uipc_socket2.c revision 1.113 1 1.113 rmind /* $NetBSD: uipc_socket2.c,v 1.113 2013/08/29 17:49:21 rmind Exp $ */
2 1.91 ad
3 1.91 ad /*-
4 1.91 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.91 ad * All rights reserved.
6 1.91 ad *
7 1.91 ad * Redistribution and use in source and binary forms, with or without
8 1.91 ad * modification, are permitted provided that the following conditions
9 1.91 ad * are met:
10 1.91 ad * 1. Redistributions of source code must retain the above copyright
11 1.91 ad * notice, this list of conditions and the following disclaimer.
12 1.91 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.91 ad * notice, this list of conditions and the following disclaimer in the
14 1.91 ad * documentation and/or other materials provided with the distribution.
15 1.91 ad *
16 1.91 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.91 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.91 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.91 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.91 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.91 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.91 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.91 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.91 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.91 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.91 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.91 ad */
28 1.9 cgd
29 1.1 cgd /*
30 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 1.7 mycroft * The Regents of the University of California. All rights reserved.
32 1.1 cgd *
33 1.1 cgd * Redistribution and use in source and binary forms, with or without
34 1.1 cgd * modification, are permitted provided that the following conditions
35 1.1 cgd * are met:
36 1.1 cgd * 1. Redistributions of source code must retain the above copyright
37 1.1 cgd * notice, this list of conditions and the following disclaimer.
38 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
39 1.1 cgd * notice, this list of conditions and the following disclaimer in the
40 1.1 cgd * documentation and/or other materials provided with the distribution.
41 1.54 agc * 3. Neither the name of the University nor the names of its contributors
42 1.1 cgd * may be used to endorse or promote products derived from this software
43 1.1 cgd * without specific prior written permission.
44 1.1 cgd *
45 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 cgd * SUCH DAMAGE.
56 1.1 cgd *
57 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 1.1 cgd */
59 1.42 lukem
60 1.42 lukem #include <sys/cdefs.h>
61 1.113 rmind __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.113 2013/08/29 17:49:21 rmind Exp $");
62 1.51 martin
63 1.51 martin #include "opt_mbuftrace.h"
64 1.58 thorpej #include "opt_sb_max.h"
65 1.1 cgd
66 1.5 mycroft #include <sys/param.h>
67 1.5 mycroft #include <sys/systm.h>
68 1.5 mycroft #include <sys/proc.h>
69 1.5 mycroft #include <sys/file.h>
70 1.5 mycroft #include <sys/buf.h>
71 1.5 mycroft #include <sys/mbuf.h>
72 1.5 mycroft #include <sys/protosw.h>
73 1.91 ad #include <sys/domain.h>
74 1.55 christos #include <sys/poll.h>
75 1.5 mycroft #include <sys/socket.h>
76 1.5 mycroft #include <sys/socketvar.h>
77 1.11 christos #include <sys/signalvar.h>
78 1.71 elad #include <sys/kauth.h>
79 1.91 ad #include <sys/pool.h>
80 1.98 pooka #include <sys/uidinfo.h>
81 1.1 cgd
82 1.1 cgd /*
83 1.91 ad * Primitive routines for operating on sockets and socket buffers.
84 1.91 ad *
85 1.91 ad * Locking rules and assumptions:
86 1.91 ad *
87 1.91 ad * o socket::so_lock can change on the fly. The low level routines used
88 1.91 ad * to lock sockets are aware of this. When so_lock is acquired, the
89 1.91 ad * routine locking must check to see if so_lock still points to the
90 1.91 ad * lock that was acquired. If so_lock has changed in the meantime, the
91 1.91 ad * now irellevant lock that was acquired must be dropped and the lock
92 1.91 ad * operation retried. Although not proven here, this is completely safe
93 1.91 ad * on a multiprocessor system, even with relaxed memory ordering, given
94 1.91 ad * the next two rules:
95 1.91 ad *
96 1.91 ad * o In order to mutate so_lock, the lock pointed to by the current value
97 1.91 ad * of so_lock must be held: i.e., the socket must be held locked by the
98 1.91 ad * changing thread. The thread must issue membar_exit() to prevent
99 1.91 ad * memory accesses being reordered, and can set so_lock to the desired
100 1.91 ad * value. If the lock pointed to by the new value of so_lock is not
101 1.91 ad * held by the changing thread, the socket must then be considered
102 1.91 ad * unlocked.
103 1.91 ad *
104 1.91 ad * o If so_lock is mutated, and the previous lock referred to by so_lock
105 1.91 ad * could still be visible to other threads in the system (e.g. via file
106 1.91 ad * descriptor or protocol-internal reference), then the old lock must
107 1.91 ad * remain valid until the socket and/or protocol control block has been
108 1.91 ad * torn down.
109 1.91 ad *
110 1.91 ad * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 1.91 ad * connecting), then locking the socket must also lock the socket pointed
112 1.91 ad * to by so_head: their lock pointers must match.
113 1.91 ad *
114 1.91 ad * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 1.91 ad * locking the socket must also lock the sockets attached to both queues.
116 1.91 ad * Again, their lock pointers must match.
117 1.91 ad *
118 1.91 ad * o Beyond the initial lock assigment in socreate(), assigning locks to
119 1.91 ad * sockets is the responsibility of the individual protocols / protocol
120 1.91 ad * domains.
121 1.1 cgd */
122 1.1 cgd
123 1.94 ad static pool_cache_t socket_cache;
124 1.1 cgd
125 1.58 thorpej u_long sb_max = SB_MAX; /* maximum socket buffer size */
126 1.58 thorpej static u_long sb_max_adj; /* adjusted sb_max */
127 1.58 thorpej
128 1.1 cgd /*
129 1.1 cgd * Procedures to manipulate state flags of socket
130 1.1 cgd * and do appropriate wakeups. Normal sequence from the
131 1.1 cgd * active (originating) side is that soisconnecting() is
132 1.1 cgd * called during processing of connect() call,
133 1.1 cgd * resulting in an eventual call to soisconnected() if/when the
134 1.1 cgd * connection is established. When the connection is torn down
135 1.1 cgd * soisdisconnecting() is called during processing of disconnect() call,
136 1.1 cgd * and soisdisconnected() is called when the connection to the peer
137 1.1 cgd * is totally severed. The semantics of these routines are such that
138 1.1 cgd * connectionless protocols can call soisconnected() and soisdisconnected()
139 1.1 cgd * only, bypassing the in-progress calls when setting up a ``connection''
140 1.1 cgd * takes no time.
141 1.1 cgd *
142 1.1 cgd * From the passive side, a socket is created with
143 1.1 cgd * two queues of sockets: so_q0 for connections in progress
144 1.1 cgd * and so_q for connections already made and awaiting user acceptance.
145 1.1 cgd * As a protocol is preparing incoming connections, it creates a socket
146 1.1 cgd * structure queued on so_q0 by calling sonewconn(). When the connection
147 1.1 cgd * is established, soisconnected() is called, and transfers the
148 1.1 cgd * socket structure to so_q, making it available to accept().
149 1.66 perry *
150 1.1 cgd * If a socket is closed with sockets on either
151 1.1 cgd * so_q0 or so_q, these sockets are dropped.
152 1.1 cgd *
153 1.1 cgd * If higher level protocols are implemented in
154 1.1 cgd * the kernel, the wakeups done here will sometimes
155 1.1 cgd * cause software-interrupt process scheduling.
