uipc_socket2.c revision 1.112.2.2 1 1.112.2.2 rmind /* $NetBSD: uipc_socket2.c,v 1.112.2.2 2013/09/23 00:57:53 rmind Exp $ */
2 1.91 ad
3 1.91 ad /*-
4 1.91 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.91 ad * All rights reserved.
6 1.91 ad *
7 1.91 ad * Redistribution and use in source and binary forms, with or without
8 1.91 ad * modification, are permitted provided that the following conditions
9 1.91 ad * are met:
10 1.91 ad * 1. Redistributions of source code must retain the above copyright
11 1.91 ad * notice, this list of conditions and the following disclaimer.
12 1.91 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.91 ad * notice, this list of conditions and the following disclaimer in the
14 1.91 ad * documentation and/or other materials provided with the distribution.
15 1.91 ad *
16 1.91 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.91 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.91 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.91 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.91 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.91 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.91 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.91 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.91 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.91 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.91 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.91 ad */
28 1.9 cgd
29 1.1 cgd /*
30 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 1.7 mycroft * The Regents of the University of California. All rights reserved.
32 1.1 cgd *
33 1.1 cgd * Redistribution and use in source and binary forms, with or without
34 1.1 cgd * modification, are permitted provided that the following conditions
35 1.1 cgd * are met:
36 1.1 cgd * 1. Redistributions of source code must retain the above copyright
37 1.1 cgd * notice, this list of conditions and the following disclaimer.
38 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
39 1.1 cgd * notice, this list of conditions and the following disclaimer in the
40 1.1 cgd * documentation and/or other materials provided with the distribution.
41 1.54 agc * 3. Neither the name of the University nor the names of its contributors
42 1.1 cgd * may be used to endorse or promote products derived from this software
43 1.1 cgd * without specific prior written permission.
44 1.1 cgd *
45 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 cgd * SUCH DAMAGE.
56 1.1 cgd *
57 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 1.1 cgd */
59 1.42 lukem
60 1.42 lukem #include <sys/cdefs.h>
61 1.112.2.2 rmind __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.112.2.2 2013/09/23 00:57:53 rmind Exp $");
62 1.51 martin
63 1.51 martin #include "opt_mbuftrace.h"
64 1.58 thorpej #include "opt_sb_max.h"
65 1.1 cgd
66 1.5 mycroft #include <sys/param.h>
67 1.5 mycroft #include <sys/systm.h>
68 1.5 mycroft #include <sys/proc.h>
69 1.5 mycroft #include <sys/file.h>
70 1.5 mycroft #include <sys/buf.h>
71 1.5 mycroft #include <sys/mbuf.h>
72 1.5 mycroft #include <sys/protosw.h>
73 1.91 ad #include <sys/domain.h>
74 1.55 christos #include <sys/poll.h>
75 1.5 mycroft #include <sys/socket.h>
76 1.5 mycroft #include <sys/socketvar.h>
77 1.11 christos #include <sys/signalvar.h>
78 1.71 elad #include <sys/kauth.h>
79 1.91 ad #include <sys/pool.h>
80 1.98 pooka #include <sys/uidinfo.h>
81 1.1 cgd
82 1.1 cgd /*
83 1.91 ad * Primitive routines for operating on sockets and socket buffers.
84 1.91 ad *
85 1.112.2.2 rmind * Connection life-cycle:
86 1.112.2.2 rmind *
87 1.112.2.2 rmind * Normal sequence from the active (originating) side:
88 1.112.2.2 rmind *
89 1.112.2.2 rmind * - soisconnecting() is called during processing of connect() call,
90 1.112.2.2 rmind * - resulting in an eventual call to soisconnected() if/when the
91 1.112.2.2 rmind * connection is established.
92 1.112.2.2 rmind *
93 1.112.2.2 rmind * When the connection is torn down during processing of disconnect():
94 1.112.2.2 rmind *
95 1.112.2.2 rmind * - soisdisconnecting() is called and,
96 1.112.2.2 rmind * - soisdisconnected() is called when the connection to the peer
97 1.112.2.2 rmind * is totally severed.
98 1.112.2.2 rmind *
99 1.112.2.2 rmind * The semantics of these routines are such that connectionless protocols
100 1.112.2.2 rmind * can call soisconnected() and soisdisconnected() only, bypassing the
101 1.112.2.2 rmind * in-progress calls when setting up a ``connection'' takes no time.
102 1.112.2.2 rmind *
103 1.112.2.2 rmind * From the passive side, a socket is created with two queues of sockets:
104 1.112.2.2 rmind *
105 1.112.2.2 rmind * - so_q0 (0) for partial connections (i.e. connections in progress)
106 1.112.2.2 rmind * - so_q (1) for connections already made and awaiting user acceptance.
107 1.112.2.2 rmind *
108 1.112.2.2 rmind * As a protocol is preparing incoming connections, it creates a socket
109 1.112.2.2 rmind * structure queued on so_q0 by calling sonewconn(). When the connection
110 1.112.2.2 rmind * is established, soisconnected() is called, and transfers the
111 1.112.2.2 rmind * socket structure to so_q, making it available to accept().
112 1.112.2.2 rmind *
113 1.112.2.2 rmind * If a socket is closed with sockets on either so_q0 or so_q, these
114 1.112.2.2 rmind * sockets are dropped.
115 1.112.2.2 rmind *
116 1.91 ad * Locking rules and assumptions:
117 1.91 ad *
118 1.91 ad * o socket::so_lock can change on the fly. The low level routines used
119 1.91 ad * to lock sockets are aware of this. When so_lock is acquired, the
120 1.91 ad * routine locking must check to see if so_lock still points to the
121 1.91 ad * lock that was acquired. If so_lock has changed in the meantime, the
122 1.112.2.1 rmind * now irrelevant lock that was acquired must be dropped and the lock
123 1.91 ad * operation retried. Although not proven here, this is completely safe
124 1.91 ad * on a multiprocessor system, even with relaxed memory ordering, given
125 1.91 ad * the next two rules:
126 1.91 ad *
127 1.91 ad * o In order to mutate so_lock, the lock pointed to by the current value
128 1.91 ad * of so_lock must be held: i.e., the socket must be held locked by the
129 1.91 ad * changing thread. The thread must issue membar_exit() to prevent
130 1.91 ad * memory accesses being reordered, and can set so_lock to the desired
131 1.91 ad * value. If the lock pointed to by the new value of so_lock is not
132 1.91 ad * held by the changing thread, the socket must then be considered
133 1.91 ad * unlocked.
134 1.91 ad *
135 1.91 ad * o If so_lock is mutated, and the previous lock referred to by so_lock
136 1.91 ad * could still be visible to other threads in the system (e.g. via file
137 1.91 ad * descriptor or protocol-internal reference), then the old lock must
138 1.91 ad * remain valid until the socket and/or protocol control block has been
139 1.91 ad * torn down.
140 1.91 ad *
141 1.91 ad * o If a socket has a non-NULL so_head value (i.e. is in the process of
142 1.91 ad * connecting), then locking the socket must also lock the socket pointed
143 1.91 ad * to by so_head: their lock pointers must match.
144 1.91 ad *
145 1.91 ad * o If a socket has connections in progress (so_q, so_q0 not empty) then
146 1.91 ad * locking the socket must also lock the sockets attached to both queues.
147 1.91 ad * Again, their lock pointers must match.
148 1.91 ad *
149 1.112.2.1 rmind * o Beyond the initial lock assignment in socreate(), assigning locks to
150 1.91 ad * sockets is the responsibility of the individual protocols / protocol
151 1.91 ad * domains.
152 1.1 cgd */
153 1.1 cgd
154 1.112.2.2 rmind static pool_cache_t socket_cache;
155 1.112.2.2 rmind u_long sb_max = SB_MAX;/* maximum socket buffer size */
156 1.112.2.2 rmind static u_long sb_max_adj; /* adjusted sb_max */
157 1.1 cgd
158 1.7 mycroft void
159 1.37 lukem soisconnecting(struct socket *so)
160 1.1 cgd {
161 1.1 cgd
162 1.91 ad KASSERT(solocked(so));
163 1.91 ad
164 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 1.1 cgd so->so_state |= SS_ISCONNECTING;
166 1.1 cgd }
167 1.1 cgd
168 1.7 mycroft void
169 1.37 lukem soisconnected(struct socket *so)
170 1.1 cgd {
171 1.37 lukem struct socket *head;
172 1.1 cgd
173 1.37 lukem head = so->so_head;
174 1.91 ad
175 1.91 ad KASSERT(solocked(so));
176 1.91 ad KASSERT(head == NULL || solocked2(so, head));
177 1.91 ad
178 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179 1.1 cgd so->so_state |= SS_ISCONNECTED;
180 1.97 tls if (head && so->so_onq == &head->so_q0) {
181 1.97 tls if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 1.112.2.2 rmind /*
183 1.112.2.2 rmind * Re-enqueue and wake up any waiters, e.g.
