uipc_socket2.c revision 1.112 1 1.112 matt /* $NetBSD: uipc_socket2.c,v 1.112 2013/06/28 01:23:38 matt Exp $ */
2 1.91 ad
3 1.91 ad /*-
4 1.91 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.91 ad * All rights reserved.
6 1.91 ad *
7 1.91 ad * Redistribution and use in source and binary forms, with or without
8 1.91 ad * modification, are permitted provided that the following conditions
9 1.91 ad * are met:
10 1.91 ad * 1. Redistributions of source code must retain the above copyright
11 1.91 ad * notice, this list of conditions and the following disclaimer.
12 1.91 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.91 ad * notice, this list of conditions and the following disclaimer in the
14 1.91 ad * documentation and/or other materials provided with the distribution.
15 1.91 ad *
16 1.91 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.91 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.91 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.91 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.91 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.91 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.91 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.91 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.91 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.91 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.91 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.91 ad */
28 1.9 cgd
29 1.1 cgd /*
30 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 1.7 mycroft * The Regents of the University of California. All rights reserved.
32 1.1 cgd *
33 1.1 cgd * Redistribution and use in source and binary forms, with or without
34 1.1 cgd * modification, are permitted provided that the following conditions
35 1.1 cgd * are met:
36 1.1 cgd * 1. Redistributions of source code must retain the above copyright
37 1.1 cgd * notice, this list of conditions and the following disclaimer.
38 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
39 1.1 cgd * notice, this list of conditions and the following disclaimer in the
40 1.1 cgd * documentation and/or other materials provided with the distribution.
41 1.54 agc * 3. Neither the name of the University nor the names of its contributors
42 1.1 cgd * may be used to endorse or promote products derived from this software
43 1.1 cgd * without specific prior written permission.
44 1.1 cgd *
45 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 cgd * SUCH DAMAGE.
56 1.1 cgd *
57 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 1.1 cgd */
59 1.42 lukem
60 1.42 lukem #include <sys/cdefs.h>
61 1.112 matt __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.112 2013/06/28 01:23:38 matt Exp $");
62 1.51 martin
63 1.51 martin #include "opt_mbuftrace.h"
64 1.58 thorpej #include "opt_sb_max.h"
65 1.1 cgd
66 1.5 mycroft #include <sys/param.h>
67 1.5 mycroft #include <sys/systm.h>
68 1.5 mycroft #include <sys/proc.h>
69 1.5 mycroft #include <sys/file.h>
70 1.5 mycroft #include <sys/buf.h>
71 1.5 mycroft #include <sys/mbuf.h>
72 1.5 mycroft #include <sys/protosw.h>
73 1.91 ad #include <sys/domain.h>
74 1.55 christos #include <sys/poll.h>
75 1.5 mycroft #include <sys/socket.h>
76 1.5 mycroft #include <sys/socketvar.h>
77 1.11 christos #include <sys/signalvar.h>
78 1.71 elad #include <sys/kauth.h>
79 1.91 ad #include <sys/pool.h>
80 1.98 pooka #include <sys/uidinfo.h>
81 1.1 cgd
82 1.1 cgd /*
83 1.91 ad * Primitive routines for operating on sockets and socket buffers.
84 1.91 ad *
85 1.91 ad * Locking rules and assumptions:
86 1.91 ad *
87 1.91 ad * o socket::so_lock can change on the fly. The low level routines used
88 1.91 ad * to lock sockets are aware of this. When so_lock is acquired, the
89 1.91 ad * routine locking must check to see if so_lock still points to the
90 1.91 ad * lock that was acquired. If so_lock has changed in the meantime, the
91 1.91 ad * now irellevant lock that was acquired must be dropped and the lock
92 1.91 ad * operation retried. Although not proven here, this is completely safe
93 1.91 ad * on a multiprocessor system, even with relaxed memory ordering, given
94 1.91 ad * the next two rules:
95 1.91 ad *
96 1.91 ad * o In order to mutate so_lock, the lock pointed to by the current value
97 1.91 ad * of so_lock must be held: i.e., the socket must be held locked by the
98 1.91 ad * changing thread. The thread must issue membar_exit() to prevent
99 1.91 ad * memory accesses being reordered, and can set so_lock to the desired
100 1.91 ad * value. If the lock pointed to by the new value of so_lock is not
101 1.91 ad * held by the changing thread, the socket must then be considered
102 1.91 ad * unlocked.
103 1.91 ad *
104 1.91 ad * o If so_lock is mutated, and the previous lock referred to by so_lock
105 1.91 ad * could still be visible to other threads in the system (e.g. via file
106 1.91 ad * descriptor or protocol-internal reference), then the old lock must
107 1.91 ad * remain valid until the socket and/or protocol control block has been
108 1.91 ad * torn down.
109 1.91 ad *
110 1.91 ad * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 1.91 ad * connecting), then locking the socket must also lock the socket pointed
112 1.91 ad * to by so_head: their lock pointers must match.
113 1.91 ad *
114 1.91 ad * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 1.91 ad * locking the socket must also lock the sockets attached to both queues.
116 1.91 ad * Again, their lock pointers must match.
117 1.91 ad *
118 1.91 ad * o Beyond the initial lock assigment in socreate(), assigning locks to
119 1.91 ad * sockets is the responsibility of the individual protocols / protocol
120 1.91 ad * domains.
121 1.1 cgd */
122 1.1 cgd
123 1.94 ad static pool_cache_t socket_cache;
124 1.1 cgd
125 1.58 thorpej u_long sb_max = SB_MAX; /* maximum socket buffer size */
126 1.58 thorpej static u_long sb_max_adj; /* adjusted sb_max */
127 1.58 thorpej
128 1.1 cgd /*
129 1.1 cgd * Procedures to manipulate state flags of socket
130 1.1 cgd * and do appropriate wakeups. Normal sequence from the
131 1.1 cgd * active (originating) side is that soisconnecting() is
132 1.1 cgd * called during processing of connect() call,
133 1.1 cgd * resulting in an eventual call to soisconnected() if/when the
134 1.1 cgd * connection is established. When the connection is torn down
135 1.1 cgd * soisdisconnecting() is called during processing of disconnect() call,
136 1.1 cgd * and soisdisconnected() is called when the connection to the peer
137 1.1 cgd * is totally severed. The semantics of these routines are such that
138 1.1 cgd * connectionless protocols can call soisconnected() and soisdisconnected()
139 1.1 cgd * only, bypassing the in-progress calls when setting up a ``connection''
140 1.1 cgd * takes no time.
141 1.1 cgd *
142 1.1 cgd * From the passive side, a socket is created with
143 1.1 cgd * two queues of sockets: so_q0 for connections in progress
144 1.1 cgd * and so_q for connections already made and awaiting user acceptance.
145 1.1 cgd * As a protocol is preparing incoming connections, it creates a socket
146 1.1 cgd * structure queued on so_q0 by calling sonewconn(). When the connection
147 1.1 cgd * is established, soisconnected() is called, and transfers the
148 1.1 cgd * socket structure to so_q, making it available to accept().
149 1.66 perry *
150 1.1 cgd * If a socket is closed with sockets on either
151 1.1 cgd * so_q0 or so_q, these sockets are dropped.
152 1.1 cgd *
153 1.1 cgd * If higher level protocols are implemented in
154 1.1 cgd * the kernel, the wakeups done here will sometimes
155 1.1 cgd * cause software-interrupt process scheduling.