156 1.1 cgd */
157 1.1 cgd
158 1.7 mycroft void
159 1.37 lukem soisconnecting(struct socket *so)
160 1.1 cgd {
161 1.1 cgd
162 1.91 ad KASSERT(solocked(so));
163 1.91 ad
164 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 1.1 cgd so->so_state |= SS_ISCONNECTING;
166 1.1 cgd }
167 1.1 cgd
168 1.7 mycroft void
169 1.37 lukem soisconnected(struct socket *so)
170 1.1 cgd {
171 1.37 lukem struct socket *head;
172 1.1 cgd
173 1.37 lukem head = so->so_head;
174 1.91 ad
175 1.91 ad KASSERT(solocked(so));
176 1.91 ad KASSERT(head == NULL || solocked2(so, head));
177 1.91 ad
178 1.113 rmind so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
179 1.1 cgd so->so_state |= SS_ISCONNECTED;
180 1.97 tls if (head && so->so_onq == &head->so_q0) {
181 1.97 tls if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 1.97 tls soqremque(so, 0);
183 1.97 tls soqinsque(head, so, 1);
184 1.97 tls sorwakeup(head);
185 1.97 tls cv_broadcast(&head->so_cv);
186 1.97 tls } else {
187 1.97 tls so->so_upcall =
188 1.97 tls head->so_accf->so_accept_filter->accf_callback;
189 1.97 tls so->so_upcallarg = head->so_accf->so_accept_filter_arg;
190 1.97 tls so->so_rcv.sb_flags |= SB_UPCALL;
191 1.97 tls so->so_options &= ~SO_ACCEPTFILTER;
192 1.104 tls (*so->so_upcall)(so, so->so_upcallarg,
193 1.104 tls POLLIN|POLLRDNORM, M_DONTWAIT);
194 1.101 yamt }
195 1.1 cgd } else {
196 1.91 ad cv_broadcast(&so->so_cv);
197 1.1 cgd sorwakeup(so);
198 1.1 cgd sowwakeup(so);
199 1.1 cgd }
200 1.1 cgd }
201 1.1 cgd
202 1.7 mycroft void
203 1.37 lukem soisdisconnecting(struct socket *so)
204 1.1 cgd {
205 1.1 cgd
206 1.91 ad KASSERT(solocked(so));
207 1.91 ad
208 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
209 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
210 1.91 ad cv_broadcast(&so->so_cv);
211 1.1 cgd sowwakeup(so);
212 1.1 cgd sorwakeup(so);
213 1.1 cgd }
214 1.1 cgd
215 1.7 mycroft void
216 1.37 lukem soisdisconnected(struct socket *so)
217 1.1 cgd {
218 1.1 cgd
219 1.91 ad KASSERT(solocked(so));
220 1.91 ad
221 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
222 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
223 1.91 ad cv_broadcast(&so->so_cv);
224 1.1 cgd sowwakeup(so);
225 1.1 cgd sorwakeup(so);
226 1.1 cgd }
227 1.1 cgd
228 1.94 ad void
229 1.94 ad soinit2(void)
230 1.94 ad {
231 1.94 ad
232 1.94 ad socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
233 1.94 ad "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
234 1.94 ad }
235 1.94 ad
236 1.1 cgd /*
237 1.1 cgd * When an attempt at a new connection is noted on a socket
238 1.1 cgd * which accepts connections, sonewconn is called. If the
239 1.1 cgd * connection is possible (subject to space constraints, etc.)
240 1.1 cgd * then we allocate a new structure, propoerly linked into the
241 1.1 cgd * data structure of the original socket, and return this.
242 1.1 cgd */
243 1.1 cgd struct socket *
244 1.113 rmind sonewconn(struct socket *head, bool conncomplete)
245 1.1 cgd {
246 1.37 lukem struct socket *so;
247 1.91 ad int soqueue, error;
248 1.91 ad
249 1.91 ad KASSERT(solocked(head));
250 1.1 cgd
251 1.97 tls if ((head->so_options & SO_ACCEPTFILTER) != 0)
252 1.113 rmind conncomplete = false;
253 1.113 rmind soqueue = conncomplete ? 1 : 0;
254 1.113 rmind
255 1.1 cgd if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
256 1.100 dyoung return NULL;
257 1.91 ad so = soget(false);
258 1.66 perry if (so == NULL)
259 1.100 dyoung return NULL;
260 1.91 ad mutex_obj_hold(head->so_lock);
261 1.91 ad so->so_lock = head->so_lock;
262 1.1 cgd so->so_type = head->so_type;
263 1.1 cgd so->so_options = head->so_options &~ SO_ACCEPTCONN;
264 1.1 cgd so->so_linger = head->so_linger;
265 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
266 1.1 cgd so->so_proto = head->so_proto;
267 1.1 cgd so->so_timeo = head->so_timeo;
268 1.1 cgd so->so_pgid = head->so_pgid;
269 1.24 matt so->so_send = head->so_send;
270 1.24 matt so->so_receive = head->so_receive;
271 1.67 christos so->so_uidinfo = head->so_uidinfo;
272 1.96 yamt so->so_cpid = head->so_cpid;
273 1.49 matt #ifdef MBUFTRACE
274 1.49 matt so->so_mowner = head->so_mowner;
275 1.49 matt so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
276 1.49 matt so->so_snd.sb_mowner = head->so_snd.sb_mowner;
277 1.49 matt #endif
278 1.103 christos if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
279 1.103 christos goto out;
280 1.83 tls so->so_snd.sb_lowat = head->so_snd.sb_lowat;
281 1.83 tls so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
282 1.84 tls so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
283 1.84 tls so->so_snd.sb_timeo = head->so_snd.sb_timeo;
284 1.107 christos so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
285 1.107 christos so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
286 1.1 cgd soqinsque(head, so, soqueue);
287 1.91 ad error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
288 1.91 ad NULL, NULL);
289 1.91 ad KASSERT(solocked(so));
290 1.91 ad if (error != 0) {
291 1.1 cgd (void) soqremque(so, soqueue);
292 1.103 christos out:
293 1.99 ad /*
294 1.99 ad * Remove acccept filter if one is present.
295 1.99 ad * XXX Is this really needed?
296 1.99 ad */
297 1.97 tls if (so->so_accf != NULL)
298 1.99 ad (void)accept_filt_clear(so);
299 1.91 ad soput(so);
300 1.100 dyoung return NULL;
301 1.1 cgd }
302 1.113 rmind if (conncomplete) {
303 1.1 cgd sorwakeup(head);
304 1.91 ad cv_broadcast(&head->so_cv);
305 1.113 rmind so->so_state |= SS_ISCONNECTED;
306 1.1 cgd }
307 1.100 dyoung return so;
308 1.1 cgd }
309 1.1 cgd
310 1.91 ad struct socket *
311 1.91 ad soget(bool waitok)
312 1.91 ad {
313 1.91 ad struct socket *so;
314 1.91 ad
315 1.94 ad so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
316 1.91 ad if (__predict_false(so == NULL))
317 1.91 ad return (NULL);
318 1.91 ad memset(so, 0, sizeof(*so));
319 1.91 ad TAILQ_INIT(&so->so_q0);
320 1.91 ad TAILQ_INIT(&so->so_q);
321 1.91 ad cv_init(&so->so_cv, "socket");
322 1.91 ad cv_init(&so->so_rcv.sb_cv, "netio");
323 1.91 ad cv_init(&so->so_snd.sb_cv, "netio");
324 1.91 ad selinit(&so->so_rcv.sb_sel);
325 1.91 ad selinit(&so->so_snd.sb_sel);
326 1.91 ad so->so_rcv.sb_so = so;
327 1.91 ad so->so_snd.sb_so = so;
328 1.91 ad return so;
329 1.91 ad }
330 1.91 ad
331 1.91 ad void
332 1.91 ad soput(struct socket *so)
333 1.91 ad {
334 1.91 ad
335 1.91 ad KASSERT(!cv_has_waiters(&so->so_cv));
336 1.91 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
337 1.91 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
338 1.91 ad seldestroy(&so->so_rcv.sb_sel);
339 1.91 ad seldestroy(&so->so_snd.sb_sel);
340 1.91 ad mutex_obj_free(so->so_lock);
341 1.91 ad cv_destroy(&so->so_cv);
342 1.91 ad cv_destroy(&so->so_rcv.sb_cv);
343 1.91 ad cv_destroy(&so->so_snd.sb_cv);
344 1.94 ad pool_cache_put(socket_cache, so);
345 1.91 ad }
346 1.91 ad
347 1.7 mycroft void
348 1.37 lukem soqinsque(struct socket *head, struct socket *so, int q)
349 1.1 cgd {
350 1.1 cgd
351 1.91 ad KASSERT(solocked2(head, so));
352 1.91 ad
353 1.22 thorpej #ifdef DIAGNOSTIC
354 1.22 thorpej if (so->so_onq != NULL)
355 1.22 thorpej panic("soqinsque");
356 1.22 thorpej #endif
357 1.22 thorpej
358 1.1 cgd so->so_head = head;
359 1.1 cgd if (q == 0) {
360 1.1 cgd head->so_q0len++;
361 1.22 thorpej so->so_onq = &head->so_q0;
362 1.1 cgd } else {
363 1.1 cgd head->so_qlen++;
364 1.22 thorpej so->so_onq = &head->so_q;
365 1.1 cgd }
366 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
367 1.1 cgd }
368 1.1 cgd
369 1.7 mycroft int
370 1.37 lukem soqremque(struct socket *so, int q)
371 1.1 cgd {
372 1.37 lukem struct socket *head;
373 1.1 cgd
374 1.37 lukem head = so->so_head;
375 1.91 ad
376 1.91 ad KASSERT(solocked(so));
377 1.22 thorpej if (q == 0) {
378 1.22 thorpej if (so->so_onq != &head->so_q0)
379 1.17 thorpej return (0);
380 1.1 cgd head->so_q0len--;
381 1.1 cgd } else {
382 1.22 thorpej if (so->so_onq != &head->so_q)
383 1.22 thorpej return (0);
384 1.1 cgd head->so_qlen--;
385 1.1 cgd }
386 1.91 ad KASSERT(solocked2(so, head));
387 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe);
388 1.22 thorpej so->so_onq = NULL;
389 1.22 thorpej so->so_head = NULL;
390 1.1 cgd return (1);
391 1.1 cgd }
392 1.1 cgd
393 1.1 cgd /*
394 1.1 cgd * Socantsendmore indicates that no more data will be sent on the
395 1.1 cgd * socket; it would normally be applied to a socket when the user
396 1.1 cgd * informs the system that no more data is to be sent, by the protocol
397 1.1 cgd * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
398 1.1 cgd * will be received, and will normally be applied to the socket by a
399 1.1 cgd * protocol when it detects that the peer will send no more data.
