Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.114
      1  1.114    martin /*	$NetBSD: uipc_socket2.c,v 1.114 2013/09/15 15:41:11 martin Exp $	*/
      2   1.91        ad 
      3   1.91        ad /*-
      4   1.91        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5   1.91        ad  * All rights reserved.
      6   1.91        ad  *
      7   1.91        ad  * Redistribution and use in source and binary forms, with or without
      8   1.91        ad  * modification, are permitted provided that the following conditions
      9   1.91        ad  * are met:
     10   1.91        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.91        ad  *    notice, this list of conditions and the following disclaimer.
     12   1.91        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.91        ad  *    notice, this list of conditions and the following disclaimer in the
     14   1.91        ad  *    documentation and/or other materials provided with the distribution.
     15   1.91        ad  *
     16   1.91        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17   1.91        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.91        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.91        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.91        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.91        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.91        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.91        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.91        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.91        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.91        ad  * POSSIBILITY OF SUCH DAMAGE.
     27   1.91        ad  */
     28    1.9       cgd 
     29    1.1       cgd /*
     30    1.7   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31    1.7   mycroft  *	The Regents of the University of California.  All rights reserved.
     32    1.1       cgd  *
     33    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     34    1.1       cgd  * modification, are permitted provided that the following conditions
     35    1.1       cgd  * are met:
     36    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     37    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     38    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     39    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     40    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     41   1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     42    1.1       cgd  *    may be used to endorse or promote products derived from this software
     43    1.1       cgd  *    without specific prior written permission.
     44    1.1       cgd  *
     45    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55    1.1       cgd  * SUCH DAMAGE.
     56    1.1       cgd  *
     57   1.23      fvdl  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58    1.1       cgd  */
     59   1.42     lukem 
     60   1.42     lukem #include <sys/cdefs.h>
     61  1.114    martin __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.114 2013/09/15 15:41:11 martin Exp $");
     62   1.51    martin 
     63   1.51    martin #include "opt_mbuftrace.h"
     64   1.58   thorpej #include "opt_sb_max.h"
     65    1.1       cgd 
     66    1.5   mycroft #include <sys/param.h>
     67    1.5   mycroft #include <sys/systm.h>
     68    1.5   mycroft #include <sys/proc.h>
     69    1.5   mycroft #include <sys/file.h>
     70    1.5   mycroft #include <sys/buf.h>
     71    1.5   mycroft #include <sys/mbuf.h>
     72    1.5   mycroft #include <sys/protosw.h>
     73   1.91        ad #include <sys/domain.h>
     74   1.55  christos #include <sys/poll.h>
     75    1.5   mycroft #include <sys/socket.h>
     76    1.5   mycroft #include <sys/socketvar.h>
     77   1.11  christos #include <sys/signalvar.h>
     78   1.71      elad #include <sys/kauth.h>
     79   1.91        ad #include <sys/pool.h>
     80   1.98     pooka #include <sys/uidinfo.h>
     81    1.1       cgd 
     82    1.1       cgd /*
     83   1.91        ad  * Primitive routines for operating on sockets and socket buffers.
     84   1.91        ad  *
     85   1.91        ad  * Locking rules and assumptions:
     86   1.91        ad  *
     87   1.91        ad  * o socket::so_lock can change on the fly.  The low level routines used
     88   1.91        ad  *   to lock sockets are aware of this.  When so_lock is acquired, the
     89   1.91        ad  *   routine locking must check to see if so_lock still points to the
     90   1.91        ad  *   lock that was acquired.  If so_lock has changed in the meantime, the
     91   1.91        ad  *   now irellevant lock that was acquired must be dropped and the lock
     92   1.91        ad  *   operation retried.  Although not proven here, this is completely safe
     93   1.91        ad  *   on a multiprocessor system, even with relaxed memory ordering, given
     94   1.91        ad  *   the next two rules:
     95   1.91        ad  *
     96   1.91        ad  * o In order to mutate so_lock, the lock pointed to by the current value
     97   1.91        ad  *   of so_lock must be held: i.e., the socket must be held locked by the
     98   1.91        ad  *   changing thread.  The thread must issue membar_exit() to prevent
     99   1.91        ad  *   memory accesses being reordered, and can set so_lock to the desired
    100   1.91        ad  *   value.  If the lock pointed to by the new value of so_lock is not
    101   1.91        ad  *   held by the changing thread, the socket must then be considered
    102   1.91        ad  *   unlocked.
    103   1.91        ad  *
    104   1.91        ad  * o If so_lock is mutated, and the previous lock referred to by so_lock
    105   1.91        ad  *   could still be visible to other threads in the system (e.g. via file
    106   1.91        ad  *   descriptor or protocol-internal reference), then the old lock must
    107   1.91        ad  *   remain valid until the socket and/or protocol control block has been
    108   1.91        ad  *   torn down.
    109   1.91        ad  *
    110   1.91        ad  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    111   1.91        ad  *   connecting), then locking the socket must also lock the socket pointed
    112   1.91        ad  *   to by so_head: their lock pointers must match.
    113   1.91        ad  *
    114   1.91        ad  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    115   1.91        ad  *   locking the socket must also lock the sockets attached to both queues.
    116   1.91        ad  *   Again, their lock pointers must match.
    117   1.91        ad  *
    118   1.91        ad  * o Beyond the initial lock assigment in socreate(), assigning locks to
    119   1.91        ad  *   sockets is the responsibility of the individual protocols / protocol
    120   1.91        ad  *   domains.
    121    1.1       cgd  */
    122    1.1       cgd 
    123   1.94        ad static pool_cache_t socket_cache;
    124    1.1       cgd 
    125   1.58   thorpej u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    126   1.58   thorpej static u_long sb_max_adj;	/* adjusted sb_max */
    127   1.58   thorpej 
    128    1.1       cgd /*
    129    1.1       cgd  * Procedures to manipulate state flags of socket
    130    1.1       cgd  * and do appropriate wakeups.  Normal sequence from the
    131    1.1       cgd  * active (originating) side is that soisconnecting() is
    132    1.1       cgd  * called during processing of connect() call,
    133    1.1       cgd  * resulting in an eventual call to soisconnected() if/when the
    134    1.1       cgd  * connection is established.  When the connection is torn down
    135    1.1       cgd  * soisdisconnecting() is called during processing of disconnect() call,
    136    1.1       cgd  * and soisdisconnected() is called when the connection to the peer
    137    1.1       cgd  * is totally severed.  The semantics of these routines are such that
    138    1.1       cgd  * connectionless protocols can call soisconnected() and soisdisconnected()
    139    1.1       cgd  * only, bypassing the in-progress calls when setting up a ``connection''
    140    1.1       cgd  * takes no time.
    141    1.1       cgd  *
    142    1.1       cgd  * From the passive side, a socket is created with
    143    1.1       cgd  * two queues of sockets: so_q0 for connections in progress
    144    1.1       cgd  * and so_q for connections already made and awaiting user acceptance.
    145    1.1       cgd  * As a protocol is preparing incoming connections, it creates a socket
    146    1.1       cgd  * structure queued on so_q0 by calling sonewconn().  When the connection
    147    1.1       cgd  * is established, soisconnected() is called, and transfers the
    148    1.1       cgd  * socket structure to so_q, making it available to accept().
    149   1.66     perry  *
    150    1.1       cgd  * If a socket is closed with sockets on either
    151    1.1       cgd  * so_q0 or so_q, these sockets are dropped.
    152    1.1       cgd  *
    153    1.1       cgd  * If higher level protocols are implemented in
    154    1.1       cgd  * the kernel, the wakeups done here will sometimes
    155    1.1       cgd  * cause software-interrupt process scheduling.
