uipc_socket2.c revision 1.112.2.1 1 1.112.2.1 rmind /* $NetBSD: uipc_socket2.c,v 1.112.2.1 2013/08/28 15:21:48 rmind Exp $ */
2 1.91 ad
3 1.91 ad /*-
4 1.91 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.91 ad * All rights reserved.
6 1.91 ad *
7 1.91 ad * Redistribution and use in source and binary forms, with or without
8 1.91 ad * modification, are permitted provided that the following conditions
9 1.91 ad * are met:
10 1.91 ad * 1. Redistributions of source code must retain the above copyright
11 1.91 ad * notice, this list of conditions and the following disclaimer.
12 1.91 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.91 ad * notice, this list of conditions and the following disclaimer in the
14 1.91 ad * documentation and/or other materials provided with the distribution.
15 1.91 ad *
16 1.91 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.91 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.91 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.91 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.91 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.91 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.91 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.91 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.91 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.91 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.91 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.91 ad */
28 1.9 cgd
29 1.1 cgd /*
30 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 1.7 mycroft * The Regents of the University of California. All rights reserved.
32 1.1 cgd *
33 1.1 cgd * Redistribution and use in source and binary forms, with or without
34 1.1 cgd * modification, are permitted provided that the following conditions
35 1.1 cgd * are met:
36 1.1 cgd * 1. Redistributions of source code must retain the above copyright
37 1.1 cgd * notice, this list of conditions and the following disclaimer.
38 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
39 1.1 cgd * notice, this list of conditions and the following disclaimer in the
40 1.1 cgd * documentation and/or other materials provided with the distribution.
41 1.54 agc * 3. Neither the name of the University nor the names of its contributors
42 1.1 cgd * may be used to endorse or promote products derived from this software
43 1.1 cgd * without specific prior written permission.
44 1.1 cgd *
45 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 cgd * SUCH DAMAGE.
56 1.1 cgd *
57 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 1.1 cgd */
59 1.42 lukem
60 1.42 lukem #include <sys/cdefs.h>
61 1.112.2.1 rmind __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.112.2.1 2013/08/28 15:21:48 rmind Exp $");
62 1.51 martin
63 1.51 martin #include "opt_mbuftrace.h"
64 1.58 thorpej #include "opt_sb_max.h"
65 1.1 cgd
66 1.5 mycroft #include <sys/param.h>
67 1.5 mycroft #include <sys/systm.h>
68 1.5 mycroft #include <sys/proc.h>
69 1.5 mycroft #include <sys/file.h>
70 1.5 mycroft #include <sys/buf.h>
71 1.5 mycroft #include <sys/mbuf.h>
72 1.5 mycroft #include <sys/protosw.h>
73 1.91 ad #include <sys/domain.h>
74 1.55 christos #include <sys/poll.h>
75 1.5 mycroft #include <sys/socket.h>
76 1.5 mycroft #include <sys/socketvar.h>
77 1.11 christos #include <sys/signalvar.h>
78 1.71 elad #include <sys/kauth.h>
79 1.91 ad #include <sys/pool.h>
80 1.98 pooka #include <sys/uidinfo.h>
81 1.1 cgd
82 1.1 cgd /*
83 1.91 ad * Primitive routines for operating on sockets and socket buffers.
84 1.91 ad *
85 1.91 ad * Locking rules and assumptions:
86 1.91 ad *
87 1.91 ad * o socket::so_lock can change on the fly. The low level routines used
88 1.91 ad * to lock sockets are aware of this. When so_lock is acquired, the
89 1.91 ad * routine locking must check to see if so_lock still points to the
90 1.91 ad * lock that was acquired. If so_lock has changed in the meantime, the
91 1.112.2.1 rmind * now irrelevant lock that was acquired must be dropped and the lock
92 1.91 ad * operation retried. Although not proven here, this is completely safe
93 1.91 ad * on a multiprocessor system, even with relaxed memory ordering, given
94 1.91 ad * the next two rules:
95 1.91 ad *
96 1.91 ad * o In order to mutate so_lock, the lock pointed to by the current value
97 1.91 ad * of so_lock must be held: i.e., the socket must be held locked by the
98 1.91 ad * changing thread. The thread must issue membar_exit() to prevent
99 1.91 ad * memory accesses being reordered, and can set so_lock to the desired
100 1.91 ad * value. If the lock pointed to by the new value of so_lock is not
101 1.91 ad * held by the changing thread, the socket must then be considered
102 1.91 ad * unlocked.
103 1.91 ad *
104 1.91 ad * o If so_lock is mutated, and the previous lock referred to by so_lock
105 1.91 ad * could still be visible to other threads in the system (e.g. via file
106 1.91 ad * descriptor or protocol-internal reference), then the old lock must
107 1.91 ad * remain valid until the socket and/or protocol control block has been
108 1.91 ad * torn down.
109 1.91 ad *
110 1.91 ad * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 1.91 ad * connecting), then locking the socket must also lock the socket pointed
112 1.91 ad * to by so_head: their lock pointers must match.
113 1.91 ad *
114 1.91 ad * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 1.91 ad * locking the socket must also lock the sockets attached to both queues.
116 1.91 ad * Again, their lock pointers must match.
117 1.91 ad *
118 1.112.2.1 rmind * o Beyond the initial lock assignment in socreate(), assigning locks to
119 1.91 ad * sockets is the responsibility of the individual protocols / protocol
120 1.91 ad * domains.
121 1.1 cgd */
122 1.1 cgd
123 1.94 ad static pool_cache_t socket_cache;
124 1.1 cgd
125 1.58 thorpej u_long sb_max = SB_MAX; /* maximum socket buffer size */
126 1.58 thorpej static u_long sb_max_adj; /* adjusted sb_max */
127 1.58 thorpej
128 1.1 cgd /*
129 1.1 cgd * Procedures to manipulate state flags of socket
130 1.1 cgd * and do appropriate wakeups. Normal sequence from the
131 1.1 cgd * active (originating) side is that soisconnecting() is
132 1.1 cgd * called during processing of connect() call,
133 1.1 cgd * resulting in an eventual call to soisconnected() if/when the
134 1.1 cgd * connection is established. When the connection is torn down
135 1.1 cgd * soisdisconnecting() is called during processing of disconnect() call,
136 1.1 cgd * and soisdisconnected() is called when the connection to the peer
137 1.1 cgd * is totally severed. The semantics of these routines are such that
138 1.1 cgd * connectionless protocols can call soisconnected() and soisdisconnected()
139 1.1 cgd * only, bypassing the in-progress calls when setting up a ``connection''
140 1.1 cgd * takes no time.
141 1.1 cgd *
142 1.1 cgd * From the passive side, a socket is created with
143 1.1 cgd * two queues of sockets: so_q0 for connections in progress
144 1.1 cgd * and so_q for connections already made and awaiting user acceptance.
145 1.1 cgd * As a protocol is preparing incoming connections, it creates a socket
146 1.1 cgd * structure queued on so_q0 by calling sonewconn(). When the connection
147 1.1 cgd * is established, soisconnected() is called, and transfers the
148 1.1 cgd * socket structure to so_q, making it available to accept().
149 1.66 perry *
150 1.1 cgd * If a socket is closed with sockets on either
151 1.1 cgd * so_q0 or so_q, these sockets are dropped.
152 1.1 cgd *
153 1.1 cgd * If higher level protocols are implemented in
154 1.1 cgd * the kernel, the wakeups done here will sometimes
155 1.1 cgd * cause software-interrupt process scheduling.