400 1.1 cgd * Data queued for reading in the socket may yet be read.
401 1.1 cgd */
402 1.1 cgd
403 1.4 andrew void
404 1.37 lukem socantsendmore(struct socket *so)
405 1.1 cgd {
406 1.1 cgd
407 1.91 ad KASSERT(solocked(so));
408 1.91 ad
409 1.1 cgd so->so_state |= SS_CANTSENDMORE;
410 1.1 cgd sowwakeup(so);
411 1.1 cgd }
412 1.1 cgd
413 1.4 andrew void
414 1.37 lukem socantrcvmore(struct socket *so)
415 1.1 cgd {
416 1.1 cgd
417 1.91 ad KASSERT(solocked(so));
418 1.91 ad
419 1.1 cgd so->so_state |= SS_CANTRCVMORE;
420 1.1 cgd sorwakeup(so);
421 1.1 cgd }
422 1.1 cgd
423 1.1 cgd /*
424 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
425 1.1 cgd */
426 1.7 mycroft int
427 1.37 lukem sbwait(struct sockbuf *sb)
428 1.1 cgd {
429 1.91 ad struct socket *so;
430 1.91 ad kmutex_t *lock;
431 1.91 ad int error;
432 1.1 cgd
433 1.91 ad so = sb->sb_so;
434 1.1 cgd
435 1.91 ad KASSERT(solocked(so));
436 1.1 cgd
437 1.91 ad sb->sb_flags |= SB_NOTIFY;
438 1.91 ad lock = so->so_lock;
439 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0)
440 1.91 ad error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
441 1.91 ad else
442 1.91 ad error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
443 1.91 ad if (__predict_false(lock != so->so_lock))
444 1.91 ad solockretry(so, lock);
445 1.91 ad return error;
446 1.1 cgd }
447 1.1 cgd
448 1.1 cgd /*
449 1.1 cgd * Wakeup processes waiting on a socket buffer.
450 1.1 cgd * Do asynchronous notification via SIGIO
451 1.39 manu * if the socket buffer has the SB_ASYNC flag set.
452 1.1 cgd */
453 1.7 mycroft void
454 1.55 christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
455 1.1 cgd {
456 1.90 rmind int band;
457 1.90 rmind
458 1.91 ad KASSERT(solocked(so));
459 1.91 ad KASSERT(sb->sb_so == so);
460 1.91 ad
461 1.90 rmind if (code == POLL_IN)
462 1.90 rmind band = POLLIN|POLLRDNORM;
463 1.90 rmind else
464 1.90 rmind band = POLLOUT|POLLWRNORM;
465 1.91 ad sb->sb_flags &= ~SB_NOTIFY;
466 1.91 ad selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
467 1.91 ad cv_broadcast(&sb->sb_cv);
468 1.90 rmind if (sb->sb_flags & SB_ASYNC)
469 1.57 christos fownsignal(so->so_pgid, SIGIO, code, band, so);
470 1.24 matt if (sb->sb_flags & SB_UPCALL)
471 1.104 tls (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
472 1.1 cgd }
473 1.1 cgd
474 1.1 cgd /*
475 1.95 ad * Reset a socket's lock pointer. Wake all threads waiting on the
476 1.95 ad * socket's condition variables so that they can restart their waits
477 1.95 ad * using the new lock. The existing lock must be held.
478 1.95 ad */
479 1.95 ad void
480 1.95 ad solockreset(struct socket *so, kmutex_t *lock)
481 1.95 ad {
482 1.95 ad
483 1.95 ad KASSERT(solocked(so));
484 1.95 ad
485 1.95 ad so->so_lock = lock;
486 1.95 ad cv_broadcast(&so->so_snd.sb_cv);
487 1.95 ad cv_broadcast(&so->so_rcv.sb_cv);
488 1.95 ad cv_broadcast(&so->so_cv);
489 1.95 ad }
490 1.95 ad
491 1.95 ad /*
492 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
493 1.1 cgd *
494 1.1 cgd * Each socket contains two socket buffers: one for sending data and
495 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
496 1.1 cgd * information about the number of mbufs and amount of data in the
497 1.13 mycroft * queue, and other fields allowing poll() statements and notification
498 1.1 cgd * on data availability to be implemented.
499 1.1 cgd *
500 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
501 1.1 cgd * Each record is a list of mbufs chained together with the m_next
502 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
503 1.1 cgd * level routine soreceive() expects the following conventions to be
504 1.1 cgd * observed when placing information in the receive buffer:
505 1.1 cgd *
506 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
507 1.1 cgd * name, then a record containing that name must be present before
508 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
509 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
510 1.1 cgd * just additional data associated with the message), and there are
511 1.1 cgd * ``rights'' to be received, then a record containing this data
512 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL).
513 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
514 1.1 cgd * a data record, perhaps of zero length.
515 1.1 cgd *
516 1.1 cgd * Before using a new socket structure it is first necessary to reserve
517 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
518 1.1 cgd * some of the available buffer space in the system buffer pool for the
519 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
520 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
521 1.1 cgd */
522 1.1 cgd
523 1.7 mycroft int
524 1.58 thorpej sb_max_set(u_long new_sbmax)
525 1.58 thorpej {
526 1.58 thorpej int s;
527 1.58 thorpej
528 1.58 thorpej if (new_sbmax < (16 * 1024))
529 1.58 thorpej return (EINVAL);
530 1.58 thorpej
531 1.58 thorpej s = splsoftnet();
532 1.58 thorpej sb_max = new_sbmax;
533 1.58 thorpej sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
534 1.58 thorpej splx(s);
535 1.58 thorpej
536 1.58 thorpej return (0);
537 1.58 thorpej }
538 1.58 thorpej
539 1.58 thorpej int
540 1.37 lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
541 1.1 cgd {
542 1.91 ad
543 1.91 ad KASSERT(so->so_lock == NULL || solocked(so));
544 1.91 ad
545 1.74 christos /*
546 1.74 christos * there's at least one application (a configure script of screen)
547 1.74 christos * which expects a fifo is writable even if it has "some" bytes
548 1.74 christos * in its buffer.
549 1.74 christos * so we want to make sure (hiwat - lowat) >= (some bytes).
550 1.74 christos *
551 1.74 christos * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
552 1.74 christos * we expect it's large enough for such applications.
