Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.109.2.2
      1  1.109.2.2      yamt /*	$NetBSD: uipc_socket2.c,v 1.109.2.2 2014/05/22 11:41:03 yamt Exp $	*/
      2       1.91        ad 
      3       1.91        ad /*-
      4       1.91        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5       1.91        ad  * All rights reserved.
      6       1.91        ad  *
      7       1.91        ad  * Redistribution and use in source and binary forms, with or without
      8       1.91        ad  * modification, are permitted provided that the following conditions
      9       1.91        ad  * are met:
     10       1.91        ad  * 1. Redistributions of source code must retain the above copyright
     11       1.91        ad  *    notice, this list of conditions and the following disclaimer.
     12       1.91        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.91        ad  *    notice, this list of conditions and the following disclaimer in the
     14       1.91        ad  *    documentation and/or other materials provided with the distribution.
     15       1.91        ad  *
     16       1.91        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17       1.91        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18       1.91        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19       1.91        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20       1.91        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21       1.91        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22       1.91        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23       1.91        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24       1.91        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25       1.91        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26       1.91        ad  * POSSIBILITY OF SUCH DAMAGE.
     27       1.91        ad  */
     28        1.9       cgd 
     29        1.1       cgd /*
     30        1.7   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31        1.7   mycroft  *	The Regents of the University of California.  All rights reserved.
     32        1.1       cgd  *
     33        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     34        1.1       cgd  * modification, are permitted provided that the following conditions
     35        1.1       cgd  * are met:
     36        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     37        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     38        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     39        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     40        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     41       1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     42        1.1       cgd  *    may be used to endorse or promote products derived from this software
     43        1.1       cgd  *    without specific prior written permission.
     44        1.1       cgd  *
     45        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55        1.1       cgd  * SUCH DAMAGE.
     56        1.1       cgd  *
     57       1.23      fvdl  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58        1.1       cgd  */
     59       1.42     lukem 
     60       1.42     lukem #include <sys/cdefs.h>
     61  1.109.2.2      yamt __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.109.2.2 2014/05/22 11:41:03 yamt Exp $");
     62       1.51    martin 
     63       1.51    martin #include "opt_mbuftrace.h"
     64       1.58   thorpej #include "opt_sb_max.h"
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/systm.h>
     68        1.5   mycroft #include <sys/proc.h>
     69        1.5   mycroft #include <sys/file.h>
     70        1.5   mycroft #include <sys/buf.h>
     71        1.5   mycroft #include <sys/mbuf.h>
     72        1.5   mycroft #include <sys/protosw.h>
     73       1.91        ad #include <sys/domain.h>
     74       1.55  christos #include <sys/poll.h>
     75        1.5   mycroft #include <sys/socket.h>
     76        1.5   mycroft #include <sys/socketvar.h>
     77       1.11  christos #include <sys/signalvar.h>
     78       1.71      elad #include <sys/kauth.h>
     79       1.91        ad #include <sys/pool.h>
     80       1.98     pooka #include <sys/uidinfo.h>
     81        1.1       cgd 
     82        1.1       cgd /*
     83       1.91        ad  * Primitive routines for operating on sockets and socket buffers.
     84       1.91        ad  *
     85       1.91        ad  * Locking rules and assumptions:
     86       1.91        ad  *
     87       1.91        ad  * o socket::so_lock can change on the fly.  The low level routines used
     88       1.91        ad  *   to lock sockets are aware of this.  When so_lock is acquired, the
     89       1.91        ad  *   routine locking must check to see if so_lock still points to the
     90       1.91        ad  *   lock that was acquired.  If so_lock has changed in the meantime, the
     91       1.91        ad  *   now irellevant lock that was acquired must be dropped and the lock
     92       1.91        ad  *   operation retried.  Although not proven here, this is completely safe
     93       1.91        ad  *   on a multiprocessor system, even with relaxed memory ordering, given
     94       1.91        ad  *   the next two rules:
     95       1.91        ad  *
     96       1.91        ad  * o In order to mutate so_lock, the lock pointed to by the current value
     97       1.91        ad  *   of so_lock must be held: i.e., the socket must be held locked by the
     98       1.91        ad  *   changing thread.  The thread must issue membar_exit() to prevent
     99       1.91        ad  *   memory accesses being reordered, and can set so_lock to the desired
    100       1.91        ad  *   value.  If the lock pointed to by the new value of so_lock is not
    101       1.91        ad  *   held by the changing thread, the socket must then be considered
    102       1.91        ad  *   unlocked.
    103       1.91        ad  *
    104       1.91        ad  * o If so_lock is mutated, and the previous lock referred to by so_lock
    105       1.91        ad  *   could still be visible to other threads in the system (e.g. via file
    106       1.91        ad  *   descriptor or protocol-internal reference), then the old lock must
    107       1.91        ad  *   remain valid until the socket and/or protocol control block has been
    108       1.91        ad  *   torn down.
    109       1.91        ad  *
    110       1.91        ad  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    111       1.91        ad  *   connecting), then locking the socket must also lock the socket pointed
    112       1.91        ad  *   to by so_head: their lock pointers must match.
    113       1.91        ad  *
    114       1.91        ad  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    115       1.91        ad  *   locking the socket must also lock the sockets attached to both queues.
    116       1.91        ad  *   Again, their lock pointers must match.
    117       1.91        ad  *
    118       1.91        ad  * o Beyond the initial lock assigment in socreate(), assigning locks to
    119       1.91        ad  *   sockets is the responsibility of the individual protocols / protocol
    120       1.91        ad  *   domains.
    121        1.1       cgd  */
    122        1.1       cgd 
    123       1.94        ad static pool_cache_t socket_cache;
    124        1.1       cgd 
    125       1.58   thorpej u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    126       1.58   thorpej static u_long sb_max_adj;	/* adjusted sb_max */
    127       1.58   thorpej 
    128        1.1       cgd /*
    129        1.1       cgd  * Procedures to manipulate state flags of socket
    130        1.1       cgd  * and do appropriate wakeups.  Normal sequence from the
    131        1.1       cgd  * active (originating) side is that soisconnecting() is
    132        1.1       cgd  * called during processing of connect() call,
    133        1.1       cgd  * resulting in an eventual call to soisconnected() if/when the
    134        1.1       cgd  * connection is established.  When the connection is torn down
    135        1.1       cgd  * soisdisconnecting() is called during processing of disconnect() call,
    136        1.1       cgd  * and soisdisconnected() is called when the connection to the peer
    137        1.1       cgd  * is totally severed.  The semantics of these routines are such that
    138        1.1       cgd  * connectionless protocols can call soisconnected() and soisdisconnected()
    139        1.1       cgd  * only, bypassing the in-progress calls when setting up a ``connection''
    140        1.1       cgd  * takes no time.
    141        1.1       cgd  *
    142        1.1       cgd  * From the passive side, a socket is created with
    143        1.1       cgd  * two queues of sockets: so_q0 for connections in progress
    144        1.1       cgd  * and so_q for connections already made and awaiting user acceptance.
    145        1.1       cgd  * As a protocol is preparing incoming connections, it creates a socket
    146        1.1       cgd  * structure queued on so_q0 by calling sonewconn().  When the connection
    147        1.1       cgd  * is established, soisconnected() is called, and transfers the
    148        1.1       cgd  * socket structure to so_q, making it available to accept().
    149       1.66     perry  *
    150        1.1       cgd  * If a socket is closed with sockets on either
    151        1.1       cgd  * so_q0 or so_q, these sockets are dropped.
    152        1.1       cgd  *
    153        1.1       cgd  * If higher level protocols are implemented in
    154        1.1       cgd  * the kernel, the wakeups done here will sometimes
    155        1.1       cgd  * cause software-interrupt process scheduling.