156 1.1 cgd */
157 1.1 cgd
158 1.7 mycroft void
159 1.37 lukem soisconnecting(struct socket *so)
160 1.1 cgd {
161 1.1 cgd
162 1.91 ad KASSERT(solocked(so));
163 1.91 ad
164 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 1.1 cgd so->so_state |= SS_ISCONNECTING;
166 1.1 cgd }
167 1.1 cgd
168 1.7 mycroft void
169 1.37 lukem soisconnected(struct socket *so)
170 1.1 cgd {
171 1.37 lukem struct socket *head;
172 1.1 cgd
173 1.37 lukem head = so->so_head;
174 1.91 ad
175 1.91 ad KASSERT(solocked(so));
176 1.91 ad KASSERT(head == NULL || solocked2(so, head));
177 1.91 ad
178 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179 1.1 cgd so->so_state |= SS_ISCONNECTED;
180 1.97 tls if (head && so->so_onq == &head->so_q0) {
181 1.97 tls if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 1.97 tls soqremque(so, 0);
183 1.97 tls soqinsque(head, so, 1);
184 1.97 tls sorwakeup(head);
185 1.97 tls cv_broadcast(&head->so_cv);
186 1.97 tls } else {
187 1.97 tls so->so_upcall =
188 1.97 tls head->so_accf->so_accept_filter->accf_callback;
189 1.97 tls so->so_upcallarg = head->so_accf->so_accept_filter_arg;
190 1.97 tls so->so_rcv.sb_flags |= SB_UPCALL;
191 1.97 tls so->so_options &= ~SO_ACCEPTFILTER;
192 1.104 tls (*so->so_upcall)(so, so->so_upcallarg,
193 1.104 tls POLLIN|POLLRDNORM, M_DONTWAIT);
194 1.101 yamt }
195 1.1 cgd } else {
196 1.91 ad cv_broadcast(&so->so_cv);
197 1.1 cgd sorwakeup(so);
198 1.1 cgd sowwakeup(so);
199 1.1 cgd }
200 1.1 cgd }
201 1.1 cgd
202 1.7 mycroft void
203 1.37 lukem soisdisconnecting(struct socket *so)
204 1.1 cgd {
205 1.1 cgd
206 1.91 ad KASSERT(solocked(so));
207 1.91 ad
208 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
209 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
210 1.91 ad cv_broadcast(&so->so_cv);
211 1.1 cgd sowwakeup(so);
212 1.1 cgd sorwakeup(so);
213 1.1 cgd }
214 1.1 cgd
215 1.7 mycroft void
216 1.37 lukem soisdisconnected(struct socket *so)
217 1.1 cgd {
218 1.1 cgd
219 1.91 ad KASSERT(solocked(so));
220 1.91 ad
221 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
222 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
223 1.91 ad cv_broadcast(&so->so_cv);
224 1.1 cgd sowwakeup(so);
225 1.1 cgd sorwakeup(so);
226 1.1 cgd }
227 1.1 cgd
228 1.94 ad void
229 1.94 ad soinit2(void)
230 1.94 ad {
231 1.94 ad
232 1.94 ad socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
233 1.94 ad "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
234 1.94 ad }
235 1.94 ad
236 1.1 cgd /*
237 1.112.2.1 rmind * sonewconn: accept a new connection.
238 1.112.2.1 rmind *
239 1.112.2.1 rmind * When an attempt at a new connection is noted on a socket which accepts
240 1.112.2.1 rmind * connections, sonewconn(9) is called. If the connection is possible
241 1.112.2.1 rmind * (subject to space constraints, etc) then we allocate a new structure,
242 1.112.2.1 rmind * properly linked into the data structure of the original socket.
243 1.112.2.1 rmind *
244 1.112.2.1 rmind * => Connection status may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
245 1.112.2.1 rmind * => Listening socket should be locked.
246 1.112.2.1 rmind * => Returns the new socket locked.
247 1.1 cgd */
248 1.1 cgd struct socket *
249 1.76 plunky sonewconn(struct socket *head, int connstatus)
250 1.1 cgd {
251 1.112.2.1 rmind struct socket *so;
252 1.112.2.1 rmind int soqueue, error;
253 1.91 ad
254 1.102 yamt KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
255 1.102 yamt connstatus == SS_ISCONNECTED);
256 1.91 ad KASSERT(solocked(head));
257 1.1 cgd
258 1.112.2.1 rmind if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
259 1.112.2.1 rmind /* Listen queue overflow. */
260 1.112.2.1 rmind return NULL;
261 1.112.2.1 rmind }
262 1.112.2.1 rmind
263 1.112.2.1 rmind if ((head->so_options & SO_ACCEPTFILTER) != 0) {
264 1.97 tls connstatus = 0;
265 1.112.2.1 rmind }
266 1.37 lukem soqueue = connstatus ? 1 : 0;
267 1.112.2.1 rmind
268 1.112.2.1 rmind if ((so = soget(false)) == NULL) {
269 1.100 dyoung return NULL;
270 1.112.2.1 rmind }
271 1.1 cgd so->so_type = head->so_type;
272 1.1 cgd so->so_options = head->so_options &~ SO_ACCEPTCONN;
273 1.1 cgd so->so_linger = head->so_linger;
274 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
275 1.1 cgd so->so_proto = head->so_proto;
276 1.1 cgd so->so_timeo = head->so_timeo;
277 1.1 cgd so->so_pgid = head->so_pgid;
278 1.24 matt so->so_send = head->so_send;
279 1.24 matt so->so_receive = head->so_receive;
280 1.67 christos so->so_uidinfo = head->so_uidinfo;
281 1.96 yamt so->so_cpid = head->so_cpid;
282 1.49 matt #ifdef MBUFTRACE
283 1.49 matt so->so_mowner = head->so_mowner;
284 1.49 matt so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
285 1.49 matt so->so_snd.sb_mowner = head->so_snd.sb_mowner;
286 1.49 matt #endif
287 1.103 christos if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
288 1.103 christos goto out;
289 1.83 tls so->so_snd.sb_lowat = head->so_snd.sb_lowat;
290 1.83 tls so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
291 1.84 tls so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
292 1.84 tls so->so_snd.sb_timeo = head->so_snd.sb_timeo;
293 1.107 christos so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
294 1.107 christos so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
295 1.112.2.1 rmind
296 1.112.2.1 rmind /*
297 1.112.2.1 rmind * Share the lock the listening-socket, it may get unshared
298 1.112.2.1 rmind * once the connection is complete.
299 1.112.2.1 rmind */
300 1.112.2.1 rmind mutex_obj_hold(head->so_lock);
301 1.112.2.1 rmind so->so_lock = head->so_lock;
302 1.112.2.1 rmind sounlock(head);
303 1.112.2.1 rmind
304 1.112.2.1 rmind /* Finally, perform the protocol attach and re-acquire the lock. */
305 1.112.2.1 rmind error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
306 1.112.2.1 rmind solock(head);
307 1.112.2.1 rmind
308 1.112.2.1 rmind if (error) {
309 1.103 christos out:
310 1.99 ad /*
311 1.112.2.1 rmind * Remove accept filter if one is present.
312 1.99 ad * XXX Is this really needed?
313 1.99 ad */
314 1.97 tls if (so->so_accf != NULL)
315 1.99 ad (void)accept_filt_clear(so);
316 1.91 ad soput(so);
317 1.112.2.1 rmind
318 1.112.2.1 rmind /* Note: listening socket shall stay locked. */
319 1.112.2.1 rmind KASSERT(solocked(head));
320 1.100 dyoung return NULL;
321 1.1 cgd }
322 1.112.2.1 rmind
323 1.112.2.1 rmind /*
324 1.112.2.1 rmind * Update the connection status and wake up any waiters,
325 1.112.2.1 rmind * e.g. processes blocking on accept().
326 1.112.2.1 rmind */
327 1.112.2.1 rmind soqinsque(head, so, soqueue);
328 1.1 cgd if (connstatus) {
329 1.112.2.1 rmind so->so_state |= connstatus;
330 1.1 cgd sorwakeup(head);
331 1.91 ad cv_broadcast(&head->so_cv);
332 1.1 cgd }
333 1.112.2.1 rmind KASSERT(solocked2(head, so));
334 1.100 dyoung return so;
335 1.1 cgd }
336 1.1 cgd
337 1.91 ad struct socket *
338 1.91 ad soget(bool waitok)
339 1.91 ad {
340 1.91 ad struct socket *so;
341 1.91 ad
342 1.94 ad so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
343 1.91 ad if (__predict_false(so == NULL))
344 1.91 ad return (NULL);
345 1.91 ad memset(so, 0, sizeof(*so));
346 1.91 ad TAILQ_INIT(&so->so_q0);
347 1.91 ad TAILQ_INIT(&so->so_q);
348 1.91 ad cv_init(&so->so_cv, "socket");
349 1.91 ad cv_init(&so->so_rcv.sb_cv, "netio");
350 1.91 ad cv_init(&so->so_snd.sb_cv, "netio");
351 1.91 ad selinit(&so->so_rcv.sb_sel);
352 1.91 ad selinit(&so->so_snd.sb_sel);
353 1.91 ad so->so_rcv.sb_so = so;
354 1.91 ad so->so_snd.sb_so = so;
355 1.91 ad return so;
356 1.91 ad }
357 1.91 ad
358 1.91 ad void
359 1.91 ad soput(struct socket *so)
360 1.91 ad {
361 1.91 ad
362 1.91 ad KASSERT(!cv_has_waiters(&so->so_cv));
363 1.91 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
364 1.91 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
365 1.91 ad seldestroy(&so->so_rcv.sb_sel);
366 1.91 ad seldestroy(&so->so_snd.sb_sel);
367 1.91 ad mutex_obj_free(so->so_lock);
368 1.91 ad cv_destroy(&so->so_cv);
369 1.91 ad cv_destroy(&so->so_rcv.sb_cv);
370 1.91 ad cv_destroy(&so->so_snd.sb_cv);
371 1.94 ad pool_cache_put(socket_cache, so);
372 1.91 ad }
373 1.91 ad
374 1.112.2.1 rmind /*
375 1.112.2.1 rmind * soqinsque: insert socket of a new connection into the specified
376 1.112.2.1 rmind * accept queue of the listening socket (head).