553 1.74 christos */
554 1.74 christos u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
555 1.74 christos u_long hiwat = lowat + PIPE_BUF;
556 1.1 cgd
557 1.74 christos if (sndcc < hiwat)
558 1.74 christos sndcc = hiwat;
559 1.59 christos if (sbreserve(&so->so_snd, sndcc, so) == 0)
560 1.1 cgd goto bad;
561 1.59 christos if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
562 1.1 cgd goto bad2;
563 1.1 cgd if (so->so_rcv.sb_lowat == 0)
564 1.1 cgd so->so_rcv.sb_lowat = 1;
565 1.1 cgd if (so->so_snd.sb_lowat == 0)
566 1.74 christos so->so_snd.sb_lowat = lowat;
567 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
568 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
569 1.1 cgd return (0);
570 1.37 lukem bad2:
571 1.59 christos sbrelease(&so->so_snd, so);
572 1.37 lukem bad:
573 1.1 cgd return (ENOBUFS);
574 1.1 cgd }
575 1.1 cgd
576 1.1 cgd /*
577 1.1 cgd * Allot mbufs to a sockbuf.
578 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
579 1.1 cgd * if buffering efficiency is near the normal case.
580 1.1 cgd */
581 1.7 mycroft int
582 1.59 christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
583 1.1 cgd {
584 1.75 ad struct lwp *l = curlwp; /* XXX */
585 1.62 christos rlim_t maxcc;
586 1.67 christos struct uidinfo *uidinfo;
587 1.1 cgd
588 1.91 ad KASSERT(so->so_lock == NULL || solocked(so));
589 1.91 ad KASSERT(sb->sb_so == so);
590 1.91 ad KASSERT(sb_max_adj != 0);
591 1.91 ad
592 1.58 thorpej if (cc == 0 || cc > sb_max_adj)
593 1.1 cgd return (0);
594 1.93 christos
595 1.105 elad maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
596 1.93 christos
597 1.93 christos uidinfo = so->so_uidinfo;
598 1.67 christos if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
599 1.62 christos return 0;
600 1.1 cgd sb->sb_mbmax = min(cc * 2, sb_max);
601 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
602 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
603 1.1 cgd return (1);
604 1.1 cgd }
605 1.1 cgd
606 1.1 cgd /*
607 1.91 ad * Free mbufs held by a socket, and reserved mbuf space. We do not assert
608 1.91 ad * that the socket is held locked here: see sorflush().
609 1.1 cgd */
610 1.7 mycroft void
611 1.59 christos sbrelease(struct sockbuf *sb, struct socket *so)
612 1.1 cgd {
613 1.1 cgd
614 1.91 ad KASSERT(sb->sb_so == so);
615 1.91 ad
616 1.1 cgd sbflush(sb);
617 1.87 yamt (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
618 1.59 christos sb->sb_mbmax = 0;
619 1.1 cgd }
620 1.1 cgd
621 1.1 cgd /*
622 1.1 cgd * Routines to add and remove
623 1.1 cgd * data from an mbuf queue.
624 1.1 cgd *
625 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
626 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
627 1.1 cgd * space is available, comparing the function sbspace() with the amount
628 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
629 1.1 cgd * that data supplied is treated as the beginning of a new record.
630 1.1 cgd * To place a sender's address, optional access rights, and data in a
631 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
632 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
633 1.1 cgd * should be used. In either case, the new data begins a new record.
634 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
635 1.1 cgd * for the caller that there will be enough space to store the data.
636 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
637 1.1 cgd * to store additional information in.
638 1.1 cgd *
639 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
640 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
641 1.1 cgd * send buffer in a protocol with m_copy for output to a peer,
642 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
643 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
644 1.1 cgd */
645 1.1 cgd
646 1.43 thorpej #ifdef SOCKBUF_DEBUG
647 1.43 thorpej void
648 1.43 thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
649 1.43 thorpej {
650 1.43 thorpej struct mbuf *m = sb->sb_mb;
651 1.43 thorpej
652 1.91 ad KASSERT(solocked(sb->sb_so));
653 1.91 ad
654 1.43 thorpej while (m && m->m_nextpkt)
655 1.43 thorpej m = m->m_nextpkt;
656 1.43 thorpej
657 1.43 thorpej if (m != sb->sb_lastrecord) {
658 1.43 thorpej printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
659 1.43 thorpej sb->sb_mb, sb->sb_lastrecord, m);
660 1.43 thorpej printf("packet chain:\n");
661 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
662 1.43 thorpej printf("\t%p\n", m);
663 1.47 provos panic("sblastrecordchk from %s", where);
664 1.43 thorpej }
665 1.43 thorpej }
666 1.43 thorpej
667 1.43 thorpej void
668 1.43 thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
669 1.43 thorpej {
670 1.43 thorpej struct mbuf *m = sb->sb_mb;
671 1.43 thorpej struct mbuf *n;
672 1.43 thorpej
673 1.91 ad KASSERT(solocked(sb->sb_so));
674 1.91 ad
675 1.43 thorpej while (m && m->m_nextpkt)
676 1.43 thorpej m = m->m_nextpkt;
677 1.43 thorpej
678 1.43 thorpej while (m && m->m_next)
679 1.43 thorpej m = m->m_next;
680 1.43 thorpej
681 1.43 thorpej if (m != sb->sb_mbtail) {
682 1.43 thorpej printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
683 1.43 thorpej sb->sb_mb, sb->sb_mbtail, m);
684 1.43 thorpej printf("packet tree:\n");
685 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
686 1.43 thorpej printf("\t");
687 1.43 thorpej for (n = m; n != NULL; n = n->m_next)
688 1.43 thorpej printf("%p ", n);
689 1.43 thorpej printf("\n");
690 1.43 thorpej }
691 1.43 thorpej panic("sblastmbufchk from %s", where);
692 1.43 thorpej }
693 1.43 thorpej }
694 1.43 thorpej #endif /* SOCKBUF_DEBUG */
695 1.43 thorpej
696 1.63 jonathan /*
697 1.63 jonathan * Link a chain of records onto a socket buffer
698 1.63 jonathan */
699 1.63 jonathan #define SBLINKRECORDCHAIN(sb, m0, mlast) \
700 1.43 thorpej do { \
701 1.43 thorpej if ((sb)->sb_lastrecord != NULL) \
702 1.43 thorpej (sb)->sb_lastrecord->m_nextpkt = (m0); \
703 1.43 thorpej else \
704 1.43 thorpej (sb)->sb_mb = (m0); \
705 1.63 jonathan (sb)->sb_lastrecord = (mlast); \
706 1.43 thorpej } while (/*CONSTCOND*/0)
707 1.43 thorpej
708 1.63 jonathan
709 1.63 jonathan #define SBLINKRECORD(sb, m0) \
710 1.63 jonathan SBLINKRECORDCHAIN(sb, m0, m0)
711 1.63 jonathan
712 1.1 cgd /*
713 1.1 cgd * Append mbuf chain m to the last record in the
714 1.1 cgd * socket buffer sb. The additional space associated
715 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
716 1.1 cgd * discarded and mbufs are compacted where possible.
717 1.1 cgd */
718 1.7 mycroft void
719 1.37 lukem sbappend(struct sockbuf *sb, struct mbuf *m)
720 1.1 cgd {
721 1.37 lukem struct mbuf *n;
722 1.1 cgd
723 1.91 ad KASSERT(solocked(sb->sb_so));
724 1.91 ad
725 1.1 cgd if (m == 0)
726 1.1 cgd return;
727 1.43 thorpej
728 1.49 matt #ifdef MBUFTRACE
729 1.65 jonathan m_claimm(m, sb->sb_mowner);
730 1.49 matt #endif
731 1.49 matt
732 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 1");
733 1.43 thorpej
734 1.43 thorpej if ((n = sb->sb_lastrecord) != NULL) {
735 1.43 thorpej /*
736 1.43 thorpej * XXX Would like to simply use sb_mbtail here, but
737 1.43 thorpej * XXX I need to verify that I won't miss an EOR that
738 1.43 thorpej * XXX way.
739 1.43 thorpej */
740 1.1 cgd do {
741 1.1 cgd if (n->m_flags & M_EOR) {
742 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
743 1.1 cgd return;
744 1.1 cgd }
745 1.1 cgd } while (n->m_next && (n = n->m_next));
746 1.43 thorpej } else {
747 1.43 thorpej /*
748 1.43 thorpej * If this is the first record in the socket buffer, it's
749 1.43 thorpej * also the last record.