156 1.1 cgd */
157 1.1 cgd
158 1.7 mycroft void
159 1.37 lukem soisconnecting(struct socket *so)
160 1.1 cgd {
161 1.1 cgd
162 1.91 ad KASSERT(solocked(so));
163 1.91 ad
164 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 1.1 cgd so->so_state |= SS_ISCONNECTING;
166 1.1 cgd }
167 1.1 cgd
168 1.7 mycroft void
169 1.37 lukem soisconnected(struct socket *so)
170 1.1 cgd {
171 1.37 lukem struct socket *head;
172 1.1 cgd
173 1.37 lukem head = so->so_head;
174 1.91 ad
175 1.91 ad KASSERT(solocked(so));
176 1.91 ad KASSERT(head == NULL || solocked2(so, head));
177 1.91 ad
178 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179 1.1 cgd so->so_state |= SS_ISCONNECTED;
180 1.97 tls if (head && so->so_onq == &head->so_q0) {
181 1.97 tls if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 1.97 tls soqremque(so, 0);
183 1.97 tls soqinsque(head, so, 1);
184 1.97 tls sorwakeup(head);
185 1.97 tls cv_broadcast(&head->so_cv);
186 1.97 tls } else {
187 1.97 tls so->so_upcall =
188 1.97 tls head->so_accf->so_accept_filter->accf_callback;
189 1.97 tls so->so_upcallarg = head->so_accf->so_accept_filter_arg;
190 1.97 tls so->so_rcv.sb_flags |= SB_UPCALL;
191 1.97 tls so->so_options &= ~SO_ACCEPTFILTER;
192 1.104 tls (*so->so_upcall)(so, so->so_upcallarg,
193 1.104 tls POLLIN|POLLRDNORM, M_DONTWAIT);
194 1.101 yamt }
195 1.1 cgd } else {
196 1.91 ad cv_broadcast(&so->so_cv);
197 1.1 cgd sorwakeup(so);
198 1.1 cgd sowwakeup(so);
199 1.1 cgd }
200 1.1 cgd }
201 1.1 cgd
202 1.7 mycroft void
203 1.37 lukem soisdisconnecting(struct socket *so)
204 1.1 cgd {
205 1.1 cgd
206 1.91 ad KASSERT(solocked(so));
207 1.91 ad
208 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
209 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
210 1.91 ad cv_broadcast(&so->so_cv);
211 1.1 cgd sowwakeup(so);
212 1.1 cgd sorwakeup(so);
213 1.1 cgd }
214 1.1 cgd
215 1.7 mycroft void
216 1.37 lukem soisdisconnected(struct socket *so)
217 1.1 cgd {
218 1.1 cgd
219 1.91 ad KASSERT(solocked(so));
220 1.91 ad
221 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
222 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
223 1.91 ad cv_broadcast(&so->so_cv);
224 1.1 cgd sowwakeup(so);
225 1.1 cgd sorwakeup(so);
226 1.1 cgd }
227 1.1 cgd
228 1.94 ad void
229 1.94 ad soinit2(void)
230 1.94 ad {
231 1.94 ad
232 1.94 ad socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
233 1.94 ad "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
234 1.94 ad }
235 1.94 ad
236 1.1 cgd /*
237 1.1 cgd * When an attempt at a new connection is noted on a socket
238 1.1 cgd * which accepts connections, sonewconn is called. If the
239 1.1 cgd * connection is possible (subject to space constraints, etc.)
240 1.1 cgd * then we allocate a new structure, propoerly linked into the
241 1.1 cgd * data structure of the original socket, and return this.
242 1.77 plunky * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
243 1.1 cgd */
244 1.1 cgd struct socket *
245 1.76 plunky sonewconn(struct socket *head, int connstatus)
246 1.1 cgd {
247 1.37 lukem struct socket *so;
248 1.91 ad int soqueue, error;
249 1.91 ad
250 1.102 yamt KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
251 1.102 yamt connstatus == SS_ISCONNECTED);
252 1.91 ad KASSERT(solocked(head));
253 1.1 cgd
254 1.97 tls if ((head->so_options & SO_ACCEPTFILTER) != 0)
255 1.97 tls connstatus = 0;
256 1.37 lukem soqueue = connstatus ? 1 : 0;
257 1.1 cgd if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
258 1.100 dyoung return NULL;
259 1.91 ad so = soget(false);
260 1.66 perry if (so == NULL)
261 1.100 dyoung return NULL;
262 1.91 ad mutex_obj_hold(head->so_lock);
263 1.91 ad so->so_lock = head->so_lock;
264 1.1 cgd so->so_type = head->so_type;
265 1.1 cgd so->so_options = head->so_options &~ SO_ACCEPTCONN;
266 1.1 cgd so->so_linger = head->so_linger;
267 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
268 1.1 cgd so->so_proto = head->so_proto;
269 1.1 cgd so->so_timeo = head->so_timeo;
270 1.1 cgd so->so_pgid = head->so_pgid;
271 1.24 matt so->so_send = head->so_send;
272 1.24 matt so->so_receive = head->so_receive;
273 1.67 christos so->so_uidinfo = head->so_uidinfo;
274 1.96 yamt so->so_cpid = head->so_cpid;
275 1.49 matt #ifdef MBUFTRACE
276 1.49 matt so->so_mowner = head->so_mowner;
277 1.49 matt so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
278 1.49 matt so->so_snd.sb_mowner = head->so_snd.sb_mowner;
279 1.49 matt #endif
280 1.103 christos if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
281 1.103 christos goto out;
282 1.83 tls so->so_snd.sb_lowat = head->so_snd.sb_lowat;
283 1.83 tls so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
284 1.84 tls so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
285 1.84 tls so->so_snd.sb_timeo = head->so_snd.sb_timeo;
286 1.107 christos so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
287 1.107 christos so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
288 1.1 cgd soqinsque(head, so, soqueue);
289 1.91 ad error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
290 1.91 ad NULL, NULL);
291 1.91 ad KASSERT(solocked(so));
292 1.91 ad if (error != 0) {
293 1.1 cgd (void) soqremque(so, soqueue);
294 1.103 christos out:
295 1.99 ad /*
296 1.99 ad * Remove acccept filter if one is present.
297 1.99 ad * XXX Is this really needed?
298 1.99 ad */
299 1.97 tls if (so->so_accf != NULL)
300 1.99 ad (void)accept_filt_clear(so);
301 1.91 ad soput(so);
302 1.100 dyoung return NULL;
303 1.1 cgd }
304 1.1 cgd if (connstatus) {
305 1.1 cgd sorwakeup(head);
306 1.91 ad cv_broadcast(&head->so_cv);
307 1.1 cgd so->so_state |= connstatus;
308 1.1 cgd }
309 1.100 dyoung return so;
310 1.1 cgd }
311 1.1 cgd
312 1.91 ad struct socket *
313 1.91 ad soget(bool waitok)
314 1.91 ad {
315 1.91 ad struct socket *so;
316 1.91 ad
317 1.94 ad so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
318 1.91 ad if (__predict_false(so == NULL))
319 1.91 ad return (NULL);
320 1.91 ad memset(so, 0, sizeof(*so));
321 1.91 ad TAILQ_INIT(&so->so_q0);
322 1.91 ad TAILQ_INIT(&so->so_q);
323 1.91 ad cv_init(&so->so_cv, "socket");
324 1.91 ad cv_init(&so->so_rcv.sb_cv, "netio");
325 1.91 ad cv_init(&so->so_snd.sb_cv, "netio");
326 1.91 ad selinit(&so->so_rcv.sb_sel);
327 1.91 ad selinit(&so->so_snd.sb_sel);
328 1.91 ad so->so_rcv.sb_so = so;
329 1.91 ad so->so_snd.sb_so = so;
330 1.91 ad return so;
331 1.91 ad }
332 1.91 ad
333 1.91 ad void
334 1.91 ad soput(struct socket *so)
335 1.91 ad {
336 1.91 ad
337 1.91 ad KASSERT(!cv_has_waiters(&so->so_cv));
338 1.91 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
339 1.91 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
340 1.91 ad seldestroy(&so->so_rcv.sb_sel);
341 1.91 ad seldestroy(&so->so_snd.sb_sel);
342 1.91 ad mutex_obj_free(so->so_lock);
343 1.91 ad cv_destroy(&so->so_cv);
344 1.91 ad cv_destroy(&so->so_rcv.sb_cv);
345 1.91 ad cv_destroy(&so->so_snd.sb_cv);
346 1.94 ad pool_cache_put(socket_cache, so);
347 1.91 ad }
348 1.91 ad
349 1.7 mycroft void
350 1.37 lukem soqinsque(struct socket *head, struct socket *so, int q)
351 1.1 cgd {
352 1.1 cgd
353 1.91 ad KASSERT(solocked2(head, so));
354 1.91 ad
355 1.22 thorpej #ifdef DIAGNOSTIC
356 1.22 thorpej if (so->so_onq != NULL)
357 1.22 thorpej panic("soqinsque");
358 1.22 thorpej #endif
359 1.22 thorpej
360 1.1 cgd so->so_head = head;
361 1.1 cgd if (q == 0) {
362 1.1 cgd head->so_q0len++;
363 1.22 thorpej so->so_onq = &head->so_q0;
364 1.1 cgd } else {
365 1.1 cgd head->so_qlen++;
366 1.22 thorpej so->so_onq = &head->so_q;
367 1.1 cgd }
368 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
369 1.1 cgd }
370 1.1 cgd
371 1.7 mycroft int
372 1.37 lukem soqremque(struct socket *so, int q)
373 1.1 cgd {
374 1.37 lukem struct socket *head;
375 1.1 cgd
376 1.37 lukem head = so->so_head;
377 1.91 ad
378 1.91 ad KASSERT(solocked(so));
379 1.22 thorpej if (q == 0) {
380 1.22 thorpej if (so->so_onq != &head->so_q0)
381 1.17 thorpej return (0);
382 1.1 cgd head->so_q0len--;
383 1.1 cgd } else {
384 1.22 thorpej if (so->so_onq != &head->so_q)
385 1.22 thorpej return (0);
386 1.1 cgd head->so_qlen--;
387 1.1 cgd }
388 1.91 ad KASSERT(solocked2(so, head));
389 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe);
390 1.22 thorpej so->so_onq = NULL;
391 1.22 thorpej so->so_head = NULL;
392 1.1 cgd return (1);
393 1.1 cgd }
394 1.1 cgd
395 1.1 cgd /*
396 1.1 cgd * Socantsendmore indicates that no more data will be sent on the
397 1.1 cgd * socket; it would normally be applied to a socket when the user
398 1.1 cgd * informs the system that no more data is to be sent, by the protocol
399 1.1 cgd * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
400 1.1 cgd * will be received, and will normally be applied to the socket by a
401 1.1 cgd * protocol when it detects that the peer will send no more data.