    156        1.1       cgd  */
    157        1.1       cgd 
    158        1.7   mycroft void
    159       1.37     lukem soisconnecting(struct socket *so)
    160        1.1       cgd {
    161        1.1       cgd 
    162       1.91        ad 	KASSERT(solocked(so));
    163       1.91        ad 
    164        1.1       cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    165        1.1       cgd 	so->so_state |= SS_ISCONNECTING;
    166        1.1       cgd }
    167        1.1       cgd 
    168        1.7   mycroft void
    169       1.37     lukem soisconnected(struct socket *so)
    170        1.1       cgd {
    171       1.37     lukem 	struct socket	*head;
    172        1.1       cgd 
    173       1.37     lukem 	head = so->so_head;
    174       1.91        ad 
    175       1.91        ad 	KASSERT(solocked(so));
    176       1.91        ad 	KASSERT(head == NULL || solocked2(so, head));
    177       1.91        ad 
    178  1.109.2.2      yamt 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    179        1.1       cgd 	so->so_state |= SS_ISCONNECTED;
    180       1.97       tls 	if (head && so->so_onq == &head->so_q0) {
    181       1.97       tls 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    182       1.97       tls 			soqremque(so, 0);
    183       1.97       tls 			soqinsque(head, so, 1);
    184       1.97       tls 			sorwakeup(head);
    185       1.97       tls 			cv_broadcast(&head->so_cv);
    186       1.97       tls 		} else {
    187       1.97       tls 			so->so_upcall =
    188       1.97       tls 			    head->so_accf->so_accept_filter->accf_callback;
    189       1.97       tls 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    190       1.97       tls 			so->so_rcv.sb_flags |= SB_UPCALL;
    191       1.97       tls 			so->so_options &= ~SO_ACCEPTFILTER;
    192      1.104       tls 			(*so->so_upcall)(so, so->so_upcallarg,
    193      1.104       tls 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    194      1.101      yamt 		}
    195        1.1       cgd 	} else {
    196       1.91        ad 		cv_broadcast(&so->so_cv);
    197        1.1       cgd 		sorwakeup(so);
    198        1.1       cgd 		sowwakeup(so);
    199        1.1       cgd 	}
    200        1.1       cgd }
    201        1.1       cgd 
    202        1.7   mycroft void
    203       1.37     lukem soisdisconnecting(struct socket *so)
    204        1.1       cgd {
    205        1.1       cgd 
    206       1.91        ad 	KASSERT(solocked(so));
    207       1.91        ad 
    208        1.1       cgd 	so->so_state &= ~SS_ISCONNECTING;
    209        1.1       cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    210       1.91        ad 	cv_broadcast(&so->so_cv);
    211        1.1       cgd 	sowwakeup(so);
    212        1.1       cgd 	sorwakeup(so);
    213        1.1       cgd }
    214        1.1       cgd 
    215        1.7   mycroft void
    216       1.37     lukem soisdisconnected(struct socket *so)
    217        1.1       cgd {
    218        1.1       cgd 
    219       1.91        ad 	KASSERT(solocked(so));
    220       1.91        ad 
    221        1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    222       1.27   mycroft 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    223       1.91        ad 	cv_broadcast(&so->so_cv);
    224        1.1       cgd 	sowwakeup(so);
    225        1.1       cgd 	sorwakeup(so);
    226        1.1       cgd }
    227        1.1       cgd 
    228       1.94        ad void
    229       1.94        ad soinit2(void)
    230       1.94        ad {
    231       1.94        ad 
    232       1.94        ad 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    233       1.94        ad 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    234       1.94        ad }
    235       1.94        ad 
    236        1.1       cgd /*
    237        1.1       cgd  * When an attempt at a new connection is noted on a socket
    238        1.1       cgd  * which accepts connections, sonewconn is called.  If the
    239        1.1       cgd  * connection is possible (subject to space constraints, etc.)
    240        1.1       cgd  * then we allocate a new structure, propoerly linked into the
    241        1.1       cgd  * data structure of the original socket, and return this.
    242        1.1       cgd  */
    243        1.1       cgd struct socket *
    244  1.109.2.2      yamt sonewconn(struct socket *head, bool conncomplete)
    245        1.1       cgd {
    246       1.37     lukem 	struct socket	*so;
    247       1.91        ad 	int		soqueue, error;
    248       1.91        ad 
    249       1.91        ad 	KASSERT(solocked(head));
    250        1.1       cgd 
    251       1.97       tls 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
    252  1.109.2.2      yamt 		conncomplete = false;
    253  1.109.2.2      yamt 	soqueue = conncomplete ? 1 : 0;
    254  1.109.2.2      yamt 
    255        1.1       cgd 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    256      1.100    dyoung 		return NULL;
    257       1.91        ad 	so = soget(false);
    258       1.66     perry 	if (so == NULL)
    259      1.100    dyoung 		return NULL;
    260       1.91        ad 	mutex_obj_hold(head->so_lock);
    261       1.91        ad 	so->so_lock = head->so_lock;
    262        1.1       cgd 	so->so_type = head->so_type;
    263        1.1       cgd 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    264        1.1       cgd 	so->so_linger = head->so_linger;
    265        1.1       cgd 	so->so_state = head->so_state | SS_NOFDREF;
    266        1.1       cgd 	so->so_proto = head->so_proto;
    267        1.1       cgd 	so->so_timeo = head->so_timeo;
    268        1.1       cgd 	so->so_pgid = head->so_pgid;
    269       1.24      matt 	so->so_send = head->so_send;
    270       1.24      matt 	so->so_receive = head->so_receive;
    271       1.67  christos 	so->so_uidinfo = head->so_uidinfo;
    272       1.96      yamt 	so->so_cpid = head->so_cpid;
    273       1.49      matt #ifdef MBUFTRACE
    274       1.49      matt 	so->so_mowner = head->so_mowner;
    275       1.49      matt 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    276       1.49      matt 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    277       1.49      matt #endif
    278      1.103  christos 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
    279      1.103  christos 		goto out;
    280       1.83       tls 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    281       1.83       tls 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    282       1.84       tls 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    283       1.84       tls 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    284      1.107  christos 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    285      1.107  christos 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    286        1.1       cgd 	soqinsque(head, so, soqueue);
    287       1.91        ad 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    288       1.91        ad 	    NULL, NULL);
    289       1.91        ad 	KASSERT(solocked(so));
    290       1.91        ad 	if (error != 0) {
    291        1.1       cgd 		(void) soqremque(so, soqueue);
    292      1.103  christos out:
    293       1.99        ad 		/*
    294       1.99        ad 		 * Remove acccept filter if one is present.
    295       1.99        ad 		 * XXX Is this really needed?
    296       1.99        ad 		 */
    297       1.97       tls 		if (so->so_accf != NULL)
    298       1.99        ad 			(void)accept_filt_clear(so);
    299       1.91        ad 		soput(so);
    300      1.100    dyoung 		return NULL;
    301        1.1       cgd 	}
    302  1.109.2.2      yamt 	if (conncomplete) {
    303        1.1       cgd 		sorwakeup(head);
    304       1.91        ad 		cv_broadcast(&head->so_cv);
    305  1.109.2.2      yamt 		so->so_state |= SS_ISCONNECTED;
    306        1.1       cgd 	}
    307      1.100    dyoung 	return so;
    308        1.1       cgd }
    309        1.1       cgd 
    310       1.91        ad struct socket *
    311       1.91        ad soget(bool waitok)
    312       1.91        ad {
    313       1.91        ad 	struct socket *so;
    314       1.91        ad 
    315       1.94        ad 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    316       1.91        ad 	if (__predict_false(so == NULL))
    317       1.91        ad 		return (NULL);
    318       1.91        ad 	memset(so, 0, sizeof(*so));
    319       1.91        ad 	TAILQ_INIT(&so->so_q0);
    320       1.91        ad 	TAILQ_INIT(&so->so_q);
    321       1.91        ad 	cv_init(&so->so_cv, "socket");
    322       1.91        ad 	cv_init(&so->so_rcv.sb_cv, "netio");
    323       1.91        ad 	cv_init(&so->so_snd.sb_cv, "netio");
    324       1.91        ad 	selinit(&so->so_rcv.sb_sel);
    325       1.91        ad 	selinit(&so->so_snd.sb_sel);
    326       1.91        ad 	so->so_rcv.sb_so = so;
    327       1.91        ad 	so->so_snd.sb_so = so;
    328       1.91        ad 	return so;
    329       1.91        ad }
    330       1.91        ad 
    331       1.91        ad void
    332       1.91        ad soput(struct socket *so)
    333       1.91        ad {
    334       1.91        ad 
    335       1.91        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    336       1.91        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    337       1.91        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    338       1.91        ad 	seldestroy(&so->so_rcv.sb_sel);
    339       1.91        ad 	seldestroy(&so->so_snd.sb_sel);
    340       1.91        ad 	mutex_obj_free(so->so_lock);
    341       1.91        ad 	cv_destroy(&so->so_cv);
    342       1.91        ad 	cv_destroy(&so->so_rcv.sb_cv);
    343       1.91        ad 	cv_destroy(&so->so_snd.sb_cv);
    344       1.94        ad 	pool_cache_put(socket_cache, so);
    345       1.91        ad }
    346       1.91        ad 
    347        1.7   mycroft void
    348       1.37     lukem soqinsque(struct socket *head, struct socket *so, int q)
    349        1.1       cgd {
    350        1.1       cgd 
    351       1.91        ad 	KASSERT(solocked2(head, so));
    352       1.91        ad 
    353       1.22   thorpej #ifdef DIAGNOSTIC
    354       1.22   thorpej 	if (so->so_onq != NULL)
    355       1.22   thorpej 		panic("soqinsque");
    356       1.22   thorpej #endif
    357       1.22   thorpej 
    358        1.1       cgd 	so->so_head = head;
    359        1.1       cgd 	if (q == 0) {
    360        1.1       cgd 		head->so_q0len++;
    361       1.22   thorpej 		so->so_onq = &head->so_q0;
    362        1.1       cgd 	} else {
    363        1.1       cgd 		head->so_qlen++;
    364       1.22   thorpej 		so->so_onq = &head->so_q;
    365        1.1       cgd 	}
    366       1.22   thorpej 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    367        1.1       cgd }
    368        1.1       cgd 
    369        1.7   mycroft int
    370       1.37     lukem soqremque(struct socket *so, int q)
    371        1.1       cgd {
    372       1.37     lukem 	struct socket	*head;
    373        1.1       cgd 
    374       1.37     lukem 	head = so->so_head;
    375       1.91        ad 
    376       1.91        ad 	KASSERT(solocked(so));
    377       1.22   thorpej 	if (q == 0) {
    378       1.22   thorpej 		if (so->so_onq != &head->so_q0)
    379       1.17   thorpej 			return (0);
    380        1.1       cgd 		head->so_q0len--;
    381        1.1       cgd 	} else {
    382       1.22   thorpej 		if (so->so_onq != &head->so_q)
    383       1.22   thorpej 			return (0);
    384        1.1       cgd 		head->so_qlen--;
    385        1.1       cgd 	}
    386       1.91        ad 	KASSERT(solocked2(so, head));
    387       1.22   thorpej 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    388       1.22   thorpej 	so->so_onq = NULL;
    389       1.22   thorpej 	so->so_head = NULL;
    390        1.1       cgd 	return (1);
    391        1.1       cgd }
    392        1.1       cgd 
    393        1.1       cgd /*
    394        1.1       cgd  * Socantsendmore indicates that no more data will be sent on the
    395        1.1       cgd  * socket; it would normally be applied to a socket when the user
    396        1.1       cgd  * informs the system that no more data is to be sent, by the protocol
    397        1.1       cgd  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    398        1.1       cgd  * will be received, and will normally be applied to the socket by a
    399        1.1       cgd  * protocol when it detects that the peer will send no more data.
