Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.112
      1  1.112      matt /*	$NetBSD: uipc_socket2.c,v 1.112 2013/06/28 01:23:38 matt Exp $	*/
      2   1.91        ad 
      3   1.91        ad /*-
      4   1.91        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5   1.91        ad  * All rights reserved.
      6   1.91        ad  *
      7   1.91        ad  * Redistribution and use in source and binary forms, with or without
      8   1.91        ad  * modification, are permitted provided that the following conditions
      9   1.91        ad  * are met:
     10   1.91        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.91        ad  *    notice, this list of conditions and the following disclaimer.
     12   1.91        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.91        ad  *    notice, this list of conditions and the following disclaimer in the
     14   1.91        ad  *    documentation and/or other materials provided with the distribution.
     15   1.91        ad  *
     16   1.91        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17   1.91        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.91        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.91        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.91        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.91        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.91        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.91        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.91        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.91        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.91        ad  * POSSIBILITY OF SUCH DAMAGE.
     27   1.91        ad  */
     28    1.9       cgd 
     29    1.1       cgd /*
     30    1.7   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31    1.7   mycroft  *	The Regents of the University of California.  All rights reserved.
     32    1.1       cgd  *
     33    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     34    1.1       cgd  * modification, are permitted provided that the following conditions
     35    1.1       cgd  * are met:
     36    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     37    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     38    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     39    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     40    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     41   1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     42    1.1       cgd  *    may be used to endorse or promote products derived from this software
     43    1.1       cgd  *    without specific prior written permission.
     44    1.1       cgd  *
     45    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55    1.1       cgd  * SUCH DAMAGE.
     56    1.1       cgd  *
     57   1.23      fvdl  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58    1.1       cgd  */
     59   1.42     lukem 
     60   1.42     lukem #include <sys/cdefs.h>
     61  1.112      matt __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.112 2013/06/28 01:23:38 matt Exp $");
     62   1.51    martin 
     63   1.51    martin #include "opt_mbuftrace.h"
     64   1.58   thorpej #include "opt_sb_max.h"
     65    1.1       cgd 
     66    1.5   mycroft #include <sys/param.h>
     67    1.5   mycroft #include <sys/systm.h>
     68    1.5   mycroft #include <sys/proc.h>
     69    1.5   mycroft #include <sys/file.h>
     70    1.5   mycroft #include <sys/buf.h>
     71    1.5   mycroft #include <sys/mbuf.h>
     72    1.5   mycroft #include <sys/protosw.h>
     73   1.91        ad #include <sys/domain.h>
     74   1.55  christos #include <sys/poll.h>
     75    1.5   mycroft #include <sys/socket.h>
     76    1.5   mycroft #include <sys/socketvar.h>
     77   1.11  christos #include <sys/signalvar.h>
     78   1.71      elad #include <sys/kauth.h>
     79   1.91        ad #include <sys/pool.h>
     80   1.98     pooka #include <sys/uidinfo.h>
     81    1.1       cgd 
     82    1.1       cgd /*
     83   1.91        ad  * Primitive routines for operating on sockets and socket buffers.
     84   1.91        ad  *
     85   1.91        ad  * Locking rules and assumptions:
     86   1.91        ad  *
     87   1.91        ad  * o socket::so_lock can change on the fly.  The low level routines used
     88   1.91        ad  *   to lock sockets are aware of this.  When so_lock is acquired, the
     89   1.91        ad  *   routine locking must check to see if so_lock still points to the
     90   1.91        ad  *   lock that was acquired.  If so_lock has changed in the meantime, the
     91   1.91        ad  *   now irellevant lock that was acquired must be dropped and the lock
     92   1.91        ad  *   operation retried.  Although not proven here, this is completely safe
     93   1.91        ad  *   on a multiprocessor system, even with relaxed memory ordering, given
     94   1.91        ad  *   the next two rules:
     95   1.91        ad  *
     96   1.91        ad  * o In order to mutate so_lock, the lock pointed to by the current value
     97   1.91        ad  *   of so_lock must be held: i.e., the socket must be held locked by the
     98   1.91        ad  *   changing thread.  The thread must issue membar_exit() to prevent
     99   1.91        ad  *   memory accesses being reordered, and can set so_lock to the desired
    100   1.91        ad  *   value.  If the lock pointed to by the new value of so_lock is not
    101   1.91        ad  *   held by the changing thread, the socket must then be considered
    102   1.91        ad  *   unlocked.
    103   1.91        ad  *
    104   1.91        ad  * o If so_lock is mutated, and the previous lock referred to by so_lock
    105   1.91        ad  *   could still be visible to other threads in the system (e.g. via file
    106   1.91        ad  *   descriptor or protocol-internal reference), then the old lock must
    107   1.91        ad  *   remain valid until the socket and/or protocol control block has been
    108   1.91        ad  *   torn down.
    109   1.91        ad  *
    110   1.91        ad  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    111   1.91        ad  *   connecting), then locking the socket must also lock the socket pointed
    112   1.91        ad  *   to by so_head: their lock pointers must match.
    113   1.91        ad  *
    114   1.91        ad  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    115   1.91        ad  *   locking the socket must also lock the sockets attached to both queues.
    116   1.91        ad  *   Again, their lock pointers must match.
    117   1.91        ad  *
    118   1.91        ad  * o Beyond the initial lock assigment in socreate(), assigning locks to
    119   1.91        ad  *   sockets is the responsibility of the individual protocols / protocol
    120   1.91        ad  *   domains.
    121    1.1       cgd  */
    122    1.1       cgd 
    123   1.94        ad static pool_cache_t socket_cache;
    124    1.1       cgd 
    125   1.58   thorpej u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    126   1.58   thorpej static u_long sb_max_adj;	/* adjusted sb_max */
    127   1.58   thorpej 
    128    1.1       cgd /*
    129    1.1       cgd  * Procedures to manipulate state flags of socket
    130    1.1       cgd  * and do appropriate wakeups.  Normal sequence from the
    131    1.1       cgd  * active (originating) side is that soisconnecting() is
    132    1.1       cgd  * called during processing of connect() call,
    133    1.1       cgd  * resulting in an eventual call to soisconnected() if/when the
    134    1.1       cgd  * connection is established.  When the connection is torn down
    135    1.1       cgd  * soisdisconnecting() is called during processing of disconnect() call,
    136    1.1       cgd  * and soisdisconnected() is called when the connection to the peer
    137    1.1       cgd  * is totally severed.  The semantics of these routines are such that
    138    1.1       cgd  * connectionless protocols can call soisconnected() and soisdisconnected()
    139    1.1       cgd  * only, bypassing the in-progress calls when setting up a ``connection''
    140    1.1       cgd  * takes no time.
    141    1.1       cgd  *
    142    1.1       cgd  * From the passive side, a socket is created with
    143    1.1       cgd  * two queues of sockets: so_q0 for connections in progress
    144    1.1       cgd  * and so_q for connections already made and awaiting user acceptance.
    145    1.1       cgd  * As a protocol is preparing incoming connections, it creates a socket
    146    1.1       cgd  * structure queued on so_q0 by calling sonewconn().  When the connection
    147    1.1       cgd  * is established, soisconnected() is called, and transfers the
    148    1.1       cgd  * socket structure to so_q, making it available to accept().
    149   1.66     perry  *
    150    1.1       cgd  * If a socket is closed with sockets on either
    151    1.1       cgd  * so_q0 or so_q, these sockets are dropped.
    152    1.1       cgd  *
    153    1.1       cgd  * If higher level protocols are implemented in
    154    1.1       cgd  * the kernel, the wakeups done here will sometimes
    155    1.1       cgd  * cause software-interrupt process scheduling.