750 1.43 thorpej */
751 1.43 thorpej sb->sb_lastrecord = m;
752 1.1 cgd }
753 1.1 cgd sbcompress(sb, m, n);
754 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 2");
755 1.43 thorpej }
756 1.43 thorpej
757 1.43 thorpej /*
758 1.43 thorpej * This version of sbappend() should only be used when the caller
759 1.43 thorpej * absolutely knows that there will never be more than one record
760 1.43 thorpej * in the socket buffer, that is, a stream protocol (such as TCP).
761 1.43 thorpej */
762 1.43 thorpej void
763 1.44 thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
764 1.43 thorpej {
765 1.43 thorpej
766 1.91 ad KASSERT(solocked(sb->sb_so));
767 1.43 thorpej KDASSERT(m->m_nextpkt == NULL);
768 1.43 thorpej KASSERT(sb->sb_mb == sb->sb_lastrecord);
769 1.43 thorpej
770 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
771 1.43 thorpej
772 1.49 matt #ifdef MBUFTRACE
773 1.65 jonathan m_claimm(m, sb->sb_mowner);
774 1.49 matt #endif
775 1.49 matt
776 1.43 thorpej sbcompress(sb, m, sb->sb_mbtail);
777 1.43 thorpej
778 1.43 thorpej sb->sb_lastrecord = sb->sb_mb;
779 1.43 thorpej SBLASTRECORDCHK(sb, __func__);
780 1.1 cgd }
781 1.1 cgd
782 1.1 cgd #ifdef SOCKBUF_DEBUG
783 1.7 mycroft void
784 1.37 lukem sbcheck(struct sockbuf *sb)
785 1.1 cgd {
786 1.91 ad struct mbuf *m, *m2;
787 1.43 thorpej u_long len, mbcnt;
788 1.1 cgd
789 1.91 ad KASSERT(solocked(sb->sb_so));
790 1.91 ad
791 1.37 lukem len = 0;
792 1.37 lukem mbcnt = 0;
793 1.91 ad for (m = sb->sb_mb; m; m = m->m_nextpkt) {
794 1.91 ad for (m2 = m; m2 != NULL; m2 = m2->m_next) {
795 1.91 ad len += m2->m_len;
796 1.91 ad mbcnt += MSIZE;
797 1.91 ad if (m2->m_flags & M_EXT)
798 1.91 ad mbcnt += m2->m_ext.ext_size;
799 1.91 ad if (m2->m_nextpkt != NULL)
800 1.91 ad panic("sbcheck nextpkt");
801 1.91 ad }
802 1.1 cgd }
803 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
804 1.43 thorpej printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
805 1.1 cgd mbcnt, sb->sb_mbcnt);
806 1.1 cgd panic("sbcheck");
807 1.1 cgd }
808 1.1 cgd }
809 1.1 cgd #endif
810 1.1 cgd
811 1.1 cgd /*
812 1.1 cgd * As above, except the mbuf chain
813 1.1 cgd * begins a new record.
814 1.1 cgd */
815 1.7 mycroft void
816 1.37 lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
817 1.1 cgd {
818 1.37 lukem struct mbuf *m;
819 1.1 cgd
820 1.91 ad KASSERT(solocked(sb->sb_so));
821 1.91 ad
822 1.1 cgd if (m0 == 0)
823 1.1 cgd return;
824 1.43 thorpej
825 1.49 matt #ifdef MBUFTRACE
826 1.65 jonathan m_claimm(m0, sb->sb_mowner);
827 1.49 matt #endif
828 1.1 cgd /*
829 1.1 cgd * Put the first mbuf on the queue.
830 1.1 cgd * Note this permits zero length records.
831 1.1 cgd */
832 1.1 cgd sballoc(sb, m0);
833 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 1");
834 1.43 thorpej SBLINKRECORD(sb, m0);
835 1.1 cgd m = m0->m_next;
836 1.1 cgd m0->m_next = 0;
837 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
838 1.1 cgd m0->m_flags &= ~M_EOR;
839 1.1 cgd m->m_flags |= M_EOR;
840 1.1 cgd }
841 1.1 cgd sbcompress(sb, m, m0);
842 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 2");
843 1.1 cgd }
844 1.1 cgd
845 1.1 cgd /*
846 1.1 cgd * As above except that OOB data
847 1.1 cgd * is inserted at the beginning of the sockbuf,
848 1.1 cgd * but after any other OOB data.
849 1.1 cgd */
850 1.7 mycroft void
851 1.37 lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
852 1.1 cgd {
853 1.37 lukem struct mbuf *m, **mp;
854 1.1 cgd
855 1.91 ad KASSERT(solocked(sb->sb_so));
856 1.91 ad
857 1.1 cgd if (m0 == 0)
858 1.1 cgd return;
859 1.43 thorpej
860 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 1");
861 1.43 thorpej
862 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
863 1.1 cgd again:
864 1.1 cgd switch (m->m_type) {
865 1.1 cgd
866 1.1 cgd case MT_OOBDATA:
867 1.1 cgd continue; /* WANT next train */
868 1.1 cgd
869 1.1 cgd case MT_CONTROL:
870 1.11 christos if ((m = m->m_next) != NULL)
871 1.1 cgd goto again; /* inspect THIS train further */
872 1.1 cgd }
873 1.1 cgd break;
874 1.1 cgd }
875 1.1 cgd /*
876 1.1 cgd * Put the first mbuf on the queue.
877 1.1 cgd * Note this permits zero length records.
878 1.1 cgd */
879 1.1 cgd sballoc(sb, m0);
880 1.1 cgd m0->m_nextpkt = *mp;
881 1.43 thorpej if (*mp == NULL) {
882 1.43 thorpej /* m0 is actually the new tail */
883 1.43 thorpej sb->sb_lastrecord = m0;
884 1.43 thorpej }
885 1.1 cgd *mp = m0;
886 1.1 cgd m = m0->m_next;
887 1.1 cgd m0->m_next = 0;
888 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
889 1.1 cgd m0->m_flags &= ~M_EOR;
890 1.1 cgd m->m_flags |= M_EOR;
891 1.1 cgd }
892 1.1 cgd sbcompress(sb, m, m0);
893 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 2");
894 1.1 cgd }
895 1.1 cgd
896 1.1 cgd /*
897 1.1 cgd * Append address and data, and optionally, control (ancillary) data
898 1.1 cgd * to the receive queue of a socket. If present,
899 1.1 cgd * m0 must include a packet header with total length.
900 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
901 1.1 cgd */
902 1.7 mycroft int
903 1.61 matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
904 1.37 lukem struct mbuf *control)
905 1.1 cgd {
906 1.43 thorpej struct mbuf *m, *n, *nlast;
907 1.50 fvdl int space, len;
908 1.1 cgd
909 1.91 ad KASSERT(solocked(sb->sb_so));
910 1.91 ad
911 1.37 lukem space = asa->sa_len;
912 1.37 lukem
913 1.49 matt if (m0 != NULL) {
914 1.49 matt if ((m0->m_flags & M_PKTHDR) == 0)
915 1.49 matt panic("sbappendaddr");
916 1.1 cgd space += m0->m_pkthdr.len;
917 1.49 matt #ifdef MBUFTRACE
918 1.65 jonathan m_claimm(m0, sb->sb_mowner);
919 1.49 matt #endif
920 1.49 matt }
921 1.1 cgd for (n = control; n; n = n->m_next) {
922 1.1 cgd space += n->m_len;
923 1.49 matt MCLAIM(n, sb->sb_mowner);
924 1.1 cgd if (n->m_next == 0) /* keep pointer to last control buf */
925 1.1 cgd break;
926 1.1 cgd }
927 1.1 cgd if (space > sbspace(sb))
928 1.1 cgd return (0);
929 1.1 cgd MGET(m, M_DONTWAIT, MT_SONAME);
930 1.1 cgd if (m == 0)
931 1.1 cgd return (0);
932 1.49 matt MCLAIM(m, sb->sb_mowner);
933 1.50 fvdl /*
934 1.50 fvdl * XXX avoid 'comparison always true' warning which isn't easily
935 1.50 fvdl * avoided.