    156    1.1       cgd  */
    157    1.1       cgd 
    158    1.7   mycroft void
    159   1.37     lukem soisconnecting(struct socket *so)
    160    1.1       cgd {
    161    1.1       cgd 
    162   1.91        ad 	KASSERT(solocked(so));
    163   1.91        ad 
    164    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    165    1.1       cgd 	so->so_state |= SS_ISCONNECTING;
    166    1.1       cgd }
    167    1.1       cgd 
    168    1.7   mycroft void
    169   1.37     lukem soisconnected(struct socket *so)
    170    1.1       cgd {
    171   1.37     lukem 	struct socket	*head;
    172    1.1       cgd 
    173   1.37     lukem 	head = so->so_head;
    174   1.91        ad 
    175   1.91        ad 	KASSERT(solocked(so));
    176   1.91        ad 	KASSERT(head == NULL || solocked2(so, head));
    177   1.91        ad 
    178  1.113     rmind 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    179    1.1       cgd 	so->so_state |= SS_ISCONNECTED;
    180   1.97       tls 	if (head && so->so_onq == &head->so_q0) {
    181   1.97       tls 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    182   1.97       tls 			soqremque(so, 0);
    183   1.97       tls 			soqinsque(head, so, 1);
    184   1.97       tls 			sorwakeup(head);
    185   1.97       tls 			cv_broadcast(&head->so_cv);
    186   1.97       tls 		} else {
    187   1.97       tls 			so->so_upcall =
    188   1.97       tls 			    head->so_accf->so_accept_filter->accf_callback;
    189   1.97       tls 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    190   1.97       tls 			so->so_rcv.sb_flags |= SB_UPCALL;
    191   1.97       tls 			so->so_options &= ~SO_ACCEPTFILTER;
    192  1.104       tls 			(*so->so_upcall)(so, so->so_upcallarg,
    193  1.104       tls 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    194  1.101      yamt 		}
    195    1.1       cgd 	} else {
    196   1.91        ad 		cv_broadcast(&so->so_cv);
    197    1.1       cgd 		sorwakeup(so);
    198    1.1       cgd 		sowwakeup(so);
    199    1.1       cgd 	}
    200    1.1       cgd }
    201    1.1       cgd 
    202    1.7   mycroft void
    203   1.37     lukem soisdisconnecting(struct socket *so)
    204    1.1       cgd {
    205    1.1       cgd 
    206   1.91        ad 	KASSERT(solocked(so));
    207   1.91        ad 
    208    1.1       cgd 	so->so_state &= ~SS_ISCONNECTING;
    209    1.1       cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    210   1.91        ad 	cv_broadcast(&so->so_cv);
    211    1.1       cgd 	sowwakeup(so);
    212    1.1       cgd 	sorwakeup(so);
    213    1.1       cgd }
    214    1.1       cgd 
    215    1.7   mycroft void
    216   1.37     lukem soisdisconnected(struct socket *so)
    217    1.1       cgd {
    218    1.1       cgd 
    219   1.91        ad 	KASSERT(solocked(so));
    220   1.91        ad 
    221    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    222   1.27   mycroft 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    223   1.91        ad 	cv_broadcast(&so->so_cv);
    224    1.1       cgd 	sowwakeup(so);
    225    1.1       cgd 	sorwakeup(so);
    226    1.1       cgd }
    227    1.1       cgd 
    228   1.94        ad void
    229   1.94        ad soinit2(void)
    230   1.94        ad {
    231   1.94        ad 
    232   1.94        ad 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    233   1.94        ad 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    234   1.94        ad }
    235   1.94        ad 
    236    1.1       cgd /*
    237    1.1       cgd  * When an attempt at a new connection is noted on a socket
    238    1.1       cgd  * which accepts connections, sonewconn is called.  If the
    239    1.1       cgd  * connection is possible (subject to space constraints, etc.)
    240    1.1       cgd  * then we allocate a new structure, propoerly linked into the
    241    1.1       cgd  * data structure of the original socket, and return this.
    242    1.1       cgd  */
    243    1.1       cgd struct socket *
    244  1.113     rmind sonewconn(struct socket *head, bool conncomplete)
    245    1.1       cgd {
    246   1.37     lukem 	struct socket	*so;
    247   1.91        ad 	int		soqueue, error;
    248   1.91        ad 
    249   1.91        ad 	KASSERT(solocked(head));
    250    1.1       cgd 
    251   1.97       tls 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
    252  1.113     rmind 		conncomplete = false;
    253  1.113     rmind 	soqueue = conncomplete ? 1 : 0;
    254  1.113     rmind 
    255    1.1       cgd 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    256  1.100    dyoung 		return NULL;
    257   1.91        ad 	so = soget(false);
    258   1.66     perry 	if (so == NULL)
    259  1.100    dyoung 		return NULL;
    260   1.91        ad 	mutex_obj_hold(head->so_lock);
    261   1.91        ad 	so->so_lock = head->so_lock;
    262    1.1       cgd 	so->so_type = head->so_type;
    263    1.1       cgd 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    264    1.1       cgd 	so->so_linger = head->so_linger;
    265    1.1       cgd 	so->so_state = head->so_state | SS_NOFDREF;
    266    1.1       cgd 	so->so_proto = head->so_proto;
    267    1.1       cgd 	so->so_timeo = head->so_timeo;
    268    1.1       cgd 	so->so_pgid = head->so_pgid;
    269   1.24      matt 	so->so_send = head->so_send;
    270   1.24      matt 	so->so_receive = head->so_receive;
    271   1.67  christos 	so->so_uidinfo = head->so_uidinfo;
    272   1.96      yamt 	so->so_cpid = head->so_cpid;
    273   1.49      matt #ifdef MBUFTRACE
    274   1.49      matt 	so->so_mowner = head->so_mowner;
    275   1.49      matt 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    276   1.49      matt 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    277   1.49      matt #endif
    278  1.103  christos 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
    279  1.103  christos 		goto out;
    280   1.83       tls 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    281   1.83       tls 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    282   1.84       tls 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    283   1.84       tls 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    284  1.107  christos 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    285  1.107  christos 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    286    1.1       cgd 	soqinsque(head, so, soqueue);
    287   1.91        ad 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    288   1.91        ad 	    NULL, NULL);
    289   1.91        ad 	KASSERT(solocked(so));
    290   1.91        ad 	if (error != 0) {
    291    1.1       cgd 		(void) soqremque(so, soqueue);
    292  1.103  christos out:
    293   1.99        ad 		/*
    294   1.99        ad 		 * Remove acccept filter if one is present.
    295   1.99        ad 		 * XXX Is this really needed?