377 1.112.2.1 rmind *
378 1.112.2.1 rmind * q = 0: queue of partial connections
379 1.112.2.1 rmind * q = 1: queue of incoming connections
380 1.112.2.1 rmind */
381 1.7 mycroft void
382 1.37 lukem soqinsque(struct socket *head, struct socket *so, int q)
383 1.1 cgd {
384 1.112.2.1 rmind KASSERT(q == 0 || q == 1);
385 1.91 ad KASSERT(solocked2(head, so));
386 1.112.2.1 rmind KASSERT(so->so_onq == NULL);
387 1.112.2.1 rmind KASSERT(so->so_head == NULL);
388 1.22 thorpej
389 1.1 cgd so->so_head = head;
390 1.1 cgd if (q == 0) {
391 1.1 cgd head->so_q0len++;
392 1.22 thorpej so->so_onq = &head->so_q0;
393 1.1 cgd } else {
394 1.1 cgd head->so_qlen++;
395 1.22 thorpej so->so_onq = &head->so_q;
396 1.1 cgd }
397 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
398 1.1 cgd }
399 1.1 cgd
400 1.112.2.1 rmind /*
401 1.112.2.1 rmind * soqremque: remove socket from the specified queue.
402 1.112.2.1 rmind *
403 1.112.2.1 rmind * => Returns true if socket was removed from the specified queue.
404 1.112.2.1 rmind * => False if socket was not removed (because it was in other queue).
405 1.112.2.1 rmind */
406 1.112.2.1 rmind bool
407 1.37 lukem soqremque(struct socket *so, int q)
408 1.1 cgd {
409 1.112.2.1 rmind struct socket *head = so->so_head;
410 1.91 ad
411 1.112.2.1 rmind KASSERT(q == 0 || q == 1);
412 1.91 ad KASSERT(solocked(so));
413 1.112.2.1 rmind KASSERT(so->so_onq != NULL);
414 1.112.2.1 rmind KASSERT(head != NULL);
415 1.112.2.1 rmind
416 1.22 thorpej if (q == 0) {
417 1.22 thorpej if (so->so_onq != &head->so_q0)
418 1.112.2.1 rmind return false;
419 1.1 cgd head->so_q0len--;
420 1.1 cgd } else {
421 1.22 thorpej if (so->so_onq != &head->so_q)
422 1.112.2.1 rmind return false;
423 1.1 cgd head->so_qlen--;
424 1.1 cgd }
425 1.91 ad KASSERT(solocked2(so, head));
426 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe);
427 1.22 thorpej so->so_onq = NULL;
428 1.22 thorpej so->so_head = NULL;
429 1.112.2.1 rmind return true;
430 1.1 cgd }
431 1.1 cgd
432 1.1 cgd /*
433 1.1 cgd * Socantsendmore indicates that no more data will be sent on the
434 1.1 cgd * socket; it would normally be applied to a socket when the user
435 1.1 cgd * informs the system that no more data is to be sent, by the protocol
436 1.1 cgd * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
437 1.1 cgd * will be received, and will normally be applied to the socket by a
438 1.1 cgd * protocol when it detects that the peer will send no more data.
439 1.1 cgd * Data queued for reading in the socket may yet be read.
440 1.1 cgd */
441 1.1 cgd
442 1.4 andrew void
443 1.37 lukem socantsendmore(struct socket *so)
444 1.1 cgd {
445 1.1 cgd
446 1.91 ad KASSERT(solocked(so));
447 1.91 ad
448 1.1 cgd so->so_state |= SS_CANTSENDMORE;
449 1.1 cgd sowwakeup(so);
450 1.1 cgd }
451 1.1 cgd
452 1.4 andrew void
453 1.37 lukem socantrcvmore(struct socket *so)
454 1.1 cgd {
455 1.1 cgd
456 1.91 ad KASSERT(solocked(so));
457 1.91 ad
458 1.1 cgd so->so_state |= SS_CANTRCVMORE;
459 1.1 cgd sorwakeup(so);
460 1.1 cgd }
461 1.1 cgd
462 1.1 cgd /*
463 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
464 1.1 cgd */
465 1.7 mycroft int
466 1.37 lukem sbwait(struct sockbuf *sb)
467 1.1 cgd {
468 1.91 ad struct socket *so;
469 1.91 ad kmutex_t *lock;
470 1.91 ad int error;
471 1.1 cgd
472 1.91 ad so = sb->sb_so;
473 1.1 cgd
474 1.91 ad KASSERT(solocked(so));
475 1.1 cgd
476 1.91 ad sb->sb_flags |= SB_NOTIFY;
477 1.91 ad lock = so->so_lock;
478 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0)
479 1.91 ad error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
480 1.91 ad else
481 1.91 ad error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
482 1.91 ad if (__predict_false(lock != so->so_lock))
483 1.91 ad solockretry(so, lock);
484 1.91 ad return error;
485 1.1 cgd }
486 1.1 cgd
487 1.1 cgd /*
488 1.1 cgd * Wakeup processes waiting on a socket buffer.
489 1.1 cgd * Do asynchronous notification via SIGIO
490 1.39 manu * if the socket buffer has the SB_ASYNC flag set.
491 1.1 cgd */
492 1.7 mycroft void
493 1.55 christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
494 1.1 cgd {
495 1.90 rmind int band;
496 1.90 rmind
497 1.91 ad KASSERT(solocked(so));
498 1.91 ad KASSERT(sb->sb_so == so);
499 1.91 ad
500 1.90 rmind if (code == POLL_IN)
501 1.90 rmind band = POLLIN|POLLRDNORM;
502 1.90 rmind else
503 1.90 rmind band = POLLOUT|POLLWRNORM;
504 1.91 ad sb->sb_flags &= ~SB_NOTIFY;
505 1.91 ad selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
506 1.91 ad cv_broadcast(&sb->sb_cv);
507 1.90 rmind if (sb->sb_flags & SB_ASYNC)
508 1.57 christos fownsignal(so->so_pgid, SIGIO, code, band, so);
509 1.24 matt if (sb->sb_flags & SB_UPCALL)
510 1.104 tls (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
511 1.1 cgd }
512 1.1 cgd
513 1.1 cgd /*
514 1.95 ad * Reset a socket's lock pointer. Wake all threads waiting on the
515 1.95 ad * socket's condition variables so that they can restart their waits
516 1.95 ad * using the new lock. The existing lock must be held.
517 1.95 ad */
518 1.95 ad void
519 1.95 ad solockreset(struct socket *so, kmutex_t *lock)
520 1.95 ad {
521 1.95 ad
522 1.95 ad KASSERT(solocked(so));
523 1.95 ad
524 1.95 ad so->so_lock = lock;
525 1.95 ad cv_broadcast(&so->so_snd.sb_cv);
526 1.95 ad cv_broadcast(&so->so_rcv.sb_cv);
527 1.95 ad cv_broadcast(&so->so_cv);
528 1.95 ad }
529 1.95 ad
530 1.95 ad /*
531 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
532 1.1 cgd *
533 1.1 cgd * Each socket contains two socket buffers: one for sending data and
534 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
535 1.1 cgd * information about the number of mbufs and amount of data in the
536 1.13 mycroft * queue, and other fields allowing poll() statements and notification
537 1.1 cgd * on data availability to be implemented.
538 1.1 cgd *
539 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
540 1.1 cgd * Each record is a list of mbufs chained together with the m_next
541 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
542 1.1 cgd * level routine soreceive() expects the following conventions to be
543 1.1 cgd * observed when placing information in the receive buffer:
544 1.1 cgd *
545 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
546 1.1 cgd * name, then a record containing that name must be present before
547 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
548 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
549 1.1 cgd * just additional data associated with the message), and there are
550 1.1 cgd * ``rights'' to be received, then a record containing this data
551 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL).