402 1.1 cgd * Data queued for reading in the socket may yet be read.
403 1.1 cgd */
404 1.1 cgd
405 1.4 andrew void
406 1.37 lukem socantsendmore(struct socket *so)
407 1.1 cgd {
408 1.1 cgd
409 1.91 ad KASSERT(solocked(so));
410 1.91 ad
411 1.1 cgd so->so_state |= SS_CANTSENDMORE;
412 1.1 cgd sowwakeup(so);
413 1.1 cgd }
414 1.1 cgd
415 1.4 andrew void
416 1.37 lukem socantrcvmore(struct socket *so)
417 1.1 cgd {
418 1.1 cgd
419 1.91 ad KASSERT(solocked(so));
420 1.91 ad
421 1.1 cgd so->so_state |= SS_CANTRCVMORE;
422 1.1 cgd sorwakeup(so);
423 1.1 cgd }
424 1.1 cgd
425 1.1 cgd /*
426 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
427 1.1 cgd */
428 1.7 mycroft int
429 1.37 lukem sbwait(struct sockbuf *sb)
430 1.1 cgd {
431 1.91 ad struct socket *so;
432 1.91 ad kmutex_t *lock;
433 1.91 ad int error;
434 1.1 cgd
435 1.91 ad so = sb->sb_so;
436 1.1 cgd
437 1.91 ad KASSERT(solocked(so));
438 1.1 cgd
439 1.91 ad sb->sb_flags |= SB_NOTIFY;
440 1.91 ad lock = so->so_lock;
441 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0)
442 1.91 ad error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
443 1.91 ad else
444 1.91 ad error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
445 1.91 ad if (__predict_false(lock != so->so_lock))
446 1.91 ad solockretry(so, lock);
447 1.91 ad return error;
448 1.1 cgd }
449 1.1 cgd
450 1.1 cgd /*
451 1.1 cgd * Wakeup processes waiting on a socket buffer.
452 1.1 cgd * Do asynchronous notification via SIGIO
453 1.39 manu * if the socket buffer has the SB_ASYNC flag set.
454 1.1 cgd */
455 1.7 mycroft void
456 1.55 christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
457 1.1 cgd {
458 1.90 rmind int band;
459 1.90 rmind
460 1.91 ad KASSERT(solocked(so));
461 1.91 ad KASSERT(sb->sb_so == so);
462 1.91 ad
463 1.90 rmind if (code == POLL_IN)
464 1.90 rmind band = POLLIN|POLLRDNORM;
465 1.90 rmind else
466 1.90 rmind band = POLLOUT|POLLWRNORM;
467 1.91 ad sb->sb_flags &= ~SB_NOTIFY;
468 1.91 ad selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
469 1.91 ad cv_broadcast(&sb->sb_cv);
470 1.90 rmind if (sb->sb_flags & SB_ASYNC)
471 1.57 christos fownsignal(so->so_pgid, SIGIO, code, band, so);
472 1.24 matt if (sb->sb_flags & SB_UPCALL)
473 1.104 tls (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
474 1.1 cgd }
475 1.1 cgd
476 1.1 cgd /*
477 1.95 ad * Reset a socket's lock pointer. Wake all threads waiting on the
478 1.95 ad * socket's condition variables so that they can restart their waits
479 1.95 ad * using the new lock. The existing lock must be held.
480 1.95 ad */
481 1.95 ad void
482 1.95 ad solockreset(struct socket *so, kmutex_t *lock)
483 1.95 ad {
484 1.95 ad
485 1.95 ad KASSERT(solocked(so));
486 1.95 ad
487 1.95 ad so->so_lock = lock;
488 1.95 ad cv_broadcast(&so->so_snd.sb_cv);
489 1.95 ad cv_broadcast(&so->so_rcv.sb_cv);
490 1.95 ad cv_broadcast(&so->so_cv);
491 1.95 ad }
492 1.95 ad
493 1.95 ad /*
494 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
495 1.1 cgd *
496 1.1 cgd * Each socket contains two socket buffers: one for sending data and
497 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
498 1.1 cgd * information about the number of mbufs and amount of data in the
499 1.13 mycroft * queue, and other fields allowing poll() statements and notification
500 1.1 cgd * on data availability to be implemented.
501 1.1 cgd *
502 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
503 1.1 cgd * Each record is a list of mbufs chained together with the m_next
504 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
505 1.1 cgd * level routine soreceive() expects the following conventions to be
506 1.1 cgd * observed when placing information in the receive buffer:
507 1.1 cgd *
508 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
509 1.1 cgd * name, then a record containing that name must be present before
510 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
511 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
512 1.1 cgd * just additional data associated with the message), and there are
513 1.1 cgd * ``rights'' to be received, then a record containing this data
514 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL).
515 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
516 1.1 cgd * a data record, perhaps of zero length.
517 1.1 cgd *
518 1.1 cgd * Before using a new socket structure it is first necessary to reserve
519 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
520 1.1 cgd * some of the available buffer space in the system buffer pool for the
521 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
522 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
523 1.1 cgd */
524 1.1 cgd
525 1.7 mycroft int
526 1.58 thorpej sb_max_set(u_long new_sbmax)
527 1.58 thorpej {
528 1.58 thorpej int s;
529 1.58 thorpej
530 1.58 thorpej if (new_sbmax < (16 * 1024))
531 1.58 thorpej return (EINVAL);
532 1.58 thorpej
533 1.58 thorpej s = splsoftnet();
534 1.58 thorpej sb_max = new_sbmax;
535 1.58 thorpej sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
536 1.58 thorpej splx(s);
537 1.58 thorpej
538 1.58 thorpej return (0);
539 1.58 thorpej }
540 1.58 thorpej
541 1.58 thorpej int
542 1.37 lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
543 1.1 cgd {
544 1.91 ad
545 1.91 ad KASSERT(so->so_lock == NULL || solocked(so));
546 1.91 ad
547 1.74 christos /*
548 1.74 christos * there's at least one application (a configure script of screen)
549 1.74 christos * which expects a fifo is writable even if it has "some" bytes
550 1.74 christos * in its buffer.
551 1.74 christos * so we want to make sure (hiwat - lowat) >= (some bytes).
552 1.74 christos *
553 1.74 christos * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
554 1.74 christos * we expect it's large enough for such applications.