    400        1.1       cgd  * Data queued for reading in the socket may yet be read.
    401        1.1       cgd  */
    402        1.1       cgd 
    403        1.4    andrew void
    404       1.37     lukem socantsendmore(struct socket *so)
    405        1.1       cgd {
    406        1.1       cgd 
    407       1.91        ad 	KASSERT(solocked(so));
    408       1.91        ad 
    409        1.1       cgd 	so->so_state |= SS_CANTSENDMORE;
    410        1.1       cgd 	sowwakeup(so);
    411        1.1       cgd }
    412        1.1       cgd 
    413        1.4    andrew void
    414       1.37     lukem socantrcvmore(struct socket *so)
    415        1.1       cgd {
    416        1.1       cgd 
    417       1.91        ad 	KASSERT(solocked(so));
    418       1.91        ad 
    419        1.1       cgd 	so->so_state |= SS_CANTRCVMORE;
    420        1.1       cgd 	sorwakeup(so);
    421        1.1       cgd }
    422        1.1       cgd 
    423        1.1       cgd /*
    424        1.1       cgd  * Wait for data to arrive at/drain from a socket buffer.
    425        1.1       cgd  */
    426        1.7   mycroft int
    427       1.37     lukem sbwait(struct sockbuf *sb)
    428        1.1       cgd {
    429       1.91        ad 	struct socket *so;
    430       1.91        ad 	kmutex_t *lock;
    431       1.91        ad 	int error;
    432        1.1       cgd 
    433       1.91        ad 	so = sb->sb_so;
    434        1.1       cgd 
    435       1.91        ad 	KASSERT(solocked(so));
    436        1.1       cgd 
    437       1.91        ad 	sb->sb_flags |= SB_NOTIFY;
    438       1.91        ad 	lock = so->so_lock;
    439       1.91        ad 	if ((sb->sb_flags & SB_NOINTR) != 0)
    440       1.91        ad 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    441       1.91        ad 	else
    442       1.91        ad 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    443       1.91        ad 	if (__predict_false(lock != so->so_lock))
    444       1.91        ad 		solockretry(so, lock);
    445       1.91        ad 	return error;
    446        1.1       cgd }
    447        1.1       cgd 
    448        1.1       cgd /*
    449        1.1       cgd  * Wakeup processes waiting on a socket buffer.
    450        1.1       cgd  * Do asynchronous notification via SIGIO
    451       1.39      manu  * if the socket buffer has the SB_ASYNC flag set.
    452        1.1       cgd  */
    453        1.7   mycroft void
    454       1.55  christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
    455        1.1       cgd {
    456       1.90     rmind 	int band;
    457       1.90     rmind 
    458       1.91        ad 	KASSERT(solocked(so));
    459       1.91        ad 	KASSERT(sb->sb_so == so);
    460       1.91        ad 
    461       1.90     rmind 	if (code == POLL_IN)
    462       1.90     rmind 		band = POLLIN|POLLRDNORM;
    463       1.90     rmind 	else
    464       1.90     rmind 		band = POLLOUT|POLLWRNORM;
    465       1.91        ad 	sb->sb_flags &= ~SB_NOTIFY;
    466       1.91        ad 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    467       1.91        ad 	cv_broadcast(&sb->sb_cv);
    468       1.90     rmind 	if (sb->sb_flags & SB_ASYNC)
    469       1.57  christos 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    470       1.24      matt 	if (sb->sb_flags & SB_UPCALL)
    471      1.104       tls 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    472        1.1       cgd }
    473        1.1       cgd 
    474        1.1       cgd /*
    475       1.95        ad  * Reset a socket's lock pointer.  Wake all threads waiting on the
    476       1.95        ad  * socket's condition variables so that they can restart their waits
    477       1.95        ad  * using the new lock.  The existing lock must be held.
    478       1.95        ad  */
    479       1.95        ad void
    480       1.95        ad solockreset(struct socket *so, kmutex_t *lock)
    481       1.95        ad {
    482       1.95        ad 
    483       1.95        ad 	KASSERT(solocked(so));
    484       1.95        ad 
    485       1.95        ad 	so->so_lock = lock;
    486       1.95        ad 	cv_broadcast(&so->so_snd.sb_cv);
    487       1.95        ad 	cv_broadcast(&so->so_rcv.sb_cv);
    488       1.95        ad 	cv_broadcast(&so->so_cv);
    489       1.95        ad }
    490       1.95        ad 
    491       1.95        ad /*
    492        1.1       cgd  * Socket buffer (struct sockbuf) utility routines.
    493        1.1       cgd  *
    494        1.1       cgd  * Each socket contains two socket buffers: one for sending data and
    495        1.1       cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    496        1.1       cgd  * information about the number of mbufs and amount of data in the
    497       1.13   mycroft  * queue, and other fields allowing poll() statements and notification
    498        1.1       cgd  * on data availability to be implemented.
    499        1.1       cgd  *
    500        1.1       cgd  * Data stored in a socket buffer is maintained as a list of records.
    501        1.1       cgd  * Each record is a list of mbufs chained together with the m_next
    502        1.1       cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    503        1.1       cgd  * level routine soreceive() expects the following conventions to be
    504        1.1       cgd  * observed when placing information in the receive buffer:
    505        1.1       cgd  *
    506        1.1       cgd  * 1. If the protocol requires each message be preceded by the sender's
    507        1.1       cgd  *    name, then a record containing that name must be present before
    508        1.1       cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    509        1.1       cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    510        1.1       cgd  *    just additional data associated with the message), and there are
    511        1.1       cgd  *    ``rights'' to be received, then a record containing this data
    512       1.10   mycroft  *    should be present (mbuf's must be of type MT_CONTROL).
    513        1.1       cgd  * 3. If a name or rights record exists, then it must be followed by
    514        1.1       cgd  *    a data record, perhaps of zero length.
    515        1.1       cgd  *
    516        1.1       cgd  * Before using a new socket structure it is first necessary to reserve
    517        1.1       cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    518        1.1       cgd  * some of the available buffer space in the system buffer pool for the
    519        1.1       cgd  * socket (currently, it does nothing but enforce limits).  The space
    520        1.1       cgd  * should be released by calling sbrelease() when the socket is destroyed.
    521        1.1       cgd  */
    522        1.1       cgd 
    523        1.7   mycroft int
    524       1.58   thorpej sb_max_set(u_long new_sbmax)
    525       1.58   thorpej {
    526       1.58   thorpej 	int s;
    527       1.58   thorpej 
    528       1.58   thorpej 	if (new_sbmax < (16 * 1024))
    529       1.58   thorpej 		return (EINVAL);
    530       1.58   thorpej 
    531       1.58   thorpej 	s = splsoftnet();
    532       1.58   thorpej 	sb_max = new_sbmax;
    533       1.58   thorpej 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    534       1.58   thorpej 	splx(s);
    535       1.58   thorpej 
    536       1.58   thorpej 	return (0);
    537       1.58   thorpej }
    538       1.58   thorpej 
    539       1.58   thorpej int
    540       1.37     lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    541        1.1       cgd {
    542       1.91        ad 
    543       1.91        ad 	KASSERT(so->so_lock == NULL || solocked(so));
    544       1.91        ad 
    545       1.74  christos 	/*
    546       1.74  christos 	 * there's at least one application (a configure script of screen)
    547       1.74  christos 	 * which expects a fifo is writable even if it has "some" bytes
    548       1.74  christos 	 * in its buffer.
    549       1.74  christos 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    550       1.74  christos 	 *
    551       1.74  christos 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    552       1.74  christos 	 * we expect it's large enough for such applications.