552 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
553 1.1 cgd * a data record, perhaps of zero length.
554 1.1 cgd *
555 1.1 cgd * Before using a new socket structure it is first necessary to reserve
556 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
557 1.1 cgd * some of the available buffer space in the system buffer pool for the
558 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
559 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
560 1.1 cgd */
561 1.1 cgd
562 1.7 mycroft int
563 1.58 thorpej sb_max_set(u_long new_sbmax)
564 1.58 thorpej {
565 1.58 thorpej int s;
566 1.58 thorpej
567 1.58 thorpej if (new_sbmax < (16 * 1024))
568 1.58 thorpej return (EINVAL);
569 1.58 thorpej
570 1.58 thorpej s = splsoftnet();
571 1.58 thorpej sb_max = new_sbmax;
572 1.58 thorpej sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
573 1.58 thorpej splx(s);
574 1.58 thorpej
575 1.58 thorpej return (0);
576 1.58 thorpej }
577 1.58 thorpej
578 1.58 thorpej int
579 1.37 lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
580 1.1 cgd {
581 1.112.2.1 rmind KASSERT(so->so_pcb == NULL || solocked(so));
582 1.91 ad
583 1.74 christos /*
584 1.74 christos * there's at least one application (a configure script of screen)
585 1.74 christos * which expects a fifo is writable even if it has "some" bytes
586 1.74 christos * in its buffer.
587 1.74 christos * so we want to make sure (hiwat - lowat) >= (some bytes).
588 1.74 christos *
589 1.74 christos * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
590 1.74 christos * we expect it's large enough for such applications.
591 1.74 christos */
592 1.74 christos u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
593 1.74 christos u_long hiwat = lowat + PIPE_BUF;
594 1.1 cgd
595 1.74 christos if (sndcc < hiwat)
596 1.74 christos sndcc = hiwat;
597 1.59 christos if (sbreserve(&so->so_snd, sndcc, so) == 0)
598 1.1 cgd goto bad;
599 1.59 christos if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
600 1.1 cgd goto bad2;
601 1.1 cgd if (so->so_rcv.sb_lowat == 0)
602 1.1 cgd so->so_rcv.sb_lowat = 1;
603 1.1 cgd if (so->so_snd.sb_lowat == 0)
604 1.74 christos so->so_snd.sb_lowat = lowat;
605 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
606 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
607 1.1 cgd return (0);
608 1.37 lukem bad2:
609 1.59 christos sbrelease(&so->so_snd, so);
610 1.37 lukem bad:
611 1.1 cgd return (ENOBUFS);
612 1.1 cgd }
613 1.1 cgd
614 1.1 cgd /*
615 1.1 cgd * Allot mbufs to a sockbuf.
616 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
617 1.1 cgd * if buffering efficiency is near the normal case.
618 1.1 cgd */
619 1.7 mycroft int
620 1.59 christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
621 1.1 cgd {
622 1.75 ad struct lwp *l = curlwp; /* XXX */
623 1.62 christos rlim_t maxcc;
624 1.67 christos struct uidinfo *uidinfo;
625 1.1 cgd
626 1.112.2.1 rmind KASSERT(so->so_pcb == NULL || solocked(so));
627 1.91 ad KASSERT(sb->sb_so == so);
628 1.91 ad KASSERT(sb_max_adj != 0);
629 1.91 ad
630 1.58 thorpej if (cc == 0 || cc > sb_max_adj)
631 1.1 cgd return (0);
632 1.93 christos
633 1.105 elad maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
634 1.93 christos
635 1.93 christos uidinfo = so->so_uidinfo;
636 1.67 christos if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
637 1.62 christos return 0;
638 1.1 cgd sb->sb_mbmax = min(cc * 2, sb_max);
639 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
640 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
641 1.1 cgd return (1);
642 1.1 cgd }
643 1.1 cgd
644 1.1 cgd /*
645 1.91 ad * Free mbufs held by a socket, and reserved mbuf space. We do not assert
646 1.91 ad * that the socket is held locked here: see sorflush().
647 1.1 cgd */
648 1.7 mycroft void
649 1.59 christos sbrelease(struct sockbuf *sb, struct socket *so)
650 1.1 cgd {
651 1.1 cgd
652 1.91 ad KASSERT(sb->sb_so == so);
653 1.91 ad
654 1.1 cgd sbflush(sb);
655 1.87 yamt (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
656 1.59 christos sb->sb_mbmax = 0;
657 1.1 cgd }
658 1.1 cgd
659 1.1 cgd /*
660 1.1 cgd * Routines to add and remove
661 1.1 cgd * data from an mbuf queue.
662 1.1 cgd *
663 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
664 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
665 1.1 cgd * space is available, comparing the function sbspace() with the amount
666 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
667 1.1 cgd * that data supplied is treated as the beginning of a new record.
668 1.1 cgd * To place a sender's address, optional access rights, and data in a
669 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
670 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
671 1.1 cgd * should be used. In either case, the new data begins a new record.
672 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
673 1.1 cgd * for the caller that there will be enough space to store the data.
674 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
675 1.1 cgd * to store additional information in.
676 1.1 cgd *
677 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
678 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
679 1.1 cgd * send buffer in a protocol with m_copy for output to a peer,
680 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
681 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
682 1.1 cgd */
683 1.1 cgd
684 1.43 thorpej #ifdef SOCKBUF_DEBUG
685 1.43 thorpej void
686 1.43 thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
687 1.43 thorpej {
688 1.43 thorpej struct mbuf *m = sb->sb_mb;
689 1.43 thorpej
690 1.91 ad KASSERT(solocked(sb->sb_so));
691 1.91 ad
692 1.43 thorpej while (m && m->m_nextpkt)
693 1.43 thorpej m = m->m_nextpkt;
694 1.43 thorpej
695 1.43 thorpej if (m != sb->sb_lastrecord) {
696 1.43 thorpej printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
697 1.43 thorpej sb->sb_mb, sb->sb_lastrecord, m);
698 1.43 thorpej printf("packet chain:\n");
699 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
700 1.43 thorpej printf("\t%p\n", m);
701 1.47 provos panic("sblastrecordchk from %s", where);
702 1.43 thorpej }
703 1.43 thorpej }
704 1.43 thorpej
705 1.43 thorpej void
706 1.43 thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
707 1.43 thorpej {
708 1.43 thorpej struct mbuf *m = sb->sb_mb;
709 1.43 thorpej struct mbuf *n;
710 1.43 thorpej
711 1.91 ad KASSERT(solocked(sb->sb_so));
712 1.91 ad
713 1.43 thorpej while (m && m->m_nextpkt)
714 1.43 thorpej m = m->m_nextpkt;
715 1.43 thorpej
716 1.43 thorpej while (m && m->m_next)
717 1.43 thorpej m = m->m_next;
718 1.43 thorpej
719 1.43 thorpej if (m != sb->sb_mbtail) {
720 1.43 thorpej printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
721 1.43 thorpej sb->sb_mb, sb->sb_mbtail, m);
722 1.43 thorpej printf("packet tree:\n");
723 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
724 1.43 thorpej printf("\t");
725 1.43 thorpej for (n = m; n != NULL; n = n->m_next)
726 1.43 thorpej printf("%p ", n);
727 1.43 thorpej printf("\n");
728 1.43 thorpej }
729 1.43 thorpej panic("sblastmbufchk from %s", where);
730 1.43 thorpej }
731 1.43 thorpej }
732 1.43 thorpej #endif /* SOCKBUF_DEBUG */
733 1.43 thorpej
734 1.63 jonathan /*
735 1.63 jonathan * Link a chain of records onto a socket buffer
736 1.63 jonathan */
737 1.63 jonathan #define SBLINKRECORDCHAIN(sb, m0, mlast) \
738 1.43 thorpej do { \
739 1.43 thorpej if ((sb)->sb_lastrecord != NULL) \
740 1.43 thorpej (sb)->sb_lastrecord->m_nextpkt = (m0); \
741 1.43 thorpej else \
742 1.43 thorpej (sb)->sb_mb = (m0); \
743 1.63 jonathan (sb)->sb_lastrecord = (mlast); \
744 1.43 thorpej } while (/*CONSTCOND*/0)
745 1.43 thorpej
746 1.63 jonathan
747 1.63 jonathan #define SBLINKRECORD(sb, m0) \
748 1.63 jonathan SBLINKRECORDCHAIN(sb, m0, m0)
749 1.63 jonathan
750 1.1 cgd /*
751 1.1 cgd * Append mbuf chain m to the last record in the
752 1.1 cgd * socket buffer sb. The additional space associated
753 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
754 1.1 cgd * discarded and mbufs are compacted where possible.