    296   1.99        ad 		 */
    297   1.97       tls 		if (so->so_accf != NULL)
    298   1.99        ad 			(void)accept_filt_clear(so);
    299   1.91        ad 		soput(so);
    300  1.100    dyoung 		return NULL;
    301    1.1       cgd 	}
    302  1.113     rmind 	if (conncomplete) {
    303    1.1       cgd 		sorwakeup(head);
    304   1.91        ad 		cv_broadcast(&head->so_cv);
    305  1.113     rmind 		so->so_state |= SS_ISCONNECTED;
    306    1.1       cgd 	}
    307  1.100    dyoung 	return so;
    308    1.1       cgd }
    309    1.1       cgd 
    310   1.91        ad struct socket *
    311   1.91        ad soget(bool waitok)
    312   1.91        ad {
    313   1.91        ad 	struct socket *so;
    314   1.91        ad 
    315   1.94        ad 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    316   1.91        ad 	if (__predict_false(so == NULL))
    317   1.91        ad 		return (NULL);
    318   1.91        ad 	memset(so, 0, sizeof(*so));
    319   1.91        ad 	TAILQ_INIT(&so->so_q0);
    320   1.91        ad 	TAILQ_INIT(&so->so_q);
    321   1.91        ad 	cv_init(&so->so_cv, "socket");
    322   1.91        ad 	cv_init(&so->so_rcv.sb_cv, "netio");
    323   1.91        ad 	cv_init(&so->so_snd.sb_cv, "netio");
    324   1.91        ad 	selinit(&so->so_rcv.sb_sel);
    325   1.91        ad 	selinit(&so->so_snd.sb_sel);
    326   1.91        ad 	so->so_rcv.sb_so = so;
    327   1.91        ad 	so->so_snd.sb_so = so;
    328   1.91        ad 	return so;
    329   1.91        ad }
    330   1.91        ad 
    331   1.91        ad void
    332   1.91        ad soput(struct socket *so)
    333   1.91        ad {
    334   1.91        ad 
    335   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    336   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    337   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    338   1.91        ad 	seldestroy(&so->so_rcv.sb_sel);
    339   1.91        ad 	seldestroy(&so->so_snd.sb_sel);
    340   1.91        ad 	mutex_obj_free(so->so_lock);
    341   1.91        ad 	cv_destroy(&so->so_cv);
    342   1.91        ad 	cv_destroy(&so->so_rcv.sb_cv);
    343   1.91        ad 	cv_destroy(&so->so_snd.sb_cv);
    344   1.94        ad 	pool_cache_put(socket_cache, so);
    345   1.91        ad }
    346   1.91        ad 
    347    1.7   mycroft void
    348   1.37     lukem soqinsque(struct socket *head, struct socket *so, int q)
    349    1.1       cgd {
    350    1.1       cgd 
    351   1.91        ad 	KASSERT(solocked2(head, so));
    352   1.91        ad 
    353   1.22   thorpej #ifdef DIAGNOSTIC
    354   1.22   thorpej 	if (so->so_onq != NULL)
    355   1.22   thorpej 		panic("soqinsque");
    356   1.22   thorpej #endif
    357   1.22   thorpej 
    358    1.1       cgd 	so->so_head = head;
    359    1.1       cgd 	if (q == 0) {
    360    1.1       cgd 		head->so_q0len++;
    361   1.22   thorpej 		so->so_onq = &head->so_q0;
    362    1.1       cgd 	} else {
    363    1.1       cgd 		head->so_qlen++;
    364   1.22   thorpej 		so->so_onq = &head->so_q;
    365    1.1       cgd 	}
    366   1.22   thorpej 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    367    1.1       cgd }
    368    1.1       cgd 
    369    1.7   mycroft int
    370   1.37     lukem soqremque(struct socket *so, int q)
    371    1.1       cgd {
    372   1.37     lukem 	struct socket	*head;
    373    1.1       cgd 
    374   1.37     lukem 	head = so->so_head;
    375   1.91        ad 
    376   1.91        ad 	KASSERT(solocked(so));
    377   1.22   thorpej 	if (q == 0) {
    378   1.22   thorpej 		if (so->so_onq != &head->so_q0)
    379   1.17   thorpej 			return (0);
    380    1.1       cgd 		head->so_q0len--;
    381    1.1       cgd 	} else {
    382   1.22   thorpej 		if (so->so_onq != &head->so_q)
    383   1.22   thorpej 			return (0);
    384    1.1       cgd 		head->so_qlen--;
    385    1.1       cgd 	}
    386   1.91        ad 	KASSERT(solocked2(so, head));
    387   1.22   thorpej 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    388   1.22   thorpej 	so->so_onq = NULL;
    389   1.22   thorpej 	so->so_head = NULL;
    390    1.1       cgd 	return (1);
    391    1.1       cgd }
    392    1.1       cgd 
    393    1.1       cgd /*
    394    1.1       cgd  * Socantsendmore indicates that no more data will be sent on the
    395    1.1       cgd  * socket; it would normally be applied to a socket when the user
    396    1.1       cgd  * informs the system that no more data is to be sent, by the protocol
    397    1.1       cgd  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    398    1.1       cgd  * will be received, and will normally be applied to the socket by a
    399    1.1       cgd  * protocol when it detects that the peer will send no more data.
    400    1.1       cgd  * Data queued for reading in the socket may yet be read.
    401    1.1       cgd  */
    402    1.1       cgd 
    403    1.4    andrew void
    404   1.37     lukem socantsendmore(struct socket *so)
    405    1.1       cgd {
    406    1.1       cgd 
    407   1.91        ad 	KASSERT(solocked(so));
    408   1.91        ad 
    409    1.1       cgd 	so->so_state |= SS_CANTSENDMORE;
    410    1.1       cgd 	sowwakeup(so);
    411    1.1       cgd }
    412    1.1       cgd 
    413    1.4    andrew void
    414   1.37     lukem socantrcvmore(struct socket *so)
    415    1.1       cgd {
    416    1.1       cgd 
    417   1.91        ad 	KASSERT(solocked(so));
    418   1.91        ad 
    419    1.1       cgd 	so->so_state |= SS_CANTRCVMORE;
    420    1.1       cgd 	sorwakeup(so);
    421    1.1       cgd }
    422    1.1       cgd 
    423    1.1       cgd /*
    424    1.1       cgd  * Wait for data to arrive at/drain from a socket buffer.
    425    1.1       cgd  */
    426    1.7   mycroft int
    427   1.37     lukem sbwait(struct sockbuf *sb)
    428    1.1       cgd {
    429   1.91        ad 	struct socket *so;
    430   1.91        ad 	kmutex_t *lock;
    431   1.91        ad 	int error;
    432    1.1       cgd 
    433   1.91        ad 	so = sb->sb_so;
    434    1.1       cgd 
    435   1.91        ad 	KASSERT(solocked(so));
    436    1.1       cgd 
    437   1.91        ad 	sb->sb_flags |= SB_NOTIFY;
    438   1.91        ad 	lock = so->so_lock;
    439   1.91        ad 	if ((sb->sb_flags & SB_NOINTR) != 0)
    440   1.91        ad 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    441   1.91        ad 	else
    442   1.91        ad 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    443   1.91        ad 	if (__predict_false(lock != so->so_lock))
    444   1.91        ad 		solockretry(so, lock);
    445   1.91        ad 	return error;
    446    1.1       cgd }
    447    1.1       cgd 
    448    1.1       cgd /*
    449    1.1       cgd  * Wakeup processes waiting on a socket buffer.
    450    1.1       cgd  * Do asynchronous notification via SIGIO
    451   1.39      manu  * if the socket buffer has the SB_ASYNC flag set.
    452    1.1       cgd  */
    453    1.7   mycroft void
    454   1.55  christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
    455    1.1       cgd {
    456   1.90     rmind 	int band;
    457   1.90     rmind 
    458   1.91        ad 	KASSERT(solocked(so));
    459   1.91        ad 	KASSERT(sb->sb_so == so);
    460   1.91        ad 
    461   1.90     rmind 	if (code == POLL_IN)
    462   1.90     rmind 		band = POLLIN|POLLRDNORM;
    463   1.90     rmind 	else
    464   1.90     rmind 		band = POLLOUT|POLLWRNORM;
    465   1.91        ad 	sb->sb_flags &= ~SB_NOTIFY;
    466   1.91        ad 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    467   1.91        ad 	cv_broadcast(&sb->sb_cv);
    468   1.90     rmind 	if (sb->sb_flags & SB_ASYNC)
    469   1.57  christos 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    470   1.24      matt 	if (sb->sb_flags & SB_UPCALL)
    471  1.104       tls 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    472    1.1       cgd }
    473    1.1       cgd 
    474    1.1       cgd /*
    475   1.95        ad  * Reset a socket's lock pointer.  Wake all threads waiting on the
    476   1.95        ad  * socket's condition variables so that they can restart their waits
    477   1.95        ad  * using the new lock.  The existing lock must be held.
    478   1.95        ad  */
    479   1.95        ad void
    480   1.95        ad solockreset(struct socket *so, kmutex_t *lock)
    481   1.95        ad {
    482   1.95        ad 
    483   1.95        ad 	KASSERT(solocked(so));
    484   1.95        ad 
    485   1.95        ad 	so->so_lock = lock;
    486   1.95        ad 	cv_broadcast(&so->so_snd.sb_cv);
    487   1.95        ad 	cv_broadcast(&so->so_rcv.sb_cv);
    488   1.95        ad 	cv_broadcast(&so->so_cv);
    489   1.95        ad }
    490   1.95        ad 
    491   1.95        ad /*
    492    1.1       cgd  * Socket buffer (struct sockbuf) utility routines.