    156    1.1       cgd  */
    157    1.1       cgd 
    158    1.7   mycroft void
    159   1.37     lukem soisconnecting(struct socket *so)
    160    1.1       cgd {
    161    1.1       cgd 
    162   1.91        ad 	KASSERT(solocked(so));
    163   1.91        ad 
    164    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    165    1.1       cgd 	so->so_state |= SS_ISCONNECTING;
    166    1.1       cgd }
    167    1.1       cgd 
    168    1.7   mycroft void
    169   1.37     lukem soisconnected(struct socket *so)
    170    1.1       cgd {
    171   1.37     lukem 	struct socket	*head;
    172    1.1       cgd 
    173   1.37     lukem 	head = so->so_head;
    174   1.91        ad 
    175   1.91        ad 	KASSERT(solocked(so));
    176   1.91        ad 	KASSERT(head == NULL || solocked2(so, head));
    177   1.91        ad 
    178    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    179    1.1       cgd 	so->so_state |= SS_ISCONNECTED;
    180   1.97       tls 	if (head && so->so_onq == &head->so_q0) {
    181   1.97       tls 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    182   1.97       tls 			soqremque(so, 0);
    183   1.97       tls 			soqinsque(head, so, 1);
    184   1.97       tls 			sorwakeup(head);
    185   1.97       tls 			cv_broadcast(&head->so_cv);
    186   1.97       tls 		} else {
    187   1.97       tls 			so->so_upcall =
    188   1.97       tls 			    head->so_accf->so_accept_filter->accf_callback;
    189   1.97       tls 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    190   1.97       tls 			so->so_rcv.sb_flags |= SB_UPCALL;
    191   1.97       tls 			so->so_options &= ~SO_ACCEPTFILTER;
    192  1.104       tls 			(*so->so_upcall)(so, so->so_upcallarg,
    193  1.104       tls 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    194  1.101      yamt 		}
    195    1.1       cgd 	} else {
    196   1.91        ad 		cv_broadcast(&so->so_cv);
    197    1.1       cgd 		sorwakeup(so);
    198    1.1       cgd 		sowwakeup(so);
    199    1.1       cgd 	}
    200    1.1       cgd }
    201    1.1       cgd 
    202    1.7   mycroft void
    203   1.37     lukem soisdisconnecting(struct socket *so)
    204    1.1       cgd {
    205    1.1       cgd 
    206   1.91        ad 	KASSERT(solocked(so));
    207   1.91        ad 
    208    1.1       cgd 	so->so_state &= ~SS_ISCONNECTING;
    209    1.1       cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    210   1.91        ad 	cv_broadcast(&so->so_cv);
    211    1.1       cgd 	sowwakeup(so);
    212    1.1       cgd 	sorwakeup(so);
    213    1.1       cgd }
    214    1.1       cgd 
    215    1.7   mycroft void
    216   1.37     lukem soisdisconnected(struct socket *so)
    217    1.1       cgd {
    218    1.1       cgd 
    219   1.91        ad 	KASSERT(solocked(so));
    220   1.91        ad 
    221    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    222   1.27   mycroft 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    223   1.91        ad 	cv_broadcast(&so->so_cv);
    224    1.1       cgd 	sowwakeup(so);
    225    1.1       cgd 	sorwakeup(so);
    226    1.1       cgd }
    227    1.1       cgd 
    228   1.94        ad void
    229   1.94        ad soinit2(void)
    230   1.94        ad {
    231   1.94        ad 
    232   1.94        ad 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    233   1.94        ad 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    234   1.94        ad }
    235   1.94        ad 
    236    1.1       cgd /*
    237    1.1       cgd  * When an attempt at a new connection is noted on a socket
    238    1.1       cgd  * which accepts connections, sonewconn is called.  If the
    239    1.1       cgd  * connection is possible (subject to space constraints, etc.)
    240    1.1       cgd  * then we allocate a new structure, propoerly linked into the
    241    1.1       cgd  * data structure of the original socket, and return this.
    242   1.77    plunky  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    243    1.1       cgd  */
    244    1.1       cgd struct socket *
    245   1.76    plunky sonewconn(struct socket *head, int connstatus)
    246    1.1       cgd {
    247   1.37     lukem 	struct socket	*so;
    248   1.91        ad 	int		soqueue, error;
    249   1.91        ad 
    250  1.102      yamt 	KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
    251  1.102      yamt 	    connstatus == SS_ISCONNECTED);
    252   1.91        ad 	KASSERT(solocked(head));
    253    1.1       cgd 
    254   1.97       tls 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
    255   1.97       tls 		connstatus = 0;
    256   1.37     lukem 	soqueue = connstatus ? 1 : 0;
    257    1.1       cgd 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    258  1.100    dyoung 		return NULL;
    259   1.91        ad 	so = soget(false);
    260   1.66     perry 	if (so == NULL)
    261  1.100    dyoung 		return NULL;
    262   1.91        ad 	mutex_obj_hold(head->so_lock);
    263   1.91        ad 	so->so_lock = head->so_lock;
    264    1.1       cgd 	so->so_type = head->so_type;
    265    1.1       cgd 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    266    1.1       cgd 	so->so_linger = head->so_linger;
    267    1.1       cgd 	so->so_state = head->so_state | SS_NOFDREF;
    268    1.1       cgd 	so->so_proto = head->so_proto;
    269    1.1       cgd 	so->so_timeo = head->so_timeo;
    270    1.1       cgd 	so->so_pgid = head->so_pgid;
    271   1.24      matt 	so->so_send = head->so_send;
    272   1.24      matt 	so->so_receive = head->so_receive;
    273   1.67  christos 	so->so_uidinfo = head->so_uidinfo;
    274   1.96      yamt 	so->so_cpid = head->so_cpid;
    275   1.49      matt #ifdef MBUFTRACE
    276   1.49      matt 	so->so_mowner = head->so_mowner;
    277   1.49      matt 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    278   1.49      matt 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    279   1.49      matt #endif
    280  1.103  christos 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
    281  1.103  christos 		goto out;
    282   1.83       tls 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    283   1.83       tls 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    284   1.84       tls 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    285   1.84       tls 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    286  1.107  christos 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    287  1.107  christos 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    288    1.1       cgd 	soqinsque(head, so, soqueue);
    289   1.91        ad 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    290   1.91        ad 	    NULL, NULL);
    291   1.91        ad 	KASSERT(solocked(so));
    292   1.91        ad 	if (error != 0) {
    293    1.1       cgd 		(void) soqremque(so, soqueue);
    294  1.103  christos out:
    295   1.99        ad 		/*
    296   1.99        ad 		 * Remove acccept filter if one is present.
    297   1.99        ad 		 * XXX Is this really needed?
    298   1.99        ad 		 */
    299   1.97       tls 		if (so->so_accf != NULL)
    300   1.99        ad 			(void)accept_filt_clear(so);
    301   1.91        ad 		soput(so);
    302  1.100    dyoung 		return NULL;
    303    1.1       cgd 	}
    304    1.1       cgd 	if (connstatus) {
    305    1.1       cgd 		sorwakeup(head);
    306   1.91        ad 		cv_broadcast(&head->so_cv);
    307    1.1       cgd 		so->so_state |= connstatus;
    308    1.1       cgd 	}
    309  1.100    dyoung 	return so;
    310    1.1       cgd }
    311    1.1       cgd 
    312   1.91        ad struct socket *
    313   1.91        ad soget(bool waitok)
    314   1.91        ad {
    315   1.91        ad 	struct socket *so;
    316   1.91        ad 
    317   1.94        ad 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    318   1.91        ad 	if (__predict_false(so == NULL))
    319   1.91        ad 		return (NULL);
    320   1.91        ad 	memset(so, 0, sizeof(*so));
    321   1.91        ad 	TAILQ_INIT(&so->so_q0);
    322   1.91        ad 	TAILQ_INIT(&so->so_q);
    323   1.91        ad 	cv_init(&so->so_cv, "socket");
    324   1.91        ad 	cv_init(&so->so_rcv.sb_cv, "netio");
    325   1.91        ad 	cv_init(&so->so_snd.sb_cv, "netio");
    326   1.91        ad 	selinit(&so->so_rcv.sb_sel);
    327   1.91        ad 	selinit(&so->so_snd.sb_sel);
    328   1.91        ad 	so->so_rcv.sb_so = so;
    329   1.91        ad 	so->so_snd.sb_so = so;
    330   1.91        ad 	return so;
    331   1.91        ad }
    332   1.91        ad 
    333   1.91        ad void
    334   1.91        ad soput(struct socket *so)
    335   1.91        ad {
    336   1.91        ad 
    337   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    338   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    339   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    340   1.91        ad 	seldestroy(&so->so_rcv.sb_sel);
    341   1.91        ad 	seldestroy(&so->so_snd.sb_sel);
    342   1.91        ad 	mutex_obj_free(so->so_lock);
    343   1.91        ad 	cv_destroy(&so->so_cv);
    344   1.91        ad 	cv_destroy(&so->so_rcv.sb_cv);
    345   1.91        ad 	cv_destroy(&so->so_snd.sb_cv);
    346   1.94        ad 	pool_cache_put(socket_cache, so);
    347   1.91        ad }
    348   1.91        ad 
    349    1.7   mycroft void
    350   1.37     lukem soqinsque(struct socket *head, struct socket *so, int q)
    351    1.1       cgd {
    352    1.1       cgd 
    353   1.91        ad 	KASSERT(solocked2(head, so));
    354   1.91        ad 
    355   1.22   thorpej #ifdef DIAGNOSTIC
    356   1.22   thorpej 	if (so->so_onq != NULL)
    357   1.22   thorpej 		panic("soqinsque");
    358   1.22   thorpej #endif
    359   1.22   thorpej 
    360    1.1       cgd 	so->so_head = head;
    361    1.1       cgd 	if (q == 0) {
    362    1.1       cgd 		head->so_q0len++;
    363   1.22   thorpej 		so->so_onq = &head->so_q0;
    364    1.1       cgd 	} else {
    365    1.1       cgd 		head->so_qlen++;
    366   1.22   thorpej 		so->so_onq = &head->so_q;
    367    1.1       cgd 	}
    368   1.22   thorpej 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    369    1.1       cgd }
    370    1.1       cgd 
    371    1.7   mycroft int
    372   1.37     lukem soqremque(struct socket *so, int q)
    373    1.1       cgd {
    374   1.37     lukem 	struct socket	*head;
    375    1.1       cgd 
    376   1.37     lukem 	head = so->so_head;
    377   1.91        ad 
    378   1.91        ad 	KASSERT(solocked(so));
    379   1.22   thorpej 	if (q == 0) {
    380   1.22   thorpej 		if (so->so_onq != &head->so_q0)
    381   1.17   thorpej 			return (0);
    382    1.1       cgd 		head->so_q0len--;
    383    1.1       cgd 	} else {
    384   1.22   thorpej 		if (so->so_onq != &head->so_q)
    385   1.22   thorpej 			return (0);
    386    1.1       cgd 		head->so_qlen--;
    387    1.1       cgd 	}
    388   1.91        ad 	KASSERT(solocked2(so, head));
    389   1.22   thorpej 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    390   1.22   thorpej 	so->so_onq = NULL;
    391   1.22   thorpej 	so->so_head = NULL;
    392    1.1       cgd 	return (1);
    393    1.1       cgd }
    394    1.1       cgd 
    395    1.1       cgd /*
    396    1.1       cgd  * Socantsendmore indicates that no more data will be sent on the
    397    1.1       cgd  * socket; it would normally be applied to a socket when the user
    398    1.1       cgd  * informs the system that no more data is to be sent, by the protocol
    399    1.1       cgd  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    400    1.1       cgd  * will be received, and will normally be applied to the socket by a
    401    1.1       cgd  * protocol when it detects that the peer will send no more data.