184 1.112.2.2 rmind * processes blocking on accept().
185 1.112.2.2 rmind */
186 1.97 tls soqremque(so, 0);
187 1.97 tls soqinsque(head, so, 1);
188 1.97 tls sorwakeup(head);
189 1.97 tls cv_broadcast(&head->so_cv);
190 1.97 tls } else {
191 1.97 tls so->so_upcall =
192 1.97 tls head->so_accf->so_accept_filter->accf_callback;
193 1.97 tls so->so_upcallarg = head->so_accf->so_accept_filter_arg;
194 1.97 tls so->so_rcv.sb_flags |= SB_UPCALL;
195 1.97 tls so->so_options &= ~SO_ACCEPTFILTER;
196 1.104 tls (*so->so_upcall)(so, so->so_upcallarg,
197 1.104 tls POLLIN|POLLRDNORM, M_DONTWAIT);
198 1.101 yamt }
199 1.1 cgd } else {
200 1.91 ad cv_broadcast(&so->so_cv);
201 1.1 cgd sorwakeup(so);
202 1.1 cgd sowwakeup(so);
203 1.1 cgd }
204 1.1 cgd }
205 1.1 cgd
206 1.7 mycroft void
207 1.37 lukem soisdisconnecting(struct socket *so)
208 1.1 cgd {
209 1.1 cgd
210 1.91 ad KASSERT(solocked(so));
211 1.91 ad
212 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
213 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
214 1.91 ad cv_broadcast(&so->so_cv);
215 1.1 cgd sowwakeup(so);
216 1.1 cgd sorwakeup(so);
217 1.1 cgd }
218 1.1 cgd
219 1.7 mycroft void
220 1.37 lukem soisdisconnected(struct socket *so)
221 1.1 cgd {
222 1.1 cgd
223 1.91 ad KASSERT(solocked(so));
224 1.91 ad
225 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
226 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
227 1.91 ad cv_broadcast(&so->so_cv);
228 1.1 cgd sowwakeup(so);
229 1.1 cgd sorwakeup(so);
230 1.1 cgd }
231 1.1 cgd
232 1.94 ad void
233 1.94 ad soinit2(void)
234 1.94 ad {
235 1.94 ad
236 1.94 ad socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
237 1.94 ad "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
238 1.94 ad }
239 1.94 ad
240 1.1 cgd /*
241 1.112.2.1 rmind * sonewconn: accept a new connection.
242 1.112.2.1 rmind *
243 1.112.2.1 rmind * When an attempt at a new connection is noted on a socket which accepts
244 1.112.2.1 rmind * connections, sonewconn(9) is called. If the connection is possible
245 1.112.2.1 rmind * (subject to space constraints, etc) then we allocate a new structure,
246 1.112.2.1 rmind * properly linked into the data structure of the original socket.
247 1.112.2.1 rmind *
248 1.112.2.1 rmind * => Connection status may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
249 1.112.2.2 rmind * => May be called from soft-interrupt context.
250 1.112.2.1 rmind * => Listening socket should be locked.
251 1.112.2.1 rmind * => Returns the new socket locked.
252 1.1 cgd */
253 1.1 cgd struct socket *
254 1.76 plunky sonewconn(struct socket *head, int connstatus)
255 1.1 cgd {
256 1.112.2.1 rmind struct socket *so;
257 1.112.2.1 rmind int soqueue, error;
258 1.91 ad
259 1.102 yamt KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
260 1.102 yamt connstatus == SS_ISCONNECTED);
261 1.91 ad KASSERT(solocked(head));
262 1.1 cgd
263 1.112.2.1 rmind if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
264 1.112.2.1 rmind /* Listen queue overflow. */
265 1.112.2.1 rmind return NULL;
266 1.112.2.1 rmind }
267 1.112.2.1 rmind
268 1.112.2.1 rmind if ((head->so_options & SO_ACCEPTFILTER) != 0) {
269 1.97 tls connstatus = 0;
270 1.112.2.1 rmind }
271 1.37 lukem soqueue = connstatus ? 1 : 0;
272 1.112.2.1 rmind
273 1.112.2.1 rmind if ((so = soget(false)) == NULL) {
274 1.100 dyoung return NULL;
275 1.112.2.1 rmind }
276 1.1 cgd so->so_type = head->so_type;
277 1.112.2.2 rmind so->so_options = head->so_options & ~SO_ACCEPTCONN;
278 1.1 cgd so->so_linger = head->so_linger;
279 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
280 1.1 cgd so->so_proto = head->so_proto;
281 1.1 cgd so->so_timeo = head->so_timeo;
282 1.1 cgd so->so_pgid = head->so_pgid;
283 1.24 matt so->so_send = head->so_send;
284 1.24 matt so->so_receive = head->so_receive;
285 1.67 christos so->so_uidinfo = head->so_uidinfo;
286 1.96 yamt so->so_cpid = head->so_cpid;
287 1.49 matt #ifdef MBUFTRACE
288 1.49 matt so->so_mowner = head->so_mowner;
289 1.49 matt so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
290 1.49 matt so->so_snd.sb_mowner = head->so_snd.sb_mowner;
291 1.49 matt #endif
292 1.103 christos if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
293 1.103 christos goto out;
294 1.83 tls so->so_snd.sb_lowat = head->so_snd.sb_lowat;
295 1.83 tls so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
296 1.84 tls so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
297 1.84 tls so->so_snd.sb_timeo = head->so_snd.sb_timeo;
298 1.107 christos so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
299 1.107 christos so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
300 1.112.2.1 rmind
301 1.112.2.1 rmind /*
302 1.112.2.1 rmind * Share the lock the listening-socket, it may get unshared
303 1.112.2.1 rmind * once the connection is complete.
304 1.112.2.1 rmind */
305 1.112.2.1 rmind mutex_obj_hold(head->so_lock);
306 1.112.2.1 rmind so->so_lock = head->so_lock;
307 1.112.2.1 rmind sounlock(head);
308 1.112.2.1 rmind
309 1.112.2.1 rmind /* Finally, perform the protocol attach and re-acquire the lock. */
310 1.112.2.1 rmind error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
311 1.112.2.1 rmind solock(head);
312 1.112.2.1 rmind
313 1.112.2.1 rmind if (error) {
314 1.103 christos out:
315 1.99 ad /*
316 1.112.2.1 rmind * Remove accept filter if one is present.
317 1.99 ad * XXX Is this really needed?
318 1.99 ad */
319 1.97 tls if (so->so_accf != NULL)
320 1.99 ad (void)accept_filt_clear(so);
321 1.91 ad soput(so);
322 1.112.2.1 rmind
323 1.112.2.1 rmind /* Note: listening socket shall stay locked. */
324 1.112.2.1 rmind KASSERT(solocked(head));
325 1.100 dyoung return NULL;
326 1.1 cgd }
327 1.112.2.1 rmind
328 1.112.2.1 rmind /*
329 1.112.2.1 rmind * Update the connection status and wake up any waiters,
330 1.112.2.1 rmind * e.g. processes blocking on accept().
331 1.112.2.1 rmind */
332 1.112.2.1 rmind soqinsque(head, so, soqueue);
333 1.1 cgd if (connstatus) {
334 1.112.2.1 rmind so->so_state |= connstatus;
335 1.1 cgd sorwakeup(head);
336 1.91 ad cv_broadcast(&head->so_cv);
337 1.1 cgd }
338 1.112.2.1 rmind KASSERT(solocked2(head, so));
339 1.100 dyoung return so;
340 1.1 cgd }
341 1.1 cgd
342 1.91 ad struct socket *
343 1.91 ad soget(bool waitok)
344 1.91 ad {
345 1.91 ad struct socket *so;
346 1.91 ad
347 1.94 ad so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
348 1.91 ad if (__predict_false(so == NULL))
349 1.91 ad return (NULL);
350 1.91 ad memset(so, 0, sizeof(*so));
351 1.91 ad TAILQ_INIT(&so->so_q0);
352 1.91 ad TAILQ_INIT(&so->so_q);
353 1.91 ad cv_init(&so->so_cv, "socket");
354 1.91 ad cv_init(&so->so_rcv.sb_cv, "netio");
355 1.91 ad cv_init(&so->so_snd.sb_cv, "netio");
356 1.91 ad selinit(&so->so_rcv.sb_sel);
357 1.91 ad selinit(&so->so_snd.sb_sel);
358 1.91 ad so->so_rcv.sb_so = so;
359 1.91 ad so->so_snd.sb_so = so;
360 1.91 ad return so;
361 1.91 ad }
362 1.91 ad
363 1.91 ad void
364 1.91 ad soput(struct socket *so)
365 1.91 ad {
366 1.91 ad
367 1.91 ad KASSERT(!cv_has_waiters(&so->so_cv));
368 1.91 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
369 1.91 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
370 1.91 ad seldestroy(&so->so_rcv.sb_sel);
371 1.91 ad seldestroy(&so->so_snd.sb_sel);
372 1.91 ad mutex_obj_free(so->so_lock);
373 1.91 ad cv_destroy(&so->so_cv);
374 1.91 ad cv_destroy(&so->so_rcv.sb_cv);
375 1.91 ad cv_destroy(&so->so_snd.sb_cv);
376 1.94 ad pool_cache_put(socket_cache, so);
377 1.91 ad }
378 1.91 ad
379 1.112.2.1 rmind /*
380 1.112.2.1 rmind * soqinsque: insert socket of a new connection into the specified
381 1.112.2.1 rmind * accept queue of the listening socket (head).