936 1.50 fvdl */
937 1.50 fvdl len = asa->sa_len;
938 1.50 fvdl if (len > MLEN) {
939 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
940 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
941 1.20 thorpej m_free(m);
942 1.20 thorpej return (0);
943 1.20 thorpej }
944 1.20 thorpej }
945 1.1 cgd m->m_len = asa->sa_len;
946 1.82 christos memcpy(mtod(m, void *), asa, asa->sa_len);
947 1.1 cgd if (n)
948 1.1 cgd n->m_next = m0; /* concatenate data to control */
949 1.1 cgd else
950 1.1 cgd control = m0;
951 1.1 cgd m->m_next = control;
952 1.43 thorpej
953 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 1");
954 1.43 thorpej
955 1.43 thorpej for (n = m; n->m_next != NULL; n = n->m_next)
956 1.1 cgd sballoc(sb, n);
957 1.43 thorpej sballoc(sb, n);
958 1.43 thorpej nlast = n;
959 1.43 thorpej SBLINKRECORD(sb, m);
960 1.43 thorpej
961 1.43 thorpej sb->sb_mbtail = nlast;
962 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendaddr");
963 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 2");
964 1.43 thorpej
965 1.1 cgd return (1);
966 1.1 cgd }
967 1.1 cgd
968 1.63 jonathan /*
969 1.63 jonathan * Helper for sbappendchainaddr: prepend a struct sockaddr* to
970 1.63 jonathan * an mbuf chain.
971 1.63 jonathan */
972 1.70 perry static inline struct mbuf *
973 1.81 yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
974 1.64 jonathan const struct sockaddr *asa)
975 1.63 jonathan {
976 1.63 jonathan struct mbuf *m;
977 1.64 jonathan const int salen = asa->sa_len;
978 1.63 jonathan
979 1.91 ad KASSERT(solocked(sb->sb_so));
980 1.91 ad
981 1.63 jonathan /* only the first in each chain need be a pkthdr */
982 1.63 jonathan MGETHDR(m, M_DONTWAIT, MT_SONAME);
983 1.63 jonathan if (m == 0)
984 1.63 jonathan return (0);
985 1.63 jonathan MCLAIM(m, sb->sb_mowner);
986 1.64 jonathan #ifdef notyet
987 1.64 jonathan if (salen > MHLEN) {
988 1.64 jonathan MEXTMALLOC(m, salen, M_NOWAIT);
989 1.64 jonathan if ((m->m_flags & M_EXT) == 0) {
990 1.64 jonathan m_free(m);
991 1.64 jonathan return (0);
992 1.64 jonathan }
993 1.64 jonathan }
994 1.64 jonathan #else
995 1.64 jonathan KASSERT(salen <= MHLEN);
996 1.64 jonathan #endif
997 1.64 jonathan m->m_len = salen;
998 1.82 christos memcpy(mtod(m, void *), asa, salen);
999 1.63 jonathan m->m_next = m0;
1000 1.64 jonathan m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1001 1.63 jonathan
1002 1.63 jonathan return m;
1003 1.63 jonathan }
1004 1.63 jonathan
1005 1.63 jonathan int
1006 1.63 jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1007 1.63 jonathan struct mbuf *m0, int sbprio)
1008 1.63 jonathan {
1009 1.63 jonathan int space;
1010 1.63 jonathan struct mbuf *m, *n, *n0, *nlast;
1011 1.63 jonathan int error;
1012 1.63 jonathan
1013 1.91 ad KASSERT(solocked(sb->sb_so));
1014 1.91 ad
1015 1.63 jonathan /*
1016 1.63 jonathan * XXX sbprio reserved for encoding priority of this* request:
1017 1.63 jonathan * SB_PRIO_NONE --> honour normal sb limits
1018 1.63 jonathan * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1019 1.63 jonathan * take whole chain. Intended for large requests
1020 1.63 jonathan * that should be delivered atomically (all, or none).
1021 1.63 jonathan * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1022 1.63 jonathan * over normal socket limits, for messages indicating
1023 1.63 jonathan * buffer overflow in earlier normal/lower-priority messages
1024 1.63 jonathan * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1025 1.63 jonathan * Intended for kernel-generated messages only.
1026 1.63 jonathan * Up to generator to avoid total mbuf resource exhaustion.
1027 1.63 jonathan */
1028 1.63 jonathan (void)sbprio;
1029 1.63 jonathan
1030 1.63 jonathan if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1031 1.63 jonathan panic("sbappendaddrchain");
1032 1.63 jonathan
1033 1.63 jonathan space = sbspace(sb);
1034 1.66 perry
1035 1.63 jonathan #ifdef notyet
1036 1.66 perry /*
1037 1.63 jonathan * Enforce SB_PRIO_* limits as described above.
1038 1.63 jonathan */
1039 1.63 jonathan #endif
1040 1.63 jonathan
1041 1.63 jonathan n0 = NULL;
1042 1.63 jonathan nlast = NULL;
1043 1.63 jonathan for (m = m0; m; m = m->m_nextpkt) {
1044 1.63 jonathan struct mbuf *np;
1045 1.63 jonathan
1046 1.64 jonathan #ifdef MBUFTRACE
1047 1.65 jonathan m_claimm(m, sb->sb_mowner);
1048 1.64 jonathan #endif
1049 1.64 jonathan
1050 1.63 jonathan /* Prepend sockaddr to this record (m) of input chain m0 */
1051 1.64 jonathan n = m_prepend_sockaddr(sb, m, asa);
1052 1.63 jonathan if (n == NULL) {
1053 1.63 jonathan error = ENOBUFS;
1054 1.63 jonathan goto bad;
1055 1.63 jonathan }
1056 1.63 jonathan
1057 1.63 jonathan /* Append record (asa+m) to end of new chain n0 */
1058 1.63 jonathan if (n0 == NULL) {
1059 1.63 jonathan n0 = n;
1060 1.63 jonathan } else {
1061 1.63 jonathan nlast->m_nextpkt = n;
1062 1.63 jonathan }
1063 1.63 jonathan /* Keep track of last record on new chain */
1064 1.63 jonathan nlast = n;
1065 1.63 jonathan
1066 1.63 jonathan for (np = n; np; np = np->m_next)
1067 1.63 jonathan sballoc(sb, np);
1068 1.63 jonathan }
1069 1.63 jonathan
1070 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1071 1.64 jonathan
1072 1.63 jonathan /* Drop the entire chain of (asa+m) records onto the socket */
1073 1.63 jonathan SBLINKRECORDCHAIN(sb, n0, nlast);
1074 1.64 jonathan
1075 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1076 1.64 jonathan
1077 1.63 jonathan for (m = nlast; m->m_next; m = m->m_next)
1078 1.63 jonathan ;
1079 1.63 jonathan sb->sb_mbtail = m;
1080 1.64 jonathan SBLASTMBUFCHK(sb, "sbappendaddrchain");
1081 1.64 jonathan
1082 1.63 jonathan return (1);
1083 1.63 jonathan
1084 1.63 jonathan bad:
1085 1.64 jonathan /*
1086 1.64 jonathan * On error, free the prepended addreseses. For consistency
1087 1.64 jonathan * with sbappendaddr(), leave it to our caller to free
1088 1.64 jonathan * the input record chain passed to us as m0.