    402    1.1       cgd  * Data queued for reading in the socket may yet be read.
    403    1.1       cgd  */
    404    1.1       cgd 
    405    1.4    andrew void
    406   1.37     lukem socantsendmore(struct socket *so)
    407    1.1       cgd {
    408    1.1       cgd 
    409   1.91        ad 	KASSERT(solocked(so));
    410   1.91        ad 
    411    1.1       cgd 	so->so_state |= SS_CANTSENDMORE;
    412    1.1       cgd 	sowwakeup(so);
    413    1.1       cgd }
    414    1.1       cgd 
    415    1.4    andrew void
    416   1.37     lukem socantrcvmore(struct socket *so)
    417    1.1       cgd {
    418    1.1       cgd 
    419   1.91        ad 	KASSERT(solocked(so));
    420   1.91        ad 
    421    1.1       cgd 	so->so_state |= SS_CANTRCVMORE;
    422    1.1       cgd 	sorwakeup(so);
    423    1.1       cgd }
    424    1.1       cgd 
    425    1.1       cgd /*
    426    1.1       cgd  * Wait for data to arrive at/drain from a socket buffer.
    427    1.1       cgd  */
    428    1.7   mycroft int
    429   1.37     lukem sbwait(struct sockbuf *sb)
    430    1.1       cgd {
    431   1.91        ad 	struct socket *so;
    432   1.91        ad 	kmutex_t *lock;
    433   1.91        ad 	int error;
    434    1.1       cgd 
    435   1.91        ad 	so = sb->sb_so;
    436    1.1       cgd 
    437   1.91        ad 	KASSERT(solocked(so));
    438    1.1       cgd 
    439   1.91        ad 	sb->sb_flags |= SB_NOTIFY;
    440   1.91        ad 	lock = so->so_lock;
    441   1.91        ad 	if ((sb->sb_flags & SB_NOINTR) != 0)
    442   1.91        ad 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    443   1.91        ad 	else
    444   1.91        ad 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    445   1.91        ad 	if (__predict_false(lock != so->so_lock))
    446   1.91        ad 		solockretry(so, lock);
    447   1.91        ad 	return error;
    448    1.1       cgd }
    449    1.1       cgd 
    450    1.1       cgd /*
    451    1.1       cgd  * Wakeup processes waiting on a socket buffer.
    452    1.1       cgd  * Do asynchronous notification via SIGIO
    453   1.39      manu  * if the socket buffer has the SB_ASYNC flag set.
    454    1.1       cgd  */
    455    1.7   mycroft void
    456   1.55  christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
    457    1.1       cgd {
    458   1.90     rmind 	int band;
    459   1.90     rmind 
    460   1.91        ad 	KASSERT(solocked(so));
    461   1.91        ad 	KASSERT(sb->sb_so == so);
    462   1.91        ad 
    463   1.90     rmind 	if (code == POLL_IN)
    464   1.90     rmind 		band = POLLIN|POLLRDNORM;
    465   1.90     rmind 	else
    466   1.90     rmind 		band = POLLOUT|POLLWRNORM;
    467   1.91        ad 	sb->sb_flags &= ~SB_NOTIFY;
    468   1.91        ad 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    469   1.91        ad 	cv_broadcast(&sb->sb_cv);
    470   1.90     rmind 	if (sb->sb_flags & SB_ASYNC)
    471   1.57  christos 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    472   1.24      matt 	if (sb->sb_flags & SB_UPCALL)
    473  1.104       tls 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    474    1.1       cgd }
    475    1.1       cgd 
    476    1.1       cgd /*
    477   1.95        ad  * Reset a socket's lock pointer.  Wake all threads waiting on the
    478   1.95        ad  * socket's condition variables so that they can restart their waits
    479   1.95        ad  * using the new lock.  The existing lock must be held.
    480   1.95        ad  */
    481   1.95        ad void
    482   1.95        ad solockreset(struct socket *so, kmutex_t *lock)
    483   1.95        ad {
    484   1.95        ad 
    485   1.95        ad 	KASSERT(solocked(so));
    486   1.95        ad 
    487   1.95        ad 	so->so_lock = lock;
    488   1.95        ad 	cv_broadcast(&so->so_snd.sb_cv);
    489   1.95        ad 	cv_broadcast(&so->so_rcv.sb_cv);
    490   1.95        ad 	cv_broadcast(&so->so_cv);
    491   1.95        ad }
    492   1.95        ad 
    493   1.95        ad /*
    494    1.1       cgd  * Socket buffer (struct sockbuf) utility routines.
    495    1.1       cgd  *
    496    1.1       cgd  * Each socket contains two socket buffers: one for sending data and
    497    1.1       cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    498    1.1       cgd  * information about the number of mbufs and amount of data in the
    499   1.13   mycroft  * queue, and other fields allowing poll() statements and notification
    500    1.1       cgd  * on data availability to be implemented.
    501    1.1       cgd  *
    502    1.1       cgd  * Data stored in a socket buffer is maintained as a list of records.
    503    1.1       cgd  * Each record is a list of mbufs chained together with the m_next
    504    1.1       cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    505    1.1       cgd  * level routine soreceive() expects the following conventions to be
    506    1.1       cgd  * observed when placing information in the receive buffer:
    507    1.1       cgd  *
    508    1.1       cgd  * 1. If the protocol requires each message be preceded by the sender's
    509    1.1       cgd  *    name, then a record containing that name must be present before
    510    1.1       cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    511    1.1       cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    512    1.1       cgd  *    just additional data associated with the message), and there are
    513    1.1       cgd  *    ``rights'' to be received, then a record containing this data
    514   1.10   mycroft  *    should be present (mbuf's must be of type MT_CONTROL).
    515    1.1       cgd  * 3. If a name or rights record exists, then it must be followed by
    516    1.1       cgd  *    a data record, perhaps of zero length.
    517    1.1       cgd  *
    518    1.1       cgd  * Before using a new socket structure it is first necessary to reserve
    519    1.1       cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    520    1.1       cgd  * some of the available buffer space in the system buffer pool for the
    521    1.1       cgd  * socket (currently, it does nothing but enforce limits).  The space
    522    1.1       cgd  * should be released by calling sbrelease() when the socket is destroyed.
    523    1.1       cgd  */
    524    1.1       cgd 
    525    1.7   mycroft int
    526   1.58   thorpej sb_max_set(u_long new_sbmax)
    527   1.58   thorpej {
    528   1.58   thorpej 	int s;
    529   1.58   thorpej 
    530   1.58   thorpej 	if (new_sbmax < (16 * 1024))
    531   1.58   thorpej 		return (EINVAL);
    532   1.58   thorpej 
    533   1.58   thorpej 	s = splsoftnet();
    534   1.58   thorpej 	sb_max = new_sbmax;
    535   1.58   thorpej 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    536   1.58   thorpej 	splx(s);
    537   1.58   thorpej 
    538   1.58   thorpej 	return (0);
    539   1.58   thorpej }
    540   1.58   thorpej 
    541   1.58   thorpej int
    542   1.37     lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    543    1.1       cgd {
    544   1.91        ad 
    545   1.91        ad 	KASSERT(so->so_lock == NULL || solocked(so));
    546   1.91        ad 
    547   1.74  christos 	/*
    548   1.74  christos 	 * there's at least one application (a configure script of screen)
    549   1.74  christos 	 * which expects a fifo is writable even if it has "some" bytes
    550   1.74  christos 	 * in its buffer.