382 1.112.2.1 rmind *
383 1.112.2.1 rmind * q = 0: queue of partial connections
384 1.112.2.1 rmind * q = 1: queue of incoming connections
385 1.112.2.1 rmind */
386 1.7 mycroft void
387 1.37 lukem soqinsque(struct socket *head, struct socket *so, int q)
388 1.1 cgd {
389 1.112.2.1 rmind KASSERT(q == 0 || q == 1);
390 1.91 ad KASSERT(solocked2(head, so));
391 1.112.2.1 rmind KASSERT(so->so_onq == NULL);
392 1.112.2.1 rmind KASSERT(so->so_head == NULL);
393 1.22 thorpej
394 1.1 cgd so->so_head = head;
395 1.1 cgd if (q == 0) {
396 1.1 cgd head->so_q0len++;
397 1.22 thorpej so->so_onq = &head->so_q0;
398 1.1 cgd } else {
399 1.1 cgd head->so_qlen++;
400 1.22 thorpej so->so_onq = &head->so_q;
401 1.1 cgd }
402 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
403 1.1 cgd }
404 1.1 cgd
405 1.112.2.1 rmind /*
406 1.112.2.1 rmind * soqremque: remove socket from the specified queue.
407 1.112.2.1 rmind *
408 1.112.2.1 rmind * => Returns true if socket was removed from the specified queue.
409 1.112.2.1 rmind * => False if socket was not removed (because it was in other queue).
410 1.112.2.1 rmind */
411 1.112.2.1 rmind bool
412 1.37 lukem soqremque(struct socket *so, int q)
413 1.1 cgd {
414 1.112.2.1 rmind struct socket *head = so->so_head;
415 1.91 ad
416 1.112.2.1 rmind KASSERT(q == 0 || q == 1);
417 1.91 ad KASSERT(solocked(so));
418 1.112.2.1 rmind KASSERT(so->so_onq != NULL);
419 1.112.2.1 rmind KASSERT(head != NULL);
420 1.112.2.1 rmind
421 1.22 thorpej if (q == 0) {
422 1.22 thorpej if (so->so_onq != &head->so_q0)
423 1.112.2.1 rmind return false;
424 1.1 cgd head->so_q0len--;
425 1.1 cgd } else {
426 1.22 thorpej if (so->so_onq != &head->so_q)
427 1.112.2.1 rmind return false;
428 1.1 cgd head->so_qlen--;
429 1.1 cgd }
430 1.91 ad KASSERT(solocked2(so, head));
431 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe);
432 1.22 thorpej so->so_onq = NULL;
433 1.22 thorpej so->so_head = NULL;
434 1.112.2.1 rmind return true;
435 1.1 cgd }
436 1.1 cgd
437 1.1 cgd /*
438 1.112.2.2 rmind * socantsendmore(): indicates that no more data will be sent on the
439 1.1 cgd * socket; it would normally be applied to a socket when the user
440 1.1 cgd * informs the system that no more data is to be sent, by the protocol
441 1.112.2.2 rmind * code (in case PRU_SHUTDOWN).
442 1.1 cgd */
443 1.4 andrew void
444 1.37 lukem socantsendmore(struct socket *so)
445 1.1 cgd {
446 1.91 ad KASSERT(solocked(so));
447 1.91 ad
448 1.1 cgd so->so_state |= SS_CANTSENDMORE;
449 1.1 cgd sowwakeup(so);
450 1.1 cgd }
451 1.1 cgd
452 1.112.2.2 rmind /*
453 1.112.2.2 rmind * socantrcvmore(): indicates that no more data will be received and
454 1.112.2.2 rmind * will normally be applied to the socket by a protocol when it detects
455 1.112.2.2 rmind * that the peer will send no more data. Data queued for reading in
456 1.112.2.2 rmind * the socket may yet be read.
457 1.112.2.2 rmind */
458 1.4 andrew void
459 1.37 lukem socantrcvmore(struct socket *so)
460 1.1 cgd {
461 1.91 ad KASSERT(solocked(so));
462 1.91 ad
463 1.1 cgd so->so_state |= SS_CANTRCVMORE;
464 1.1 cgd sorwakeup(so);
465 1.1 cgd }
466 1.1 cgd
467 1.1 cgd /*
468 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
469 1.1 cgd */
470 1.7 mycroft int
471 1.37 lukem sbwait(struct sockbuf *sb)
472 1.1 cgd {
473 1.91 ad struct socket *so;
474 1.91 ad kmutex_t *lock;
475 1.91 ad int error;
476 1.1 cgd
477 1.91 ad so = sb->sb_so;
478 1.1 cgd
479 1.91 ad KASSERT(solocked(so));
480 1.1 cgd
481 1.91 ad sb->sb_flags |= SB_NOTIFY;
482 1.91 ad lock = so->so_lock;
483 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0)
484 1.91 ad error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
485 1.91 ad else
486 1.91 ad error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
487 1.91 ad if (__predict_false(lock != so->so_lock))
488 1.91 ad solockretry(so, lock);
489 1.91 ad return error;
490 1.1 cgd }
491 1.1 cgd
492 1.1 cgd /*
493 1.1 cgd * Wakeup processes waiting on a socket buffer.
494 1.1 cgd * Do asynchronous notification via SIGIO
495 1.39 manu * if the socket buffer has the SB_ASYNC flag set.
496 1.1 cgd */
497 1.7 mycroft void
498 1.55 christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
499 1.1 cgd {
500 1.90 rmind int band;
501 1.90 rmind
502 1.91 ad KASSERT(solocked(so));
503 1.91 ad KASSERT(sb->sb_so == so);
504 1.91 ad
505 1.90 rmind if (code == POLL_IN)
506 1.90 rmind band = POLLIN|POLLRDNORM;
507 1.90 rmind else
508 1.90 rmind band = POLLOUT|POLLWRNORM;
509 1.91 ad sb->sb_flags &= ~SB_NOTIFY;
510 1.91 ad selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
511 1.91 ad cv_broadcast(&sb->sb_cv);
512 1.90 rmind if (sb->sb_flags & SB_ASYNC)
513 1.57 christos fownsignal(so->so_pgid, SIGIO, code, band, so);
514 1.24 matt if (sb->sb_flags & SB_UPCALL)
515 1.104 tls (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
516 1.1 cgd }
517 1.1 cgd
518 1.1 cgd /*
519 1.95 ad * Reset a socket's lock pointer. Wake all threads waiting on the
520 1.95 ad * socket's condition variables so that they can restart their waits
521 1.95 ad * using the new lock. The existing lock must be held.
522 1.95 ad */
523 1.95 ad void
524 1.95 ad solockreset(struct socket *so, kmutex_t *lock)
525 1.95 ad {
526 1.95 ad
527 1.95 ad KASSERT(solocked(so));
528 1.95 ad
529 1.95 ad so->so_lock = lock;
530 1.95 ad cv_broadcast(&so->so_snd.sb_cv);
531 1.95 ad cv_broadcast(&so->so_rcv.sb_cv);
532 1.95 ad cv_broadcast(&so->so_cv);
533 1.95 ad }
534 1.95 ad
535 1.95 ad /*
536 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
537 1.1 cgd *
538 1.1 cgd * Each socket contains two socket buffers: one for sending data and
539 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
540 1.1 cgd * information about the number of mbufs and amount of data in the
541 1.13 mycroft * queue, and other fields allowing poll() statements and notification
542 1.1 cgd * on data availability to be implemented.