    553       1.74  christos 	 */
    554       1.74  christos 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    555       1.74  christos 	u_long  hiwat = lowat + PIPE_BUF;
    556        1.1       cgd 
    557       1.74  christos 	if (sndcc < hiwat)
    558       1.74  christos 		sndcc = hiwat;
    559       1.59  christos 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    560        1.1       cgd 		goto bad;
    561       1.59  christos 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    562        1.1       cgd 		goto bad2;
    563        1.1       cgd 	if (so->so_rcv.sb_lowat == 0)
    564        1.1       cgd 		so->so_rcv.sb_lowat = 1;
    565        1.1       cgd 	if (so->so_snd.sb_lowat == 0)
    566       1.74  christos 		so->so_snd.sb_lowat = lowat;
    567        1.1       cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    568        1.1       cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    569        1.1       cgd 	return (0);
    570       1.37     lukem  bad2:
    571       1.59  christos 	sbrelease(&so->so_snd, so);
    572       1.37     lukem  bad:
    573        1.1       cgd 	return (ENOBUFS);
    574        1.1       cgd }
    575        1.1       cgd 
    576        1.1       cgd /*
    577        1.1       cgd  * Allot mbufs to a sockbuf.
    578        1.1       cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    579        1.1       cgd  * if buffering efficiency is near the normal case.
    580        1.1       cgd  */
    581        1.7   mycroft int
    582       1.59  christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    583        1.1       cgd {
    584       1.75        ad 	struct lwp *l = curlwp; /* XXX */
    585       1.62  christos 	rlim_t maxcc;
    586       1.67  christos 	struct uidinfo *uidinfo;
    587        1.1       cgd 
    588       1.91        ad 	KASSERT(so->so_lock == NULL || solocked(so));
    589       1.91        ad 	KASSERT(sb->sb_so == so);
    590       1.91        ad 	KASSERT(sb_max_adj != 0);
    591       1.91        ad 
    592       1.58   thorpej 	if (cc == 0 || cc > sb_max_adj)
    593        1.1       cgd 		return (0);
    594       1.93  christos 
    595      1.105      elad 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    596       1.93  christos 
    597       1.93  christos 	uidinfo = so->so_uidinfo;
    598       1.67  christos 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    599       1.62  christos 		return 0;
    600        1.1       cgd 	sb->sb_mbmax = min(cc * 2, sb_max);
    601        1.1       cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    602        1.1       cgd 		sb->sb_lowat = sb->sb_hiwat;
    603        1.1       cgd 	return (1);
    604        1.1       cgd }
    605        1.1       cgd 
    606        1.1       cgd /*
    607       1.91        ad  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    608       1.91        ad  * that the socket is held locked here: see sorflush().
    609        1.1       cgd  */
    610        1.7   mycroft void
    611       1.59  christos sbrelease(struct sockbuf *sb, struct socket *so)
    612        1.1       cgd {
    613        1.1       cgd 
    614       1.91        ad 	KASSERT(sb->sb_so == so);
    615       1.91        ad 
    616        1.1       cgd 	sbflush(sb);
    617       1.87      yamt 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    618       1.59  christos 	sb->sb_mbmax = 0;
    619        1.1       cgd }
    620        1.1       cgd 
    621        1.1       cgd /*
    622        1.1       cgd  * Routines to add and remove
    623        1.1       cgd  * data from an mbuf queue.
    624        1.1       cgd  *
    625        1.1       cgd  * The routines sbappend() or sbappendrecord() are normally called to
    626        1.1       cgd  * append new mbufs to a socket buffer, after checking that adequate
    627        1.1       cgd  * space is available, comparing the function sbspace() with the amount
    628        1.1       cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    629        1.1       cgd  * that data supplied is treated as the beginning of a new record.
    630        1.1       cgd  * To place a sender's address, optional access rights, and data in a
    631        1.1       cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    632        1.1       cgd  * access rights and data in a socket receive buffer, sbappendrights()
    633        1.1       cgd  * should be used.  In either case, the new data begins a new record.
    634        1.1       cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    635        1.1       cgd  * for the caller that there will be enough space to store the data.
    636        1.1       cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    637        1.1       cgd  * to store additional information in.
    638        1.1       cgd  *
    639        1.1       cgd  * Reliable protocols may use the socket send buffer to hold data
    640        1.1       cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    641        1.1       cgd  * send buffer in a protocol with m_copy for output to a peer,
    642        1.1       cgd  * and then removing the data from the socket buffer with sbdrop()
    643        1.1       cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    644        1.1       cgd  */
    645        1.1       cgd 
    646       1.43   thorpej #ifdef SOCKBUF_DEBUG
    647       1.43   thorpej void
    648       1.43   thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
    649       1.43   thorpej {
    650       1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    651       1.43   thorpej 
    652       1.91        ad 	KASSERT(solocked(sb->sb_so));
    653       1.91        ad 
    654       1.43   thorpej 	while (m && m->m_nextpkt)
    655       1.43   thorpej 		m = m->m_nextpkt;
    656       1.43   thorpej 
    657       1.43   thorpej 	if (m != sb->sb_lastrecord) {
    658       1.43   thorpej 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    659       1.43   thorpej 		    sb->sb_mb, sb->sb_lastrecord, m);
    660       1.43   thorpej 		printf("packet chain:\n");
    661       1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    662       1.43   thorpej 			printf("\t%p\n", m);
    663       1.47    provos 		panic("sblastrecordchk from %s", where);
    664       1.43   thorpej 	}
    665       1.43   thorpej }
    666       1.43   thorpej 
    667       1.43   thorpej void
    668       1.43   thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
    669       1.43   thorpej {
    670       1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    671       1.43   thorpej 	struct mbuf *n;
    672       1.43   thorpej 
    673       1.91        ad 	KASSERT(solocked(sb->sb_so));
    674       1.91        ad 
    675       1.43   thorpej 	while (m && m->m_nextpkt)
    676       1.43   thorpej 		m = m->m_nextpkt;
    677       1.43   thorpej 
    678       1.43   thorpej 	while (m && m->m_next)
    679       1.43   thorpej 		m = m->m_next;
    680       1.43   thorpej 
    681       1.43   thorpej 	if (m != sb->sb_mbtail) {
    682       1.43   thorpej 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    683       1.43   thorpej 		    sb->sb_mb, sb->sb_mbtail, m);
    684       1.43   thorpej 		printf("packet tree:\n");
    685       1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    686       1.43   thorpej 			printf("\t");
    687       1.43   thorpej 			for (n = m; n != NULL; n = n->m_next)
    688       1.43   thorpej 				printf("%p ", n);
    689       1.43   thorpej 			printf("\n");
    690       1.43   thorpej 		}
    691       1.43   thorpej 		panic("sblastmbufchk from %s", where);
    692       1.43   thorpej 	}
    693       1.43   thorpej }
    694       1.43   thorpej #endif /* SOCKBUF_DEBUG */
    695       1.43   thorpej 
    696       1.63  jonathan /*
    697       1.63  jonathan  * Link a chain of records onto a socket buffer
    698       1.63  jonathan  */
    699       1.63  jonathan #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    700       1.43   thorpej do {									\
    701       1.43   thorpej 	if ((sb)->sb_lastrecord != NULL)				\
    702       1.43   thorpej 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    703       1.43   thorpej 	else								\
    704       1.43   thorpej 		(sb)->sb_mb = (m0);					\
    705       1.63  jonathan 	(sb)->sb_lastrecord = (mlast);					\
    706       1.43   thorpej } while (/*CONSTCOND*/0)
    707       1.43   thorpej 
    708       1.63  jonathan 
    709       1.63  jonathan #define	SBLINKRECORD(sb, m0)						\
    710       1.63  jonathan     SBLINKRECORDCHAIN(sb, m0, m0)
    711       1.63  jonathan 
    712        1.1       cgd /*
    713        1.1       cgd  * Append mbuf chain m to the last record in the
    714        1.1       cgd  * socket buffer sb.  The additional space associated
    715        1.1       cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    716        1.1       cgd  * discarded and mbufs are compacted where possible.
    717        1.1       cgd  */
    718        1.7   mycroft void
    719       1.37     lukem sbappend(struct sockbuf *sb, struct mbuf *m)
    720        1.1       cgd {
    721       1.37     lukem 	struct mbuf	*n;
    722        1.1       cgd 
    723       1.91        ad 	KASSERT(solocked(sb->sb_so));
    724       1.91        ad 
    725  1.109.2.2      yamt 	if (m == NULL)
    726        1.1       cgd 		return;
    727       1.43   thorpej 
    728       1.49      matt #ifdef MBUFTRACE
    729       1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    730       1.49      matt #endif
    731       1.49      matt 
    732       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 1");
    733       1.43   thorpej 
    734       1.43   thorpej 	if ((n = sb->sb_lastrecord) != NULL) {
    735       1.43   thorpej 		/*
    736       1.43   thorpej 		 * XXX Would like to simply use sb_mbtail here, but
    737       1.43   thorpej 		 * XXX I need to verify that I won't miss an EOR that
    738       1.43   thorpej 		 * XXX way.