555 1.74 christos */
556 1.74 christos u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
557 1.74 christos u_long hiwat = lowat + PIPE_BUF;
558 1.1 cgd
559 1.74 christos if (sndcc < hiwat)
560 1.74 christos sndcc = hiwat;
561 1.59 christos if (sbreserve(&so->so_snd, sndcc, so) == 0)
562 1.1 cgd goto bad;
563 1.59 christos if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
564 1.1 cgd goto bad2;
565 1.1 cgd if (so->so_rcv.sb_lowat == 0)
566 1.1 cgd so->so_rcv.sb_lowat = 1;
567 1.1 cgd if (so->so_snd.sb_lowat == 0)
568 1.74 christos so->so_snd.sb_lowat = lowat;
569 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
570 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
571 1.1 cgd return (0);
572 1.37 lukem bad2:
573 1.59 christos sbrelease(&so->so_snd, so);
574 1.37 lukem bad:
575 1.1 cgd return (ENOBUFS);
576 1.1 cgd }
577 1.1 cgd
578 1.1 cgd /*
579 1.1 cgd * Allot mbufs to a sockbuf.
580 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
581 1.1 cgd * if buffering efficiency is near the normal case.
582 1.1 cgd */
583 1.7 mycroft int
584 1.59 christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
585 1.1 cgd {
586 1.75 ad struct lwp *l = curlwp; /* XXX */
587 1.62 christos rlim_t maxcc;
588 1.67 christos struct uidinfo *uidinfo;
589 1.1 cgd
590 1.91 ad KASSERT(so->so_lock == NULL || solocked(so));
591 1.91 ad KASSERT(sb->sb_so == so);
592 1.91 ad KASSERT(sb_max_adj != 0);
593 1.91 ad
594 1.58 thorpej if (cc == 0 || cc > sb_max_adj)
595 1.1 cgd return (0);
596 1.93 christos
597 1.105 elad maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
598 1.93 christos
599 1.93 christos uidinfo = so->so_uidinfo;
600 1.67 christos if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
601 1.62 christos return 0;
602 1.1 cgd sb->sb_mbmax = min(cc * 2, sb_max);
603 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
604 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
605 1.1 cgd return (1);
606 1.1 cgd }
607 1.1 cgd
608 1.1 cgd /*
609 1.91 ad * Free mbufs held by a socket, and reserved mbuf space. We do not assert
610 1.91 ad * that the socket is held locked here: see sorflush().
611 1.1 cgd */
612 1.7 mycroft void
613 1.59 christos sbrelease(struct sockbuf *sb, struct socket *so)
614 1.1 cgd {
615 1.1 cgd
616 1.91 ad KASSERT(sb->sb_so == so);
617 1.91 ad
618 1.1 cgd sbflush(sb);
619 1.87 yamt (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
620 1.59 christos sb->sb_mbmax = 0;
621 1.1 cgd }
622 1.1 cgd
623 1.1 cgd /*
624 1.1 cgd * Routines to add and remove
625 1.1 cgd * data from an mbuf queue.
626 1.1 cgd *
627 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
628 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
629 1.1 cgd * space is available, comparing the function sbspace() with the amount
630 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
631 1.1 cgd * that data supplied is treated as the beginning of a new record.
632 1.1 cgd * To place a sender's address, optional access rights, and data in a
633 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
634 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
635 1.1 cgd * should be used. In either case, the new data begins a new record.
636 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
637 1.1 cgd * for the caller that there will be enough space to store the data.
638 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
639 1.1 cgd * to store additional information in.
640 1.1 cgd *
641 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
642 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
643 1.1 cgd * send buffer in a protocol with m_copy for output to a peer,
644 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
645 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
646 1.1 cgd */
647 1.1 cgd
648 1.43 thorpej #ifdef SOCKBUF_DEBUG
649 1.43 thorpej void
650 1.43 thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
651 1.43 thorpej {
652 1.43 thorpej struct mbuf *m = sb->sb_mb;
653 1.43 thorpej
654 1.91 ad KASSERT(solocked(sb->sb_so));
655 1.91 ad
656 1.43 thorpej while (m && m->m_nextpkt)
657 1.43 thorpej m = m->m_nextpkt;
658 1.43 thorpej
659 1.43 thorpej if (m != sb->sb_lastrecord) {
660 1.43 thorpej printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
661 1.43 thorpej sb->sb_mb, sb->sb_lastrecord, m);
662 1.43 thorpej printf("packet chain:\n");
663 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
664 1.43 thorpej printf("\t%p\n", m);
665 1.47 provos panic("sblastrecordchk from %s", where);
666 1.43 thorpej }
667 1.43 thorpej }
668 1.43 thorpej
669 1.43 thorpej void
670 1.43 thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
671 1.43 thorpej {
672 1.43 thorpej struct mbuf *m = sb->sb_mb;
673 1.43 thorpej struct mbuf *n;
674 1.43 thorpej
675 1.91 ad KASSERT(solocked(sb->sb_so));
676 1.91 ad
677 1.43 thorpej while (m && m->m_nextpkt)
678 1.43 thorpej m = m->m_nextpkt;
679 1.43 thorpej
680 1.43 thorpej while (m && m->m_next)
681 1.43 thorpej m = m->m_next;
682 1.43 thorpej
683 1.43 thorpej if (m != sb->sb_mbtail) {
684 1.43 thorpej printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
685 1.43 thorpej sb->sb_mb, sb->sb_mbtail, m);
686 1.43 thorpej printf("packet tree:\n");
687 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
688 1.43 thorpej printf("\t");
689 1.43 thorpej for (n = m; n != NULL; n = n->m_next)
690 1.43 thorpej printf("%p ", n);
691 1.43 thorpej printf("\n");
692 1.43 thorpej }
693 1.43 thorpej panic("sblastmbufchk from %s", where);
694 1.43 thorpej }
695 1.43 thorpej }
696 1.43 thorpej #endif /* SOCKBUF_DEBUG */
697 1.43 thorpej
698 1.63 jonathan /*
699 1.63 jonathan * Link a chain of records onto a socket buffer
700 1.63 jonathan */
701 1.63 jonathan #define SBLINKRECORDCHAIN(sb, m0, mlast) \
702 1.43 thorpej do { \
703 1.43 thorpej if ((sb)->sb_lastrecord != NULL) \
704 1.43 thorpej (sb)->sb_lastrecord->m_nextpkt = (m0); \
705 1.43 thorpej else \
706 1.43 thorpej (sb)->sb_mb = (m0); \
707 1.63 jonathan (sb)->sb_lastrecord = (mlast); \
708 1.43 thorpej } while (/*CONSTCOND*/0)
709 1.43 thorpej
710 1.63 jonathan
711 1.63 jonathan #define SBLINKRECORD(sb, m0) \
712 1.63 jonathan SBLINKRECORDCHAIN(sb, m0, m0)
713 1.63 jonathan
714 1.1 cgd /*
715 1.1 cgd * Append mbuf chain m to the last record in the
716 1.1 cgd * socket buffer sb. The additional space associated
717 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
718 1.1 cgd * discarded and mbufs are compacted where possible.
719 1.1 cgd */
720 1.7 mycroft void
721 1.37 lukem sbappend(struct sockbuf *sb, struct mbuf *m)
722 1.1 cgd {
723 1.37 lukem struct mbuf *n;
724 1.1 cgd
725 1.91 ad KASSERT(solocked(sb->sb_so));
726 1.91 ad
727 1.1 cgd if (m == 0)
728 1.1 cgd return;
729 1.43 thorpej
730 1.49 matt #ifdef MBUFTRACE
731 1.65 jonathan m_claimm(m, sb->sb_mowner);
732 1.49 matt #endif
733 1.49 matt
734 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 1");
735 1.43 thorpej
736 1.43 thorpej if ((n = sb->sb_lastrecord) != NULL) {
737 1.43 thorpej /*
738 1.43 thorpej * XXX Would like to simply use sb_mbtail here, but
739 1.43 thorpej * XXX I need to verify that I won't miss an EOR that
740 1.43 thorpej * XXX way.