543 1.1 cgd *
544 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
545 1.1 cgd * Each record is a list of mbufs chained together with the m_next
546 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
547 1.1 cgd * level routine soreceive() expects the following conventions to be
548 1.1 cgd * observed when placing information in the receive buffer:
549 1.1 cgd *
550 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
551 1.1 cgd * name, then a record containing that name must be present before
552 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
553 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
554 1.1 cgd * just additional data associated with the message), and there are
555 1.1 cgd * ``rights'' to be received, then a record containing this data
556 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL).
557 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
558 1.1 cgd * a data record, perhaps of zero length.
559 1.1 cgd *
560 1.1 cgd * Before using a new socket structure it is first necessary to reserve
561 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
562 1.1 cgd * some of the available buffer space in the system buffer pool for the
563 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
564 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
565 1.1 cgd */
566 1.1 cgd
567 1.7 mycroft int
568 1.58 thorpej sb_max_set(u_long new_sbmax)
569 1.58 thorpej {
570 1.58 thorpej int s;
571 1.58 thorpej
572 1.58 thorpej if (new_sbmax < (16 * 1024))
573 1.58 thorpej return (EINVAL);
574 1.58 thorpej
575 1.58 thorpej s = splsoftnet();
576 1.58 thorpej sb_max = new_sbmax;
577 1.58 thorpej sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
578 1.58 thorpej splx(s);
579 1.58 thorpej
580 1.58 thorpej return (0);
581 1.58 thorpej }
582 1.58 thorpej
583 1.58 thorpej int
584 1.37 lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
585 1.1 cgd {
586 1.112.2.1 rmind KASSERT(so->so_pcb == NULL || solocked(so));
587 1.91 ad
588 1.74 christos /*
589 1.74 christos * there's at least one application (a configure script of screen)
590 1.74 christos * which expects a fifo is writable even if it has "some" bytes
591 1.74 christos * in its buffer.
592 1.74 christos * so we want to make sure (hiwat - lowat) >= (some bytes).
593 1.74 christos *
594 1.74 christos * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
595 1.74 christos * we expect it's large enough for such applications.
596 1.74 christos */
597 1.74 christos u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
598 1.74 christos u_long hiwat = lowat + PIPE_BUF;
599 1.1 cgd
600 1.74 christos if (sndcc < hiwat)
601 1.74 christos sndcc = hiwat;
602 1.59 christos if (sbreserve(&so->so_snd, sndcc, so) == 0)
603 1.1 cgd goto bad;
604 1.59 christos if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
605 1.1 cgd goto bad2;
606 1.1 cgd if (so->so_rcv.sb_lowat == 0)
607 1.1 cgd so->so_rcv.sb_lowat = 1;
608 1.1 cgd if (so->so_snd.sb_lowat == 0)
609 1.74 christos so->so_snd.sb_lowat = lowat;
610 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
611 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
612 1.1 cgd return (0);
613 1.37 lukem bad2:
614 1.59 christos sbrelease(&so->so_snd, so);
615 1.37 lukem bad:
616 1.1 cgd return (ENOBUFS);
617 1.1 cgd }
618 1.1 cgd
619 1.1 cgd /*
620 1.1 cgd * Allot mbufs to a sockbuf.
621 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
622 1.1 cgd * if buffering efficiency is near the normal case.
623 1.1 cgd */
624 1.7 mycroft int
625 1.59 christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
626 1.1 cgd {
627 1.75 ad struct lwp *l = curlwp; /* XXX */
628 1.62 christos rlim_t maxcc;
629 1.67 christos struct uidinfo *uidinfo;
630 1.1 cgd
631 1.112.2.1 rmind KASSERT(so->so_pcb == NULL || solocked(so));
632 1.91 ad KASSERT(sb->sb_so == so);
633 1.91 ad KASSERT(sb_max_adj != 0);
634 1.91 ad
635 1.58 thorpej if (cc == 0 || cc > sb_max_adj)
636 1.1 cgd return (0);
637 1.93 christos
638 1.105 elad maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
639 1.93 christos
640 1.93 christos uidinfo = so->so_uidinfo;
641 1.67 christos if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
642 1.62 christos return 0;
643 1.1 cgd sb->sb_mbmax = min(cc * 2, sb_max);
644 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
645 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
646 1.1 cgd return (1);
647 1.1 cgd }
648 1.1 cgd
649 1.1 cgd /*
650 1.91 ad * Free mbufs held by a socket, and reserved mbuf space. We do not assert
651 1.91 ad * that the socket is held locked here: see sorflush().
652 1.1 cgd */
653 1.7 mycroft void
654 1.59 christos sbrelease(struct sockbuf *sb, struct socket *so)
655 1.1 cgd {
656 1.1 cgd
657 1.91 ad KASSERT(sb->sb_so == so);
658 1.91 ad
659 1.1 cgd sbflush(sb);
660 1.87 yamt (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
661 1.59 christos sb->sb_mbmax = 0;
662 1.1 cgd }
663 1.1 cgd
664 1.1 cgd /*
665 1.1 cgd * Routines to add and remove
666 1.1 cgd * data from an mbuf queue.
667 1.1 cgd *
668 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
669 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
670 1.1 cgd * space is available, comparing the function sbspace() with the amount
671 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
672 1.1 cgd * that data supplied is treated as the beginning of a new record.
673 1.1 cgd * To place a sender's address, optional access rights, and data in a
674 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
675 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
676 1.1 cgd * should be used. In either case, the new data begins a new record.
677 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
678 1.1 cgd * for the caller that there will be enough space to store the data.
679 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
680 1.1 cgd * to store additional information in.
681 1.1 cgd *
682 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
683 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
684 1.1 cgd * send buffer in a protocol with m_copy for output to a peer,
685 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
686 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
687 1.1 cgd */
688 1.1 cgd
689 1.43 thorpej #ifdef SOCKBUF_DEBUG
690 1.43 thorpej void
691 1.43 thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
692 1.43 thorpej {
693 1.43 thorpej struct mbuf *m = sb->sb_mb;
694 1.43 thorpej
695 1.91 ad KASSERT(solocked(sb->sb_so));
696 1.91 ad
697 1.43 thorpej while (m && m->m_nextpkt)
698 1.43 thorpej m = m->m_nextpkt;
699 1.43 thorpej
700 1.43 thorpej if (m != sb->sb_lastrecord) {
701 1.43 thorpej printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
702 1.43 thorpej sb->sb_mb, sb->sb_lastrecord, m);
703 1.43 thorpej printf("packet chain:\n");
704 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
705 1.43 thorpej printf("\t%p\n", m);
706 1.47 provos panic("sblastrecordchk from %s", where);
707 1.43 thorpej }
708 1.43 thorpej }
709 1.43 thorpej
710 1.43 thorpej void
711 1.43 thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
712 1.43 thorpej {
713 1.43 thorpej struct mbuf *m = sb->sb_mb;
714 1.43 thorpej struct mbuf *n;
715 1.43 thorpej
716 1.91 ad KASSERT(solocked(sb->sb_so));
717 1.91 ad
718 1.43 thorpej while (m && m->m_nextpkt)
719 1.43 thorpej m = m->m_nextpkt;
720 1.43 thorpej
721 1.43 thorpej while (m && m->m_next)
722 1.43 thorpej m = m->m_next;
723 1.43 thorpej
724 1.43 thorpej if (m != sb->sb_mbtail) {
725 1.43 thorpej printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
726 1.43 thorpej sb->sb_mb, sb->sb_mbtail, m);
727 1.43 thorpej printf("packet tree:\n");
728 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
729 1.43 thorpej printf("\t");
730 1.43 thorpej for (n = m; n != NULL; n = n->m_next)
731 1.43 thorpej printf("%p ", n);
732 1.43 thorpej printf("\n");
733 1.43 thorpej }
734 1.43 thorpej panic("sblastmbufchk from %s", where);
735 1.43 thorpej }
736 1.43 thorpej }
737 1.43 thorpej #endif /* SOCKBUF_DEBUG */
738 1.43 thorpej
739 1.63 jonathan /*
740 1.63 jonathan * Link a chain of records onto a socket buffer
741 1.63 jonathan */
742 1.63 jonathan #define SBLINKRECORDCHAIN(sb, m0, mlast) \
743 1.43 thorpej do { \
744 1.43 thorpej if ((sb)->sb_lastrecord != NULL) \
745 1.43 thorpej (sb)->sb_lastrecord->m_nextpkt = (m0); \
746 1.43 thorpej else \
747 1.43 thorpej (sb)->sb_mb = (m0); \
748 1.63 jonathan (sb)->sb_lastrecord = (mlast); \
749 1.43 thorpej } while (/*CONSTCOND*/0)
750 1.43 thorpej
751 1.63 jonathan
752 1.63 jonathan #define SBLINKRECORD(sb, m0) \
753 1.63 jonathan SBLINKRECORDCHAIN(sb, m0, m0)
754 1.63 jonathan
755 1.1 cgd /*
756 1.1 cgd * Append mbuf chain m to the last record in the
757 1.1 cgd * socket buffer sb. The additional space associated
758 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
759 1.1 cgd * discarded and mbufs are compacted where possible.