    493    1.1       cgd  *
    494    1.1       cgd  * Each socket contains two socket buffers: one for sending data and
    495    1.1       cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    496    1.1       cgd  * information about the number of mbufs and amount of data in the
    497   1.13   mycroft  * queue, and other fields allowing poll() statements and notification
    498    1.1       cgd  * on data availability to be implemented.
    499    1.1       cgd  *
    500    1.1       cgd  * Data stored in a socket buffer is maintained as a list of records.
    501    1.1       cgd  * Each record is a list of mbufs chained together with the m_next
    502    1.1       cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    503    1.1       cgd  * level routine soreceive() expects the following conventions to be
    504    1.1       cgd  * observed when placing information in the receive buffer:
    505    1.1       cgd  *
    506    1.1       cgd  * 1. If the protocol requires each message be preceded by the sender's
    507    1.1       cgd  *    name, then a record containing that name must be present before
    508    1.1       cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    509    1.1       cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    510    1.1       cgd  *    just additional data associated with the message), and there are
    511    1.1       cgd  *    ``rights'' to be received, then a record containing this data
    512   1.10   mycroft  *    should be present (mbuf's must be of type MT_CONTROL).
    513    1.1       cgd  * 3. If a name or rights record exists, then it must be followed by
    514    1.1       cgd  *    a data record, perhaps of zero length.
    515    1.1       cgd  *
    516    1.1       cgd  * Before using a new socket structure it is first necessary to reserve
    517    1.1       cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    518    1.1       cgd  * some of the available buffer space in the system buffer pool for the
    519    1.1       cgd  * socket (currently, it does nothing but enforce limits).  The space
    520    1.1       cgd  * should be released by calling sbrelease() when the socket is destroyed.
    521    1.1       cgd  */
    522    1.1       cgd 
    523    1.7   mycroft int
    524   1.58   thorpej sb_max_set(u_long new_sbmax)
    525   1.58   thorpej {
    526   1.58   thorpej 	int s;
    527   1.58   thorpej 
    528   1.58   thorpej 	if (new_sbmax < (16 * 1024))
    529   1.58   thorpej 		return (EINVAL);
    530   1.58   thorpej 
    531   1.58   thorpej 	s = splsoftnet();
    532   1.58   thorpej 	sb_max = new_sbmax;
    533   1.58   thorpej 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    534   1.58   thorpej 	splx(s);
    535   1.58   thorpej 
    536   1.58   thorpej 	return (0);
    537   1.58   thorpej }
    538   1.58   thorpej 
    539   1.58   thorpej int
    540   1.37     lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    541    1.1       cgd {
    542   1.91        ad 
    543   1.91        ad 	KASSERT(so->so_lock == NULL || solocked(so));
    544   1.91        ad 
    545   1.74  christos 	/*
    546   1.74  christos 	 * there's at least one application (a configure script of screen)
    547   1.74  christos 	 * which expects a fifo is writable even if it has "some" bytes
    548   1.74  christos 	 * in its buffer.
    549   1.74  christos 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    550   1.74  christos 	 *
    551   1.74  christos 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    552   1.74  christos 	 * we expect it's large enough for such applications.
    553   1.74  christos 	 */
    554   1.74  christos 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    555   1.74  christos 	u_long  hiwat = lowat + PIPE_BUF;
    556    1.1       cgd 
    557   1.74  christos 	if (sndcc < hiwat)
    558   1.74  christos 		sndcc = hiwat;
    559   1.59  christos 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    560    1.1       cgd 		goto bad;
    561   1.59  christos 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    562    1.1       cgd 		goto bad2;
    563    1.1       cgd 	if (so->so_rcv.sb_lowat == 0)
    564    1.1       cgd 		so->so_rcv.sb_lowat = 1;
    565    1.1       cgd 	if (so->so_snd.sb_lowat == 0)
    566   1.74  christos 		so->so_snd.sb_lowat = lowat;
    567    1.1       cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    568    1.1       cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    569    1.1       cgd 	return (0);
    570   1.37     lukem  bad2:
    571   1.59  christos 	sbrelease(&so->so_snd, so);
    572   1.37     lukem  bad:
    573    1.1       cgd 	return (ENOBUFS);
    574    1.1       cgd }
    575    1.1       cgd 
    576    1.1       cgd /*
    577    1.1       cgd  * Allot mbufs to a sockbuf.
    578    1.1       cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    579    1.1       cgd  * if buffering efficiency is near the normal case.
    580    1.1       cgd  */
    581    1.7   mycroft int
    582   1.59  christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    583    1.1       cgd {
    584   1.75        ad 	struct lwp *l = curlwp; /* XXX */
    585   1.62  christos 	rlim_t maxcc;
    586   1.67  christos 	struct uidinfo *uidinfo;
    587    1.1       cgd 
    588   1.91        ad 	KASSERT(so->so_lock == NULL || solocked(so));
    589   1.91        ad 	KASSERT(sb->sb_so == so);
    590   1.91        ad 	KASSERT(sb_max_adj != 0);
    591   1.91        ad 
    592   1.58   thorpej 	if (cc == 0 || cc > sb_max_adj)
    593    1.1       cgd 		return (0);
    594   1.93  christos 
    595  1.105      elad 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    596   1.93  christos 
    597   1.93  christos 	uidinfo = so->so_uidinfo;
    598   1.67  christos 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    599   1.62  christos 		return 0;
    600    1.1       cgd 	sb->sb_mbmax = min(cc * 2, sb_max);
    601    1.1       cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    602    1.1       cgd 		sb->sb_lowat = sb->sb_hiwat;
    603    1.1       cgd 	return (1);
    604    1.1       cgd }
    605    1.1       cgd 
    606    1.1       cgd /*
    607   1.91        ad  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    608   1.91        ad  * that the socket is held locked here: see sorflush().
    609    1.1       cgd  */
    610    1.7   mycroft void
    611   1.59  christos sbrelease(struct sockbuf *sb, struct socket *so)
    612    1.1       cgd {
    613    1.1       cgd 
    614   1.91        ad 	KASSERT(sb->sb_so == so);
    615   1.91        ad 
    616    1.1       cgd 	sbflush(sb);
    617   1.87      yamt 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    618   1.59  christos 	sb->sb_mbmax = 0;
    619    1.1       cgd }
    620    1.1       cgd 
    621    1.1       cgd /*
    622    1.1       cgd  * Routines to add and remove
    623    1.1       cgd  * data from an mbuf queue.
    624    1.1       cgd  *
    625    1.1       cgd  * The routines sbappend() or sbappendrecord() are normally called to
    626    1.1       cgd  * append new mbufs to a socket buffer, after checking that adequate
    627    1.1       cgd  * space is available, comparing the function sbspace() with the amount
    628    1.1       cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    629    1.1       cgd  * that data supplied is treated as the beginning of a new record.
    630    1.1       cgd  * To place a sender's address, optional access rights, and data in a
    631    1.1       cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    632    1.1       cgd  * access rights and data in a socket receive buffer, sbappendrights()
    633    1.1       cgd  * should be used.  In either case, the new data begins a new record.
    634    1.1       cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    635    1.1       cgd  * for the caller that there will be enough space to store the data.
    636    1.1       cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    637    1.1       cgd  * to store additional information in.