741 1.43 thorpej */
742 1.1 cgd do {
743 1.1 cgd if (n->m_flags & M_EOR) {
744 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
745 1.1 cgd return;
746 1.1 cgd }
747 1.1 cgd } while (n->m_next && (n = n->m_next));
748 1.43 thorpej } else {
749 1.43 thorpej /*
750 1.43 thorpej * If this is the first record in the socket buffer, it's
751 1.43 thorpej * also the last record.
752 1.43 thorpej */
753 1.43 thorpej sb->sb_lastrecord = m;
754 1.1 cgd }
755 1.1 cgd sbcompress(sb, m, n);
756 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 2");
757 1.43 thorpej }
758 1.43 thorpej
759 1.43 thorpej /*
760 1.43 thorpej * This version of sbappend() should only be used when the caller
761 1.43 thorpej * absolutely knows that there will never be more than one record
762 1.43 thorpej * in the socket buffer, that is, a stream protocol (such as TCP).
763 1.43 thorpej */
764 1.43 thorpej void
765 1.44 thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
766 1.43 thorpej {
767 1.43 thorpej
768 1.91 ad KASSERT(solocked(sb->sb_so));
769 1.43 thorpej KDASSERT(m->m_nextpkt == NULL);
770 1.43 thorpej KASSERT(sb->sb_mb == sb->sb_lastrecord);
771 1.43 thorpej
772 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
773 1.43 thorpej
774 1.49 matt #ifdef MBUFTRACE
775 1.65 jonathan m_claimm(m, sb->sb_mowner);
776 1.49 matt #endif
777 1.49 matt
778 1.43 thorpej sbcompress(sb, m, sb->sb_mbtail);
779 1.43 thorpej
780 1.43 thorpej sb->sb_lastrecord = sb->sb_mb;
781 1.43 thorpej SBLASTRECORDCHK(sb, __func__);
782 1.1 cgd }
783 1.1 cgd
784 1.1 cgd #ifdef SOCKBUF_DEBUG
785 1.7 mycroft void
786 1.37 lukem sbcheck(struct sockbuf *sb)
787 1.1 cgd {
788 1.91 ad struct mbuf *m, *m2;
789 1.43 thorpej u_long len, mbcnt;
790 1.1 cgd
791 1.91 ad KASSERT(solocked(sb->sb_so));
792 1.91 ad
793 1.37 lukem len = 0;
794 1.37 lukem mbcnt = 0;
795 1.91 ad for (m = sb->sb_mb; m; m = m->m_nextpkt) {
796 1.91 ad for (m2 = m; m2 != NULL; m2 = m2->m_next) {
797 1.91 ad len += m2->m_len;
798 1.91 ad mbcnt += MSIZE;
799 1.91 ad if (m2->m_flags & M_EXT)
800 1.91 ad mbcnt += m2->m_ext.ext_size;
801 1.91 ad if (m2->m_nextpkt != NULL)
802 1.91 ad panic("sbcheck nextpkt");
803 1.91 ad }
804 1.1 cgd }
805 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
806 1.43 thorpej printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
807 1.1 cgd mbcnt, sb->sb_mbcnt);
808 1.1 cgd panic("sbcheck");
809 1.1 cgd }
810 1.1 cgd }
811 1.1 cgd #endif
812 1.1 cgd
813 1.1 cgd /*
814 1.1 cgd * As above, except the mbuf chain
815 1.1 cgd * begins a new record.
816 1.1 cgd */
817 1.7 mycroft void
818 1.37 lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
819 1.1 cgd {
820 1.37 lukem struct mbuf *m;
821 1.1 cgd
822 1.91 ad KASSERT(solocked(sb->sb_so));
823 1.91 ad
824 1.1 cgd if (m0 == 0)
825 1.1 cgd return;
826 1.43 thorpej
827 1.49 matt #ifdef MBUFTRACE
828 1.65 jonathan m_claimm(m0, sb->sb_mowner);
829 1.49 matt #endif
830 1.1 cgd /*
831 1.1 cgd * Put the first mbuf on the queue.
832 1.1 cgd * Note this permits zero length records.
833 1.1 cgd */
834 1.1 cgd sballoc(sb, m0);
835 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 1");
836 1.43 thorpej SBLINKRECORD(sb, m0);
837 1.1 cgd m = m0->m_next;
838 1.1 cgd m0->m_next = 0;
839 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
840 1.1 cgd m0->m_flags &= ~M_EOR;
841 1.1 cgd m->m_flags |= M_EOR;
842 1.1 cgd }
843 1.1 cgd sbcompress(sb, m, m0);
844 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 2");
845 1.1 cgd }
846 1.1 cgd
847 1.1 cgd /*
848 1.1 cgd * As above except that OOB data
849 1.1 cgd * is inserted at the beginning of the sockbuf,
850 1.1 cgd * but after any other OOB data.
851 1.1 cgd */
852 1.7 mycroft void
853 1.37 lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
854 1.1 cgd {
855 1.37 lukem struct mbuf *m, **mp;
856 1.1 cgd
857 1.91 ad KASSERT(solocked(sb->sb_so));
858 1.91 ad
859 1.1 cgd if (m0 == 0)
860 1.1 cgd return;
861 1.43 thorpej
862 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 1");
863 1.43 thorpej
864 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
865 1.1 cgd again:
866 1.1 cgd switch (m->m_type) {
867 1.1 cgd
868 1.1 cgd case MT_OOBDATA:
869 1.1 cgd continue; /* WANT next train */
870 1.1 cgd
871 1.1 cgd case MT_CONTROL:
872 1.11 christos if ((m = m->m_next) != NULL)
873 1.1 cgd goto again; /* inspect THIS train further */
874 1.1 cgd }
875 1.1 cgd break;
876 1.1 cgd }
877 1.1 cgd /*
878 1.1 cgd * Put the first mbuf on the queue.
879 1.1 cgd * Note this permits zero length records.
880 1.1 cgd */
881 1.1 cgd sballoc(sb, m0);
882 1.1 cgd m0->m_nextpkt = *mp;
883 1.43 thorpej if (*mp == NULL) {
884 1.43 thorpej /* m0 is actually the new tail */
885 1.43 thorpej sb->sb_lastrecord = m0;
886 1.43 thorpej }
887 1.1 cgd *mp = m0;
888 1.1 cgd m = m0->m_next;
889 1.1 cgd m0->m_next = 0;
890 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
891 1.1 cgd m0->m_flags &= ~M_EOR;
892 1.1 cgd m->m_flags |= M_EOR;
893 1.1 cgd }
894 1.1 cgd sbcompress(sb, m, m0);
895 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 2");
896 1.1 cgd }
897 1.1 cgd
898 1.1 cgd /*
899 1.1 cgd * Append address and data, and optionally, control (ancillary) data
900 1.1 cgd * to the receive queue of a socket. If present,
901 1.1 cgd * m0 must include a packet header with total length.
902 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
903 1.1 cgd */
904 1.7 mycroft int
905 1.61 matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
906 1.37 lukem struct mbuf *control)
907 1.1 cgd {
908 1.43 thorpej struct mbuf *m, *n, *nlast;
909 1.50 fvdl int space, len;
910 1.1 cgd
911 1.91 ad KASSERT(solocked(sb->sb_so));
912 1.91 ad
913 1.37 lukem space = asa->sa_len;
914 1.37 lukem
915 1.49 matt if (m0 != NULL) {
916 1.49 matt if ((m0->m_flags & M_PKTHDR) == 0)
917 1.49 matt panic("sbappendaddr");
918 1.1 cgd space += m0->m_pkthdr.len;
919 1.49 matt #ifdef MBUFTRACE
920 1.65 jonathan m_claimm(m0, sb->sb_mowner);
921 1.49 matt #endif
922 1.49 matt }
923 1.1 cgd for (n = control; n; n = n->m_next) {
924 1.1 cgd space += n->m_len;
925 1.49 matt MCLAIM(n, sb->sb_mowner);
926 1.1 cgd if (n->m_next == 0) /* keep pointer to last control buf */
927 1.1 cgd break;
928 1.1 cgd }
929 1.1 cgd if (space > sbspace(sb))
930 1.1 cgd return (0);
931 1.1 cgd MGET(m, M_DONTWAIT, MT_SONAME);
932 1.1 cgd if (m == 0)
933 1.1 cgd return (0);
934 1.49 matt MCLAIM(m, sb->sb_mowner);
935 1.50 fvdl /*
936 1.50 fvdl * XXX avoid 'comparison always true' warning which isn't easily
937 1.50 fvdl * avoided.