    739       1.43   thorpej 		 */
    740        1.1       cgd 		do {
    741        1.1       cgd 			if (n->m_flags & M_EOR) {
    742        1.1       cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    743        1.1       cgd 				return;
    744        1.1       cgd 			}
    745        1.1       cgd 		} while (n->m_next && (n = n->m_next));
    746       1.43   thorpej 	} else {
    747       1.43   thorpej 		/*
    748       1.43   thorpej 		 * If this is the first record in the socket buffer, it's
    749       1.43   thorpej 		 * also the last record.
    750       1.43   thorpej 		 */
    751       1.43   thorpej 		sb->sb_lastrecord = m;
    752        1.1       cgd 	}
    753        1.1       cgd 	sbcompress(sb, m, n);
    754       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 2");
    755       1.43   thorpej }
    756       1.43   thorpej 
    757       1.43   thorpej /*
    758       1.43   thorpej  * This version of sbappend() should only be used when the caller
    759       1.43   thorpej  * absolutely knows that there will never be more than one record
    760       1.43   thorpej  * in the socket buffer, that is, a stream protocol (such as TCP).
    761       1.43   thorpej  */
    762       1.43   thorpej void
    763       1.44   thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
    764       1.43   thorpej {
    765       1.43   thorpej 
    766       1.91        ad 	KASSERT(solocked(sb->sb_so));
    767       1.43   thorpej 	KDASSERT(m->m_nextpkt == NULL);
    768       1.43   thorpej 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    769       1.43   thorpej 
    770       1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
    771       1.43   thorpej 
    772       1.49      matt #ifdef MBUFTRACE
    773       1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    774       1.49      matt #endif
    775       1.49      matt 
    776       1.43   thorpej 	sbcompress(sb, m, sb->sb_mbtail);
    777       1.43   thorpej 
    778       1.43   thorpej 	sb->sb_lastrecord = sb->sb_mb;
    779       1.43   thorpej 	SBLASTRECORDCHK(sb, __func__);
    780        1.1       cgd }
    781        1.1       cgd 
    782        1.1       cgd #ifdef SOCKBUF_DEBUG
    783        1.7   mycroft void
    784       1.37     lukem sbcheck(struct sockbuf *sb)
    785        1.1       cgd {
    786       1.91        ad 	struct mbuf	*m, *m2;
    787       1.43   thorpej 	u_long		len, mbcnt;
    788        1.1       cgd 
    789       1.91        ad 	KASSERT(solocked(sb->sb_so));
    790       1.91        ad 
    791       1.37     lukem 	len = 0;
    792       1.37     lukem 	mbcnt = 0;
    793       1.91        ad 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    794       1.91        ad 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    795       1.91        ad 			len += m2->m_len;
    796       1.91        ad 			mbcnt += MSIZE;
    797       1.91        ad 			if (m2->m_flags & M_EXT)
    798       1.91        ad 				mbcnt += m2->m_ext.ext_size;
    799       1.91        ad 			if (m2->m_nextpkt != NULL)
    800       1.91        ad 				panic("sbcheck nextpkt");
    801       1.91        ad 		}
    802        1.1       cgd 	}
    803        1.1       cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    804       1.43   thorpej 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    805        1.1       cgd 		    mbcnt, sb->sb_mbcnt);
    806        1.1       cgd 		panic("sbcheck");
    807        1.1       cgd 	}
    808        1.1       cgd }
    809        1.1       cgd #endif
    810        1.1       cgd 
    811        1.1       cgd /*
    812        1.1       cgd  * As above, except the mbuf chain
    813        1.1       cgd  * begins a new record.
    814        1.1       cgd  */
    815        1.7   mycroft void
    816       1.37     lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    817        1.1       cgd {
    818       1.37     lukem 	struct mbuf	*m;
    819        1.1       cgd 
    820       1.91        ad 	KASSERT(solocked(sb->sb_so));
    821       1.91        ad 
    822  1.109.2.2      yamt 	if (m0 == NULL)
    823        1.1       cgd 		return;
    824       1.43   thorpej 
    825       1.49      matt #ifdef MBUFTRACE
    826       1.65  jonathan 	m_claimm(m0, sb->sb_mowner);
    827       1.49      matt #endif
    828        1.1       cgd 	/*
    829        1.1       cgd 	 * Put the first mbuf on the queue.
    830        1.1       cgd 	 * Note this permits zero length records.
    831        1.1       cgd 	 */
    832        1.1       cgd 	sballoc(sb, m0);
    833       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    834       1.43   thorpej 	SBLINKRECORD(sb, m0);
    835        1.1       cgd 	m = m0->m_next;
    836        1.1       cgd 	m0->m_next = 0;
    837        1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    838        1.1       cgd 		m0->m_flags &= ~M_EOR;
    839        1.1       cgd 		m->m_flags |= M_EOR;
    840        1.1       cgd 	}
    841        1.1       cgd 	sbcompress(sb, m, m0);
    842       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    843        1.1       cgd }
    844        1.1       cgd 
    845        1.1       cgd /*
    846        1.1       cgd  * As above except that OOB data
    847        1.1       cgd  * is inserted at the beginning of the sockbuf,
    848        1.1       cgd  * but after any other OOB data.
    849        1.1       cgd  */
    850        1.7   mycroft void
    851       1.37     lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    852        1.1       cgd {
    853       1.37     lukem 	struct mbuf	*m, **mp;
    854        1.1       cgd 
    855       1.91        ad 	KASSERT(solocked(sb->sb_so));
    856       1.91        ad 
    857  1.109.2.2      yamt 	if (m0 == NULL)
    858        1.1       cgd 		return;
    859       1.43   thorpej 
    860       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    861       1.43   thorpej 
    862       1.11  christos 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    863        1.1       cgd 	    again:
    864        1.1       cgd 		switch (m->m_type) {
    865        1.1       cgd 
    866        1.1       cgd 		case MT_OOBDATA:
    867        1.1       cgd 			continue;		/* WANT next train */
    868        1.1       cgd 
    869        1.1       cgd 		case MT_CONTROL:
    870       1.11  christos 			if ((m = m->m_next) != NULL)
    871        1.1       cgd 				goto again;	/* inspect THIS train further */
    872        1.1       cgd 		}
    873        1.1       cgd 		break;
    874        1.1       cgd 	}
    875        1.1       cgd 	/*
    876        1.1       cgd 	 * Put the first mbuf on the queue.
    877        1.1       cgd 	 * Note this permits zero length records.
    878        1.1       cgd 	 */
    879        1.1       cgd 	sballoc(sb, m0);
    880        1.1       cgd 	m0->m_nextpkt = *mp;
    881       1.43   thorpej 	if (*mp == NULL) {
    882       1.43   thorpej 		/* m0 is actually the new tail */
    883       1.43   thorpej 		sb->sb_lastrecord = m0;
    884       1.43   thorpej 	}
    885        1.1       cgd 	*mp = m0;
    886        1.1       cgd 	m = m0->m_next;
    887        1.1       cgd 	m0->m_next = 0;
    888        1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    889        1.1       cgd 		m0->m_flags &= ~M_EOR;
    890        1.1       cgd 		m->m_flags |= M_EOR;
    891        1.1       cgd 	}
    892        1.1       cgd 	sbcompress(sb, m, m0);
    893       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    894        1.1       cgd }
    895        1.1       cgd 
    896        1.1       cgd /*
    897        1.1       cgd  * Append address and data, and optionally, control (ancillary) data
    898        1.1       cgd  * to the receive queue of a socket.  If present,
    899        1.1       cgd  * m0 must include a packet header with total length.
    900        1.1       cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
    901        1.1       cgd  */
    902        1.7   mycroft int
    903       1.61      matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    904       1.37     lukem 	struct mbuf *control)
    905        1.1       cgd {
    906       1.43   thorpej 	struct mbuf	*m, *n, *nlast;
    907       1.50      fvdl 	int		space, len;
    908        1.1       cgd 
    909       1.91        ad 	KASSERT(solocked(sb->sb_so));
    910       1.91        ad 
    911       1.37     lukem 	space = asa->sa_len;
    912       1.37     lukem 
    913       1.49      matt 	if (m0 != NULL) {
    914       1.49      matt 		if ((m0->m_flags & M_PKTHDR) == 0)
    915       1.49      matt 			panic("sbappendaddr");
    916        1.1       cgd 		space += m0->m_pkthdr.len;
    917       1.49      matt #ifdef MBUFTRACE
    918       1.65  jonathan 		m_claimm(m0, sb->sb_mowner);
    919       1.49      matt #endif
    920       1.49      matt 	}
    921        1.1       cgd 	for (n = control; n; n = n->m_next) {
    922        1.1       cgd 		space += n->m_len;
    923       1.49      matt 		MCLAIM(n, sb->sb_mowner);
    924  1.109.2.2      yamt 		if (n->m_next == NULL)	/* keep pointer to last control buf */
    925        1.1       cgd 			break;
    926        1.1       cgd 	}
    927        1.1       cgd 	if (space > sbspace(sb))
    928        1.1       cgd 		return (0);
    929  1.109.2.2      yamt 	m = m_get(M_DONTWAIT, MT_SONAME);
    930  1.109.2.2      yamt 	if (m == NULL)
    931        1.1       cgd 		return (0);
    932       1.49      matt 	MCLAIM(m, sb->sb_mowner);
    933       1.50      fvdl 	/*
    934       1.50      fvdl 	 * XXX avoid 'comparison always true' warning which isn't easily
    935       1.50      fvdl 	 * avoided.