    638    1.1       cgd  *
    639    1.1       cgd  * Reliable protocols may use the socket send buffer to hold data
    640    1.1       cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    641    1.1       cgd  * send buffer in a protocol with m_copy for output to a peer,
    642    1.1       cgd  * and then removing the data from the socket buffer with sbdrop()
    643    1.1       cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    644    1.1       cgd  */
    645    1.1       cgd 
    646   1.43   thorpej #ifdef SOCKBUF_DEBUG
    647   1.43   thorpej void
    648   1.43   thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
    649   1.43   thorpej {
    650   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    651   1.43   thorpej 
    652   1.91        ad 	KASSERT(solocked(sb->sb_so));
    653   1.91        ad 
    654   1.43   thorpej 	while (m && m->m_nextpkt)
    655   1.43   thorpej 		m = m->m_nextpkt;
    656   1.43   thorpej 
    657   1.43   thorpej 	if (m != sb->sb_lastrecord) {
    658   1.43   thorpej 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    659   1.43   thorpej 		    sb->sb_mb, sb->sb_lastrecord, m);
    660   1.43   thorpej 		printf("packet chain:\n");
    661   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    662   1.43   thorpej 			printf("\t%p\n", m);
    663   1.47    provos 		panic("sblastrecordchk from %s", where);
    664   1.43   thorpej 	}
    665   1.43   thorpej }
    666   1.43   thorpej 
    667   1.43   thorpej void
    668   1.43   thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
    669   1.43   thorpej {
    670   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    671   1.43   thorpej 	struct mbuf *n;
    672   1.43   thorpej 
    673   1.91        ad 	KASSERT(solocked(sb->sb_so));
    674   1.91        ad 
    675   1.43   thorpej 	while (m && m->m_nextpkt)
    676   1.43   thorpej 		m = m->m_nextpkt;
    677   1.43   thorpej 
    678   1.43   thorpej 	while (m && m->m_next)
    679   1.43   thorpej 		m = m->m_next;
    680   1.43   thorpej 
    681   1.43   thorpej 	if (m != sb->sb_mbtail) {
    682   1.43   thorpej 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    683   1.43   thorpej 		    sb->sb_mb, sb->sb_mbtail, m);
    684   1.43   thorpej 		printf("packet tree:\n");
    685   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    686   1.43   thorpej 			printf("\t");
    687   1.43   thorpej 			for (n = m; n != NULL; n = n->m_next)
    688   1.43   thorpej 				printf("%p ", n);
    689   1.43   thorpej 			printf("\n");
    690   1.43   thorpej 		}
    691   1.43   thorpej 		panic("sblastmbufchk from %s", where);
    692   1.43   thorpej 	}
    693   1.43   thorpej }
    694   1.43   thorpej #endif /* SOCKBUF_DEBUG */
    695   1.43   thorpej 
    696   1.63  jonathan /*
    697   1.63  jonathan  * Link a chain of records onto a socket buffer
    698   1.63  jonathan  */
    699   1.63  jonathan #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    700   1.43   thorpej do {									\
    701   1.43   thorpej 	if ((sb)->sb_lastrecord != NULL)				\
    702   1.43   thorpej 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    703   1.43   thorpej 	else								\
    704   1.43   thorpej 		(sb)->sb_mb = (m0);					\
    705   1.63  jonathan 	(sb)->sb_lastrecord = (mlast);					\
    706   1.43   thorpej } while (/*CONSTCOND*/0)
    707   1.43   thorpej 
    708   1.63  jonathan 
    709   1.63  jonathan #define	SBLINKRECORD(sb, m0)						\
    710   1.63  jonathan     SBLINKRECORDCHAIN(sb, m0, m0)
    711   1.63  jonathan 
    712    1.1       cgd /*
    713    1.1       cgd  * Append mbuf chain m to the last record in the
    714    1.1       cgd  * socket buffer sb.  The additional space associated
    715    1.1       cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    716    1.1       cgd  * discarded and mbufs are compacted where possible.
    717    1.1       cgd  */
    718    1.7   mycroft void
    719   1.37     lukem sbappend(struct sockbuf *sb, struct mbuf *m)
    720    1.1       cgd {
    721   1.37     lukem 	struct mbuf	*n;
    722    1.1       cgd 
    723   1.91        ad 	KASSERT(solocked(sb->sb_so));
    724   1.91        ad 
    725    1.1       cgd 	if (m == 0)
    726    1.1       cgd 		return;
    727   1.43   thorpej 
    728   1.49      matt #ifdef MBUFTRACE
    729   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    730   1.49      matt #endif
    731   1.49      matt 
    732   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 1");
    733   1.43   thorpej 
    734   1.43   thorpej 	if ((n = sb->sb_lastrecord) != NULL) {
    735   1.43   thorpej 		/*
    736   1.43   thorpej 		 * XXX Would like to simply use sb_mbtail here, but
    737   1.43   thorpej 		 * XXX I need to verify that I won't miss an EOR that
    738   1.43   thorpej 		 * XXX way.
    739   1.43   thorpej 		 */
    740    1.1       cgd 		do {
    741    1.1       cgd 			if (n->m_flags & M_EOR) {
    742    1.1       cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    743    1.1       cgd 				return;
    744    1.1       cgd 			}
    745    1.1       cgd 		} while (n->m_next && (n = n->m_next));
    746   1.43   thorpej 	} else {
    747   1.43   thorpej 		/*
    748   1.43   thorpej 		 * If this is the first record in the socket buffer, it's
    749   1.43   thorpej 		 * also the last record.
    750   1.43   thorpej 		 */
    751   1.43   thorpej 		sb->sb_lastrecord = m;
    752    1.1       cgd 	}
    753    1.1       cgd 	sbcompress(sb, m, n);
    754   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 2");
    755   1.43   thorpej }
    756   1.43   thorpej 
    757   1.43   thorpej /*
    758   1.43   thorpej  * This version of sbappend() should only be used when the caller
    759   1.43   thorpej  * absolutely knows that there will never be more than one record
    760   1.43   thorpej  * in the socket buffer, that is, a stream protocol (such as TCP).
    761   1.43   thorpej  */
    762   1.43   thorpej void
    763   1.44   thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
    764   1.43   thorpej {
    765   1.43   thorpej 
    766   1.91        ad 	KASSERT(solocked(sb->sb_so));
    767   1.43   thorpej 	KDASSERT(m->m_nextpkt == NULL);
    768   1.43   thorpej 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    769   1.43   thorpej 
    770   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
    771   1.43   thorpej 
    772   1.49      matt #ifdef MBUFTRACE
    773   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    774   1.49      matt #endif
    775   1.49      matt 
    776   1.43   thorpej 	sbcompress(sb, m, sb->sb_mbtail);
    777   1.43   thorpej 
    778   1.43   thorpej 	sb->sb_lastrecord = sb->sb_mb;
    779   1.43   thorpej 	SBLASTRECORDCHK(sb, __func__);
    780    1.1       cgd }
    781    1.1       cgd 
    782    1.1       cgd #ifdef SOCKBUF_DEBUG
    783    1.7   mycroft void
    784   1.37     lukem sbcheck(struct sockbuf *sb)
    785    1.1       cgd {
    786   1.91        ad 	struct mbuf	*m, *m2;
    787   1.43   thorpej 	u_long		len, mbcnt;
    788    1.1       cgd 
    789   1.91        ad 	KASSERT(solocked(sb->sb_so));
    790   1.91        ad 
    791   1.37     lukem 	len = 0;
    792   1.37     lukem 	mbcnt = 0;
    793   1.91        ad 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    794   1.91        ad 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    795   1.91        ad 			len += m2->m_len;
    796   1.91        ad 			mbcnt += MSIZE;
    797   1.91        ad 			if (m2->m_flags & M_EXT)
    798   1.91        ad 				mbcnt += m2->m_ext.ext_size;
    799   1.91        ad 			if (m2->m_nextpkt != NULL)
    800   1.91        ad 				panic("sbcheck nextpkt");
    801   1.91        ad 		}
    802    1.1       cgd 	}
    803    1.1       cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    804   1.43   thorpej 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    805    1.1       cgd 		    mbcnt, sb->sb_mbcnt);
    806    1.1       cgd 		panic("sbcheck");
    807    1.1       cgd 	}
    808    1.1       cgd }
    809    1.1       cgd #endif
    810    1.1       cgd 
    811    1.1       cgd /*
    812    1.1       cgd  * As above, except the mbuf chain
    813    1.1       cgd  * begins a new record.