938 1.50 fvdl */
939 1.50 fvdl len = asa->sa_len;
940 1.50 fvdl if (len > MLEN) {
941 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
942 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
943 1.20 thorpej m_free(m);
944 1.20 thorpej return (0);
945 1.20 thorpej }
946 1.20 thorpej }
947 1.1 cgd m->m_len = asa->sa_len;
948 1.82 christos memcpy(mtod(m, void *), asa, asa->sa_len);
949 1.1 cgd if (n)
950 1.1 cgd n->m_next = m0; /* concatenate data to control */
951 1.1 cgd else
952 1.1 cgd control = m0;
953 1.1 cgd m->m_next = control;
954 1.43 thorpej
955 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 1");
956 1.43 thorpej
957 1.43 thorpej for (n = m; n->m_next != NULL; n = n->m_next)
958 1.1 cgd sballoc(sb, n);
959 1.43 thorpej sballoc(sb, n);
960 1.43 thorpej nlast = n;
961 1.43 thorpej SBLINKRECORD(sb, m);
962 1.43 thorpej
963 1.43 thorpej sb->sb_mbtail = nlast;
964 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendaddr");
965 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 2");
966 1.43 thorpej
967 1.1 cgd return (1);
968 1.1 cgd }
969 1.1 cgd
970 1.63 jonathan /*
971 1.63 jonathan * Helper for sbappendchainaddr: prepend a struct sockaddr* to
972 1.63 jonathan * an mbuf chain.
973 1.63 jonathan */
974 1.70 perry static inline struct mbuf *
975 1.81 yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
976 1.64 jonathan const struct sockaddr *asa)
977 1.63 jonathan {
978 1.63 jonathan struct mbuf *m;
979 1.64 jonathan const int salen = asa->sa_len;
980 1.63 jonathan
981 1.91 ad KASSERT(solocked(sb->sb_so));
982 1.91 ad
983 1.63 jonathan /* only the first in each chain need be a pkthdr */
984 1.63 jonathan MGETHDR(m, M_DONTWAIT, MT_SONAME);
985 1.63 jonathan if (m == 0)
986 1.63 jonathan return (0);
987 1.63 jonathan MCLAIM(m, sb->sb_mowner);
988 1.64 jonathan #ifdef notyet
989 1.64 jonathan if (salen > MHLEN) {
990 1.64 jonathan MEXTMALLOC(m, salen, M_NOWAIT);
991 1.64 jonathan if ((m->m_flags & M_EXT) == 0) {
992 1.64 jonathan m_free(m);
993 1.64 jonathan return (0);
994 1.64 jonathan }
995 1.64 jonathan }
996 1.64 jonathan #else
997 1.64 jonathan KASSERT(salen <= MHLEN);
998 1.64 jonathan #endif
999 1.64 jonathan m->m_len = salen;
1000 1.82 christos memcpy(mtod(m, void *), asa, salen);
1001 1.63 jonathan m->m_next = m0;
1002 1.64 jonathan m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1003 1.63 jonathan
1004 1.63 jonathan return m;
1005 1.63 jonathan }
1006 1.63 jonathan
1007 1.63 jonathan int
1008 1.63 jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1009 1.63 jonathan struct mbuf *m0, int sbprio)
1010 1.63 jonathan {
1011 1.63 jonathan int space;
1012 1.63 jonathan struct mbuf *m, *n, *n0, *nlast;
1013 1.63 jonathan int error;
1014 1.63 jonathan
1015 1.91 ad KASSERT(solocked(sb->sb_so));
1016 1.91 ad
1017 1.63 jonathan /*
1018 1.63 jonathan * XXX sbprio reserved for encoding priority of this* request:
1019 1.63 jonathan * SB_PRIO_NONE --> honour normal sb limits
1020 1.63 jonathan * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1021 1.63 jonathan * take whole chain. Intended for large requests
1022 1.63 jonathan * that should be delivered atomically (all, or none).
1023 1.63 jonathan * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1024 1.63 jonathan * over normal socket limits, for messages indicating
1025 1.63 jonathan * buffer overflow in earlier normal/lower-priority messages
1026 1.63 jonathan * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1027 1.63 jonathan * Intended for kernel-generated messages only.
1028 1.63 jonathan * Up to generator to avoid total mbuf resource exhaustion.
1029 1.63 jonathan */
1030 1.63 jonathan (void)sbprio;
1031 1.63 jonathan
1032 1.63 jonathan if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1033 1.63 jonathan panic("sbappendaddrchain");
1034 1.63 jonathan
1035 1.63 jonathan space = sbspace(sb);
1036 1.66 perry
1037 1.63 jonathan #ifdef notyet
1038 1.66 perry /*
1039 1.63 jonathan * Enforce SB_PRIO_* limits as described above.
1040 1.63 jonathan */
1041 1.63 jonathan #endif
1042 1.63 jonathan
1043 1.63 jonathan n0 = NULL;
1044 1.63 jonathan nlast = NULL;
1045 1.63 jonathan for (m = m0; m; m = m->m_nextpkt) {
1046 1.63 jonathan struct mbuf *np;
1047 1.63 jonathan
1048 1.64 jonathan #ifdef MBUFTRACE
1049 1.65 jonathan m_claimm(m, sb->sb_mowner);
1050 1.64 jonathan #endif
1051 1.64 jonathan
1052 1.63 jonathan /* Prepend sockaddr to this record (m) of input chain m0 */
1053 1.64 jonathan n = m_prepend_sockaddr(sb, m, asa);
1054 1.63 jonathan if (n == NULL) {
1055 1.63 jonathan error = ENOBUFS;
1056 1.63 jonathan goto bad;
1057 1.63 jonathan }
1058 1.63 jonathan
1059 1.63 jonathan /* Append record (asa+m) to end of new chain n0 */
1060 1.63 jonathan if (n0 == NULL) {
1061 1.63 jonathan n0 = n;
1062 1.63 jonathan } else {
1063 1.63 jonathan nlast->m_nextpkt = n;
1064 1.63 jonathan }
1065 1.63 jonathan /* Keep track of last record on new chain */
1066 1.63 jonathan nlast = n;
1067 1.63 jonathan
1068 1.63 jonathan for (np = n; np; np = np->m_next)
1069 1.63 jonathan sballoc(sb, np);
1070 1.63 jonathan }
1071 1.63 jonathan
1072 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1073 1.64 jonathan
1074 1.63 jonathan /* Drop the entire chain of (asa+m) records onto the socket */
1075 1.63 jonathan SBLINKRECORDCHAIN(sb, n0, nlast);
1076 1.64 jonathan
1077 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1078 1.64 jonathan
1079 1.63 jonathan for (m = nlast; m->m_next; m = m->m_next)
1080 1.63 jonathan ;
1081 1.63 jonathan sb->sb_mbtail = m;
1082 1.64 jonathan SBLASTMBUFCHK(sb, "sbappendaddrchain");
1083 1.64 jonathan
1084 1.63 jonathan return (1);
1085 1.63 jonathan
1086 1.63 jonathan bad:
1087 1.64 jonathan /*
1088 1.64 jonathan * On error, free the prepended addreseses. For consistency
1089 1.64 jonathan * with sbappendaddr(), leave it to our caller to free
1090 1.64 jonathan * the input record chain passed to us as m0.