    551   1.74  christos 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    552   1.74  christos 	 *
    553   1.74  christos 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    554   1.74  christos 	 * we expect it's large enough for such applications.
    555   1.74  christos 	 */
    556   1.74  christos 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    557   1.74  christos 	u_long  hiwat = lowat + PIPE_BUF;
    558    1.1       cgd 
    559   1.74  christos 	if (sndcc < hiwat)
    560   1.74  christos 		sndcc = hiwat;
    561   1.59  christos 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    562    1.1       cgd 		goto bad;
    563   1.59  christos 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    564    1.1       cgd 		goto bad2;
    565    1.1       cgd 	if (so->so_rcv.sb_lowat == 0)
    566    1.1       cgd 		so->so_rcv.sb_lowat = 1;
    567    1.1       cgd 	if (so->so_snd.sb_lowat == 0)
    568   1.74  christos 		so->so_snd.sb_lowat = lowat;
    569    1.1       cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    570    1.1       cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    571    1.1       cgd 	return (0);
    572   1.37     lukem  bad2:
    573   1.59  christos 	sbrelease(&so->so_snd, so);
    574   1.37     lukem  bad:
    575    1.1       cgd 	return (ENOBUFS);
    576    1.1       cgd }
    577    1.1       cgd 
    578    1.1       cgd /*
    579    1.1       cgd  * Allot mbufs to a sockbuf.
    580    1.1       cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    581    1.1       cgd  * if buffering efficiency is near the normal case.
    582    1.1       cgd  */
    583    1.7   mycroft int
    584   1.59  christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    585    1.1       cgd {
    586   1.75        ad 	struct lwp *l = curlwp; /* XXX */
    587   1.62  christos 	rlim_t maxcc;
    588   1.67  christos 	struct uidinfo *uidinfo;
    589    1.1       cgd 
    590   1.91        ad 	KASSERT(so->so_lock == NULL || solocked(so));
    591   1.91        ad 	KASSERT(sb->sb_so == so);
    592   1.91        ad 	KASSERT(sb_max_adj != 0);
    593   1.91        ad 
    594   1.58   thorpej 	if (cc == 0 || cc > sb_max_adj)
    595    1.1       cgd 		return (0);
    596   1.93  christos 
    597  1.105      elad 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    598   1.93  christos 
    599   1.93  christos 	uidinfo = so->so_uidinfo;
    600   1.67  christos 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    601   1.62  christos 		return 0;
    602    1.1       cgd 	sb->sb_mbmax = min(cc * 2, sb_max);
    603    1.1       cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    604    1.1       cgd 		sb->sb_lowat = sb->sb_hiwat;
    605    1.1       cgd 	return (1);
    606    1.1       cgd }
    607    1.1       cgd 
    608    1.1       cgd /*
    609   1.91        ad  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    610   1.91        ad  * that the socket is held locked here: see sorflush().
    611    1.1       cgd  */
    612    1.7   mycroft void
    613   1.59  christos sbrelease(struct sockbuf *sb, struct socket *so)
    614    1.1       cgd {
    615    1.1       cgd 
    616   1.91        ad 	KASSERT(sb->sb_so == so);
    617   1.91        ad 
    618    1.1       cgd 	sbflush(sb);
    619   1.87      yamt 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    620   1.59  christos 	sb->sb_mbmax = 0;
    621    1.1       cgd }
    622    1.1       cgd 
    623    1.1       cgd /*
    624    1.1       cgd  * Routines to add and remove
    625    1.1       cgd  * data from an mbuf queue.
    626    1.1       cgd  *
    627    1.1       cgd  * The routines sbappend() or sbappendrecord() are normally called to
    628    1.1       cgd  * append new mbufs to a socket buffer, after checking that adequate
    629    1.1       cgd  * space is available, comparing the function sbspace() with the amount
    630    1.1       cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    631    1.1       cgd  * that data supplied is treated as the beginning of a new record.
    632    1.1       cgd  * To place a sender's address, optional access rights, and data in a
    633    1.1       cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    634    1.1       cgd  * access rights and data in a socket receive buffer, sbappendrights()
    635    1.1       cgd  * should be used.  In either case, the new data begins a new record.
    636    1.1       cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    637    1.1       cgd  * for the caller that there will be enough space to store the data.
    638    1.1       cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    639    1.1       cgd  * to store additional information in.
    640    1.1       cgd  *
    641    1.1       cgd  * Reliable protocols may use the socket send buffer to hold data
    642    1.1       cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    643    1.1       cgd  * send buffer in a protocol with m_copy for output to a peer,
    644    1.1       cgd  * and then removing the data from the socket buffer with sbdrop()
    645    1.1       cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    646    1.1       cgd  */
    647    1.1       cgd 
    648   1.43   thorpej #ifdef SOCKBUF_DEBUG
    649   1.43   thorpej void
    650   1.43   thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
    651   1.43   thorpej {
    652   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    653   1.43   thorpej 
    654   1.91        ad 	KASSERT(solocked(sb->sb_so));
    655   1.91        ad 
    656   1.43   thorpej 	while (m && m->m_nextpkt)
    657   1.43   thorpej 		m = m->m_nextpkt;
    658   1.43   thorpej 
    659   1.43   thorpej 	if (m != sb->sb_lastrecord) {
    660   1.43   thorpej 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    661   1.43   thorpej 		    sb->sb_mb, sb->sb_lastrecord, m);
    662   1.43   thorpej 		printf("packet chain:\n");
    663   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    664   1.43   thorpej 			printf("\t%p\n", m);
    665   1.47    provos 		panic("sblastrecordchk from %s", where);
    666   1.43   thorpej 	}
    667   1.43   thorpej }
    668   1.43   thorpej 
    669   1.43   thorpej void
    670   1.43   thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
    671   1.43   thorpej {
    672   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    673   1.43   thorpej 	struct mbuf *n;
    674   1.43   thorpej 
    675   1.91        ad 	KASSERT(solocked(sb->sb_so));
    676   1.91        ad 
    677   1.43   thorpej 	while (m && m->m_nextpkt)
    678   1.43   thorpej 		m = m->m_nextpkt;
    679   1.43   thorpej 
    680   1.43   thorpej 	while (m && m->m_next)
    681   1.43   thorpej 		m = m->m_next;
    682   1.43   thorpej 
    683   1.43   thorpej 	if (m != sb->sb_mbtail) {
    684   1.43   thorpej 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    685   1.43   thorpej 		    sb->sb_mb, sb->sb_mbtail, m);
    686   1.43   thorpej 		printf("packet tree:\n");
    687   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    688   1.43   thorpej 			printf("\t");
    689   1.43   thorpej 			for (n = m; n != NULL; n = n->m_next)
    690   1.43   thorpej 				printf("%p ", n);
    691   1.43   thorpej 			printf("\n");
    692   1.43   thorpej 		}
    693   1.43   thorpej 		panic("sblastmbufchk from %s", where);
    694   1.43   thorpej 	}
    695   1.43   thorpej }
    696   1.43   thorpej #endif /* SOCKBUF_DEBUG */
    697   1.43   thorpej 
    698   1.63  jonathan /*
    699   1.63  jonathan  * Link a chain of records onto a socket buffer
    700   1.63  jonathan  */
    701   1.63  jonathan #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    702   1.43   thorpej do {									\
    703   1.43   thorpej 	if ((sb)->sb_lastrecord != NULL)				\
    704   1.43   thorpej 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    705   1.43   thorpej 	else								\
    706   1.43   thorpej 		(sb)->sb_mb = (m0);					\
    707   1.63  jonathan 	(sb)->sb_lastrecord = (mlast);					\
    708   1.43   thorpej } while (/*CONSTCOND*/0)
    709   1.43   thorpej 
    710   1.63  jonathan 
    711   1.63  jonathan #define	SBLINKRECORD(sb, m0)						\
    712   1.63  jonathan     SBLINKRECORDCHAIN(sb, m0, m0)
    713   1.63  jonathan 
    714    1.1       cgd /*
    715    1.1       cgd  * Append mbuf chain m to the last record in the
    716    1.1       cgd  * socket buffer sb.  The additional space associated
    717    1.1       cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    718    1.1       cgd  * discarded and mbufs are compacted where possible.
    719    1.1       cgd  */
    720    1.7   mycroft void
    721   1.37     lukem sbappend(struct sockbuf *sb, struct mbuf *m)
    722    1.1       cgd {
    723   1.37     lukem 	struct mbuf	*n;
    724    1.1       cgd 
    725   1.91        ad 	KASSERT(solocked(sb->sb_so));
    726   1.91        ad 
    727    1.1       cgd 	if (m == 0)
    728    1.1       cgd 		return;
    729   1.43   thorpej 
    730   1.49      matt #ifdef MBUFTRACE
    731   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    732   1.49      matt #endif
    733   1.49      matt 
    734   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 1");
    735   1.43   thorpej 
    736   1.43   thorpej 	if ((n = sb->sb_lastrecord) != NULL) {
    737   1.43   thorpej 		/*
    738   1.43   thorpej 		 * XXX Would like to simply use sb_mbtail here, but
    739   1.43   thorpej 		 * XXX I need to verify that I won't miss an EOR that
    740   1.43   thorpej 		 * XXX way.