    936       1.50      fvdl 	 */
    937       1.50      fvdl 	len = asa->sa_len;
    938       1.50      fvdl 	if (len > MLEN) {
    939       1.20   thorpej 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    940       1.20   thorpej 		if ((m->m_flags & M_EXT) == 0) {
    941       1.20   thorpej 			m_free(m);
    942       1.20   thorpej 			return (0);
    943       1.20   thorpej 		}
    944       1.20   thorpej 	}
    945        1.1       cgd 	m->m_len = asa->sa_len;
    946       1.82  christos 	memcpy(mtod(m, void *), asa, asa->sa_len);
    947        1.1       cgd 	if (n)
    948        1.1       cgd 		n->m_next = m0;		/* concatenate data to control */
    949        1.1       cgd 	else
    950        1.1       cgd 		control = m0;
    951        1.1       cgd 	m->m_next = control;
    952       1.43   thorpej 
    953       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    954       1.43   thorpej 
    955       1.43   thorpej 	for (n = m; n->m_next != NULL; n = n->m_next)
    956        1.1       cgd 		sballoc(sb, n);
    957       1.43   thorpej 	sballoc(sb, n);
    958       1.43   thorpej 	nlast = n;
    959       1.43   thorpej 	SBLINKRECORD(sb, m);
    960       1.43   thorpej 
    961       1.43   thorpej 	sb->sb_mbtail = nlast;
    962       1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendaddr");
    963       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    964       1.43   thorpej 
    965        1.1       cgd 	return (1);
    966        1.1       cgd }
    967        1.1       cgd 
    968       1.63  jonathan /*
    969       1.63  jonathan  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    970       1.63  jonathan  * an mbuf chain.
    971       1.63  jonathan  */
    972       1.70     perry static inline struct mbuf *
    973       1.81      yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    974       1.64  jonathan 		   const struct sockaddr *asa)
    975       1.63  jonathan {
    976       1.63  jonathan 	struct mbuf *m;
    977       1.64  jonathan 	const int salen = asa->sa_len;
    978       1.63  jonathan 
    979       1.91        ad 	KASSERT(solocked(sb->sb_so));
    980       1.91        ad 
    981       1.63  jonathan 	/* only the first in each chain need be a pkthdr */
    982  1.109.2.2      yamt 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
    983  1.109.2.2      yamt 	if (m == NULL)
    984  1.109.2.2      yamt 		return NULL;
    985       1.63  jonathan 	MCLAIM(m, sb->sb_mowner);
    986       1.64  jonathan #ifdef notyet
    987       1.64  jonathan 	if (salen > MHLEN) {
    988       1.64  jonathan 		MEXTMALLOC(m, salen, M_NOWAIT);
    989       1.64  jonathan 		if ((m->m_flags & M_EXT) == 0) {
    990       1.64  jonathan 			m_free(m);
    991  1.109.2.2      yamt 			return NULL;
    992       1.64  jonathan 		}
    993       1.64  jonathan 	}
    994       1.64  jonathan #else
    995       1.64  jonathan 	KASSERT(salen <= MHLEN);
    996       1.64  jonathan #endif
    997       1.64  jonathan 	m->m_len = salen;
    998       1.82  christos 	memcpy(mtod(m, void *), asa, salen);
    999       1.63  jonathan 	m->m_next = m0;
   1000       1.64  jonathan 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1001       1.63  jonathan 
   1002       1.63  jonathan 	return m;
   1003       1.63  jonathan }
   1004       1.63  jonathan 
   1005       1.63  jonathan int
   1006       1.63  jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1007       1.63  jonathan 		  struct mbuf *m0, int sbprio)
   1008       1.63  jonathan {
   1009       1.63  jonathan 	struct mbuf *m, *n, *n0, *nlast;
   1010       1.63  jonathan 	int error;
   1011       1.63  jonathan 
   1012       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1013       1.91        ad 
   1014       1.63  jonathan 	/*
   1015       1.63  jonathan 	 * XXX sbprio reserved for encoding priority of this* request:
   1016       1.63  jonathan 	 *  SB_PRIO_NONE --> honour normal sb limits
   1017       1.63  jonathan 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1018       1.63  jonathan 	 *	take whole chain. Intended for large requests
   1019       1.63  jonathan 	 *      that should be delivered atomically (all, or none).
   1020       1.63  jonathan 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1021       1.63  jonathan 	 *       over normal socket limits, for messages indicating
   1022       1.63  jonathan 	 *       buffer overflow in earlier normal/lower-priority messages
   1023       1.63  jonathan 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1024       1.63  jonathan 	 *       Intended for  kernel-generated messages only.
   1025       1.63  jonathan 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1026       1.63  jonathan 	 */
   1027       1.63  jonathan 	(void)sbprio;
   1028       1.63  jonathan 
   1029       1.63  jonathan 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1030       1.63  jonathan 		panic("sbappendaddrchain");
   1031       1.63  jonathan 
   1032  1.109.2.2      yamt #ifdef notyet
   1033       1.63  jonathan 	space = sbspace(sb);
   1034       1.66     perry 
   1035       1.66     perry 	/*
   1036       1.63  jonathan 	 * Enforce SB_PRIO_* limits as described above.
   1037       1.63  jonathan 	 */
   1038       1.63  jonathan #endif
   1039       1.63  jonathan 
   1040       1.63  jonathan 	n0 = NULL;
   1041       1.63  jonathan 	nlast = NULL;
   1042       1.63  jonathan 	for (m = m0; m; m = m->m_nextpkt) {
   1043       1.63  jonathan 		struct mbuf *np;
   1044       1.63  jonathan 
   1045       1.64  jonathan #ifdef MBUFTRACE
   1046       1.65  jonathan 		m_claimm(m, sb->sb_mowner);
   1047       1.64  jonathan #endif
   1048       1.64  jonathan 
   1049       1.63  jonathan 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1050       1.64  jonathan 	  	n = m_prepend_sockaddr(sb, m, asa);
   1051       1.63  jonathan 		if (n == NULL) {
   1052       1.63  jonathan 			error = ENOBUFS;
   1053       1.63  jonathan 			goto bad;
   1054       1.63  jonathan 		}
   1055       1.63  jonathan 
   1056       1.63  jonathan 		/* Append record (asa+m) to end of new chain n0 */
   1057       1.63  jonathan 		if (n0 == NULL) {
   1058       1.63  jonathan 			n0 = n;
   1059       1.63  jonathan 		} else {
   1060       1.63  jonathan 			nlast->m_nextpkt = n;
   1061       1.63  jonathan 		}
   1062       1.63  jonathan 		/* Keep track of last record on new chain */
   1063       1.63  jonathan 		nlast = n;
   1064       1.63  jonathan 
   1065       1.63  jonathan 		for (np = n; np; np = np->m_next)
   1066       1.63  jonathan 			sballoc(sb, np);
   1067       1.63  jonathan 	}
   1068       1.63  jonathan 
   1069       1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1070       1.64  jonathan 
   1071       1.63  jonathan 	/* Drop the entire chain of (asa+m) records onto the socket */
   1072       1.63  jonathan 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1073       1.64  jonathan 
   1074       1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1075       1.64  jonathan 
   1076       1.63  jonathan 	for (m = nlast; m->m_next; m = m->m_next)
   1077       1.63  jonathan 		;
   1078       1.63  jonathan 	sb->sb_mbtail = m;
   1079       1.64  jonathan 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1080       1.64  jonathan 
   1081       1.63  jonathan 	return (1);
   1082       1.63  jonathan 
   1083       1.63  jonathan bad:
   1084       1.64  jonathan 	/*
   1085       1.64  jonathan 	 * On error, free the prepended addreseses. For consistency
   1086       1.64  jonathan 	 * with sbappendaddr(), leave it to our caller to free
   1087       1.64  jonathan 	 * the input record chain passed to us as m0.