760 1.1 cgd */
761 1.7 mycroft void
762 1.37 lukem sbappend(struct sockbuf *sb, struct mbuf *m)
763 1.1 cgd {
764 1.37 lukem struct mbuf *n;
765 1.1 cgd
766 1.91 ad KASSERT(solocked(sb->sb_so));
767 1.91 ad
768 1.1 cgd if (m == 0)
769 1.1 cgd return;
770 1.43 thorpej
771 1.49 matt #ifdef MBUFTRACE
772 1.65 jonathan m_claimm(m, sb->sb_mowner);
773 1.49 matt #endif
774 1.49 matt
775 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 1");
776 1.43 thorpej
777 1.43 thorpej if ((n = sb->sb_lastrecord) != NULL) {
778 1.43 thorpej /*
779 1.43 thorpej * XXX Would like to simply use sb_mbtail here, but
780 1.43 thorpej * XXX I need to verify that I won't miss an EOR that
781 1.43 thorpej * XXX way.
782 1.43 thorpej */
783 1.1 cgd do {
784 1.1 cgd if (n->m_flags & M_EOR) {
785 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
786 1.1 cgd return;
787 1.1 cgd }
788 1.1 cgd } while (n->m_next && (n = n->m_next));
789 1.43 thorpej } else {
790 1.43 thorpej /*
791 1.43 thorpej * If this is the first record in the socket buffer, it's
792 1.43 thorpej * also the last record.
793 1.43 thorpej */
794 1.43 thorpej sb->sb_lastrecord = m;
795 1.1 cgd }
796 1.1 cgd sbcompress(sb, m, n);
797 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 2");
798 1.43 thorpej }
799 1.43 thorpej
800 1.43 thorpej /*
801 1.43 thorpej * This version of sbappend() should only be used when the caller
802 1.43 thorpej * absolutely knows that there will never be more than one record
803 1.43 thorpej * in the socket buffer, that is, a stream protocol (such as TCP).
804 1.43 thorpej */
805 1.43 thorpej void
806 1.44 thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
807 1.43 thorpej {
808 1.43 thorpej
809 1.91 ad KASSERT(solocked(sb->sb_so));
810 1.43 thorpej KDASSERT(m->m_nextpkt == NULL);
811 1.43 thorpej KASSERT(sb->sb_mb == sb->sb_lastrecord);
812 1.43 thorpej
813 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
814 1.43 thorpej
815 1.49 matt #ifdef MBUFTRACE
816 1.65 jonathan m_claimm(m, sb->sb_mowner);
817 1.49 matt #endif
818 1.49 matt
819 1.43 thorpej sbcompress(sb, m, sb->sb_mbtail);
820 1.43 thorpej
821 1.43 thorpej sb->sb_lastrecord = sb->sb_mb;
822 1.43 thorpej SBLASTRECORDCHK(sb, __func__);
823 1.1 cgd }
824 1.1 cgd
825 1.1 cgd #ifdef SOCKBUF_DEBUG
826 1.7 mycroft void
827 1.37 lukem sbcheck(struct sockbuf *sb)
828 1.1 cgd {
829 1.91 ad struct mbuf *m, *m2;
830 1.43 thorpej u_long len, mbcnt;
831 1.1 cgd
832 1.91 ad KASSERT(solocked(sb->sb_so));
833 1.91 ad
834 1.37 lukem len = 0;
835 1.37 lukem mbcnt = 0;
836 1.91 ad for (m = sb->sb_mb; m; m = m->m_nextpkt) {
837 1.91 ad for (m2 = m; m2 != NULL; m2 = m2->m_next) {
838 1.91 ad len += m2->m_len;
839 1.91 ad mbcnt += MSIZE;
840 1.91 ad if (m2->m_flags & M_EXT)
841 1.91 ad mbcnt += m2->m_ext.ext_size;
842 1.91 ad if (m2->m_nextpkt != NULL)
843 1.91 ad panic("sbcheck nextpkt");
844 1.91 ad }
845 1.1 cgd }
846 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
847 1.43 thorpej printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
848 1.1 cgd mbcnt, sb->sb_mbcnt);
849 1.1 cgd panic("sbcheck");
850 1.1 cgd }
851 1.1 cgd }
852 1.1 cgd #endif
853 1.1 cgd
854 1.1 cgd /*
855 1.1 cgd * As above, except the mbuf chain
856 1.1 cgd * begins a new record.
857 1.1 cgd */
858 1.7 mycroft void
859 1.37 lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
860 1.1 cgd {
861 1.37 lukem struct mbuf *m;
862 1.1 cgd
863 1.91 ad KASSERT(solocked(sb->sb_so));
864 1.91 ad
865 1.1 cgd if (m0 == 0)
866 1.1 cgd return;
867 1.43 thorpej
868 1.49 matt #ifdef MBUFTRACE
869 1.65 jonathan m_claimm(m0, sb->sb_mowner);
870 1.49 matt #endif
871 1.1 cgd /*
872 1.1 cgd * Put the first mbuf on the queue.
873 1.1 cgd * Note this permits zero length records.
874 1.1 cgd */
875 1.1 cgd sballoc(sb, m0);
876 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 1");
877 1.43 thorpej SBLINKRECORD(sb, m0);
878 1.1 cgd m = m0->m_next;
879 1.1 cgd m0->m_next = 0;
880 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
881 1.1 cgd m0->m_flags &= ~M_EOR;
882 1.1 cgd m->m_flags |= M_EOR;
883 1.1 cgd }
884 1.1 cgd sbcompress(sb, m, m0);
885 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 2");
886 1.1 cgd }
887 1.1 cgd
888 1.1 cgd /*
889 1.1 cgd * As above except that OOB data
890 1.1 cgd * is inserted at the beginning of the sockbuf,
891 1.1 cgd * but after any other OOB data.
892 1.1 cgd */
893 1.7 mycroft void
894 1.37 lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
895 1.1 cgd {
896 1.37 lukem struct mbuf *m, **mp;
897 1.1 cgd
898 1.91 ad KASSERT(solocked(sb->sb_so));
899 1.91 ad
900 1.1 cgd if (m0 == 0)
901 1.1 cgd return;
902 1.43 thorpej
903 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 1");
904 1.43 thorpej
905 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
906 1.1 cgd again:
907 1.1 cgd switch (m->m_type) {
908 1.1 cgd
909 1.1 cgd case MT_OOBDATA:
910 1.1 cgd continue; /* WANT next train */
911 1.1 cgd
912 1.1 cgd case MT_CONTROL:
913 1.11 christos if ((m = m->m_next) != NULL)
914 1.1 cgd goto again; /* inspect THIS train further */
915 1.1 cgd }
916 1.1 cgd break;
917 1.1 cgd }
918 1.1 cgd /*
919 1.1 cgd * Put the first mbuf on the queue.
920 1.1 cgd * Note this permits zero length records.
921 1.1 cgd */
922 1.1 cgd sballoc(sb, m0);
923 1.1 cgd m0->m_nextpkt = *mp;
924 1.43 thorpej if (*mp == NULL) {
925 1.43 thorpej /* m0 is actually the new tail */
926 1.43 thorpej sb->sb_lastrecord = m0;
927 1.43 thorpej }
928 1.1 cgd *mp = m0;
929 1.1 cgd m = m0->m_next;
930 1.1 cgd m0->m_next = 0;
931 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
932 1.1 cgd m0->m_flags &= ~M_EOR;
933 1.1 cgd m->m_flags |= M_EOR;
934 1.1 cgd }
935 1.1 cgd sbcompress(sb, m, m0);
936 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 2");
937 1.1 cgd }
938 1.1 cgd
939 1.1 cgd /*
940 1.1 cgd * Append address and data, and optionally, control (ancillary) data
941 1.1 cgd * to the receive queue of a socket. If present,
942 1.1 cgd * m0 must include a packet header with total length.