    741   1.43   thorpej 		 */
    742    1.1       cgd 		do {
    743    1.1       cgd 			if (n->m_flags & M_EOR) {
    744    1.1       cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    745    1.1       cgd 				return;
    746    1.1       cgd 			}
    747    1.1       cgd 		} while (n->m_next && (n = n->m_next));
    748   1.43   thorpej 	} else {
    749   1.43   thorpej 		/*
    750   1.43   thorpej 		 * If this is the first record in the socket buffer, it's
    751   1.43   thorpej 		 * also the last record.
    752   1.43   thorpej 		 */
    753   1.43   thorpej 		sb->sb_lastrecord = m;
    754    1.1       cgd 	}
    755    1.1       cgd 	sbcompress(sb, m, n);
    756   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 2");
    757   1.43   thorpej }
    758   1.43   thorpej 
    759   1.43   thorpej /*
    760   1.43   thorpej  * This version of sbappend() should only be used when the caller
    761   1.43   thorpej  * absolutely knows that there will never be more than one record
    762   1.43   thorpej  * in the socket buffer, that is, a stream protocol (such as TCP).
    763   1.43   thorpej  */
    764   1.43   thorpej void
    765   1.44   thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
    766   1.43   thorpej {
    767   1.43   thorpej 
    768   1.91        ad 	KASSERT(solocked(sb->sb_so));
    769   1.43   thorpej 	KDASSERT(m->m_nextpkt == NULL);
    770   1.43   thorpej 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    771   1.43   thorpej 
    772   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
    773   1.43   thorpej 
    774   1.49      matt #ifdef MBUFTRACE
    775   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    776   1.49      matt #endif
    777   1.49      matt 
    778   1.43   thorpej 	sbcompress(sb, m, sb->sb_mbtail);
    779   1.43   thorpej 
    780   1.43   thorpej 	sb->sb_lastrecord = sb->sb_mb;
    781   1.43   thorpej 	SBLASTRECORDCHK(sb, __func__);
    782    1.1       cgd }
    783    1.1       cgd 
    784    1.1       cgd #ifdef SOCKBUF_DEBUG
    785    1.7   mycroft void
    786   1.37     lukem sbcheck(struct sockbuf *sb)
    787    1.1       cgd {
    788   1.91        ad 	struct mbuf	*m, *m2;
    789   1.43   thorpej 	u_long		len, mbcnt;
    790    1.1       cgd 
    791   1.91        ad 	KASSERT(solocked(sb->sb_so));
    792   1.91        ad 
    793   1.37     lukem 	len = 0;
    794   1.37     lukem 	mbcnt = 0;
    795   1.91        ad 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    796   1.91        ad 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    797   1.91        ad 			len += m2->m_len;
    798   1.91        ad 			mbcnt += MSIZE;
    799   1.91        ad 			if (m2->m_flags & M_EXT)
    800   1.91        ad 				mbcnt += m2->m_ext.ext_size;
    801   1.91        ad 			if (m2->m_nextpkt != NULL)
    802   1.91        ad 				panic("sbcheck nextpkt");
    803   1.91        ad 		}
    804    1.1       cgd 	}
    805    1.1       cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    806   1.43   thorpej 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    807    1.1       cgd 		    mbcnt, sb->sb_mbcnt);
    808    1.1       cgd 		panic("sbcheck");
    809    1.1       cgd 	}
    810    1.1       cgd }
    811    1.1       cgd #endif
    812    1.1       cgd 
    813    1.1       cgd /*
    814    1.1       cgd  * As above, except the mbuf chain
    815    1.1       cgd  * begins a new record.
    816    1.1       cgd  */
    817    1.7   mycroft void
    818   1.37     lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    819    1.1       cgd {
    820   1.37     lukem 	struct mbuf	*m;
    821    1.1       cgd 
    822   1.91        ad 	KASSERT(solocked(sb->sb_so));
    823   1.91        ad 
    824    1.1       cgd 	if (m0 == 0)
    825    1.1       cgd 		return;
    826   1.43   thorpej 
    827   1.49      matt #ifdef MBUFTRACE
    828   1.65  jonathan 	m_claimm(m0, sb->sb_mowner);
    829   1.49      matt #endif
    830    1.1       cgd 	/*
    831    1.1       cgd 	 * Put the first mbuf on the queue.
    832    1.1       cgd 	 * Note this permits zero length records.
    833    1.1       cgd 	 */
    834    1.1       cgd 	sballoc(sb, m0);
    835   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    836   1.43   thorpej 	SBLINKRECORD(sb, m0);
    837    1.1       cgd 	m = m0->m_next;
    838    1.1       cgd 	m0->m_next = 0;
    839    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    840    1.1       cgd 		m0->m_flags &= ~M_EOR;
    841    1.1       cgd 		m->m_flags |= M_EOR;
    842    1.1       cgd 	}
    843    1.1       cgd 	sbcompress(sb, m, m0);
    844   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    845    1.1       cgd }
    846    1.1       cgd 
    847    1.1       cgd /*
    848    1.1       cgd  * As above except that OOB data
    849    1.1       cgd  * is inserted at the beginning of the sockbuf,
    850    1.1       cgd  * but after any other OOB data.
    851    1.1       cgd  */
    852    1.7   mycroft void
    853   1.37     lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    854    1.1       cgd {
    855   1.37     lukem 	struct mbuf	*m, **mp;
    856    1.1       cgd 
    857   1.91        ad 	KASSERT(solocked(sb->sb_so));
    858   1.91        ad 
    859    1.1       cgd 	if (m0 == 0)
    860    1.1       cgd 		return;
    861   1.43   thorpej 
    862   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    863   1.43   thorpej 
    864   1.11  christos 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    865    1.1       cgd 	    again:
    866    1.1       cgd 		switch (m->m_type) {
    867    1.1       cgd 
    868    1.1       cgd 		case MT_OOBDATA:
    869    1.1       cgd 			continue;		/* WANT next train */
    870    1.1       cgd 
    871    1.1       cgd 		case MT_CONTROL:
    872   1.11  christos 			if ((m = m->m_next) != NULL)
    873    1.1       cgd 				goto again;	/* inspect THIS train further */
    874    1.1       cgd 		}
    875    1.1       cgd 		break;
    876    1.1       cgd 	}
    877    1.1       cgd 	/*
    878    1.1       cgd 	 * Put the first mbuf on the queue.
    879    1.1       cgd 	 * Note this permits zero length records.
    880    1.1       cgd 	 */
    881    1.1       cgd 	sballoc(sb, m0);
    882    1.1       cgd 	m0->m_nextpkt = *mp;
    883   1.43   thorpej 	if (*mp == NULL) {
    884   1.43   thorpej 		/* m0 is actually the new tail */
    885   1.43   thorpej 		sb->sb_lastrecord = m0;
    886   1.43   thorpej 	}
    887    1.1       cgd 	*mp = m0;
    888    1.1       cgd 	m = m0->m_next;
    889    1.1       cgd 	m0->m_next = 0;
    890    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    891    1.1       cgd 		m0->m_flags &= ~M_EOR;
    892    1.1       cgd 		m->m_flags |= M_EOR;
    893    1.1       cgd 	}
    894    1.1       cgd 	sbcompress(sb, m, m0);
    895   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    896    1.1       cgd }
    897    1.1       cgd 
    898    1.1       cgd /*
    899    1.1       cgd  * Append address and data, and optionally, control (ancillary) data
    900    1.1       cgd  * to the receive queue of a socket.  If present,
    901    1.1       cgd  * m0 must include a packet header with total length.
    902    1.1       cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
    903    1.1       cgd  */
    904    1.7   mycroft int
    905   1.61      matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    906   1.37     lukem 	struct mbuf *control)
    907    1.1       cgd {
    908   1.43   thorpej 	struct mbuf	*m, *n, *nlast;
    909   1.50      fvdl 	int		space, len;
    910    1.1       cgd 
    911   1.91        ad 	KASSERT(solocked(sb->sb_so));
    912   1.91        ad 
    913   1.37     lukem 	space = asa->sa_len;
    914   1.37     lukem 
    915   1.49      matt 	if (m0 != NULL) {
    916   1.49      matt 		if ((m0->m_flags & M_PKTHDR) == 0)
    917   1.49      matt 			panic("sbappendaddr");
    918    1.1       cgd 		space += m0->m_pkthdr.len;
    919   1.49      matt #ifdef MBUFTRACE
    920   1.65  jonathan 		m_claimm(m0, sb->sb_mowner);
    921   1.49      matt #endif
    922   1.49      matt 	}
    923    1.1       cgd 	for (n = control; n; n = n->m_next) {
    924    1.1       cgd 		space += n->m_len;
    925   1.49      matt 		MCLAIM(n, sb->sb_mowner);
    926    1.1       cgd 		if (n->m_next == 0)	/* keep pointer to last control buf */
    927    1.1       cgd 			break;
    928    1.1       cgd 	}
    929    1.1       cgd 	if (space > sbspace(sb))
    930    1.1       cgd 		return (0);
    931    1.1       cgd 	MGET(m, M_DONTWAIT, MT_SONAME);
    932    1.1       cgd 	if (m == 0)
    933    1.1       cgd 		return (0);
    934   1.49      matt 	MCLAIM(m, sb->sb_mowner);
    935   1.50      fvdl 	/*
    936   1.50      fvdl 	 * XXX avoid 'comparison always true' warning which isn't easily
    937   1.50      fvdl 	 * avoided.