755 1.1 cgd */
756 1.7 mycroft void
757 1.37 lukem sbappend(struct sockbuf *sb, struct mbuf *m)
758 1.1 cgd {
759 1.37 lukem struct mbuf *n;
760 1.1 cgd
761 1.91 ad KASSERT(solocked(sb->sb_so));
762 1.91 ad
763 1.1 cgd if (m == 0)
764 1.1 cgd return;
765 1.43 thorpej
766 1.49 matt #ifdef MBUFTRACE
767 1.65 jonathan m_claimm(m, sb->sb_mowner);
768 1.49 matt #endif
769 1.49 matt
770 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 1");
771 1.43 thorpej
772 1.43 thorpej if ((n = sb->sb_lastrecord) != NULL) {
773 1.43 thorpej /*
774 1.43 thorpej * XXX Would like to simply use sb_mbtail here, but
775 1.43 thorpej * XXX I need to verify that I won't miss an EOR that
776 1.43 thorpej * XXX way.
777 1.43 thorpej */
778 1.1 cgd do {
779 1.1 cgd if (n->m_flags & M_EOR) {
780 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
781 1.1 cgd return;
782 1.1 cgd }
783 1.1 cgd } while (n->m_next && (n = n->m_next));
784 1.43 thorpej } else {
785 1.43 thorpej /*
786 1.43 thorpej * If this is the first record in the socket buffer, it's
787 1.43 thorpej * also the last record.
788 1.43 thorpej */
789 1.43 thorpej sb->sb_lastrecord = m;
790 1.1 cgd }
791 1.1 cgd sbcompress(sb, m, n);
792 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 2");
793 1.43 thorpej }
794 1.43 thorpej
795 1.43 thorpej /*
796 1.43 thorpej * This version of sbappend() should only be used when the caller
797 1.43 thorpej * absolutely knows that there will never be more than one record
798 1.43 thorpej * in the socket buffer, that is, a stream protocol (such as TCP).
799 1.43 thorpej */
800 1.43 thorpej void
801 1.44 thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
802 1.43 thorpej {
803 1.43 thorpej
804 1.91 ad KASSERT(solocked(sb->sb_so));
805 1.43 thorpej KDASSERT(m->m_nextpkt == NULL);
806 1.43 thorpej KASSERT(sb->sb_mb == sb->sb_lastrecord);
807 1.43 thorpej
808 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
809 1.43 thorpej
810 1.49 matt #ifdef MBUFTRACE
811 1.65 jonathan m_claimm(m, sb->sb_mowner);
812 1.49 matt #endif
813 1.49 matt
814 1.43 thorpej sbcompress(sb, m, sb->sb_mbtail);
815 1.43 thorpej
816 1.43 thorpej sb->sb_lastrecord = sb->sb_mb;
817 1.43 thorpej SBLASTRECORDCHK(sb, __func__);
818 1.1 cgd }
819 1.1 cgd
820 1.1 cgd #ifdef SOCKBUF_DEBUG
821 1.7 mycroft void
822 1.37 lukem sbcheck(struct sockbuf *sb)
823 1.1 cgd {
824 1.91 ad struct mbuf *m, *m2;
825 1.43 thorpej u_long len, mbcnt;
826 1.1 cgd
827 1.91 ad KASSERT(solocked(sb->sb_so));
828 1.91 ad
829 1.37 lukem len = 0;
830 1.37 lukem mbcnt = 0;
831 1.91 ad for (m = sb->sb_mb; m; m = m->m_nextpkt) {
832 1.91 ad for (m2 = m; m2 != NULL; m2 = m2->m_next) {
833 1.91 ad len += m2->m_len;
834 1.91 ad mbcnt += MSIZE;
835 1.91 ad if (m2->m_flags & M_EXT)
836 1.91 ad mbcnt += m2->m_ext.ext_size;
837 1.91 ad if (m2->m_nextpkt != NULL)
838 1.91 ad panic("sbcheck nextpkt");
839 1.91 ad }
840 1.1 cgd }
841 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
842 1.43 thorpej printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
843 1.1 cgd mbcnt, sb->sb_mbcnt);
844 1.1 cgd panic("sbcheck");
845 1.1 cgd }
846 1.1 cgd }
847 1.1 cgd #endif
848 1.1 cgd
849 1.1 cgd /*
850 1.1 cgd * As above, except the mbuf chain
851 1.1 cgd * begins a new record.
852 1.1 cgd */
853 1.7 mycroft void
854 1.37 lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
855 1.1 cgd {
856 1.37 lukem struct mbuf *m;
857 1.1 cgd
858 1.91 ad KASSERT(solocked(sb->sb_so));
859 1.91 ad
860 1.1 cgd if (m0 == 0)
861 1.1 cgd return;
862 1.43 thorpej
863 1.49 matt #ifdef MBUFTRACE
864 1.65 jonathan m_claimm(m0, sb->sb_mowner);
865 1.49 matt #endif
866 1.1 cgd /*
867 1.1 cgd * Put the first mbuf on the queue.
868 1.1 cgd * Note this permits zero length records.
869 1.1 cgd */
870 1.1 cgd sballoc(sb, m0);
871 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 1");
872 1.43 thorpej SBLINKRECORD(sb, m0);
873 1.1 cgd m = m0->m_next;
874 1.1 cgd m0->m_next = 0;
875 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
876 1.1 cgd m0->m_flags &= ~M_EOR;
877 1.1 cgd m->m_flags |= M_EOR;
878 1.1 cgd }
879 1.1 cgd sbcompress(sb, m, m0);
880 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 2");
881 1.1 cgd }
882 1.1 cgd
883 1.1 cgd /*
884 1.1 cgd * As above except that OOB data
885 1.1 cgd * is inserted at the beginning of the sockbuf,
886 1.1 cgd * but after any other OOB data.
887 1.1 cgd */
888 1.7 mycroft void
889 1.37 lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
890 1.1 cgd {
891 1.37 lukem struct mbuf *m, **mp;
892 1.1 cgd
893 1.91 ad KASSERT(solocked(sb->sb_so));
894 1.91 ad
895 1.1 cgd if (m0 == 0)
896 1.1 cgd return;
897 1.43 thorpej
898 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 1");
899 1.43 thorpej
900 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
901 1.1 cgd again:
902 1.1 cgd switch (m->m_type) {
903 1.1 cgd
904 1.1 cgd case MT_OOBDATA:
905 1.1 cgd continue; /* WANT next train */
906 1.1 cgd
907 1.1 cgd case MT_CONTROL:
908 1.11 christos if ((m = m->m_next) != NULL)
909 1.1 cgd goto again; /* inspect THIS train further */
910 1.1 cgd }
911 1.1 cgd break;
912 1.1 cgd }
913 1.1 cgd /*
914 1.1 cgd * Put the first mbuf on the queue.
915 1.1 cgd * Note this permits zero length records.
916 1.1 cgd */
917 1.1 cgd sballoc(sb, m0);
918 1.1 cgd m0->m_nextpkt = *mp;
919 1.43 thorpej if (*mp == NULL) {
920 1.43 thorpej /* m0 is actually the new tail */
921 1.43 thorpej sb->sb_lastrecord = m0;
922 1.43 thorpej }
923 1.1 cgd *mp = m0;
924 1.1 cgd m = m0->m_next;
925 1.1 cgd m0->m_next = 0;
926 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
927 1.1 cgd m0->m_flags &= ~M_EOR;
928 1.1 cgd m->m_flags |= M_EOR;
929 1.1 cgd }
930 1.1 cgd sbcompress(sb, m, m0);
931 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 2");
932 1.1 cgd }
933 1.1 cgd
934 1.1 cgd /*
935 1.1 cgd * Append address and data, and optionally, control (ancillary) data
936 1.1 cgd * to the receive queue of a socket. If present,
937 1.1 cgd * m0 must include a packet header with total length.