943 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
944 1.1 cgd */
945 1.7 mycroft int
946 1.61 matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
947 1.37 lukem struct mbuf *control)
948 1.1 cgd {
949 1.43 thorpej struct mbuf *m, *n, *nlast;
950 1.50 fvdl int space, len;
951 1.1 cgd
952 1.91 ad KASSERT(solocked(sb->sb_so));
953 1.91 ad
954 1.37 lukem space = asa->sa_len;
955 1.37 lukem
956 1.49 matt if (m0 != NULL) {
957 1.49 matt if ((m0->m_flags & M_PKTHDR) == 0)
958 1.49 matt panic("sbappendaddr");
959 1.1 cgd space += m0->m_pkthdr.len;
960 1.49 matt #ifdef MBUFTRACE
961 1.65 jonathan m_claimm(m0, sb->sb_mowner);
962 1.49 matt #endif
963 1.49 matt }
964 1.1 cgd for (n = control; n; n = n->m_next) {
965 1.1 cgd space += n->m_len;
966 1.49 matt MCLAIM(n, sb->sb_mowner);
967 1.1 cgd if (n->m_next == 0) /* keep pointer to last control buf */
968 1.1 cgd break;
969 1.1 cgd }
970 1.1 cgd if (space > sbspace(sb))
971 1.1 cgd return (0);
972 1.1 cgd MGET(m, M_DONTWAIT, MT_SONAME);
973 1.1 cgd if (m == 0)
974 1.1 cgd return (0);
975 1.49 matt MCLAIM(m, sb->sb_mowner);
976 1.50 fvdl /*
977 1.50 fvdl * XXX avoid 'comparison always true' warning which isn't easily
978 1.50 fvdl * avoided.
979 1.50 fvdl */
980 1.50 fvdl len = asa->sa_len;
981 1.50 fvdl if (len > MLEN) {
982 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
983 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
984 1.20 thorpej m_free(m);
985 1.20 thorpej return (0);
986 1.20 thorpej }
987 1.20 thorpej }
988 1.1 cgd m->m_len = asa->sa_len;
989 1.82 christos memcpy(mtod(m, void *), asa, asa->sa_len);
990 1.1 cgd if (n)
991 1.1 cgd n->m_next = m0; /* concatenate data to control */
992 1.1 cgd else
993 1.1 cgd control = m0;
994 1.1 cgd m->m_next = control;
995 1.43 thorpej
996 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 1");
997 1.43 thorpej
998 1.43 thorpej for (n = m; n->m_next != NULL; n = n->m_next)
999 1.1 cgd sballoc(sb, n);
1000 1.43 thorpej sballoc(sb, n);
1001 1.43 thorpej nlast = n;
1002 1.43 thorpej SBLINKRECORD(sb, m);
1003 1.43 thorpej
1004 1.43 thorpej sb->sb_mbtail = nlast;
1005 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendaddr");
1006 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 2");
1007 1.43 thorpej
1008 1.1 cgd return (1);
1009 1.1 cgd }
1010 1.1 cgd
1011 1.63 jonathan /*
1012 1.63 jonathan * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1013 1.63 jonathan * an mbuf chain.
1014 1.63 jonathan */
1015 1.70 perry static inline struct mbuf *
1016 1.81 yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1017 1.64 jonathan const struct sockaddr *asa)
1018 1.63 jonathan {
1019 1.63 jonathan struct mbuf *m;
1020 1.64 jonathan const int salen = asa->sa_len;
1021 1.63 jonathan
1022 1.91 ad KASSERT(solocked(sb->sb_so));
1023 1.91 ad
1024 1.63 jonathan /* only the first in each chain need be a pkthdr */
1025 1.63 jonathan MGETHDR(m, M_DONTWAIT, MT_SONAME);
1026 1.63 jonathan if (m == 0)
1027 1.63 jonathan return (0);
1028 1.63 jonathan MCLAIM(m, sb->sb_mowner);
1029 1.64 jonathan #ifdef notyet
1030 1.64 jonathan if (salen > MHLEN) {
1031 1.64 jonathan MEXTMALLOC(m, salen, M_NOWAIT);
1032 1.64 jonathan if ((m->m_flags & M_EXT) == 0) {
1033 1.64 jonathan m_free(m);
1034 1.64 jonathan return (0);
1035 1.64 jonathan }
1036 1.64 jonathan }
1037 1.64 jonathan #else
1038 1.64 jonathan KASSERT(salen <= MHLEN);
1039 1.64 jonathan #endif
1040 1.64 jonathan m->m_len = salen;
1041 1.82 christos memcpy(mtod(m, void *), asa, salen);
1042 1.63 jonathan m->m_next = m0;
1043 1.64 jonathan m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1044 1.63 jonathan
1045 1.63 jonathan return m;
1046 1.63 jonathan }
1047 1.63 jonathan
1048 1.63 jonathan int
1049 1.63 jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1050 1.63 jonathan struct mbuf *m0, int sbprio)
1051 1.63 jonathan {
1052 1.63 jonathan int space;
1053 1.63 jonathan struct mbuf *m, *n, *n0, *nlast;
1054 1.63 jonathan int error;
1055 1.63 jonathan
1056 1.91 ad KASSERT(solocked(sb->sb_so));
1057 1.91 ad
1058 1.63 jonathan /*
1059 1.63 jonathan * XXX sbprio reserved for encoding priority of this* request:
1060 1.63 jonathan * SB_PRIO_NONE --> honour normal sb limits
1061 1.63 jonathan * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1062 1.63 jonathan * take whole chain. Intended for large requests
1063 1.63 jonathan * that should be delivered atomically (all, or none).
1064 1.63 jonathan * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1065 1.63 jonathan * over normal socket limits, for messages indicating
1066 1.63 jonathan * buffer overflow in earlier normal/lower-priority messages
1067 1.63 jonathan * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1068 1.63 jonathan * Intended for kernel-generated messages only.
1069 1.63 jonathan * Up to generator to avoid total mbuf resource exhaustion.
1070 1.63 jonathan */
1071 1.63 jonathan (void)sbprio;
1072 1.63 jonathan
1073 1.63 jonathan if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1074 1.63 jonathan panic("sbappendaddrchain");
1075 1.63 jonathan
1076 1.63 jonathan space = sbspace(sb);
1077 1.66 perry
1078 1.63 jonathan #ifdef notyet
1079 1.66 perry /*
1080 1.63 jonathan * Enforce SB_PRIO_* limits as described above.
1081 1.63 jonathan */
1082 1.63 jonathan #endif
1083 1.63 jonathan
1084 1.63 jonathan n0 = NULL;
1085 1.63 jonathan nlast = NULL;
1086 1.63 jonathan for (m = m0; m; m = m->m_nextpkt) {
1087 1.63 jonathan struct mbuf *np;
1088 1.63 jonathan
1089 1.64 jonathan #ifdef MBUFTRACE
1090 1.65 jonathan m_claimm(m, sb->sb_mowner);
1091 1.64 jonathan #endif
1092 1.64 jonathan
1093 1.63 jonathan /* Prepend sockaddr to this record (m) of input chain m0 */
1094 1.64 jonathan n = m_prepend_sockaddr(sb, m, asa);
1095 1.63 jonathan if (n == NULL) {
1096 1.63 jonathan error = ENOBUFS;
1097 1.63 jonathan goto bad;
1098 1.63 jonathan }
1099 1.63 jonathan
1100 1.63 jonathan /* Append record (asa+m) to end of new chain n0 */
1101 1.63 jonathan if (n0 == NULL) {
1102 1.63 jonathan n0 = n;
1103 1.63 jonathan } else {
1104 1.63 jonathan nlast->m_nextpkt = n;
1105 1.63 jonathan }
1106 1.63 jonathan /* Keep track of last record on new chain */
1107 1.63 jonathan nlast = n;
1108 1.63 jonathan
1109 1.63 jonathan for (np = n; np; np = np->m_next)
1110 1.63 jonathan sballoc(sb, np);
1111 1.63 jonathan }
1112 1.63 jonathan
1113 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1114 1.64 jonathan
1115 1.63 jonathan /* Drop the entire chain of (asa+m) records onto the socket */
1116 1.63 jonathan SBLINKRECORDCHAIN(sb, n0, nlast);
1117 1.64 jonathan
1118 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1119 1.64 jonathan
1120 1.63 jonathan for (m = nlast; m->m_next; m = m->m_next)
1121 1.63 jonathan ;
1122 1.63 jonathan sb->sb_mbtail = m;
1123 1.64 jonathan SBLASTMBUFCHK(sb, "sbappendaddrchain");
1124 1.64 jonathan
1125 1.63 jonathan return (1);
1126 1.63 jonathan
1127 1.63 jonathan bad:
1128 1.64 jonathan /*
1129 1.64 jonathan * On error, free the prepended addreseses. For consistency
1130 1.64 jonathan * with sbappendaddr(), leave it to our caller to free
1131 1.64 jonathan * the input record chain passed to us as m0.