    814    1.1       cgd  */
    815    1.7   mycroft void
    816   1.37     lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    817    1.1       cgd {
    818   1.37     lukem 	struct mbuf	*m;
    819    1.1       cgd 
    820   1.91        ad 	KASSERT(solocked(sb->sb_so));
    821   1.91        ad 
    822    1.1       cgd 	if (m0 == 0)
    823    1.1       cgd 		return;
    824   1.43   thorpej 
    825   1.49      matt #ifdef MBUFTRACE
    826   1.65  jonathan 	m_claimm(m0, sb->sb_mowner);
    827   1.49      matt #endif
    828    1.1       cgd 	/*
    829    1.1       cgd 	 * Put the first mbuf on the queue.
    830    1.1       cgd 	 * Note this permits zero length records.
    831    1.1       cgd 	 */
    832    1.1       cgd 	sballoc(sb, m0);
    833   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    834   1.43   thorpej 	SBLINKRECORD(sb, m0);
    835    1.1       cgd 	m = m0->m_next;
    836    1.1       cgd 	m0->m_next = 0;
    837    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    838    1.1       cgd 		m0->m_flags &= ~M_EOR;
    839    1.1       cgd 		m->m_flags |= M_EOR;
    840    1.1       cgd 	}
    841    1.1       cgd 	sbcompress(sb, m, m0);
    842   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    843    1.1       cgd }
    844    1.1       cgd 
    845    1.1       cgd /*
    846    1.1       cgd  * As above except that OOB data
    847    1.1       cgd  * is inserted at the beginning of the sockbuf,
    848    1.1       cgd  * but after any other OOB data.
    849    1.1       cgd  */
    850    1.7   mycroft void
    851   1.37     lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    852    1.1       cgd {
    853   1.37     lukem 	struct mbuf	*m, **mp;
    854    1.1       cgd 
    855   1.91        ad 	KASSERT(solocked(sb->sb_so));
    856   1.91        ad 
    857    1.1       cgd 	if (m0 == 0)
    858    1.1       cgd 		return;
    859   1.43   thorpej 
    860   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    861   1.43   thorpej 
    862   1.11  christos 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    863    1.1       cgd 	    again:
    864    1.1       cgd 		switch (m->m_type) {
    865    1.1       cgd 
    866    1.1       cgd 		case MT_OOBDATA:
    867    1.1       cgd 			continue;		/* WANT next train */
    868    1.1       cgd 
    869    1.1       cgd 		case MT_CONTROL:
    870   1.11  christos 			if ((m = m->m_next) != NULL)
    871    1.1       cgd 				goto again;	/* inspect THIS train further */
    872    1.1       cgd 		}
    873    1.1       cgd 		break;
    874    1.1       cgd 	}
    875    1.1       cgd 	/*
    876    1.1       cgd 	 * Put the first mbuf on the queue.
    877    1.1       cgd 	 * Note this permits zero length records.
    878    1.1       cgd 	 */
    879    1.1       cgd 	sballoc(sb, m0);
    880    1.1       cgd 	m0->m_nextpkt = *mp;
    881   1.43   thorpej 	if (*mp == NULL) {
    882   1.43   thorpej 		/* m0 is actually the new tail */
    883   1.43   thorpej 		sb->sb_lastrecord = m0;
    884   1.43   thorpej 	}
    885    1.1       cgd 	*mp = m0;
    886    1.1       cgd 	m = m0->m_next;
    887    1.1       cgd 	m0->m_next = 0;
    888    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    889    1.1       cgd 		m0->m_flags &= ~M_EOR;
    890    1.1       cgd 		m->m_flags |= M_EOR;
    891    1.1       cgd 	}
    892    1.1       cgd 	sbcompress(sb, m, m0);
    893   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    894    1.1       cgd }
    895    1.1       cgd 
    896    1.1       cgd /*
    897    1.1       cgd  * Append address and data, and optionally, control (ancillary) data
    898    1.1       cgd  * to the receive queue of a socket.  If present,
    899    1.1       cgd  * m0 must include a packet header with total length.
    900    1.1       cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
    901    1.1       cgd  */
    902    1.7   mycroft int
    903   1.61      matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    904   1.37     lukem 	struct mbuf *control)
    905    1.1       cgd {
    906   1.43   thorpej 	struct mbuf	*m, *n, *nlast;
    907   1.50      fvdl 	int		space, len;
    908    1.1       cgd 
    909   1.91        ad 	KASSERT(solocked(sb->sb_so));
    910   1.91        ad 
    911   1.37     lukem 	space = asa->sa_len;
    912   1.37     lukem 
    913   1.49      matt 	if (m0 != NULL) {
    914   1.49      matt 		if ((m0->m_flags & M_PKTHDR) == 0)
    915   1.49      matt 			panic("sbappendaddr");
    916    1.1       cgd 		space += m0->m_pkthdr.len;
    917   1.49      matt #ifdef MBUFTRACE
    918   1.65  jonathan 		m_claimm(m0, sb->sb_mowner);
    919   1.49      matt #endif
    920   1.49      matt 	}
    921    1.1       cgd 	for (n = control; n; n = n->m_next) {
    922    1.1       cgd 		space += n->m_len;
    923   1.49      matt 		MCLAIM(n, sb->sb_mowner);
    924    1.1       cgd 		if (n->m_next == 0)	/* keep pointer to last control buf */
    925    1.1       cgd 			break;
    926    1.1       cgd 	}
    927    1.1       cgd 	if (space > sbspace(sb))
    928    1.1       cgd 		return (0);
    929    1.1       cgd 	MGET(m, M_DONTWAIT, MT_SONAME);
    930    1.1       cgd 	if (m == 0)
    931    1.1       cgd 		return (0);
    932   1.49      matt 	MCLAIM(m, sb->sb_mowner);
    933   1.50      fvdl 	/*
    934   1.50      fvdl 	 * XXX avoid 'comparison always true' warning which isn't easily
    935   1.50      fvdl 	 * avoided.
    936   1.50      fvdl 	 */
    937   1.50      fvdl 	len = asa->sa_len;
    938   1.50      fvdl 	if (len > MLEN) {
    939   1.20   thorpej 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    940   1.20   thorpej 		if ((m->m_flags & M_EXT) == 0) {
    941   1.20   thorpej 			m_free(m);
    942   1.20   thorpej 			return (0);
    943   1.20   thorpej 		}
    944   1.20   thorpej 	}
    945    1.1       cgd 	m->m_len = asa->sa_len;
    946   1.82  christos 	memcpy(mtod(m, void *), asa, asa->sa_len);
    947    1.1       cgd 	if (n)
    948    1.1       cgd 		n->m_next = m0;		/* concatenate data to control */
    949    1.1       cgd 	else
    950    1.1       cgd 		control = m0;
    951    1.1       cgd 	m->m_next = control;
    952   1.43   thorpej 
    953   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    954   1.43   thorpej 
    955   1.43   thorpej 	for (n = m; n->m_next != NULL; n = n->m_next)
    956    1.1       cgd 		sballoc(sb, n);
    957   1.43   thorpej 	sballoc(sb, n);
    958   1.43   thorpej 	nlast = n;
    959   1.43   thorpej 	SBLINKRECORD(sb, m);
    960   1.43   thorpej 
    961   1.43   thorpej 	sb->sb_mbtail = nlast;
    962   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendaddr");
    963   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    964   1.43   thorpej 
    965    1.1       cgd 	return (1);
    966    1.1       cgd }
    967    1.1       cgd 
    968   1.63  jonathan /*
    969   1.63  jonathan  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    970   1.63  jonathan  * an mbuf chain.