938 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
939 1.1 cgd */
940 1.7 mycroft int
941 1.61 matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
942 1.37 lukem struct mbuf *control)
943 1.1 cgd {
944 1.43 thorpej struct mbuf *m, *n, *nlast;
945 1.50 fvdl int space, len;
946 1.1 cgd
947 1.91 ad KASSERT(solocked(sb->sb_so));
948 1.91 ad
949 1.37 lukem space = asa->sa_len;
950 1.37 lukem
951 1.49 matt if (m0 != NULL) {
952 1.49 matt if ((m0->m_flags & M_PKTHDR) == 0)
953 1.49 matt panic("sbappendaddr");
954 1.1 cgd space += m0->m_pkthdr.len;
955 1.49 matt #ifdef MBUFTRACE
956 1.65 jonathan m_claimm(m0, sb->sb_mowner);
957 1.49 matt #endif
958 1.49 matt }
959 1.1 cgd for (n = control; n; n = n->m_next) {
960 1.1 cgd space += n->m_len;
961 1.49 matt MCLAIM(n, sb->sb_mowner);
962 1.1 cgd if (n->m_next == 0) /* keep pointer to last control buf */
963 1.1 cgd break;
964 1.1 cgd }
965 1.1 cgd if (space > sbspace(sb))
966 1.1 cgd return (0);
967 1.1 cgd MGET(m, M_DONTWAIT, MT_SONAME);
968 1.1 cgd if (m == 0)
969 1.1 cgd return (0);
970 1.49 matt MCLAIM(m, sb->sb_mowner);
971 1.50 fvdl /*
972 1.50 fvdl * XXX avoid 'comparison always true' warning which isn't easily
973 1.50 fvdl * avoided.
974 1.50 fvdl */
975 1.50 fvdl len = asa->sa_len;
976 1.50 fvdl if (len > MLEN) {
977 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
978 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
979 1.20 thorpej m_free(m);
980 1.20 thorpej return (0);
981 1.20 thorpej }
982 1.20 thorpej }
983 1.1 cgd m->m_len = asa->sa_len;
984 1.82 christos memcpy(mtod(m, void *), asa, asa->sa_len);
985 1.1 cgd if (n)
986 1.1 cgd n->m_next = m0; /* concatenate data to control */
987 1.1 cgd else
988 1.1 cgd control = m0;
989 1.1 cgd m->m_next = control;
990 1.43 thorpej
991 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 1");
992 1.43 thorpej
993 1.43 thorpej for (n = m; n->m_next != NULL; n = n->m_next)
994 1.1 cgd sballoc(sb, n);
995 1.43 thorpej sballoc(sb, n);
996 1.43 thorpej nlast = n;
997 1.43 thorpej SBLINKRECORD(sb, m);
998 1.43 thorpej
999 1.43 thorpej sb->sb_mbtail = nlast;
1000 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendaddr");
1001 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 2");
1002 1.43 thorpej
1003 1.1 cgd return (1);
1004 1.1 cgd }
1005 1.1 cgd
1006 1.63 jonathan /*
1007 1.63 jonathan * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1008 1.63 jonathan * an mbuf chain.
1009 1.63 jonathan */
1010 1.70 perry static inline struct mbuf *
1011 1.81 yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1012 1.64 jonathan const struct sockaddr *asa)
1013 1.63 jonathan {
1014 1.63 jonathan struct mbuf *m;
1015 1.64 jonathan const int salen = asa->sa_len;
1016 1.63 jonathan
1017 1.91 ad KASSERT(solocked(sb->sb_so));
1018 1.91 ad
1019 1.63 jonathan /* only the first in each chain need be a pkthdr */
1020 1.63 jonathan MGETHDR(m, M_DONTWAIT, MT_SONAME);
1021 1.63 jonathan if (m == 0)
1022 1.63 jonathan return (0);
1023 1.63 jonathan MCLAIM(m, sb->sb_mowner);
1024 1.64 jonathan #ifdef notyet
1025 1.64 jonathan if (salen > MHLEN) {
1026 1.64 jonathan MEXTMALLOC(m, salen, M_NOWAIT);
1027 1.64 jonathan if ((m->m_flags & M_EXT) == 0) {
1028 1.64 jonathan m_free(m);
1029 1.64 jonathan return (0);
1030 1.64 jonathan }
1031 1.64 jonathan }
1032 1.64 jonathan #else
1033 1.64 jonathan KASSERT(salen <= MHLEN);
1034 1.64 jonathan #endif
1035 1.64 jonathan m->m_len = salen;
1036 1.82 christos memcpy(mtod(m, void *), asa, salen);
1037 1.63 jonathan m->m_next = m0;
1038 1.64 jonathan m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1039 1.63 jonathan
1040 1.63 jonathan return m;
1041 1.63 jonathan }
1042 1.63 jonathan
1043 1.63 jonathan int
1044 1.63 jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1045 1.63 jonathan struct mbuf *m0, int sbprio)
1046 1.63 jonathan {
1047 1.63 jonathan int space;
1048 1.63 jonathan struct mbuf *m, *n, *n0, *nlast;
1049 1.63 jonathan int error;
1050 1.63 jonathan
1051 1.91 ad KASSERT(solocked(sb->sb_so));
1052 1.91 ad
1053 1.63 jonathan /*
1054 1.63 jonathan * XXX sbprio reserved for encoding priority of this* request:
1055 1.63 jonathan * SB_PRIO_NONE --> honour normal sb limits
1056 1.63 jonathan * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1057 1.63 jonathan * take whole chain. Intended for large requests
1058 1.63 jonathan * that should be delivered atomically (all, or none).
1059 1.63 jonathan * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1060 1.63 jonathan * over normal socket limits, for messages indicating
1061 1.63 jonathan * buffer overflow in earlier normal/lower-priority messages
1062 1.63 jonathan * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1063 1.63 jonathan * Intended for kernel-generated messages only.
1064 1.63 jonathan * Up to generator to avoid total mbuf resource exhaustion.
1065 1.63 jonathan */
1066 1.63 jonathan (void)sbprio;
1067 1.63 jonathan
1068 1.63 jonathan if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1069 1.63 jonathan panic("sbappendaddrchain");
1070 1.63 jonathan
1071 1.63 jonathan space = sbspace(sb);
1072 1.66 perry
1073 1.63 jonathan #ifdef notyet
1074 1.66 perry /*
1075 1.63 jonathan * Enforce SB_PRIO_* limits as described above.
1076 1.63 jonathan */
1077 1.63 jonathan #endif
1078 1.63 jonathan
1079 1.63 jonathan n0 = NULL;
1080 1.63 jonathan nlast = NULL;
1081 1.63 jonathan for (m = m0; m; m = m->m_nextpkt) {
1082 1.63 jonathan struct mbuf *np;
1083 1.63 jonathan
1084 1.64 jonathan #ifdef MBUFTRACE
1085 1.65 jonathan m_claimm(m, sb->sb_mowner);
1086 1.64 jonathan #endif
1087 1.64 jonathan
1088 1.63 jonathan /* Prepend sockaddr to this record (m) of input chain m0 */
1089 1.64 jonathan n = m_prepend_sockaddr(sb, m, asa);
1090 1.63 jonathan if (n == NULL) {
1091 1.63 jonathan error = ENOBUFS;
1092 1.63 jonathan goto bad;
1093 1.63 jonathan }
1094 1.63 jonathan
1095 1.63 jonathan /* Append record (asa+m) to end of new chain n0 */
1096 1.63 jonathan if (n0 == NULL) {
1097 1.63 jonathan n0 = n;
1098 1.63 jonathan } else {
1099 1.63 jonathan nlast->m_nextpkt = n;
1100 1.63 jonathan }
1101 1.63 jonathan /* Keep track of last record on new chain */
1102 1.63 jonathan nlast = n;
1103 1.63 jonathan
1104 1.63 jonathan for (np = n; np; np = np->m_next)
1105 1.63 jonathan sballoc(sb, np);
1106 1.63 jonathan }
1107 1.63 jonathan
1108 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1109 1.64 jonathan
1110 1.63 jonathan /* Drop the entire chain of (asa+m) records onto the socket */
1111 1.63 jonathan SBLINKRECORDCHAIN(sb, n0, nlast);
1112 1.64 jonathan
1113 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1114 1.64 jonathan
1115 1.63 jonathan for (m = nlast; m->m_next; m = m->m_next)
1116 1.63 jonathan ;
1117 1.63 jonathan sb->sb_mbtail = m;
1118 1.64 jonathan SBLASTMBUFCHK(sb, "sbappendaddrchain");
1119 1.64 jonathan
1120 1.63 jonathan return (1);
1121 1.63 jonathan
1122 1.63 jonathan bad:
1123 1.64 jonathan /*
1124 1.64 jonathan * On error, free the prepended addreseses. For consistency
1125 1.64 jonathan * with sbappendaddr(), leave it to our caller to free
1126 1.64 jonathan * the input record chain passed to us as m0.