1132 1.64 jonathan */
1133 1.64 jonathan while ((n = n0) != NULL) {
1134 1.64 jonathan struct mbuf *np;
1135 1.64 jonathan
1136 1.64 jonathan /* Undo the sballoc() of this record */
1137 1.64 jonathan for (np = n; np; np = np->m_next)
1138 1.64 jonathan sbfree(sb, np);
1139 1.64 jonathan
1140 1.64 jonathan n0 = n->m_nextpkt; /* iterate at next prepended address */
1141 1.64 jonathan MFREE(n, np); /* free prepended address (not data) */
1142 1.64 jonathan }
1143 1.66 perry return 0;
1144 1.63 jonathan }
1145 1.63 jonathan
1146 1.63 jonathan
1147 1.7 mycroft int
1148 1.37 lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1149 1.1 cgd {
1150 1.43 thorpej struct mbuf *m, *mlast, *n;
1151 1.37 lukem int space;
1152 1.1 cgd
1153 1.91 ad KASSERT(solocked(sb->sb_so));
1154 1.91 ad
1155 1.37 lukem space = 0;
1156 1.1 cgd if (control == 0)
1157 1.1 cgd panic("sbappendcontrol");
1158 1.1 cgd for (m = control; ; m = m->m_next) {
1159 1.1 cgd space += m->m_len;
1160 1.49 matt MCLAIM(m, sb->sb_mowner);
1161 1.1 cgd if (m->m_next == 0)
1162 1.1 cgd break;
1163 1.1 cgd }
1164 1.1 cgd n = m; /* save pointer to last control buffer */
1165 1.49 matt for (m = m0; m; m = m->m_next) {
1166 1.49 matt MCLAIM(m, sb->sb_mowner);
1167 1.1 cgd space += m->m_len;
1168 1.49 matt }
1169 1.1 cgd if (space > sbspace(sb))
1170 1.1 cgd return (0);
1171 1.1 cgd n->m_next = m0; /* concatenate data to control */
1172 1.43 thorpej
1173 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1174 1.43 thorpej
1175 1.43 thorpej for (m = control; m->m_next != NULL; m = m->m_next)
1176 1.1 cgd sballoc(sb, m);
1177 1.43 thorpej sballoc(sb, m);
1178 1.43 thorpej mlast = m;
1179 1.43 thorpej SBLINKRECORD(sb, control);
1180 1.43 thorpej
1181 1.43 thorpej sb->sb_mbtail = mlast;
1182 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendcontrol");
1183 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1184 1.43 thorpej
1185 1.1 cgd return (1);
1186 1.1 cgd }
1187 1.1 cgd
1188 1.1 cgd /*
1189 1.1 cgd * Compress mbuf chain m into the socket
1190 1.1 cgd * buffer sb following mbuf n. If n
1191 1.1 cgd * is null, the buffer is presumed empty.
1192 1.1 cgd */
1193 1.7 mycroft void
1194 1.37 lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1195 1.1 cgd {
1196 1.37 lukem int eor;
1197 1.37 lukem struct mbuf *o;
1198 1.1 cgd
1199 1.91 ad KASSERT(solocked(sb->sb_so));
1200 1.91 ad
1201 1.37 lukem eor = 0;
1202 1.1 cgd while (m) {
1203 1.1 cgd eor |= m->m_flags & M_EOR;
1204 1.1 cgd if (m->m_len == 0 &&
1205 1.1 cgd (eor == 0 ||
1206 1.1 cgd (((o = m->m_next) || (o = n)) &&
1207 1.1 cgd o->m_type == m->m_type))) {
1208 1.46 thorpej if (sb->sb_lastrecord == m)
1209 1.46 thorpej sb->sb_lastrecord = m->m_next;
1210 1.1 cgd m = m_free(m);
1211 1.1 cgd continue;
1212 1.1 cgd }
1213 1.40 thorpej if (n && (n->m_flags & M_EOR) == 0 &&
1214 1.40 thorpej /* M_TRAILINGSPACE() checks buffer writeability */
1215 1.40 thorpej m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1216 1.40 thorpej m->m_len <= M_TRAILINGSPACE(n) &&
1217 1.40 thorpej n->m_type == m->m_type) {
1218 1.82 christos memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1219 1.1 cgd (unsigned)m->m_len);
1220 1.1 cgd n->m_len += m->m_len;
1221 1.1 cgd sb->sb_cc += m->m_len;
1222 1.1 cgd m = m_free(m);
1223 1.1 cgd continue;
1224 1.1 cgd }
1225 1.1 cgd if (n)
1226 1.1 cgd n->m_next = m;
1227 1.1 cgd else
1228 1.1 cgd sb->sb_mb = m;
1229 1.43 thorpej sb->sb_mbtail = m;
1230 1.1 cgd sballoc(sb, m);
1231 1.1 cgd n = m;
1232 1.1 cgd m->m_flags &= ~M_EOR;
1233 1.1 cgd m = m->m_next;
1234 1.1 cgd n->m_next = 0;
1235 1.1 cgd }
1236 1.1 cgd if (eor) {
1237 1.1 cgd if (n)
1238 1.1 cgd n->m_flags |= eor;
1239 1.1 cgd else
1240 1.15 christos printf("semi-panic: sbcompress\n");
1241 1.1 cgd }
1242 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
1243 1.1 cgd }
1244 1.1 cgd
1245 1.1 cgd /*
1246 1.1 cgd * Free all mbufs in a sockbuf.
1247 1.1 cgd * Check that all resources are reclaimed.
1248 1.1 cgd */
1249 1.7 mycroft void
1250 1.37 lukem sbflush(struct sockbuf *sb)
1251 1.1 cgd {
1252 1.1 cgd
1253 1.91 ad KASSERT(solocked(sb->sb_so));
1254 1.43 thorpej KASSERT((sb->sb_flags & SB_LOCK) == 0);
1255 1.43 thorpej
1256 1.1 cgd while (sb->sb_mbcnt)
1257 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
1258 1.43 thorpej
1259 1.43 thorpej KASSERT(sb->sb_cc == 0);
1260 1.43 thorpej KASSERT(sb->sb_mb == NULL);
1261 1.43 thorpej KASSERT(sb->sb_mbtail == NULL);
1262 1.43 thorpej KASSERT(sb->sb_lastrecord == NULL);
1263 1.1 cgd }
1264 1.1 cgd
1265 1.1 cgd /*
1266 1.1 cgd * Drop data from (the front of) a sockbuf.
1267 1.1 cgd */
1268 1.7 mycroft void
1269 1.37 lukem sbdrop(struct sockbuf *sb, int len)
1270 1.1 cgd {
1271 1.37 lukem struct mbuf *m, *mn, *next;
1272 1.1 cgd
1273 1.91 ad KASSERT(solocked(sb->sb_so));
1274 1.91 ad
1275 1.1 cgd next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1276 1.1 cgd while (len > 0) {
1277 1.1 cgd if (m == 0) {
1278 1.1 cgd if (next == 0)
1279 1.112 matt panic("sbdrop(%p,%d): cc=%lu",
1280 1.112 matt sb, len, sb->sb_cc);
1281 1.1 cgd m = next;
1282 1.1 cgd next = m->m_nextpkt;
1283 1.1 cgd continue;
1284 1.1 cgd }
1285 1.1 cgd if (m->m_len > len) {
1286 1.1 cgd m->m_len -= len;
1287 1.1 cgd m->m_data += len;
1288 1.1 cgd sb->sb_cc -= len;
1289 1.1 cgd break;
1290 1.1 cgd }
1291 1.1 cgd len -= m->m_len;
1292 1.1 cgd sbfree(sb, m);
1293 1.1 cgd MFREE(m, mn);
1294 1.1 cgd m = mn;
1295 1.1 cgd }
1296 1.1 cgd while (m && m->m_len == 0) {
1297 1.1 cgd sbfree(sb, m);
1298 1.1 cgd MFREE(m, mn);
1299 1.1 cgd m = mn;
1300 1.1 cgd }
1301 1.1 cgd if (m) {
1302 1.1 cgd sb->sb_mb = m;
1303 1.1 cgd m->m_nextpkt = next;
1304 1.1 cgd } else
1305 1.1 cgd sb->sb_mb = next;
1306 1.43 thorpej /*
1307 1.45 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second part
1308 1.43 thorpej * makes sure sb_lastrecord is up-to-date if we dropped
1309 1.43 thorpej * part of the last record.