    971   1.63  jonathan  */
    972   1.70     perry static inline struct mbuf *
    973   1.81      yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    974   1.64  jonathan 		   const struct sockaddr *asa)
    975   1.63  jonathan {
    976   1.63  jonathan 	struct mbuf *m;
    977   1.64  jonathan 	const int salen = asa->sa_len;
    978   1.63  jonathan 
    979   1.91        ad 	KASSERT(solocked(sb->sb_so));
    980   1.91        ad 
    981   1.63  jonathan 	/* only the first in each chain need be a pkthdr */
    982   1.63  jonathan 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    983   1.63  jonathan 	if (m == 0)
    984   1.63  jonathan 		return (0);
    985   1.63  jonathan 	MCLAIM(m, sb->sb_mowner);
    986   1.64  jonathan #ifdef notyet
    987   1.64  jonathan 	if (salen > MHLEN) {
    988   1.64  jonathan 		MEXTMALLOC(m, salen, M_NOWAIT);
    989   1.64  jonathan 		if ((m->m_flags & M_EXT) == 0) {
    990   1.64  jonathan 			m_free(m);
    991   1.64  jonathan 			return (0);
    992   1.64  jonathan 		}
    993   1.64  jonathan 	}
    994   1.64  jonathan #else
    995   1.64  jonathan 	KASSERT(salen <= MHLEN);
    996   1.64  jonathan #endif
    997   1.64  jonathan 	m->m_len = salen;
    998   1.82  christos 	memcpy(mtod(m, void *), asa, salen);
    999   1.63  jonathan 	m->m_next = m0;
   1000   1.64  jonathan 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1001   1.63  jonathan 
   1002   1.63  jonathan 	return m;
   1003   1.63  jonathan }
   1004   1.63  jonathan 
   1005   1.63  jonathan int
   1006   1.63  jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1007   1.63  jonathan 		  struct mbuf *m0, int sbprio)
   1008   1.63  jonathan {
   1009   1.63  jonathan 	struct mbuf *m, *n, *n0, *nlast;
   1010   1.63  jonathan 	int error;
   1011   1.63  jonathan 
   1012   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1013   1.91        ad 
   1014   1.63  jonathan 	/*
   1015   1.63  jonathan 	 * XXX sbprio reserved for encoding priority of this* request:
   1016   1.63  jonathan 	 *  SB_PRIO_NONE --> honour normal sb limits
   1017   1.63  jonathan 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1018   1.63  jonathan 	 *	take whole chain. Intended for large requests
   1019   1.63  jonathan 	 *      that should be delivered atomically (all, or none).
   1020   1.63  jonathan 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1021   1.63  jonathan 	 *       over normal socket limits, for messages indicating
   1022   1.63  jonathan 	 *       buffer overflow in earlier normal/lower-priority messages
   1023   1.63  jonathan 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1024   1.63  jonathan 	 *       Intended for  kernel-generated messages only.
   1025   1.63  jonathan 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1026   1.63  jonathan 	 */
   1027   1.63  jonathan 	(void)sbprio;
   1028   1.63  jonathan 
   1029   1.63  jonathan 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1030   1.63  jonathan 		panic("sbappendaddrchain");
   1031   1.63  jonathan 
   1032  1.114    martin #ifdef notyet
   1033   1.63  jonathan 	space = sbspace(sb);
   1034   1.66     perry 
   1035   1.66     perry 	/*
   1036   1.63  jonathan 	 * Enforce SB_PRIO_* limits as described above.
   1037   1.63  jonathan 	 */
   1038   1.63  jonathan #endif
   1039   1.63  jonathan 
   1040   1.63  jonathan 	n0 = NULL;
   1041   1.63  jonathan 	nlast = NULL;
   1042   1.63  jonathan 	for (m = m0; m; m = m->m_nextpkt) {
   1043   1.63  jonathan 		struct mbuf *np;
   1044   1.63  jonathan 
   1045   1.64  jonathan #ifdef MBUFTRACE
   1046   1.65  jonathan 		m_claimm(m, sb->sb_mowner);
   1047   1.64  jonathan #endif
   1048   1.64  jonathan 
   1049   1.63  jonathan 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1050   1.64  jonathan 	  	n = m_prepend_sockaddr(sb, m, asa);
   1051   1.63  jonathan 		if (n == NULL) {
   1052   1.63  jonathan 			error = ENOBUFS;
   1053   1.63  jonathan 			goto bad;
   1054   1.63  jonathan 		}
   1055   1.63  jonathan 
   1056   1.63  jonathan 		/* Append record (asa+m) to end of new chain n0 */
   1057   1.63  jonathan 		if (n0 == NULL) {
   1058   1.63  jonathan 			n0 = n;
   1059   1.63  jonathan 		} else {
   1060   1.63  jonathan 			nlast->m_nextpkt = n;
   1061   1.63  jonathan 		}
   1062   1.63  jonathan 		/* Keep track of last record on new chain */
   1063   1.63  jonathan 		nlast = n;
   1064   1.63  jonathan 
   1065   1.63  jonathan 		for (np = n; np; np = np->m_next)
   1066   1.63  jonathan 			sballoc(sb, np);
   1067   1.63  jonathan 	}
   1068   1.63  jonathan 
   1069   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1070   1.64  jonathan 
   1071   1.63  jonathan 	/* Drop the entire chain of (asa+m) records onto the socket */
   1072   1.63  jonathan 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1073   1.64  jonathan 
   1074   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1075   1.64  jonathan 
   1076   1.63  jonathan 	for (m = nlast; m->m_next; m = m->m_next)
   1077   1.63  jonathan 		;
   1078   1.63  jonathan 	sb->sb_mbtail = m;
   1079   1.64  jonathan 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1080   1.64  jonathan 
   1081   1.63  jonathan 	return (1);
   1082   1.63  jonathan 
   1083   1.63  jonathan bad:
   1084   1.64  jonathan 	/*
   1085   1.64  jonathan 	 * On error, free the prepended addreseses. For consistency
   1086   1.64  jonathan 	 * with sbappendaddr(), leave it to our caller to free
   1087   1.64  jonathan 	 * the input record chain passed to us as m0.
   1088   1.64  jonathan 	 */
   1089   1.64  jonathan 	while ((n = n0) != NULL) {
   1090   1.64  jonathan 	  	struct mbuf *np;
   1091   1.64  jonathan 
   1092   1.64  jonathan 		/* Undo the sballoc() of this record */
   1093   1.64  jonathan 		for (np = n; np; np = np->m_next)
   1094   1.64  jonathan 			sbfree(sb, np);
   1095   1.64  jonathan 
   1096   1.64  jonathan 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1097   1.64  jonathan 		MFREE(n, np);		/* free prepended address (not data) */
   1098   1.64  jonathan 	}
   1099  1.114    martin 	return error;
   1100   1.63  jonathan }
   1101   1.63  jonathan 
   1102   1.63  jonathan 
   1103    1.7   mycroft int
   1104   1.37     lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1105    1.1       cgd {
   1106   1.43   thorpej 	struct mbuf	*m, *mlast, *n;
   1107   1.37     lukem 	int		space;
   1108    1.1       cgd 
   1109   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1110   1.91        ad 
   1111   1.37     lukem 	space = 0;
   1112    1.1       cgd 	if (control == 0)
   1113    1.1       cgd 		panic("sbappendcontrol");
   1114    1.1       cgd 	for (m = control; ; m = m->m_next) {
   1115    1.1       cgd 		space += m->m_len;
   1116   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1117    1.1       cgd 		if (m->m_next == 0)
   1118    1.1       cgd 			break;
   1119    1.1       cgd 	}
   1120    1.1       cgd 	n = m;			/* save pointer to last control buffer */
   1121   1.49      matt 	for (m = m0; m; m = m->m_next) {
   1122   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1123    1.1       cgd 		space += m->m_len;
   1124   1.49      matt 	}
   1125    1.1       cgd 	if (space > sbspace(sb))
   1126    1.1       cgd 		return (0);
   1127    1.1       cgd 	n->m_next = m0;			/* concatenate data to control */
   1128   1.43   thorpej 
   1129   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1130   1.43   thorpej 
   1131   1.43   thorpej 	for (m = control; m->m_next != NULL; m = m->m_next)
   1132    1.1       cgd 		sballoc(sb, m);
   1133   1.43   thorpej 	sballoc(sb, m);
   1134   1.43   thorpej 	mlast = m;
   1135   1.43   thorpej 	SBLINKRECORD(sb, control);
   1136   1.43   thorpej 
   1137   1.43   thorpej 	sb->sb_mbtail = mlast;
   1138   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1139   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1140   1.43   thorpej 
   1141    1.1       cgd 	return (1);
   1142    1.1       cgd }
   1143    1.1       cgd 
   1144    1.1       cgd /*
   1145    1.1       cgd  * Compress mbuf chain m into the socket
   1146    1.1       cgd  * buffer sb following mbuf n.  If n
   1147    1.1       cgd  * is null, the buffer is presumed empty.