1127 1.64 jonathan */
1128 1.64 jonathan while ((n = n0) != NULL) {
1129 1.64 jonathan struct mbuf *np;
1130 1.64 jonathan
1131 1.64 jonathan /* Undo the sballoc() of this record */
1132 1.64 jonathan for (np = n; np; np = np->m_next)
1133 1.64 jonathan sbfree(sb, np);
1134 1.64 jonathan
1135 1.64 jonathan n0 = n->m_nextpkt; /* iterate at next prepended address */
1136 1.64 jonathan MFREE(n, np); /* free prepended address (not data) */
1137 1.64 jonathan }
1138 1.66 perry return 0;
1139 1.63 jonathan }
1140 1.63 jonathan
1141 1.63 jonathan
1142 1.7 mycroft int
1143 1.37 lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1144 1.1 cgd {
1145 1.43 thorpej struct mbuf *m, *mlast, *n;
1146 1.37 lukem int space;
1147 1.1 cgd
1148 1.91 ad KASSERT(solocked(sb->sb_so));
1149 1.91 ad
1150 1.37 lukem space = 0;
1151 1.1 cgd if (control == 0)
1152 1.1 cgd panic("sbappendcontrol");
1153 1.1 cgd for (m = control; ; m = m->m_next) {
1154 1.1 cgd space += m->m_len;
1155 1.49 matt MCLAIM(m, sb->sb_mowner);
1156 1.1 cgd if (m->m_next == 0)
1157 1.1 cgd break;
1158 1.1 cgd }
1159 1.1 cgd n = m; /* save pointer to last control buffer */
1160 1.49 matt for (m = m0; m; m = m->m_next) {
1161 1.49 matt MCLAIM(m, sb->sb_mowner);
1162 1.1 cgd space += m->m_len;
1163 1.49 matt }
1164 1.1 cgd if (space > sbspace(sb))
1165 1.1 cgd return (0);
1166 1.1 cgd n->m_next = m0; /* concatenate data to control */
1167 1.43 thorpej
1168 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1169 1.43 thorpej
1170 1.43 thorpej for (m = control; m->m_next != NULL; m = m->m_next)
1171 1.1 cgd sballoc(sb, m);
1172 1.43 thorpej sballoc(sb, m);
1173 1.43 thorpej mlast = m;
1174 1.43 thorpej SBLINKRECORD(sb, control);
1175 1.43 thorpej
1176 1.43 thorpej sb->sb_mbtail = mlast;
1177 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendcontrol");
1178 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1179 1.43 thorpej
1180 1.1 cgd return (1);
1181 1.1 cgd }
1182 1.1 cgd
1183 1.1 cgd /*
1184 1.1 cgd * Compress mbuf chain m into the socket
1185 1.1 cgd * buffer sb following mbuf n. If n
1186 1.1 cgd * is null, the buffer is presumed empty.
1187 1.1 cgd */
1188 1.7 mycroft void
1189 1.37 lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1190 1.1 cgd {
1191 1.37 lukem int eor;
1192 1.37 lukem struct mbuf *o;
1193 1.1 cgd
1194 1.91 ad KASSERT(solocked(sb->sb_so));
1195 1.91 ad
1196 1.37 lukem eor = 0;
1197 1.1 cgd while (m) {
1198 1.1 cgd eor |= m->m_flags & M_EOR;
1199 1.1 cgd if (m->m_len == 0 &&
1200 1.1 cgd (eor == 0 ||
1201 1.1 cgd (((o = m->m_next) || (o = n)) &&
1202 1.1 cgd o->m_type == m->m_type))) {
1203 1.46 thorpej if (sb->sb_lastrecord == m)
1204 1.46 thorpej sb->sb_lastrecord = m->m_next;
1205 1.1 cgd m = m_free(m);
1206 1.1 cgd continue;
1207 1.1 cgd }
1208 1.40 thorpej if (n && (n->m_flags & M_EOR) == 0 &&
1209 1.40 thorpej /* M_TRAILINGSPACE() checks buffer writeability */
1210 1.40 thorpej m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1211 1.40 thorpej m->m_len <= M_TRAILINGSPACE(n) &&
1212 1.40 thorpej n->m_type == m->m_type) {
1213 1.82 christos memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1214 1.1 cgd (unsigned)m->m_len);
1215 1.1 cgd n->m_len += m->m_len;
1216 1.1 cgd sb->sb_cc += m->m_len;
1217 1.1 cgd m = m_free(m);
1218 1.1 cgd continue;
1219 1.1 cgd }
1220 1.1 cgd if (n)
1221 1.1 cgd n->m_next = m;
1222 1.1 cgd else
1223 1.1 cgd sb->sb_mb = m;
1224 1.43 thorpej sb->sb_mbtail = m;
1225 1.1 cgd sballoc(sb, m);
1226 1.1 cgd n = m;
1227 1.1 cgd m->m_flags &= ~M_EOR;
1228 1.1 cgd m = m->m_next;
1229 1.1 cgd n->m_next = 0;
1230 1.1 cgd }
1231 1.1 cgd if (eor) {
1232 1.1 cgd if (n)
1233 1.1 cgd n->m_flags |= eor;
1234 1.1 cgd else
1235 1.15 christos printf("semi-panic: sbcompress\n");
1236 1.1 cgd }
1237 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
1238 1.1 cgd }
1239 1.1 cgd
1240 1.1 cgd /*
1241 1.1 cgd * Free all mbufs in a sockbuf.
1242 1.1 cgd * Check that all resources are reclaimed.
1243 1.1 cgd */
1244 1.7 mycroft void
1245 1.37 lukem sbflush(struct sockbuf *sb)
1246 1.1 cgd {
1247 1.1 cgd
1248 1.91 ad KASSERT(solocked(sb->sb_so));
1249 1.43 thorpej KASSERT((sb->sb_flags & SB_LOCK) == 0);
1250 1.43 thorpej
1251 1.1 cgd while (sb->sb_mbcnt)
1252 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
1253 1.43 thorpej
1254 1.43 thorpej KASSERT(sb->sb_cc == 0);
1255 1.43 thorpej KASSERT(sb->sb_mb == NULL);
1256 1.43 thorpej KASSERT(sb->sb_mbtail == NULL);
1257 1.43 thorpej KASSERT(sb->sb_lastrecord == NULL);
1258 1.1 cgd }
1259 1.1 cgd
1260 1.1 cgd /*
1261 1.1 cgd * Drop data from (the front of) a sockbuf.
1262 1.1 cgd */
1263 1.7 mycroft void
1264 1.37 lukem sbdrop(struct sockbuf *sb, int len)
1265 1.1 cgd {
1266 1.37 lukem struct mbuf *m, *mn, *next;
1267 1.1 cgd
1268 1.91 ad KASSERT(solocked(sb->sb_so));
1269 1.91 ad
1270 1.1 cgd next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1271 1.1 cgd while (len > 0) {
1272 1.1 cgd if (m == 0) {
1273 1.1 cgd if (next == 0)
1274 1.112 matt panic("sbdrop(%p,%d): cc=%lu",
1275 1.112 matt sb, len, sb->sb_cc);
1276 1.1 cgd m = next;
1277 1.1 cgd next = m->m_nextpkt;
1278 1.1 cgd continue;
1279 1.1 cgd }
1280 1.1 cgd if (m->m_len > len) {
1281 1.1 cgd m->m_len -= len;
1282 1.1 cgd m->m_data += len;
1283 1.1 cgd sb->sb_cc -= len;
1284 1.1 cgd break;
1285 1.1 cgd }
1286 1.1 cgd len -= m->m_len;
1287 1.1 cgd sbfree(sb, m);
1288 1.1 cgd MFREE(m, mn);
1289 1.1 cgd m = mn;
1290 1.1 cgd }
1291 1.1 cgd while (m && m->m_len == 0) {
1292 1.1 cgd sbfree(sb, m);
1293 1.1 cgd MFREE(m, mn);
1294 1.1 cgd m = mn;
1295 1.1 cgd }
1296 1.1 cgd if (m) {
1297 1.1 cgd sb->sb_mb = m;
1298 1.1 cgd m->m_nextpkt = next;
1299 1.1 cgd } else
1300 1.1 cgd sb->sb_mb = next;
1301 1.43 thorpej /*
1302 1.45 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second part
1303 1.43 thorpej * makes sure sb_lastrecord is up-to-date if we dropped
1304 1.43 thorpej * part of the last record.