    938   1.50      fvdl 	 */
    939   1.50      fvdl 	len = asa->sa_len;
    940   1.50      fvdl 	if (len > MLEN) {
    941   1.20   thorpej 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    942   1.20   thorpej 		if ((m->m_flags & M_EXT) == 0) {
    943   1.20   thorpej 			m_free(m);
    944   1.20   thorpej 			return (0);
    945   1.20   thorpej 		}
    946   1.20   thorpej 	}
    947    1.1       cgd 	m->m_len = asa->sa_len;
    948   1.82  christos 	memcpy(mtod(m, void *), asa, asa->sa_len);
    949    1.1       cgd 	if (n)
    950    1.1       cgd 		n->m_next = m0;		/* concatenate data to control */
    951    1.1       cgd 	else
    952    1.1       cgd 		control = m0;
    953    1.1       cgd 	m->m_next = control;
    954   1.43   thorpej 
    955   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    956   1.43   thorpej 
    957   1.43   thorpej 	for (n = m; n->m_next != NULL; n = n->m_next)
    958    1.1       cgd 		sballoc(sb, n);
    959   1.43   thorpej 	sballoc(sb, n);
    960   1.43   thorpej 	nlast = n;
    961   1.43   thorpej 	SBLINKRECORD(sb, m);
    962   1.43   thorpej 
    963   1.43   thorpej 	sb->sb_mbtail = nlast;
    964   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendaddr");
    965   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    966   1.43   thorpej 
    967    1.1       cgd 	return (1);
    968    1.1       cgd }
    969    1.1       cgd 
    970   1.63  jonathan /*
    971   1.63  jonathan  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    972   1.63  jonathan  * an mbuf chain.
    973   1.63  jonathan  */
    974   1.70     perry static inline struct mbuf *
    975   1.81      yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    976   1.64  jonathan 		   const struct sockaddr *asa)
    977   1.63  jonathan {
    978   1.63  jonathan 	struct mbuf *m;
    979   1.64  jonathan 	const int salen = asa->sa_len;
    980   1.63  jonathan 
    981   1.91        ad 	KASSERT(solocked(sb->sb_so));
    982   1.91        ad 
    983   1.63  jonathan 	/* only the first in each chain need be a pkthdr */
    984   1.63  jonathan 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    985   1.63  jonathan 	if (m == 0)
    986   1.63  jonathan 		return (0);
    987   1.63  jonathan 	MCLAIM(m, sb->sb_mowner);
    988   1.64  jonathan #ifdef notyet
    989   1.64  jonathan 	if (salen > MHLEN) {
    990   1.64  jonathan 		MEXTMALLOC(m, salen, M_NOWAIT);
    991   1.64  jonathan 		if ((m->m_flags & M_EXT) == 0) {
    992   1.64  jonathan 			m_free(m);
    993   1.64  jonathan 			return (0);
    994   1.64  jonathan 		}
    995   1.64  jonathan 	}
    996   1.64  jonathan #else
    997   1.64  jonathan 	KASSERT(salen <= MHLEN);
    998   1.64  jonathan #endif
    999   1.64  jonathan 	m->m_len = salen;
   1000   1.82  christos 	memcpy(mtod(m, void *), asa, salen);
   1001   1.63  jonathan 	m->m_next = m0;
   1002   1.64  jonathan 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1003   1.63  jonathan 
   1004   1.63  jonathan 	return m;
   1005   1.63  jonathan }
   1006   1.63  jonathan 
   1007   1.63  jonathan int
   1008   1.63  jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1009   1.63  jonathan 		  struct mbuf *m0, int sbprio)
   1010   1.63  jonathan {
   1011   1.63  jonathan 	int space;
   1012   1.63  jonathan 	struct mbuf *m, *n, *n0, *nlast;
   1013   1.63  jonathan 	int error;
   1014   1.63  jonathan 
   1015   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1016   1.91        ad 
   1017   1.63  jonathan 	/*
   1018   1.63  jonathan 	 * XXX sbprio reserved for encoding priority of this* request:
   1019   1.63  jonathan 	 *  SB_PRIO_NONE --> honour normal sb limits
   1020   1.63  jonathan 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1021   1.63  jonathan 	 *	take whole chain. Intended for large requests
   1022   1.63  jonathan 	 *      that should be delivered atomically (all, or none).
   1023   1.63  jonathan 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1024   1.63  jonathan 	 *       over normal socket limits, for messages indicating
   1025   1.63  jonathan 	 *       buffer overflow in earlier normal/lower-priority messages
   1026   1.63  jonathan 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1027   1.63  jonathan 	 *       Intended for  kernel-generated messages only.
   1028   1.63  jonathan 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1029   1.63  jonathan 	 */
   1030   1.63  jonathan 	(void)sbprio;
   1031   1.63  jonathan 
   1032   1.63  jonathan 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1033   1.63  jonathan 		panic("sbappendaddrchain");
   1034   1.63  jonathan 
   1035   1.63  jonathan 	space = sbspace(sb);
   1036   1.66     perry 
   1037   1.63  jonathan #ifdef notyet
   1038   1.66     perry 	/*
   1039   1.63  jonathan 	 * Enforce SB_PRIO_* limits as described above.
   1040   1.63  jonathan 	 */
   1041   1.63  jonathan #endif
   1042   1.63  jonathan 
   1043   1.63  jonathan 	n0 = NULL;
   1044   1.63  jonathan 	nlast = NULL;
   1045   1.63  jonathan 	for (m = m0; m; m = m->m_nextpkt) {
   1046   1.63  jonathan 		struct mbuf *np;
   1047   1.63  jonathan 
   1048   1.64  jonathan #ifdef MBUFTRACE
   1049   1.65  jonathan 		m_claimm(m, sb->sb_mowner);
   1050   1.64  jonathan #endif
   1051   1.64  jonathan 
   1052   1.63  jonathan 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1053   1.64  jonathan 	  	n = m_prepend_sockaddr(sb, m, asa);
   1054   1.63  jonathan 		if (n == NULL) {
   1055   1.63  jonathan 			error = ENOBUFS;
   1056   1.63  jonathan 			goto bad;
   1057   1.63  jonathan 		}
   1058   1.63  jonathan 
   1059   1.63  jonathan 		/* Append record (asa+m) to end of new chain n0 */
   1060   1.63  jonathan 		if (n0 == NULL) {
   1061   1.63  jonathan 			n0 = n;
   1062   1.63  jonathan 		} else {
   1063   1.63  jonathan 			nlast->m_nextpkt = n;
   1064   1.63  jonathan 		}
   1065   1.63  jonathan 		/* Keep track of last record on new chain */
   1066   1.63  jonathan 		nlast = n;
   1067   1.63  jonathan 
   1068   1.63  jonathan 		for (np = n; np; np = np->m_next)
   1069   1.63  jonathan 			sballoc(sb, np);
   1070   1.63  jonathan 	}
   1071   1.63  jonathan 
   1072   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1073   1.64  jonathan 
   1074   1.63  jonathan 	/* Drop the entire chain of (asa+m) records onto the socket */
   1075   1.63  jonathan 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1076   1.64  jonathan 
   1077   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1078   1.64  jonathan 
   1079   1.63  jonathan 	for (m = nlast; m->m_next; m = m->m_next)
   1080   1.63  jonathan 		;
   1081   1.63  jonathan 	sb->sb_mbtail = m;
   1082   1.64  jonathan 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1083   1.64  jonathan 
   1084   1.63  jonathan 	return (1);
   1085   1.63  jonathan 
   1086   1.63  jonathan bad:
   1087   1.64  jonathan 	/*
   1088   1.64  jonathan 	 * On error, free the prepended addreseses. For consistency
   1089   1.64  jonathan 	 * with sbappendaddr(), leave it to our caller to free
   1090   1.64  jonathan 	 * the input record chain passed to us as m0.