1089 1.64 jonathan */
1090 1.64 jonathan while ((n = n0) != NULL) {
1091 1.64 jonathan struct mbuf *np;
1092 1.64 jonathan
1093 1.64 jonathan /* Undo the sballoc() of this record */
1094 1.64 jonathan for (np = n; np; np = np->m_next)
1095 1.64 jonathan sbfree(sb, np);
1096 1.64 jonathan
1097 1.64 jonathan n0 = n->m_nextpkt; /* iterate at next prepended address */
1098 1.64 jonathan MFREE(n, np); /* free prepended address (not data) */
1099 1.64 jonathan }
1100 1.66 perry return 0;
1101 1.63 jonathan }
1102 1.63 jonathan
1103 1.63 jonathan
1104 1.7 mycroft int
1105 1.37 lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1106 1.1 cgd {
1107 1.43 thorpej struct mbuf *m, *mlast, *n;
1108 1.37 lukem int space;
1109 1.1 cgd
1110 1.91 ad KASSERT(solocked(sb->sb_so));
1111 1.91 ad
1112 1.37 lukem space = 0;
1113 1.1 cgd if (control == 0)
1114 1.1 cgd panic("sbappendcontrol");
1115 1.1 cgd for (m = control; ; m = m->m_next) {
1116 1.1 cgd space += m->m_len;
1117 1.49 matt MCLAIM(m, sb->sb_mowner);
1118 1.1 cgd if (m->m_next == 0)
1119 1.1 cgd break;
1120 1.1 cgd }
1121 1.1 cgd n = m; /* save pointer to last control buffer */
1122 1.49 matt for (m = m0; m; m = m->m_next) {
1123 1.49 matt MCLAIM(m, sb->sb_mowner);
1124 1.1 cgd space += m->m_len;
1125 1.49 matt }
1126 1.1 cgd if (space > sbspace(sb))
1127 1.1 cgd return (0);
1128 1.1 cgd n->m_next = m0; /* concatenate data to control */
1129 1.43 thorpej
1130 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1131 1.43 thorpej
1132 1.43 thorpej for (m = control; m->m_next != NULL; m = m->m_next)
1133 1.1 cgd sballoc(sb, m);
1134 1.43 thorpej sballoc(sb, m);
1135 1.43 thorpej mlast = m;
1136 1.43 thorpej SBLINKRECORD(sb, control);
1137 1.43 thorpej
1138 1.43 thorpej sb->sb_mbtail = mlast;
1139 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendcontrol");
1140 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1141 1.43 thorpej
1142 1.1 cgd return (1);
1143 1.1 cgd }
1144 1.1 cgd
1145 1.1 cgd /*
1146 1.1 cgd * Compress mbuf chain m into the socket
1147 1.1 cgd * buffer sb following mbuf n. If n
1148 1.1 cgd * is null, the buffer is presumed empty.
1149 1.1 cgd */
1150 1.7 mycroft void
1151 1.37 lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1152 1.1 cgd {
1153 1.37 lukem int eor;
1154 1.37 lukem struct mbuf *o;
1155 1.1 cgd
1156 1.91 ad KASSERT(solocked(sb->sb_so));
1157 1.91 ad
1158 1.37 lukem eor = 0;
1159 1.1 cgd while (m) {
1160 1.1 cgd eor |= m->m_flags & M_EOR;
1161 1.1 cgd if (m->m_len == 0 &&
1162 1.1 cgd (eor == 0 ||
1163 1.1 cgd (((o = m->m_next) || (o = n)) &&
1164 1.1 cgd o->m_type == m->m_type))) {
1165 1.46 thorpej if (sb->sb_lastrecord == m)
1166 1.46 thorpej sb->sb_lastrecord = m->m_next;
1167 1.1 cgd m = m_free(m);
1168 1.1 cgd continue;
1169 1.1 cgd }
1170 1.40 thorpej if (n && (n->m_flags & M_EOR) == 0 &&
1171 1.40 thorpej /* M_TRAILINGSPACE() checks buffer writeability */
1172 1.40 thorpej m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1173 1.40 thorpej m->m_len <= M_TRAILINGSPACE(n) &&
1174 1.40 thorpej n->m_type == m->m_type) {
1175 1.82 christos memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1176 1.1 cgd (unsigned)m->m_len);
1177 1.1 cgd n->m_len += m->m_len;
1178 1.1 cgd sb->sb_cc += m->m_len;
1179 1.1 cgd m = m_free(m);
1180 1.1 cgd continue;
1181 1.1 cgd }
1182 1.1 cgd if (n)
1183 1.1 cgd n->m_next = m;
1184 1.1 cgd else
1185 1.1 cgd sb->sb_mb = m;
1186 1.43 thorpej sb->sb_mbtail = m;
1187 1.1 cgd sballoc(sb, m);
1188 1.1 cgd n = m;
1189 1.1 cgd m->m_flags &= ~M_EOR;
1190 1.1 cgd m = m->m_next;
1191 1.1 cgd n->m_next = 0;
1192 1.1 cgd }
1193 1.1 cgd if (eor) {
1194 1.1 cgd if (n)
1195 1.1 cgd n->m_flags |= eor;
1196 1.1 cgd else
1197 1.15 christos printf("semi-panic: sbcompress\n");
1198 1.1 cgd }
1199 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
1200 1.1 cgd }
1201 1.1 cgd
1202 1.1 cgd /*
1203 1.1 cgd * Free all mbufs in a sockbuf.
1204 1.1 cgd * Check that all resources are reclaimed.
1205 1.1 cgd */
1206 1.7 mycroft void
1207 1.37 lukem sbflush(struct sockbuf *sb)
1208 1.1 cgd {
1209 1.1 cgd
1210 1.91 ad KASSERT(solocked(sb->sb_so));
1211 1.43 thorpej KASSERT((sb->sb_flags & SB_LOCK) == 0);
1212 1.43 thorpej
1213 1.1 cgd while (sb->sb_mbcnt)
1214 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
1215 1.43 thorpej
1216 1.43 thorpej KASSERT(sb->sb_cc == 0);
1217 1.43 thorpej KASSERT(sb->sb_mb == NULL);
1218 1.43 thorpej KASSERT(sb->sb_mbtail == NULL);
1219 1.43 thorpej KASSERT(sb->sb_lastrecord == NULL);
1220 1.1 cgd }
1221 1.1 cgd
1222 1.1 cgd /*
1223 1.1 cgd * Drop data from (the front of) a sockbuf.
1224 1.1 cgd */
1225 1.7 mycroft void
1226 1.37 lukem sbdrop(struct sockbuf *sb, int len)
1227 1.1 cgd {
1228 1.37 lukem struct mbuf *m, *mn, *next;
1229 1.1 cgd
1230 1.91 ad KASSERT(solocked(sb->sb_so));
1231 1.91 ad
1232 1.1 cgd next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1233 1.1 cgd while (len > 0) {
1234 1.1 cgd if (m == 0) {
1235 1.1 cgd if (next == 0)
1236 1.112 matt panic("sbdrop(%p,%d): cc=%lu",
1237 1.112 matt sb, len, sb->sb_cc);
1238 1.1 cgd m = next;
1239 1.1 cgd next = m->m_nextpkt;
1240 1.1 cgd continue;
1241 1.1 cgd }
1242 1.1 cgd if (m->m_len > len) {
1243 1.1 cgd m->m_len -= len;
1244 1.1 cgd m->m_data += len;
1245 1.1 cgd sb->sb_cc -= len;
1246 1.1 cgd break;
1247 1.1 cgd }
1248 1.1 cgd len -= m->m_len;
1249 1.1 cgd sbfree(sb, m);
1250 1.1 cgd MFREE(m, mn);
1251 1.1 cgd m = mn;
1252 1.1 cgd }
1253 1.1 cgd while (m && m->m_len == 0) {
1254 1.1 cgd sbfree(sb, m);
1255 1.1 cgd MFREE(m, mn);
1256 1.1 cgd m = mn;
1257 1.1 cgd }
1258 1.1 cgd if (m) {
1259 1.1 cgd sb->sb_mb = m;
1260 1.1 cgd m->m_nextpkt = next;
1261 1.1 cgd } else
1262 1.1 cgd sb->sb_mb = next;
1263 1.43 thorpej /*
1264 1.45 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second part
1265 1.43 thorpej * makes sure sb_lastrecord is up-to-date if we dropped
1266 1.43 thorpej * part of the last record.
1267 1.43 thorpej */
1268 1.43 thorpej m = sb->sb_mb;
1269 1.43 thorpej if (m == NULL) {
1270 1.43 thorpej sb->sb_mbtail = NULL;
1271 1.43 thorpej sb->sb_lastrecord = NULL;
1272 1.43 thorpej } else if (m->m_nextpkt == NULL)
1273 1.43 thorpej sb->sb_lastrecord = m;
1274 1.1 cgd }
1275 1.1 cgd
1276 1.1 cgd /*
1277 1.1 cgd * Drop a record off the front of a sockbuf
1278 1.1 cgd * and move the next record to the front.