1091 1.64 jonathan */
1092 1.64 jonathan while ((n = n0) != NULL) {
1093 1.64 jonathan struct mbuf *np;
1094 1.64 jonathan
1095 1.64 jonathan /* Undo the sballoc() of this record */
1096 1.64 jonathan for (np = n; np; np = np->m_next)
1097 1.64 jonathan sbfree(sb, np);
1098 1.64 jonathan
1099 1.64 jonathan n0 = n->m_nextpkt; /* iterate at next prepended address */
1100 1.64 jonathan MFREE(n, np); /* free prepended address (not data) */
1101 1.64 jonathan }
1102 1.66 perry return 0;
1103 1.63 jonathan }
1104 1.63 jonathan
1105 1.63 jonathan
1106 1.7 mycroft int
1107 1.37 lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1108 1.1 cgd {
1109 1.43 thorpej struct mbuf *m, *mlast, *n;
1110 1.37 lukem int space;
1111 1.1 cgd
1112 1.91 ad KASSERT(solocked(sb->sb_so));
1113 1.91 ad
1114 1.37 lukem space = 0;
1115 1.1 cgd if (control == 0)
1116 1.1 cgd panic("sbappendcontrol");
1117 1.1 cgd for (m = control; ; m = m->m_next) {
1118 1.1 cgd space += m->m_len;
1119 1.49 matt MCLAIM(m, sb->sb_mowner);
1120 1.1 cgd if (m->m_next == 0)
1121 1.1 cgd break;
1122 1.1 cgd }
1123 1.1 cgd n = m; /* save pointer to last control buffer */
1124 1.49 matt for (m = m0; m; m = m->m_next) {
1125 1.49 matt MCLAIM(m, sb->sb_mowner);
1126 1.1 cgd space += m->m_len;
1127 1.49 matt }
1128 1.1 cgd if (space > sbspace(sb))
1129 1.1 cgd return (0);
1130 1.1 cgd n->m_next = m0; /* concatenate data to control */
1131 1.43 thorpej
1132 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1133 1.43 thorpej
1134 1.43 thorpej for (m = control; m->m_next != NULL; m = m->m_next)
1135 1.1 cgd sballoc(sb, m);
1136 1.43 thorpej sballoc(sb, m);
1137 1.43 thorpej mlast = m;
1138 1.43 thorpej SBLINKRECORD(sb, control);
1139 1.43 thorpej
1140 1.43 thorpej sb->sb_mbtail = mlast;
1141 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendcontrol");
1142 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1143 1.43 thorpej
1144 1.1 cgd return (1);
1145 1.1 cgd }
1146 1.1 cgd
1147 1.1 cgd /*
1148 1.1 cgd * Compress mbuf chain m into the socket
1149 1.1 cgd * buffer sb following mbuf n. If n
1150 1.1 cgd * is null, the buffer is presumed empty.
1151 1.1 cgd */
1152 1.7 mycroft void
1153 1.37 lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1154 1.1 cgd {
1155 1.37 lukem int eor;
1156 1.37 lukem struct mbuf *o;
1157 1.1 cgd
1158 1.91 ad KASSERT(solocked(sb->sb_so));
1159 1.91 ad
1160 1.37 lukem eor = 0;
1161 1.1 cgd while (m) {
1162 1.1 cgd eor |= m->m_flags & M_EOR;
1163 1.1 cgd if (m->m_len == 0 &&
1164 1.1 cgd (eor == 0 ||
1165 1.1 cgd (((o = m->m_next) || (o = n)) &&
1166 1.1 cgd o->m_type == m->m_type))) {
1167 1.46 thorpej if (sb->sb_lastrecord == m)
1168 1.46 thorpej sb->sb_lastrecord = m->m_next;
1169 1.1 cgd m = m_free(m);
1170 1.1 cgd continue;
1171 1.1 cgd }
1172 1.40 thorpej if (n && (n->m_flags & M_EOR) == 0 &&
1173 1.40 thorpej /* M_TRAILINGSPACE() checks buffer writeability */
1174 1.40 thorpej m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1175 1.40 thorpej m->m_len <= M_TRAILINGSPACE(n) &&
1176 1.40 thorpej n->m_type == m->m_type) {
1177 1.82 christos memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1178 1.1 cgd (unsigned)m->m_len);
1179 1.1 cgd n->m_len += m->m_len;
1180 1.1 cgd sb->sb_cc += m->m_len;
1181 1.1 cgd m = m_free(m);
1182 1.1 cgd continue;
1183 1.1 cgd }
1184 1.1 cgd if (n)
1185 1.1 cgd n->m_next = m;
1186 1.1 cgd else
1187 1.1 cgd sb->sb_mb = m;
1188 1.43 thorpej sb->sb_mbtail = m;
1189 1.1 cgd sballoc(sb, m);
1190 1.1 cgd n = m;
1191 1.1 cgd m->m_flags &= ~M_EOR;
1192 1.1 cgd m = m->m_next;
1193 1.1 cgd n->m_next = 0;
1194 1.1 cgd }
1195 1.1 cgd if (eor) {
1196 1.1 cgd if (n)
1197 1.1 cgd n->m_flags |= eor;
1198 1.1 cgd else
1199 1.15 christos printf("semi-panic: sbcompress\n");
1200 1.1 cgd }
1201 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
1202 1.1 cgd }
1203 1.1 cgd
1204 1.1 cgd /*
1205 1.1 cgd * Free all mbufs in a sockbuf.
1206 1.1 cgd * Check that all resources are reclaimed.
1207 1.1 cgd */
1208 1.7 mycroft void
1209 1.37 lukem sbflush(struct sockbuf *sb)
1210 1.1 cgd {
1211 1.1 cgd
1212 1.91 ad KASSERT(solocked(sb->sb_so));
1213 1.43 thorpej KASSERT((sb->sb_flags & SB_LOCK) == 0);
1214 1.43 thorpej
1215 1.1 cgd while (sb->sb_mbcnt)
1216 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
1217 1.43 thorpej
1218 1.43 thorpej KASSERT(sb->sb_cc == 0);
1219 1.43 thorpej KASSERT(sb->sb_mb == NULL);
1220 1.43 thorpej KASSERT(sb->sb_mbtail == NULL);
1221 1.43 thorpej KASSERT(sb->sb_lastrecord == NULL);
1222 1.1 cgd }
1223 1.1 cgd
1224 1.1 cgd /*
1225 1.1 cgd * Drop data from (the front of) a sockbuf.
1226 1.1 cgd */
1227 1.7 mycroft void
1228 1.37 lukem sbdrop(struct sockbuf *sb, int len)
1229 1.1 cgd {
1230 1.37 lukem struct mbuf *m, *mn, *next;
1231 1.1 cgd
1232 1.91 ad KASSERT(solocked(sb->sb_so));
1233 1.91 ad
1234 1.1 cgd next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1235 1.1 cgd while (len > 0) {
1236 1.1 cgd if (m == 0) {
1237 1.1 cgd if (next == 0)
1238 1.112 matt panic("sbdrop(%p,%d): cc=%lu",
1239 1.112 matt sb, len, sb->sb_cc);
1240 1.1 cgd m = next;
1241 1.1 cgd next = m->m_nextpkt;
1242 1.1 cgd continue;
1243 1.1 cgd }
1244 1.1 cgd if (m->m_len > len) {
1245 1.1 cgd m->m_len -= len;
1246 1.1 cgd m->m_data += len;
1247 1.1 cgd sb->sb_cc -= len;
1248 1.1 cgd break;
1249 1.1 cgd }
1250 1.1 cgd len -= m->m_len;
1251 1.1 cgd sbfree(sb, m);
1252 1.1 cgd MFREE(m, mn);
1253 1.1 cgd m = mn;
1254 1.1 cgd }
1255 1.1 cgd while (m && m->m_len == 0) {
1256 1.1 cgd sbfree(sb, m);
1257 1.1 cgd MFREE(m, mn);
1258 1.1 cgd m = mn;
1259 1.1 cgd }
1260 1.1 cgd if (m) {
1261 1.1 cgd sb->sb_mb = m;
1262 1.1 cgd m->m_nextpkt = next;
1263 1.1 cgd } else
1264 1.1 cgd sb->sb_mb = next;
1265 1.43 thorpej /*
1266 1.45 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second part
1267 1.43 thorpej * makes sure sb_lastrecord is up-to-date if we dropped
1268 1.43 thorpej * part of the last record.
1269 1.43 thorpej */
1270 1.43 thorpej m = sb->sb_mb;
1271 1.43 thorpej if (m == NULL) {
1272 1.43 thorpej sb->sb_mbtail = NULL;
1273 1.43 thorpej sb->sb_lastrecord = NULL;
1274 1.43 thorpej } else if (m->m_nextpkt == NULL)
1275 1.43 thorpej sb->sb_lastrecord = m;
1276 1.1 cgd }
1277 1.1 cgd
1278 1.1 cgd /*
1279 1.1 cgd * Drop a record off the front of a sockbuf
1280 1.1 cgd * and move the next record to the front.