1310 1.43 thorpej */
1311 1.43 thorpej m = sb->sb_mb;
1312 1.43 thorpej if (m == NULL) {
1313 1.43 thorpej sb->sb_mbtail = NULL;
1314 1.43 thorpej sb->sb_lastrecord = NULL;
1315 1.43 thorpej } else if (m->m_nextpkt == NULL)
1316 1.43 thorpej sb->sb_lastrecord = m;
1317 1.1 cgd }
1318 1.1 cgd
1319 1.1 cgd /*
1320 1.1 cgd * Drop a record off the front of a sockbuf
1321 1.1 cgd * and move the next record to the front.
1322 1.1 cgd */
1323 1.7 mycroft void
1324 1.37 lukem sbdroprecord(struct sockbuf *sb)
1325 1.1 cgd {
1326 1.37 lukem struct mbuf *m, *mn;
1327 1.1 cgd
1328 1.91 ad KASSERT(solocked(sb->sb_so));
1329 1.91 ad
1330 1.1 cgd m = sb->sb_mb;
1331 1.1 cgd if (m) {
1332 1.1 cgd sb->sb_mb = m->m_nextpkt;
1333 1.1 cgd do {
1334 1.1 cgd sbfree(sb, m);
1335 1.1 cgd MFREE(m, mn);
1336 1.11 christos } while ((m = mn) != NULL);
1337 1.1 cgd }
1338 1.45 thorpej SB_EMPTY_FIXUP(sb);
1339 1.19 thorpej }
1340 1.19 thorpej
1341 1.19 thorpej /*
1342 1.19 thorpej * Create a "control" mbuf containing the specified data
1343 1.19 thorpej * with the specified type for presentation on a socket buffer.
1344 1.19 thorpej */
1345 1.19 thorpej struct mbuf *
1346 1.111 christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1347 1.19 thorpej {
1348 1.37 lukem struct cmsghdr *cp;
1349 1.37 lukem struct mbuf *m;
1350 1.111 christos int space = CMSG_SPACE(size);
1351 1.19 thorpej
1352 1.111 christos if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1353 1.111 christos printf("%s: message too large %d\n", __func__, space);
1354 1.30 itojun return NULL;
1355 1.30 itojun }
1356 1.30 itojun
1357 1.111 christos if ((m = m_get(flags, MT_CONTROL)) == NULL)
1358 1.111 christos return NULL;
1359 1.111 christos if (space > MLEN) {
1360 1.111 christos if (space > MCLBYTES)
1361 1.111 christos MEXTMALLOC(m, space, M_WAITOK);
1362 1.111 christos else
1363 1.111 christos MCLGET(m, flags);
1364 1.30 itojun if ((m->m_flags & M_EXT) == 0) {
1365 1.30 itojun m_free(m);
1366 1.30 itojun return NULL;
1367 1.30 itojun }
1368 1.30 itojun }
1369 1.19 thorpej cp = mtod(m, struct cmsghdr *);
1370 1.111 christos *p = CMSG_DATA(cp);
1371 1.111 christos m->m_len = space;
1372 1.35 itojun cp->cmsg_len = CMSG_LEN(size);
1373 1.19 thorpej cp->cmsg_level = level;
1374 1.19 thorpej cp->cmsg_type = type;
1375 1.111 christos return m;
1376 1.111 christos }
1377 1.111 christos
1378 1.111 christos struct mbuf *
1379 1.111 christos sbcreatecontrol(void *p, int size, int type, int level)
1380 1.111 christos {
1381 1.111 christos struct mbuf *m;
1382 1.111 christos void *v;
1383 1.111 christos
1384 1.111 christos m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1385 1.111 christos if (m == NULL)
1386 1.111 christos return NULL;
1387 1.111 christos memcpy(v, p, size);
1388 1.111 christos return m;
1389 1.1 cgd }
1390 1.91 ad
1391 1.91 ad void
1392 1.91 ad solockretry(struct socket *so, kmutex_t *lock)
1393 1.91 ad {
1394 1.91 ad
1395 1.91 ad while (lock != so->so_lock) {
1396 1.91 ad mutex_exit(lock);
1397 1.91 ad lock = so->so_lock;
1398 1.91 ad mutex_enter(lock);
1399 1.91 ad }
1400 1.91 ad }
1401 1.91 ad
1402 1.91 ad bool
1403 1.91 ad solocked(struct socket *so)
1404 1.91 ad {
1405 1.91 ad
1406 1.91 ad return mutex_owned(so->so_lock);
1407 1.91 ad }
1408 1.91 ad
1409 1.91 ad bool
1410 1.91 ad solocked2(struct socket *so1, struct socket *so2)
1411 1.91 ad {
1412 1.91 ad kmutex_t *lock;
1413 1.91 ad
1414 1.91 ad lock = so1->so_lock;
1415 1.91 ad if (lock != so2->so_lock)
1416 1.91 ad return false;
1417 1.91 ad return mutex_owned(lock);
1418 1.91 ad }
1419 1.91 ad
1420 1.91 ad /*
1421 1.112.2.1 rmind * sosetlock: assign a default lock to a new socket.
1422 1.91 ad */
1423 1.91 ad void
1424 1.91 ad sosetlock(struct socket *so)
1425 1.91 ad {
1426 1.91 ad if (so->so_lock == NULL) {
1427 1.112.2.1 rmind kmutex_t *lock = softnet_lock;
1428 1.112.2.1 rmind
1429 1.91 ad so->so_lock = lock;
1430 1.91 ad mutex_obj_hold(lock);
1431 1.91 ad }
1432 1.91 ad }
1433 1.91 ad
1434 1.91 ad /*
1435 1.91 ad * Set lock on sockbuf sb; sleep if lock is already held.
1436 1.91 ad * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1437 1.91 ad * Returns error without lock if sleep is interrupted.
1438 1.91 ad */
1439 1.91 ad int
1440 1.91 ad sblock(struct sockbuf *sb, int wf)
1441 1.91 ad {
1442 1.91 ad struct socket *so;
1443 1.91 ad kmutex_t *lock;
1444 1.91 ad int error;
1445 1.91 ad
1446 1.91 ad KASSERT(solocked(sb->sb_so));
1447 1.91 ad
1448 1.91 ad for (;;) {
1449 1.91 ad if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1450 1.91 ad sb->sb_flags |= SB_LOCK;
1451 1.91 ad return 0;
1452 1.91 ad }
1453 1.91 ad if (wf != M_WAITOK)
1454 1.91 ad return EWOULDBLOCK;
1455 1.91 ad so = sb->sb_so;
1456 1.91 ad lock = so->so_lock;
1457 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0) {
1458 1.91 ad cv_wait(&so->so_cv, lock);
1459 1.91 ad error = 0;
1460 1.91 ad } else
1461 1.91 ad error = cv_wait_sig(&so->so_cv, lock);
1462 1.91 ad if (__predict_false(lock != so->so_lock))
1463 1.91 ad solockretry(so, lock);
1464 1.91 ad if (error != 0)
1465 1.91 ad return error;
1466 1.91 ad }
1467 1.91 ad }
1468 1.91 ad
1469 1.91 ad void
1470 1.91 ad sbunlock(struct sockbuf *sb)
1471 1.91 ad {
1472 1.91 ad struct socket *so;
1473 1.91 ad
1474 1.91 ad so = sb->sb_so;
1475 1.91 ad
1476 1.91 ad KASSERT(solocked(so));
1477 1.91 ad KASSERT((sb->sb_flags & SB_LOCK) != 0);
1478 1.91 ad
1479 1.91 ad sb->sb_flags &= ~SB_LOCK;
1480 1.91 ad cv_broadcast(&so->so_cv);
1481 1.91 ad }
1482 1.91 ad
1483 1.91 ad int
1484 1.101 yamt sowait(struct socket *so, bool catch, int timo)
1485 1.91 ad {
1486 1.91 ad kmutex_t *lock;
1487 1.91 ad int error;
1488 1.91 ad
1489 1.91 ad KASSERT(solocked(so));
1490 1.101 yamt KASSERT(catch || timo != 0);
1491 1.91 ad
1492 1.91 ad lock = so->so_lock;
1493 1.101 yamt if (catch)
1494 1.101 yamt error = cv_timedwait_sig(&so->so_cv, lock, timo);
1495 1.101 yamt else
1496 1.101 yamt error = cv_timedwait(&so->so_cv, lock, timo);
1497 1.91 ad if (__predict_false(lock != so->so_lock))
1498 1.91 ad solockretry(so, lock);
1499 1.91 ad return error;
1500 1.91 ad }
1501