1279 1.1 cgd */
1280 1.7 mycroft void
1281 1.37 lukem sbdroprecord(struct sockbuf *sb)
1282 1.1 cgd {
1283 1.37 lukem struct mbuf *m, *mn;
1284 1.1 cgd
1285 1.91 ad KASSERT(solocked(sb->sb_so));
1286 1.91 ad
1287 1.1 cgd m = sb->sb_mb;
1288 1.1 cgd if (m) {
1289 1.1 cgd sb->sb_mb = m->m_nextpkt;
1290 1.1 cgd do {
1291 1.1 cgd sbfree(sb, m);
1292 1.1 cgd MFREE(m, mn);
1293 1.11 christos } while ((m = mn) != NULL);
1294 1.1 cgd }
1295 1.45 thorpej SB_EMPTY_FIXUP(sb);
1296 1.19 thorpej }
1297 1.19 thorpej
1298 1.19 thorpej /*
1299 1.19 thorpej * Create a "control" mbuf containing the specified data
1300 1.19 thorpej * with the specified type for presentation on a socket buffer.
1301 1.19 thorpej */
1302 1.19 thorpej struct mbuf *
1303 1.111 christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1304 1.19 thorpej {
1305 1.37 lukem struct cmsghdr *cp;
1306 1.37 lukem struct mbuf *m;
1307 1.111 christos int space = CMSG_SPACE(size);
1308 1.19 thorpej
1309 1.111 christos if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1310 1.111 christos printf("%s: message too large %d\n", __func__, space);
1311 1.30 itojun return NULL;
1312 1.30 itojun }
1313 1.30 itojun
1314 1.111 christos if ((m = m_get(flags, MT_CONTROL)) == NULL)
1315 1.111 christos return NULL;
1316 1.111 christos if (space > MLEN) {
1317 1.111 christos if (space > MCLBYTES)
1318 1.111 christos MEXTMALLOC(m, space, M_WAITOK);
1319 1.111 christos else
1320 1.111 christos MCLGET(m, flags);
1321 1.30 itojun if ((m->m_flags & M_EXT) == 0) {
1322 1.30 itojun m_free(m);
1323 1.30 itojun return NULL;
1324 1.30 itojun }
1325 1.30 itojun }
1326 1.19 thorpej cp = mtod(m, struct cmsghdr *);
1327 1.111 christos *p = CMSG_DATA(cp);
1328 1.111 christos m->m_len = space;
1329 1.35 itojun cp->cmsg_len = CMSG_LEN(size);
1330 1.19 thorpej cp->cmsg_level = level;
1331 1.19 thorpej cp->cmsg_type = type;
1332 1.111 christos return m;
1333 1.111 christos }
1334 1.111 christos
1335 1.111 christos struct mbuf *
1336 1.111 christos sbcreatecontrol(void *p, int size, int type, int level)
1337 1.111 christos {
1338 1.111 christos struct mbuf *m;
1339 1.111 christos void *v;
1340 1.111 christos
1341 1.111 christos m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1342 1.111 christos if (m == NULL)
1343 1.111 christos return NULL;
1344 1.111 christos memcpy(v, p, size);
1345 1.111 christos return m;
1346 1.1 cgd }
1347 1.91 ad
1348 1.91 ad void
1349 1.91 ad solockretry(struct socket *so, kmutex_t *lock)
1350 1.91 ad {
1351 1.91 ad
1352 1.91 ad while (lock != so->so_lock) {
1353 1.91 ad mutex_exit(lock);
1354 1.91 ad lock = so->so_lock;
1355 1.91 ad mutex_enter(lock);
1356 1.91 ad }
1357 1.91 ad }
1358 1.91 ad
1359 1.91 ad bool
1360 1.91 ad solocked(struct socket *so)
1361 1.91 ad {
1362 1.91 ad
1363 1.91 ad return mutex_owned(so->so_lock);
1364 1.91 ad }
1365 1.91 ad
1366 1.91 ad bool
1367 1.91 ad solocked2(struct socket *so1, struct socket *so2)
1368 1.91 ad {
1369 1.91 ad kmutex_t *lock;
1370 1.91 ad
1371 1.91 ad lock = so1->so_lock;
1372 1.91 ad if (lock != so2->so_lock)
1373 1.91 ad return false;
1374 1.91 ad return mutex_owned(lock);
1375 1.91 ad }
1376 1.91 ad
1377 1.91 ad /*
1378 1.91 ad * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1379 1.91 ad * protocols that do not have special locking requirements.
1380 1.91 ad */
1381 1.91 ad void
1382 1.91 ad sosetlock(struct socket *so)
1383 1.91 ad {
1384 1.91 ad kmutex_t *lock;
1385 1.91 ad
1386 1.91 ad if (so->so_lock == NULL) {
1387 1.91 ad lock = softnet_lock;
1388 1.91 ad so->so_lock = lock;
1389 1.91 ad mutex_obj_hold(lock);
1390 1.91 ad mutex_enter(lock);
1391 1.91 ad }
1392 1.91 ad
1393 1.91 ad /* In all cases, lock must be held on return from PRU_ATTACH. */
1394 1.91 ad KASSERT(solocked(so));
1395 1.91 ad }
1396 1.91 ad
1397 1.91 ad /*
1398 1.91 ad * Set lock on sockbuf sb; sleep if lock is already held.
1399 1.91 ad * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1400 1.91 ad * Returns error without lock if sleep is interrupted.
1401 1.91 ad */
1402 1.91 ad int
1403 1.91 ad sblock(struct sockbuf *sb, int wf)
1404 1.91 ad {
1405 1.91 ad struct socket *so;
1406 1.91 ad kmutex_t *lock;
1407 1.91 ad int error;
1408 1.91 ad
1409 1.91 ad KASSERT(solocked(sb->sb_so));
1410 1.91 ad
1411 1.91 ad for (;;) {
1412 1.91 ad if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1413 1.91 ad sb->sb_flags |= SB_LOCK;
1414 1.91 ad return 0;
1415 1.91 ad }
1416 1.91 ad if (wf != M_WAITOK)
1417 1.91 ad return EWOULDBLOCK;
1418 1.91 ad so = sb->sb_so;
1419 1.91 ad lock = so->so_lock;
1420 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0) {
1421 1.91 ad cv_wait(&so->so_cv, lock);
1422 1.91 ad error = 0;
1423 1.91 ad } else
1424 1.91 ad error = cv_wait_sig(&so->so_cv, lock);
1425 1.91 ad if (__predict_false(lock != so->so_lock))
1426 1.91 ad solockretry(so, lock);
1427 1.91 ad if (error != 0)
1428 1.91 ad return error;
1429 1.91 ad }
1430 1.91 ad }
1431 1.91 ad
1432 1.91 ad void
1433 1.91 ad sbunlock(struct sockbuf *sb)
1434 1.91 ad {
1435 1.91 ad struct socket *so;
1436 1.91 ad
1437 1.91 ad so = sb->sb_so;
1438 1.91 ad
1439 1.91 ad KASSERT(solocked(so));
1440 1.91 ad KASSERT((sb->sb_flags & SB_LOCK) != 0);
1441 1.91 ad
1442 1.91 ad sb->sb_flags &= ~SB_LOCK;
1443 1.91 ad cv_broadcast(&so->so_cv);
1444 1.91 ad }
1445 1.91 ad
1446 1.91 ad int
1447 1.101 yamt sowait(struct socket *so, bool catch, int timo)
1448 1.91 ad {
1449 1.91 ad kmutex_t *lock;
1450 1.91 ad int error;
1451 1.91 ad
1452 1.91 ad KASSERT(solocked(so));
1453 1.101 yamt KASSERT(catch || timo != 0);
1454 1.91 ad
1455 1.91 ad lock = so->so_lock;
1456 1.101 yamt if (catch)
1457 1.101 yamt error = cv_timedwait_sig(&so->so_cv, lock, timo);
1458 1.101 yamt else
1459 1.101 yamt error = cv_timedwait(&so->so_cv, lock, timo);
1460 1.91 ad if (__predict_false(lock != so->so_lock))
1461 1.91 ad solockretry(so, lock);
1462 1.91 ad return error;
1463 1.91 ad }
1464