   1088       1.64  jonathan 	 */
   1089       1.64  jonathan 	while ((n = n0) != NULL) {
   1090       1.64  jonathan 	  	struct mbuf *np;
   1091       1.64  jonathan 
   1092       1.64  jonathan 		/* Undo the sballoc() of this record */
   1093       1.64  jonathan 		for (np = n; np; np = np->m_next)
   1094       1.64  jonathan 			sbfree(sb, np);
   1095       1.64  jonathan 
   1096       1.64  jonathan 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1097       1.64  jonathan 		MFREE(n, np);		/* free prepended address (not data) */
   1098       1.64  jonathan 	}
   1099  1.109.2.2      yamt 	return error;
   1100       1.63  jonathan }
   1101       1.63  jonathan 
   1102       1.63  jonathan 
   1103        1.7   mycroft int
   1104       1.37     lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1105        1.1       cgd {
   1106       1.43   thorpej 	struct mbuf	*m, *mlast, *n;
   1107       1.37     lukem 	int		space;
   1108        1.1       cgd 
   1109       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1110       1.91        ad 
   1111       1.37     lukem 	space = 0;
   1112  1.109.2.2      yamt 	if (control == NULL)
   1113        1.1       cgd 		panic("sbappendcontrol");
   1114        1.1       cgd 	for (m = control; ; m = m->m_next) {
   1115        1.1       cgd 		space += m->m_len;
   1116       1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1117  1.109.2.2      yamt 		if (m->m_next == NULL)
   1118        1.1       cgd 			break;
   1119        1.1       cgd 	}
   1120        1.1       cgd 	n = m;			/* save pointer to last control buffer */
   1121       1.49      matt 	for (m = m0; m; m = m->m_next) {
   1122       1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1123        1.1       cgd 		space += m->m_len;
   1124       1.49      matt 	}
   1125        1.1       cgd 	if (space > sbspace(sb))
   1126        1.1       cgd 		return (0);
   1127        1.1       cgd 	n->m_next = m0;			/* concatenate data to control */
   1128       1.43   thorpej 
   1129       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1130       1.43   thorpej 
   1131       1.43   thorpej 	for (m = control; m->m_next != NULL; m = m->m_next)
   1132        1.1       cgd 		sballoc(sb, m);
   1133       1.43   thorpej 	sballoc(sb, m);
   1134       1.43   thorpej 	mlast = m;
   1135       1.43   thorpej 	SBLINKRECORD(sb, control);
   1136       1.43   thorpej 
   1137       1.43   thorpej 	sb->sb_mbtail = mlast;
   1138       1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1139       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1140       1.43   thorpej 
   1141        1.1       cgd 	return (1);
   1142        1.1       cgd }
   1143        1.1       cgd 
   1144        1.1       cgd /*
   1145        1.1       cgd  * Compress mbuf chain m into the socket
   1146        1.1       cgd  * buffer sb following mbuf n.  If n
   1147        1.1       cgd  * is null, the buffer is presumed empty.
   1148        1.1       cgd  */
   1149        1.7   mycroft void
   1150       1.37     lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1151        1.1       cgd {
   1152       1.37     lukem 	int		eor;
   1153       1.37     lukem 	struct mbuf	*o;
   1154        1.1       cgd 
   1155       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1156       1.91        ad 
   1157       1.37     lukem 	eor = 0;
   1158        1.1       cgd 	while (m) {
   1159        1.1       cgd 		eor |= m->m_flags & M_EOR;
   1160        1.1       cgd 		if (m->m_len == 0 &&
   1161        1.1       cgd 		    (eor == 0 ||
   1162        1.1       cgd 		     (((o = m->m_next) || (o = n)) &&
   1163        1.1       cgd 		      o->m_type == m->m_type))) {
   1164       1.46   thorpej 			if (sb->sb_lastrecord == m)
   1165       1.46   thorpej 				sb->sb_lastrecord = m->m_next;
   1166        1.1       cgd 			m = m_free(m);
   1167        1.1       cgd 			continue;
   1168        1.1       cgd 		}
   1169       1.40   thorpej 		if (n && (n->m_flags & M_EOR) == 0 &&
   1170       1.40   thorpej 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1171       1.40   thorpej 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1172       1.40   thorpej 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1173       1.40   thorpej 		    n->m_type == m->m_type) {
   1174       1.82  christos 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1175        1.1       cgd 			    (unsigned)m->m_len);
   1176        1.1       cgd 			n->m_len += m->m_len;
   1177        1.1       cgd 			sb->sb_cc += m->m_len;
   1178        1.1       cgd 			m = m_free(m);
   1179        1.1       cgd 			continue;
   1180        1.1       cgd 		}
   1181        1.1       cgd 		if (n)
   1182        1.1       cgd 			n->m_next = m;
   1183        1.1       cgd 		else
   1184        1.1       cgd 			sb->sb_mb = m;
   1185       1.43   thorpej 		sb->sb_mbtail = m;
   1186        1.1       cgd 		sballoc(sb, m);
   1187        1.1       cgd 		n = m;
   1188        1.1       cgd 		m->m_flags &= ~M_EOR;
   1189        1.1       cgd 		m = m->m_next;
   1190        1.1       cgd 		n->m_next = 0;
   1191        1.1       cgd 	}
   1192        1.1       cgd 	if (eor) {
   1193        1.1       cgd 		if (n)
   1194        1.1       cgd 			n->m_flags |= eor;
   1195        1.1       cgd 		else
   1196       1.15  christos 			printf("semi-panic: sbcompress\n");
   1197        1.1       cgd 	}
   1198       1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
   1199        1.1       cgd }
   1200        1.1       cgd 
   1201        1.1       cgd /*
   1202        1.1       cgd  * Free all mbufs in a sockbuf.
   1203        1.1       cgd  * Check that all resources are reclaimed.
   1204        1.1       cgd  */
   1205        1.7   mycroft void
   1206       1.37     lukem sbflush(struct sockbuf *sb)
   1207        1.1       cgd {
   1208        1.1       cgd 
   1209       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1210       1.43   thorpej 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1211       1.43   thorpej 
   1212        1.1       cgd 	while (sb->sb_mbcnt)
   1213        1.1       cgd 		sbdrop(sb, (int)sb->sb_cc);
   1214       1.43   thorpej 
   1215       1.43   thorpej 	KASSERT(sb->sb_cc == 0);
   1216       1.43   thorpej 	KASSERT(sb->sb_mb == NULL);
   1217       1.43   thorpej 	KASSERT(sb->sb_mbtail == NULL);
   1218       1.43   thorpej 	KASSERT(sb->sb_lastrecord == NULL);
   1219        1.1       cgd }
   1220        1.1       cgd 
   1221        1.1       cgd /*
   1222        1.1       cgd  * Drop data from (the front of) a sockbuf.
   1223        1.1       cgd  */
   1224        1.7   mycroft void
   1225       1.37     lukem sbdrop(struct sockbuf *sb, int len)
   1226        1.1       cgd {
   1227       1.37     lukem 	struct mbuf	*m, *mn, *next;
   1228        1.1       cgd 
   1229       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1230       1.91        ad 
   1231  1.109.2.2      yamt 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
   1232        1.1       cgd 	while (len > 0) {
   1233  1.109.2.2      yamt 		if (m == NULL) {
   1234  1.109.2.2      yamt 			if (next == NULL)
   1235  1.109.2.2      yamt 				panic("sbdrop(%p,%d): cc=%lu",
   1236  1.109.2.2      yamt 				    sb, len, sb->sb_cc);
   1237        1.1       cgd 			m = next;
   1238        1.1       cgd 			next = m->m_nextpkt;
   1239        1.1       cgd 			continue;
   1240        1.1       cgd 		}
   1241        1.1       cgd 		if (m->m_len > len) {
   1242        1.1       cgd 			m->m_len -= len;
   1243        1.1       cgd 			m->m_data += len;
   1244        1.1       cgd 			sb->sb_cc -= len;
   1245        1.1       cgd 			break;
   1246        1.1       cgd 		}
   1247        1.1       cgd 		len -= m->m_len;
   1248        1.1       cgd 		sbfree(sb, m);
   1249        1.1       cgd 		MFREE(m, mn);
   1250        1.1       cgd 		m = mn;
   1251        1.1       cgd 	}
   1252        1.1       cgd 	while (m && m->m_len == 0) {
   1253        1.1       cgd 		sbfree(sb, m);
   1254        1.1       cgd 		MFREE(m, mn);
   1255        1.1       cgd 		m = mn;
   1256        1.1       cgd 	}
   1257        1.1       cgd 	if (m) {
   1258        1.1       cgd 		sb->sb_mb = m;
   1259        1.1       cgd 		m->m_nextpkt = next;
   1260        1.1       cgd 	} else
   1261        1.1       cgd 		sb->sb_mb = next;
   1262       1.43   thorpej 	/*
   1263       1.45   thorpej 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1264       1.43   thorpej 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1265       1.43   thorpej 	 * part of the last record.
   1266       1.43   thorpej 	 */
   1267       1.43   thorpej 	m = sb->sb_mb;
   1268       1.43   thorpej 	if (m == NULL) {
   1269       1.43   thorpej 		sb->sb_mbtail = NULL;
   1270       1.43   thorpej 		sb->sb_lastrecord = NULL;
   1271       1.43   thorpej 	} else if (m->m_nextpkt == NULL)
   1272       1.43   thorpej 		sb->sb_lastrecord = m;
   1273        1.1       cgd }
   1274        1.1       cgd 
   1275        1.1       cgd /*
   1276        1.1       cgd  * Drop a record off the front of a sockbuf
   1277        1.1       cgd  * and move the next record to the front.
