1344 1.91 ad
1345 1.91 ad bool
1346 1.91 ad solocked(struct socket *so)
1347 1.91 ad {
1348 1.91 ad
1349 1.91 ad return mutex_owned(so->so_lock);
1350 1.91 ad }
1351 1.91 ad
1352 1.91 ad bool
1353 1.91 ad solocked2(struct socket *so1, struct socket *so2)
1354 1.91 ad {
1355 1.91 ad kmutex_t *lock;
1356 1.91 ad
1357 1.91 ad lock = so1->so_lock;
1358 1.91 ad if (lock != so2->so_lock)
1359 1.91 ad return false;
1360 1.91 ad return mutex_owned(lock);
1361 1.91 ad }
1362 1.91 ad
1363 1.91 ad /*
1364 1.91 ad * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1365 1.91 ad * protocols that do not have special locking requirements.
1366 1.91 ad */
1367 1.91 ad void
1368 1.91 ad sosetlock(struct socket *so)
1369 1.91 ad {
1370 1.91 ad kmutex_t *lock;
1371 1.91 ad
1372 1.91 ad if (so->so_lock == NULL) {
1373 1.91 ad lock = softnet_lock;
1374 1.91 ad so->so_lock = lock;
1375 1.91 ad mutex_obj_hold(lock);
1376 1.91 ad mutex_enter(lock);
1377 1.91 ad }
1378 1.91 ad
1379 1.91 ad /* In all cases, lock must be held on return from PRU_ATTACH. */
1380 1.91 ad KASSERT(solocked(so));
1381 1.91 ad }
1382 1.91 ad
1383 1.91 ad /*
1384 1.91 ad * Set lock on sockbuf sb; sleep if lock is already held.
1385 1.91 ad * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1386 1.91 ad * Returns error without lock if sleep is interrupted.
1387 1.91 ad */
1388 1.91 ad int
1389 1.91 ad sblock(struct sockbuf *sb, int wf)
1390 1.91 ad {
1391 1.91 ad struct socket *so;
1392 1.91 ad kmutex_t *lock;
1393 1.91 ad int error;
1394 1.91 ad
1395 1.91 ad KASSERT(solocked(sb->sb_so));
1396 1.91 ad
1397 1.91 ad for (;;) {
1398 1.91 ad if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1399 1.91 ad sb->sb_flags |= SB_LOCK;
1400 1.91 ad return 0;
1401 1.91 ad }
1402 1.91 ad if (wf != M_WAITOK)
1403 1.91 ad return EWOULDBLOCK;
1404 1.91 ad so = sb->sb_so;
1405 1.91 ad lock = so->so_lock;
1406 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0) {
1407 1.91 ad cv_wait(&so->so_cv, lock);
1408 1.91 ad error = 0;
1409 1.91 ad } else
1410 1.91 ad error = cv_wait_sig(&so->so_cv, lock);
1411 1.91 ad if (__predict_false(lock != so->so_lock))
1412 1.91 ad solockretry(so, lock);
1413 1.91 ad if (error != 0)
1414 1.91 ad return error;
1415 1.91 ad }
1416 1.91 ad }
1417 1.91 ad
1418 1.91 ad void
1419 1.91 ad sbunlock(struct sockbuf *sb)
1420 1.91 ad {
1421 1.91 ad struct socket *so;
1422 1.91 ad
1423 1.91 ad so = sb->sb_so;
1424 1.91 ad
1425 1.91 ad KASSERT(solocked(so));
1426 1.91 ad KASSERT((sb->sb_flags & SB_LOCK) != 0);
1427 1.91 ad
1428 1.91 ad sb->sb_flags &= ~SB_LOCK;
1429 1.91 ad cv_broadcast(&so->so_cv);
1430 1.91 ad }
1431 1.91 ad
1432 1.91 ad int
1433 1.101 yamt sowait(struct socket *so, bool catch, int timo)
1434 1.91 ad {
1435 1.91 ad kmutex_t *lock;
1436 1.91 ad int error;
1437 1.91 ad
1438 1.91 ad KASSERT(solocked(so));
1439 1.101 yamt KASSERT(catch || timo != 0);
1440 1.91 ad
1441 1.91 ad lock = so->so_lock;
1442 1.101 yamt if (catch)
1443 1.101 yamt error = cv_timedwait_sig(&so->so_cv, lock, timo);
1444 1.101 yamt else
1445 1.101 yamt error = cv_timedwait(&so->so_cv, lock, timo);
1446 1.91 ad if (__predict_false(lock != so->so_lock))
1447 1.91 ad solockretry(so, lock);
1448 1.91 ad return error;
1449 1.91 ad }
1450