1305 1.43 thorpej */
1306 1.43 thorpej m = sb->sb_mb;
1307 1.43 thorpej if (m == NULL) {
1308 1.43 thorpej sb->sb_mbtail = NULL;
1309 1.43 thorpej sb->sb_lastrecord = NULL;
1310 1.43 thorpej } else if (m->m_nextpkt == NULL)
1311 1.43 thorpej sb->sb_lastrecord = m;
1312 1.1 cgd }
1313 1.1 cgd
1314 1.1 cgd /*
1315 1.1 cgd * Drop a record off the front of a sockbuf
1316 1.1 cgd * and move the next record to the front.
1317 1.1 cgd */
1318 1.7 mycroft void
1319 1.37 lukem sbdroprecord(struct sockbuf *sb)
1320 1.1 cgd {
1321 1.37 lukem struct mbuf *m, *mn;
1322 1.1 cgd
1323 1.91 ad KASSERT(solocked(sb->sb_so));
1324 1.91 ad
1325 1.1 cgd m = sb->sb_mb;
1326 1.1 cgd if (m) {
1327 1.1 cgd sb->sb_mb = m->m_nextpkt;
1328 1.1 cgd do {
1329 1.1 cgd sbfree(sb, m);
1330 1.1 cgd MFREE(m, mn);
1331 1.11 christos } while ((m = mn) != NULL);
1332 1.1 cgd }
1333 1.45 thorpej SB_EMPTY_FIXUP(sb);
1334 1.19 thorpej }
1335 1.19 thorpej
1336 1.19 thorpej /*
1337 1.19 thorpej * Create a "control" mbuf containing the specified data
1338 1.19 thorpej * with the specified type for presentation on a socket buffer.
1339 1.19 thorpej */
1340 1.19 thorpej struct mbuf *
1341 1.111 christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1342 1.19 thorpej {
1343 1.37 lukem struct cmsghdr *cp;
1344 1.37 lukem struct mbuf *m;
1345 1.111 christos int space = CMSG_SPACE(size);
1346 1.19 thorpej
1347 1.111 christos if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1348 1.111 christos printf("%s: message too large %d\n", __func__, space);
1349 1.30 itojun return NULL;
1350 1.30 itojun }
1351 1.30 itojun
1352 1.111 christos if ((m = m_get(flags, MT_CONTROL)) == NULL)
1353 1.111 christos return NULL;
1354 1.111 christos if (space > MLEN) {
1355 1.111 christos if (space > MCLBYTES)
1356 1.111 christos MEXTMALLOC(m, space, M_WAITOK);
1357 1.111 christos else
1358 1.111 christos MCLGET(m, flags);
1359 1.30 itojun if ((m->m_flags & M_EXT) == 0) {
1360 1.30 itojun m_free(m);
1361 1.30 itojun return NULL;
1362 1.30 itojun }
1363 1.30 itojun }
1364 1.19 thorpej cp = mtod(m, struct cmsghdr *);
1365 1.111 christos *p = CMSG_DATA(cp);
1366 1.111 christos m->m_len = space;
1367 1.35 itojun cp->cmsg_len = CMSG_LEN(size);
1368 1.19 thorpej cp->cmsg_level = level;
1369 1.19 thorpej cp->cmsg_type = type;
1370 1.111 christos return m;
1371 1.111 christos }
1372 1.111 christos
1373 1.111 christos struct mbuf *
1374 1.111 christos sbcreatecontrol(void *p, int size, int type, int level)
1375 1.111 christos {
1376 1.111 christos struct mbuf *m;
1377 1.111 christos void *v;
1378 1.111 christos
1379 1.111 christos m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1380 1.111 christos if (m == NULL)
1381 1.111 christos return NULL;
1382 1.111 christos memcpy(v, p, size);
1383 1.111 christos return m;
1384 1.1 cgd }
1385 1.91 ad
1386 1.91 ad void
1387 1.91 ad solockretry(struct socket *so, kmutex_t *lock)
1388 1.91 ad {
1389 1.91 ad
1390 1.91 ad while (lock != so->so_lock) {
1391 1.91 ad mutex_exit(lock);
1392 1.91 ad lock = so->so_lock;
1393 1.91 ad mutex_enter(lock);
1394 1.91 ad }
1395 1.91 ad }
1396 1.91 ad
1397 1.91 ad bool
1398 1.91 ad solocked(struct socket *so)
1399 1.91 ad {
1400 1.91 ad
1401 1.91 ad return mutex_owned(so->so_lock);
1402 1.91 ad }
1403 1.91 ad
1404 1.91 ad bool
1405 1.91 ad solocked2(struct socket *so1, struct socket *so2)
1406 1.91 ad {
1407 1.91 ad kmutex_t *lock;
1408 1.91 ad
1409 1.91 ad lock = so1->so_lock;
1410 1.91 ad if (lock != so2->so_lock)
1411 1.91 ad return false;
1412 1.91 ad return mutex_owned(lock);
1413 1.91 ad }
1414 1.91 ad
1415 1.91 ad /*
1416 1.112.2.1 rmind * sosetlock: assign a default lock to a new socket.
1417 1.91 ad */
1418 1.91 ad void
1419 1.91 ad sosetlock(struct socket *so)
1420 1.91 ad {
1421 1.91 ad if (so->so_lock == NULL) {
1422 1.112.2.1 rmind kmutex_t *lock = softnet_lock;
1423 1.112.2.1 rmind
1424 1.91 ad so->so_lock = lock;
1425 1.91 ad mutex_obj_hold(lock);
1426 1.91 ad }
1427 1.91 ad }
1428 1.91 ad
1429 1.91 ad /*
1430 1.91 ad * Set lock on sockbuf sb; sleep if lock is already held.
1431 1.91 ad * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1432 1.91 ad * Returns error without lock if sleep is interrupted.
1433 1.91 ad */
1434 1.91 ad int
1435 1.91 ad sblock(struct sockbuf *sb, int wf)
1436 1.91 ad {
1437 1.91 ad struct socket *so;
1438 1.91 ad kmutex_t *lock;
1439 1.91 ad int error;
1440 1.91 ad
1441 1.91 ad KASSERT(solocked(sb->sb_so));
1442 1.91 ad
1443 1.91 ad for (;;) {
1444 1.91 ad if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1445 1.91 ad sb->sb_flags |= SB_LOCK;
1446 1.91 ad return 0;
1447 1.91 ad }
1448 1.91 ad if (wf != M_WAITOK)
1449 1.91 ad return EWOULDBLOCK;
1450 1.91 ad so = sb->sb_so;
1451 1.91 ad lock = so->so_lock;
1452 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0) {
1453 1.91 ad cv_wait(&so->so_cv, lock);
1454 1.91 ad error = 0;
1455 1.91 ad } else
1456 1.91 ad error = cv_wait_sig(&so->so_cv, lock);
1457 1.91 ad if (__predict_false(lock != so->so_lock))
1458 1.91 ad solockretry(so, lock);
1459 1.91 ad if (error != 0)
1460 1.91 ad return error;
1461 1.91 ad }
1462 1.91 ad }
1463 1.91 ad
1464 1.91 ad void
1465 1.91 ad sbunlock(struct sockbuf *sb)
1466 1.91 ad {
1467 1.91 ad struct socket *so;
1468 1.91 ad
1469 1.91 ad so = sb->sb_so;
1470 1.91 ad
1471 1.91 ad KASSERT(solocked(so));
1472 1.91 ad KASSERT((sb->sb_flags & SB_LOCK) != 0);
1473 1.91 ad
1474 1.91 ad sb->sb_flags &= ~SB_LOCK;
1475 1.91 ad cv_broadcast(&so->so_cv);
1476 1.91 ad }
1477 1.91 ad
1478 1.91 ad int
1479 1.101 yamt sowait(struct socket *so, bool catch, int timo)
1480 1.91 ad {
1481 1.91 ad kmutex_t *lock;
1482 1.91 ad int error;
1483 1.91 ad
1484 1.91 ad KASSERT(solocked(so));
1485 1.101 yamt KASSERT(catch || timo != 0);
1486 1.91 ad
1487 1.91 ad lock = so->so_lock;
1488 1.101 yamt if (catch)
1489 1.101 yamt error = cv_timedwait_sig(&so->so_cv, lock, timo);
1490 1.101 yamt else
1491 1.101 yamt error = cv_timedwait(&so->so_cv, lock, timo);
1492 1.91 ad if (__predict_false(lock != so->so_lock))
1493 1.91 ad solockretry(so, lock);
1494 1.91 ad return error;
1495 1.91 ad }
1496