   1278        1.1       cgd  */
   1279        1.7   mycroft void
   1280       1.37     lukem sbdroprecord(struct sockbuf *sb)
   1281        1.1       cgd {
   1282       1.37     lukem 	struct mbuf	*m, *mn;
   1283        1.1       cgd 
   1284       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1285       1.91        ad 
   1286        1.1       cgd 	m = sb->sb_mb;
   1287        1.1       cgd 	if (m) {
   1288        1.1       cgd 		sb->sb_mb = m->m_nextpkt;
   1289        1.1       cgd 		do {
   1290        1.1       cgd 			sbfree(sb, m);
   1291        1.1       cgd 			MFREE(m, mn);
   1292       1.11  christos 		} while ((m = mn) != NULL);
   1293        1.1       cgd 	}
   1294       1.45   thorpej 	SB_EMPTY_FIXUP(sb);
   1295       1.19   thorpej }
   1296       1.19   thorpej 
   1297       1.19   thorpej /*
   1298       1.19   thorpej  * Create a "control" mbuf containing the specified data
   1299       1.19   thorpej  * with the specified type for presentation on a socket buffer.
   1300       1.19   thorpej  */
   1301       1.19   thorpej struct mbuf *
   1302  1.109.2.2      yamt sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1303       1.19   thorpej {
   1304       1.37     lukem 	struct cmsghdr	*cp;
   1305       1.37     lukem 	struct mbuf	*m;
   1306  1.109.2.2      yamt 	int space = CMSG_SPACE(size);
   1307       1.19   thorpej 
   1308  1.109.2.2      yamt 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1309  1.109.2.2      yamt 		printf("%s: message too large %d\n", __func__, space);
   1310       1.30    itojun 		return NULL;
   1311       1.30    itojun 	}
   1312       1.30    itojun 
   1313  1.109.2.2      yamt 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1314  1.109.2.2      yamt 		return NULL;
   1315  1.109.2.2      yamt 	if (space > MLEN) {
   1316  1.109.2.2      yamt 		if (space > MCLBYTES)
   1317  1.109.2.2      yamt 			MEXTMALLOC(m, space, M_WAITOK);
   1318  1.109.2.2      yamt 		else
   1319  1.109.2.2      yamt 			MCLGET(m, flags);
   1320       1.30    itojun 		if ((m->m_flags & M_EXT) == 0) {
   1321       1.30    itojun 			m_free(m);
   1322       1.30    itojun 			return NULL;
   1323       1.30    itojun 		}
   1324       1.30    itojun 	}
   1325       1.19   thorpej 	cp = mtod(m, struct cmsghdr *);
   1326  1.109.2.2      yamt 	*p = CMSG_DATA(cp);
   1327  1.109.2.2      yamt 	m->m_len = space;
   1328       1.35    itojun 	cp->cmsg_len = CMSG_LEN(size);
   1329       1.19   thorpej 	cp->cmsg_level = level;
   1330       1.19   thorpej 	cp->cmsg_type = type;
   1331  1.109.2.2      yamt 	return m;
   1332  1.109.2.2      yamt }
   1333  1.109.2.2      yamt 
   1334  1.109.2.2      yamt struct mbuf *
   1335  1.109.2.2      yamt sbcreatecontrol(void *p, int size, int type, int level)
   1336  1.109.2.2      yamt {
   1337  1.109.2.2      yamt 	struct mbuf *m;
   1338  1.109.2.2      yamt 	void *v;
   1339  1.109.2.2      yamt 
   1340  1.109.2.2      yamt 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1341  1.109.2.2      yamt 	if (m == NULL)
   1342  1.109.2.2      yamt 		return NULL;
   1343  1.109.2.2      yamt 	memcpy(v, p, size);
   1344  1.109.2.2      yamt 	return m;
   1345        1.1       cgd }
   1346       1.91        ad 
   1347       1.91        ad void
   1348       1.91        ad solockretry(struct socket *so, kmutex_t *lock)
   1349       1.91        ad {
   1350       1.91        ad 
   1351       1.91        ad 	while (lock != so->so_lock) {
   1352       1.91        ad 		mutex_exit(lock);
   1353       1.91        ad 		lock = so->so_lock;
   1354       1.91        ad 		mutex_enter(lock);
   1355       1.91        ad 	}
   1356       1.91        ad }
   1357       1.91        ad 
   1358       1.91        ad bool
   1359       1.91        ad solocked(struct socket *so)
   1360       1.91        ad {
   1361       1.91        ad 
   1362       1.91        ad 	return mutex_owned(so->so_lock);
   1363       1.91        ad }
   1364       1.91        ad 
   1365       1.91        ad bool
   1366       1.91        ad solocked2(struct socket *so1, struct socket *so2)
   1367       1.91        ad {
   1368       1.91        ad 	kmutex_t *lock;
   1369       1.91        ad 
   1370       1.91        ad 	lock = so1->so_lock;
   1371       1.91        ad 	if (lock != so2->so_lock)
   1372       1.91        ad 		return false;
   1373       1.91        ad 	return mutex_owned(lock);
   1374       1.91        ad }
   1375       1.91        ad 
   1376       1.91        ad /*
   1377       1.91        ad  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1378       1.91        ad  * protocols that do not have special locking requirements.
   1379       1.91        ad  */
   1380       1.91        ad void
   1381       1.91        ad sosetlock(struct socket *so)
   1382       1.91        ad {
   1383       1.91        ad 	kmutex_t *lock;
   1384       1.91        ad 
   1385       1.91        ad 	if (so->so_lock == NULL) {
   1386       1.91        ad 		lock = softnet_lock;
   1387       1.91        ad 		so->so_lock = lock;
   1388       1.91        ad 		mutex_obj_hold(lock);
   1389       1.91        ad 		mutex_enter(lock);
   1390       1.91        ad 	}
   1391       1.91        ad 
   1392       1.91        ad 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1393       1.91        ad 	KASSERT(solocked(so));
   1394       1.91        ad }
   1395       1.91        ad 
   1396       1.91        ad /*
   1397       1.91        ad  * Set lock on sockbuf sb; sleep if lock is already held.
   1398       1.91        ad  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1399       1.91        ad  * Returns error without lock if sleep is interrupted.
   1400       1.91        ad  */
   1401       1.91        ad int
   1402       1.91        ad sblock(struct sockbuf *sb, int wf)
   1403       1.91        ad {
   1404       1.91        ad 	struct socket *so;
   1405       1.91        ad 	kmutex_t *lock;
   1406       1.91        ad 	int error;
   1407       1.91        ad 
   1408       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1409       1.91        ad 
   1410       1.91        ad 	for (;;) {
   1411       1.91        ad 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1412       1.91        ad 			sb->sb_flags |= SB_LOCK;
   1413       1.91        ad 			return 0;
   1414       1.91        ad 		}
   1415       1.91        ad 		if (wf != M_WAITOK)
   1416       1.91        ad 			return EWOULDBLOCK;
   1417       1.91        ad 		so = sb->sb_so;
   1418       1.91        ad 		lock = so->so_lock;
   1419       1.91        ad 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1420       1.91        ad 			cv_wait(&so->so_cv, lock);
   1421       1.91        ad 			error = 0;
   1422       1.91        ad 		} else
   1423       1.91        ad 			error = cv_wait_sig(&so->so_cv, lock);
   1424       1.91        ad 		if (__predict_false(lock != so->so_lock))
   1425       1.91        ad 			solockretry(so, lock);
   1426       1.91        ad 		if (error != 0)
   1427       1.91        ad 			return error;
   1428       1.91        ad 	}
   1429       1.91        ad }
   1430       1.91        ad 
   1431       1.91        ad void
   1432       1.91        ad sbunlock(struct sockbuf *sb)
   1433       1.91        ad {
   1434       1.91        ad 	struct socket *so;
   1435       1.91        ad 
   1436       1.91        ad 	so = sb->sb_so;
   1437       1.91        ad 
   1438       1.91        ad 	KASSERT(solocked(so));
   1439       1.91        ad 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1440       1.91        ad 
   1441       1.91        ad 	sb->sb_flags &= ~SB_LOCK;
   1442       1.91        ad 	cv_broadcast(&so->so_cv);
   1443       1.91        ad }
   1444       1.91        ad 
   1445       1.91        ad int
   1446      1.101      yamt sowait(struct socket *so, bool catch, int timo)
   1447       1.91        ad {
   1448       1.91        ad 	kmutex_t *lock;
   1449       1.91        ad 	int error;
   1450       1.91        ad 
   1451       1.91        ad 	KASSERT(solocked(so));
   1452      1.101      yamt 	KASSERT(catch || timo != 0);
   1453       1.91        ad 
   1454       1.91        ad 	lock = so->so_lock;
   1455      1.101      yamt 	if (catch)
   1456      1.101      yamt 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1457      1.101      yamt 	else
   1458      1.101      yamt 		error = cv_timedwait(&so->so_cv, lock, timo);
   1459       1.91        ad 	if (__predict_false(lock != so->so_lock))
   1460       1.91        ad 		solockretry(so, lock);
   1461       1.91        ad 	return error;
   1462       1.91        ad }
   1463