   1091   1.64  jonathan 	 */
   1092   1.64  jonathan 	while ((n = n0) != NULL) {
   1093   1.64  jonathan 	  	struct mbuf *np;
   1094   1.64  jonathan 
   1095   1.64  jonathan 		/* Undo the sballoc() of this record */
   1096   1.64  jonathan 		for (np = n; np; np = np->m_next)
   1097   1.64  jonathan 			sbfree(sb, np);
   1098   1.64  jonathan 
   1099   1.64  jonathan 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1100   1.64  jonathan 		MFREE(n, np);		/* free prepended address (not data) */
   1101   1.64  jonathan 	}
   1102   1.66     perry 	return 0;
   1103   1.63  jonathan }
   1104   1.63  jonathan 
   1105   1.63  jonathan 
   1106    1.7   mycroft int
   1107   1.37     lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1108    1.1       cgd {
   1109   1.43   thorpej 	struct mbuf	*m, *mlast, *n;
   1110   1.37     lukem 	int		space;
   1111    1.1       cgd 
   1112   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1113   1.91        ad 
   1114   1.37     lukem 	space = 0;
   1115    1.1       cgd 	if (control == 0)
   1116    1.1       cgd 		panic("sbappendcontrol");
   1117    1.1       cgd 	for (m = control; ; m = m->m_next) {
   1118    1.1       cgd 		space += m->m_len;
   1119   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1120    1.1       cgd 		if (m->m_next == 0)
   1121    1.1       cgd 			break;
   1122    1.1       cgd 	}
   1123    1.1       cgd 	n = m;			/* save pointer to last control buffer */
   1124   1.49      matt 	for (m = m0; m; m = m->m_next) {
   1125   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1126    1.1       cgd 		space += m->m_len;
   1127   1.49      matt 	}
   1128    1.1       cgd 	if (space > sbspace(sb))
   1129    1.1       cgd 		return (0);
   1130    1.1       cgd 	n->m_next = m0;			/* concatenate data to control */
   1131   1.43   thorpej 
   1132   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1133   1.43   thorpej 
   1134   1.43   thorpej 	for (m = control; m->m_next != NULL; m = m->m_next)
   1135    1.1       cgd 		sballoc(sb, m);
   1136   1.43   thorpej 	sballoc(sb, m);
   1137   1.43   thorpej 	mlast = m;
   1138   1.43   thorpej 	SBLINKRECORD(sb, control);
   1139   1.43   thorpej 
   1140   1.43   thorpej 	sb->sb_mbtail = mlast;
   1141   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1142   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1143   1.43   thorpej 
   1144    1.1       cgd 	return (1);
   1145    1.1       cgd }
   1146    1.1       cgd 
   1147    1.1       cgd /*
   1148    1.1       cgd  * Compress mbuf chain m into the socket
   1149    1.1       cgd  * buffer sb following mbuf n.  If n
   1150    1.1       cgd  * is null, the buffer is presumed empty.
   1151    1.1       cgd  */
   1152    1.7   mycroft void
   1153   1.37     lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1154    1.1       cgd {
   1155   1.37     lukem 	int		eor;
   1156   1.37     lukem 	struct mbuf	*o;
   1157    1.1       cgd 
   1158   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1159   1.91        ad 
   1160   1.37     lukem 	eor = 0;
   1161    1.1       cgd 	while (m) {
   1162    1.1       cgd 		eor |= m->m_flags & M_EOR;
   1163    1.1       cgd 		if (m->m_len == 0 &&
   1164    1.1       cgd 		    (eor == 0 ||
   1165    1.1       cgd 		     (((o = m->m_next) || (o = n)) &&
   1166    1.1       cgd 		      o->m_type == m->m_type))) {
   1167   1.46   thorpej 			if (sb->sb_lastrecord == m)
   1168   1.46   thorpej 				sb->sb_lastrecord = m->m_next;
   1169    1.1       cgd 			m = m_free(m);
   1170    1.1       cgd 			continue;
   1171    1.1       cgd 		}
   1172   1.40   thorpej 		if (n && (n->m_flags & M_EOR) == 0 &&
   1173   1.40   thorpej 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1174   1.40   thorpej 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1175   1.40   thorpej 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1176   1.40   thorpej 		    n->m_type == m->m_type) {
   1177   1.82  christos 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1178    1.1       cgd 			    (unsigned)m->m_len);
   1179    1.1       cgd 			n->m_len += m->m_len;
   1180    1.1       cgd 			sb->sb_cc += m->m_len;
   1181    1.1       cgd 			m = m_free(m);
   1182    1.1       cgd 			continue;
   1183    1.1       cgd 		}
   1184    1.1       cgd 		if (n)
   1185    1.1       cgd 			n->m_next = m;
   1186    1.1       cgd 		else
   1187    1.1       cgd 			sb->sb_mb = m;
   1188   1.43   thorpej 		sb->sb_mbtail = m;
   1189    1.1       cgd 		sballoc(sb, m);
   1190    1.1       cgd 		n = m;
   1191    1.1       cgd 		m->m_flags &= ~M_EOR;
   1192    1.1       cgd 		m = m->m_next;
   1193    1.1       cgd 		n->m_next = 0;
   1194    1.1       cgd 	}
   1195    1.1       cgd 	if (eor) {
   1196    1.1       cgd 		if (n)
   1197    1.1       cgd 			n->m_flags |= eor;
   1198    1.1       cgd 		else
   1199   1.15  christos 			printf("semi-panic: sbcompress\n");
   1200    1.1       cgd 	}
   1201   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
   1202    1.1       cgd }
   1203    1.1       cgd 
   1204    1.1       cgd /*
   1205    1.1       cgd  * Free all mbufs in a sockbuf.
   1206    1.1       cgd  * Check that all resources are reclaimed.
   1207    1.1       cgd  */
   1208    1.7   mycroft void
   1209   1.37     lukem sbflush(struct sockbuf *sb)
   1210    1.1       cgd {
   1211    1.1       cgd 
   1212   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1213   1.43   thorpej 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1214   1.43   thorpej 
   1215    1.1       cgd 	while (sb->sb_mbcnt)
   1216    1.1       cgd 		sbdrop(sb, (int)sb->sb_cc);
   1217   1.43   thorpej 
   1218   1.43   thorpej 	KASSERT(sb->sb_cc == 0);
   1219   1.43   thorpej 	KASSERT(sb->sb_mb == NULL);
   1220   1.43   thorpej 	KASSERT(sb->sb_mbtail == NULL);
   1221   1.43   thorpej 	KASSERT(sb->sb_lastrecord == NULL);
   1222    1.1       cgd }
   1223    1.1       cgd 
   1224    1.1       cgd /*
   1225    1.1       cgd  * Drop data from (the front of) a sockbuf.
   1226    1.1       cgd  */
   1227    1.7   mycroft void
   1228   1.37     lukem sbdrop(struct sockbuf *sb, int len)
   1229    1.1       cgd {
   1230   1.37     lukem 	struct mbuf	*m, *mn, *next;
   1231    1.1       cgd 
   1232   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1233   1.91        ad 
   1234    1.1       cgd 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1235    1.1       cgd 	while (len > 0) {
   1236    1.1       cgd 		if (m == 0) {
   1237    1.1       cgd 			if (next == 0)
   1238  1.112      matt 				panic("sbdrop(%p,%d): cc=%lu",
   1239  1.112      matt 				    sb, len, sb->sb_cc);
   1240    1.1       cgd 			m = next;
   1241    1.1       cgd 			next = m->m_nextpkt;
   1242    1.1       cgd 			continue;
   1243    1.1       cgd 		}
   1244    1.1       cgd 		if (m->m_len > len) {
   1245    1.1       cgd 			m->m_len -= len;
   1246    1.1       cgd 			m->m_data += len;
   1247    1.1       cgd 			sb->sb_cc -= len;
   1248    1.1       cgd 			break;
   1249    1.1       cgd 		}
   1250    1.1       cgd 		len -= m->m_len;
   1251    1.1       cgd 		sbfree(sb, m);
   1252    1.1       cgd 		MFREE(m, mn);
   1253    1.1       cgd 		m = mn;
   1254    1.1       cgd 	}
   1255    1.1       cgd 	while (m && m->m_len == 0) {
   1256    1.1       cgd 		sbfree(sb, m);
   1257    1.1       cgd 		MFREE(m, mn);
   1258    1.1       cgd 		m = mn;
   1259    1.1       cgd 	}
   1260    1.1       cgd 	if (m) {
   1261    1.1       cgd 		sb->sb_mb = m;
   1262    1.1       cgd 		m->m_nextpkt = next;
   1263    1.1       cgd 	} else
   1264    1.1       cgd 		sb->sb_mb = next;
   1265   1.43   thorpej 	/*
   1266   1.45   thorpej 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1267   1.43   thorpej 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1268   1.43   thorpej 	 * part of the last record.
   1269   1.43   thorpej 	 */
   1270   1.43   thorpej 	m = sb->sb_mb;
   1271   1.43   thorpej 	if (m == NULL) {
   1272   1.43   thorpej 		sb->sb_mbtail = NULL;
   1273   1.43   thorpej 		sb->sb_lastrecord = NULL;
   1274   1.43   thorpej 	} else if (m->m_nextpkt == NULL)
   1275   1.43   thorpej 		sb->sb_lastrecord = m;
   1276    1.1       cgd }
   1277    1.1       cgd 
   1278    1.1       cgd /*
   1279    1.1       cgd  * Drop a record off the front of a sockbuf
   1280    1.1       cgd  * and move the next record to the front.