1281 1.1 cgd */
1282 1.7 mycroft void
1283 1.37 lukem sbdroprecord(struct sockbuf *sb)
1284 1.1 cgd {
1285 1.37 lukem struct mbuf *m, *mn;
1286 1.1 cgd
1287 1.91 ad KASSERT(solocked(sb->sb_so));
1288 1.91 ad
1289 1.1 cgd m = sb->sb_mb;
1290 1.1 cgd if (m) {
1291 1.1 cgd sb->sb_mb = m->m_nextpkt;
1292 1.1 cgd do {
1293 1.1 cgd sbfree(sb, m);
1294 1.1 cgd MFREE(m, mn);
1295 1.11 christos } while ((m = mn) != NULL);
1296 1.1 cgd }
1297 1.45 thorpej SB_EMPTY_FIXUP(sb);
1298 1.19 thorpej }
1299 1.19 thorpej
1300 1.19 thorpej /*
1301 1.19 thorpej * Create a "control" mbuf containing the specified data
1302 1.19 thorpej * with the specified type for presentation on a socket buffer.
1303 1.19 thorpej */
1304 1.19 thorpej struct mbuf *
1305 1.111 christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1306 1.19 thorpej {
1307 1.37 lukem struct cmsghdr *cp;
1308 1.37 lukem struct mbuf *m;
1309 1.111 christos int space = CMSG_SPACE(size);
1310 1.19 thorpej
1311 1.111 christos if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1312 1.111 christos printf("%s: message too large %d\n", __func__, space);
1313 1.30 itojun return NULL;
1314 1.30 itojun }
1315 1.30 itojun
1316 1.111 christos if ((m = m_get(flags, MT_CONTROL)) == NULL)
1317 1.111 christos return NULL;
1318 1.111 christos if (space > MLEN) {
1319 1.111 christos if (space > MCLBYTES)
1320 1.111 christos MEXTMALLOC(m, space, M_WAITOK);
1321 1.111 christos else
1322 1.111 christos MCLGET(m, flags);
1323 1.30 itojun if ((m->m_flags & M_EXT) == 0) {
1324 1.30 itojun m_free(m);
1325 1.30 itojun return NULL;
1326 1.30 itojun }
1327 1.30 itojun }
1328 1.19 thorpej cp = mtod(m, struct cmsghdr *);
1329 1.111 christos *p = CMSG_DATA(cp);
1330 1.111 christos m->m_len = space;
1331 1.35 itojun cp->cmsg_len = CMSG_LEN(size);
1332 1.19 thorpej cp->cmsg_level = level;
1333 1.19 thorpej cp->cmsg_type = type;
1334 1.111 christos return m;
1335 1.111 christos }
1336 1.111 christos
1337 1.111 christos struct mbuf *
1338 1.111 christos sbcreatecontrol(void *p, int size, int type, int level)
1339 1.111 christos {
1340 1.111 christos struct mbuf *m;
1341 1.111 christos void *v;
1342 1.111 christos
1343 1.111 christos m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1344 1.111 christos if (m == NULL)
1345 1.111 christos return NULL;
1346 1.111 christos memcpy(v, p, size);
1347 1.111 christos return m;
1348 1.1 cgd }
1349 1.91 ad
1350 1.91 ad void
1351 1.91 ad solockretry(struct socket *so, kmutex_t *lock)
1352 1.91 ad {
1353 1.91 ad
1354 1.91 ad while (lock != so->so_lock) {
1355 1.91 ad mutex_exit(lock);
1356 1.91 ad lock = so->so_lock;
1357 1.91 ad mutex_enter(lock);
1358 1.91 ad }
1359 1.91 ad }
1360 1.91 ad
1361 1.91 ad bool
1362 1.91 ad solocked(struct socket *so)
1363 1.91 ad {
1364 1.91 ad
1365 1.91 ad return mutex_owned(so->so_lock);
1366 1.91 ad }
1367 1.91 ad
1368 1.91 ad bool
1369 1.91 ad solocked2(struct socket *so1, struct socket *so2)
1370 1.91 ad {
1371 1.91 ad kmutex_t *lock;
1372 1.91 ad
1373 1.91 ad lock = so1->so_lock;
1374 1.91 ad if (lock != so2->so_lock)
1375 1.91 ad return false;
1376 1.91 ad return mutex_owned(lock);
1377 1.91 ad }
1378 1.91 ad
1379 1.91 ad /*
1380 1.91 ad * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1381 1.91 ad * protocols that do not have special locking requirements.
1382 1.91 ad */
1383 1.91 ad void
1384 1.91 ad sosetlock(struct socket *so)
1385 1.91 ad {
1386 1.91 ad kmutex_t *lock;
1387 1.91 ad
1388 1.91 ad if (so->so_lock == NULL) {
1389 1.91 ad lock = softnet_lock;
1390 1.91 ad so->so_lock = lock;
1391 1.91 ad mutex_obj_hold(lock);
1392 1.91 ad mutex_enter(lock);
1393 1.91 ad }
1394 1.91 ad
1395 1.91 ad /* In all cases, lock must be held on return from PRU_ATTACH. */
1396 1.91 ad KASSERT(solocked(so));
1397 1.91 ad }
1398 1.91 ad
1399 1.91 ad /*
1400 1.91 ad * Set lock on sockbuf sb; sleep if lock is already held.
1401 1.91 ad * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1402 1.91 ad * Returns error without lock if sleep is interrupted.
1403 1.91 ad */
1404 1.91 ad int
1405 1.91 ad sblock(struct sockbuf *sb, int wf)
1406 1.91 ad {
1407 1.91 ad struct socket *so;
1408 1.91 ad kmutex_t *lock;
1409 1.91 ad int error;
1410 1.91 ad
1411 1.91 ad KASSERT(solocked(sb->sb_so));
1412 1.91 ad
1413 1.91 ad for (;;) {
1414 1.91 ad if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1415 1.91 ad sb->sb_flags |= SB_LOCK;
1416 1.91 ad return 0;
1417 1.91 ad }
1418 1.91 ad if (wf != M_WAITOK)
1419 1.91 ad return EWOULDBLOCK;
1420 1.91 ad so = sb->sb_so;
1421 1.91 ad lock = so->so_lock;
1422 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0) {
1423 1.91 ad cv_wait(&so->so_cv, lock);
1424 1.91 ad error = 0;
1425 1.91 ad } else
1426 1.91 ad error = cv_wait_sig(&so->so_cv, lock);
1427 1.91 ad if (__predict_false(lock != so->so_lock))
1428 1.91 ad solockretry(so, lock);
1429 1.91 ad if (error != 0)
1430 1.91 ad return error;
1431 1.91 ad }
1432 1.91 ad }
1433 1.91 ad
1434 1.91 ad void
1435 1.91 ad sbunlock(struct sockbuf *sb)
1436 1.91 ad {
1437 1.91 ad struct socket *so;
1438 1.91 ad
1439 1.91 ad so = sb->sb_so;
1440 1.91 ad
1441 1.91 ad KASSERT(solocked(so));
1442 1.91 ad KASSERT((sb->sb_flags & SB_LOCK) != 0);
1443 1.91 ad
1444 1.91 ad sb->sb_flags &= ~SB_LOCK;
1445 1.91 ad cv_broadcast(&so->so_cv);
1446 1.91 ad }
1447 1.91 ad
1448 1.91 ad int
1449 1.101 yamt sowait(struct socket *so, bool catch, int timo)
1450 1.91 ad {
1451 1.91 ad kmutex_t *lock;
1452 1.91 ad int error;
1453 1.91 ad
1454 1.91 ad KASSERT(solocked(so));
1455 1.101 yamt KASSERT(catch || timo != 0);
1456 1.91 ad
1457 1.91 ad lock = so->so_lock;
1458 1.101 yamt if (catch)
1459 1.101 yamt error = cv_timedwait_sig(&so->so_cv, lock, timo);
1460 1.101 yamt else
1461 1.101 yamt error = cv_timedwait(&so->so_cv, lock, timo);
1462 1.91 ad if (__predict_false(lock != so->so_lock))
1463 1.91 ad solockretry(so, lock);
1464 1.91 ad return error;
1465 1.91 ad }
1466