   1281    1.1       cgd  */
   1282    1.7   mycroft void
   1283   1.37     lukem sbdroprecord(struct sockbuf *sb)
   1284    1.1       cgd {
   1285   1.37     lukem 	struct mbuf	*m, *mn;
   1286    1.1       cgd 
   1287   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1288   1.91        ad 
   1289    1.1       cgd 	m = sb->sb_mb;
   1290    1.1       cgd 	if (m) {
   1291    1.1       cgd 		sb->sb_mb = m->m_nextpkt;
   1292    1.1       cgd 		do {
   1293    1.1       cgd 			sbfree(sb, m);
   1294    1.1       cgd 			MFREE(m, mn);
   1295   1.11  christos 		} while ((m = mn) != NULL);
   1296    1.1       cgd 	}
   1297   1.45   thorpej 	SB_EMPTY_FIXUP(sb);
   1298   1.19   thorpej }
   1299   1.19   thorpej 
   1300   1.19   thorpej /*
   1301   1.19   thorpej  * Create a "control" mbuf containing the specified data
   1302   1.19   thorpej  * with the specified type for presentation on a socket buffer.
   1303   1.19   thorpej  */
   1304   1.19   thorpej struct mbuf *
   1305  1.111  christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1306   1.19   thorpej {
   1307   1.37     lukem 	struct cmsghdr	*cp;
   1308   1.37     lukem 	struct mbuf	*m;
   1309  1.111  christos 	int space = CMSG_SPACE(size);
   1310   1.19   thorpej 
   1311  1.111  christos 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1312  1.111  christos 		printf("%s: message too large %d\n", __func__, space);
   1313   1.30    itojun 		return NULL;
   1314   1.30    itojun 	}
   1315   1.30    itojun 
   1316  1.111  christos 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1317  1.111  christos 		return NULL;
   1318  1.111  christos 	if (space > MLEN) {
   1319  1.111  christos 		if (space > MCLBYTES)
   1320  1.111  christos 			MEXTMALLOC(m, space, M_WAITOK);
   1321  1.111  christos 		else
   1322  1.111  christos 			MCLGET(m, flags);
   1323   1.30    itojun 		if ((m->m_flags & M_EXT) == 0) {
   1324   1.30    itojun 			m_free(m);
   1325   1.30    itojun 			return NULL;
   1326   1.30    itojun 		}
   1327   1.30    itojun 	}
   1328   1.19   thorpej 	cp = mtod(m, struct cmsghdr *);
   1329  1.111  christos 	*p = CMSG_DATA(cp);
   1330  1.111  christos 	m->m_len = space;
   1331   1.35    itojun 	cp->cmsg_len = CMSG_LEN(size);
   1332   1.19   thorpej 	cp->cmsg_level = level;
   1333   1.19   thorpej 	cp->cmsg_type = type;
   1334  1.111  christos 	return m;
   1335  1.111  christos }
   1336  1.111  christos 
   1337  1.111  christos struct mbuf *
   1338  1.111  christos sbcreatecontrol(void *p, int size, int type, int level)
   1339  1.111  christos {
   1340  1.111  christos 	struct mbuf *m;
   1341  1.111  christos 	void *v;
   1342  1.111  christos 
   1343  1.111  christos 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1344  1.111  christos 	if (m == NULL)
   1345  1.111  christos 		return NULL;
   1346  1.111  christos 	memcpy(v, p, size);
   1347  1.111  christos 	return m;
   1348    1.1       cgd }
   1349   1.91        ad 
   1350   1.91        ad void
   1351   1.91        ad solockretry(struct socket *so, kmutex_t *lock)
   1352   1.91        ad {
   1353   1.91        ad 
   1354   1.91        ad 	while (lock != so->so_lock) {
   1355   1.91        ad 		mutex_exit(lock);
   1356   1.91        ad 		lock = so->so_lock;
   1357   1.91        ad 		mutex_enter(lock);
   1358   1.91        ad 	}
   1359   1.91        ad }
   1360   1.91        ad 
   1361   1.91        ad bool
   1362   1.91        ad solocked(struct socket *so)
   1363   1.91        ad {
   1364   1.91        ad 
   1365   1.91        ad 	return mutex_owned(so->so_lock);
   1366   1.91        ad }
   1367   1.91        ad 
   1368   1.91        ad bool
   1369   1.91        ad solocked2(struct socket *so1, struct socket *so2)
   1370   1.91        ad {
   1371   1.91        ad 	kmutex_t *lock;
   1372   1.91        ad 
   1373   1.91        ad 	lock = so1->so_lock;
   1374   1.91        ad 	if (lock != so2->so_lock)
   1375   1.91        ad 		return false;
   1376   1.91        ad 	return mutex_owned(lock);
   1377   1.91        ad }
   1378   1.91        ad 
   1379   1.91        ad /*
   1380   1.91        ad  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1381   1.91        ad  * protocols that do not have special locking requirements.
   1382   1.91        ad  */
   1383   1.91        ad void
   1384   1.91        ad sosetlock(struct socket *so)
   1385   1.91        ad {
   1386   1.91        ad 	kmutex_t *lock;
   1387   1.91        ad 
   1388   1.91        ad 	if (so->so_lock == NULL) {
   1389   1.91        ad 		lock = softnet_lock;
   1390   1.91        ad 		so->so_lock = lock;
   1391   1.91        ad 		mutex_obj_hold(lock);
   1392   1.91        ad 		mutex_enter(lock);
   1393   1.91        ad 	}
   1394   1.91        ad 
   1395   1.91        ad 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1396   1.91        ad 	KASSERT(solocked(so));
   1397   1.91        ad }
   1398   1.91        ad 
   1399   1.91        ad /*
   1400   1.91        ad  * Set lock on sockbuf sb; sleep if lock is already held.
   1401   1.91        ad  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1402   1.91        ad  * Returns error without lock if sleep is interrupted.
   1403   1.91        ad  */
   1404   1.91        ad int
   1405   1.91        ad sblock(struct sockbuf *sb, int wf)
   1406   1.91        ad {
   1407   1.91        ad 	struct socket *so;
   1408   1.91        ad 	kmutex_t *lock;
   1409   1.91        ad 	int error;
   1410   1.91        ad 
   1411   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1412   1.91        ad 
   1413   1.91        ad 	for (;;) {
   1414   1.91        ad 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1415   1.91        ad 			sb->sb_flags |= SB_LOCK;
   1416   1.91        ad 			return 0;
   1417   1.91        ad 		}
   1418   1.91        ad 		if (wf != M_WAITOK)
   1419   1.91        ad 			return EWOULDBLOCK;
   1420   1.91        ad 		so = sb->sb_so;
   1421   1.91        ad 		lock = so->so_lock;
   1422   1.91        ad 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1423   1.91        ad 			cv_wait(&so->so_cv, lock);
   1424   1.91        ad 			error = 0;
   1425   1.91        ad 		} else
   1426   1.91        ad 			error = cv_wait_sig(&so->so_cv, lock);
   1427   1.91        ad 		if (__predict_false(lock != so->so_lock))
   1428   1.91        ad 			solockretry(so, lock);
   1429   1.91        ad 		if (error != 0)
   1430   1.91        ad 			return error;
   1431   1.91        ad 	}
   1432   1.91        ad }
   1433   1.91        ad 
   1434   1.91        ad void
   1435   1.91        ad sbunlock(struct sockbuf *sb)
   1436   1.91        ad {
   1437   1.91        ad 	struct socket *so;
   1438   1.91        ad 
   1439   1.91        ad 	so = sb->sb_so;
   1440   1.91        ad 
   1441   1.91        ad 	KASSERT(solocked(so));
   1442   1.91        ad 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1443   1.91        ad 
   1444   1.91        ad 	sb->sb_flags &= ~SB_LOCK;
   1445   1.91        ad 	cv_broadcast(&so->so_cv);
   1446   1.91        ad }
   1447   1.91        ad 
   1448   1.91        ad int
   1449  1.101      yamt sowait(struct socket *so, bool catch, int timo)
   1450   1.91        ad {
   1451   1.91        ad 	kmutex_t *lock;
   1452   1.91        ad 	int error;
   1453   1.91        ad 
   1454   1.91        ad 	KASSERT(solocked(so));
   1455  1.101      yamt 	KASSERT(catch || timo != 0);
   1456   1.91        ad 
   1457   1.91        ad 	lock = so->so_lock;
   1458  1.101      yamt 	if (catch)
   1459  1.101      yamt 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1460  1.101      yamt 	else
   1461  1.101      yamt 		error = cv_timedwait(&so->so_cv, lock, timo);
   1462   1.91        ad 	if (__predict_false(lock != so->so_lock))
   1463   1.91        ad 		solockretry(so, lock);
   1464   1.91        ad 	return error;
   1465   1.91        ad }
   1466