   1148    1.1       cgd  */
   1149    1.7   mycroft void
   1150   1.37     lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1151    1.1       cgd {
   1152   1.37     lukem 	int		eor;
   1153   1.37     lukem 	struct mbuf	*o;
   1154    1.1       cgd 
   1155   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1156   1.91        ad 
   1157   1.37     lukem 	eor = 0;
   1158    1.1       cgd 	while (m) {
   1159    1.1       cgd 		eor |= m->m_flags & M_EOR;
   1160    1.1       cgd 		if (m->m_len == 0 &&
   1161    1.1       cgd 		    (eor == 0 ||
   1162    1.1       cgd 		     (((o = m->m_next) || (o = n)) &&
   1163    1.1       cgd 		      o->m_type == m->m_type))) {
   1164   1.46   thorpej 			if (sb->sb_lastrecord == m)
   1165   1.46   thorpej 				sb->sb_lastrecord = m->m_next;
   1166    1.1       cgd 			m = m_free(m);
   1167    1.1       cgd 			continue;
   1168    1.1       cgd 		}
   1169   1.40   thorpej 		if (n && (n->m_flags & M_EOR) == 0 &&
   1170   1.40   thorpej 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1171   1.40   thorpej 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1172   1.40   thorpej 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1173   1.40   thorpej 		    n->m_type == m->m_type) {
   1174   1.82  christos 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1175    1.1       cgd 			    (unsigned)m->m_len);
   1176    1.1       cgd 			n->m_len += m->m_len;
   1177    1.1       cgd 			sb->sb_cc += m->m_len;
   1178    1.1       cgd 			m = m_free(m);
   1179    1.1       cgd 			continue;
   1180    1.1       cgd 		}
   1181    1.1       cgd 		if (n)
   1182    1.1       cgd 			n->m_next = m;
   1183    1.1       cgd 		else
   1184    1.1       cgd 			sb->sb_mb = m;
   1185   1.43   thorpej 		sb->sb_mbtail = m;
   1186    1.1       cgd 		sballoc(sb, m);
   1187    1.1       cgd 		n = m;
   1188    1.1       cgd 		m->m_flags &= ~M_EOR;
   1189    1.1       cgd 		m = m->m_next;
   1190    1.1       cgd 		n->m_next = 0;
   1191    1.1       cgd 	}
   1192    1.1       cgd 	if (eor) {
   1193    1.1       cgd 		if (n)
   1194    1.1       cgd 			n->m_flags |= eor;
   1195    1.1       cgd 		else
   1196   1.15  christos 			printf("semi-panic: sbcompress\n");
   1197    1.1       cgd 	}
   1198   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
   1199    1.1       cgd }
   1200    1.1       cgd 
   1201    1.1       cgd /*
   1202    1.1       cgd  * Free all mbufs in a sockbuf.
   1203    1.1       cgd  * Check that all resources are reclaimed.
   1204    1.1       cgd  */
   1205    1.7   mycroft void
   1206   1.37     lukem sbflush(struct sockbuf *sb)
   1207    1.1       cgd {
   1208    1.1       cgd 
   1209   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1210   1.43   thorpej 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1211   1.43   thorpej 
   1212    1.1       cgd 	while (sb->sb_mbcnt)
   1213    1.1       cgd 		sbdrop(sb, (int)sb->sb_cc);
   1214   1.43   thorpej 
   1215   1.43   thorpej 	KASSERT(sb->sb_cc == 0);
   1216   1.43   thorpej 	KASSERT(sb->sb_mb == NULL);
   1217   1.43   thorpej 	KASSERT(sb->sb_mbtail == NULL);
   1218   1.43   thorpej 	KASSERT(sb->sb_lastrecord == NULL);
   1219    1.1       cgd }
   1220    1.1       cgd 
   1221    1.1       cgd /*
   1222    1.1       cgd  * Drop data from (the front of) a sockbuf.
   1223    1.1       cgd  */
   1224    1.7   mycroft void
   1225   1.37     lukem sbdrop(struct sockbuf *sb, int len)
   1226    1.1       cgd {
   1227   1.37     lukem 	struct mbuf	*m, *mn, *next;
   1228    1.1       cgd 
   1229   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1230   1.91        ad 
   1231    1.1       cgd 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1232    1.1       cgd 	while (len > 0) {
   1233    1.1       cgd 		if (m == 0) {
   1234    1.1       cgd 			if (next == 0)
   1235  1.112      matt 				panic("sbdrop(%p,%d): cc=%lu",
   1236  1.112      matt 				    sb, len, sb->sb_cc);
   1237    1.1       cgd 			m = next;
   1238    1.1       cgd 			next = m->m_nextpkt;
   1239    1.1       cgd 			continue;
   1240    1.1       cgd 		}
   1241    1.1       cgd 		if (m->m_len > len) {
   1242    1.1       cgd 			m->m_len -= len;
   1243    1.1       cgd 			m->m_data += len;
   1244    1.1       cgd 			sb->sb_cc -= len;
   1245    1.1       cgd 			break;
   1246    1.1       cgd 		}
   1247    1.1       cgd 		len -= m->m_len;
   1248    1.1       cgd 		sbfree(sb, m);
   1249    1.1       cgd 		MFREE(m, mn);
   1250    1.1       cgd 		m = mn;
   1251    1.1       cgd 	}
   1252    1.1       cgd 	while (m && m->m_len == 0) {
   1253    1.1       cgd 		sbfree(sb, m);
   1254    1.1       cgd 		MFREE(m, mn);
   1255    1.1       cgd 		m = mn;
   1256    1.1       cgd 	}
   1257    1.1       cgd 	if (m) {
   1258    1.1       cgd 		sb->sb_mb = m;
   1259    1.1       cgd 		m->m_nextpkt = next;
   1260    1.1       cgd 	} else
   1261    1.1       cgd 		sb->sb_mb = next;
   1262   1.43   thorpej 	/*
   1263   1.45   thorpej 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1264   1.43   thorpej 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1265   1.43   thorpej 	 * part of the last record.
   1266   1.43   thorpej 	 */
   1267   1.43   thorpej 	m = sb->sb_mb;
   1268   1.43   thorpej 	if (m == NULL) {
   1269   1.43   thorpej 		sb->sb_mbtail = NULL;
   1270   1.43   thorpej 		sb->sb_lastrecord = NULL;
   1271   1.43   thorpej 	} else if (m->m_nextpkt == NULL)
   1272   1.43   thorpej 		sb->sb_lastrecord = m;
   1273    1.1       cgd }
   1274    1.1       cgd 
   1275    1.1       cgd /*
   1276    1.1       cgd  * Drop a record off the front of a sockbuf
   1277    1.1       cgd  * and move the next record to the front.
   1278    1.1       cgd  */
   1279    1.7   mycroft void
   1280   1.37     lukem sbdroprecord(struct sockbuf *sb)
   1281    1.1       cgd {
   1282   1.37     lukem 	struct mbuf	*m, *mn;
   1283    1.1       cgd 
   1284   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1285   1.91        ad 
   1286    1.1       cgd 	m = sb->sb_mb;
   1287    1.1       cgd 	if (m) {
   1288    1.1       cgd 		sb->sb_mb = m->m_nextpkt;
   1289    1.1       cgd 		do {
   1290    1.1       cgd 			sbfree(sb, m);
   1291    1.1       cgd 			MFREE(m, mn);
   1292   1.11  christos 		} while ((m = mn) != NULL);
   1293    1.1       cgd 	}
   1294   1.45   thorpej 	SB_EMPTY_FIXUP(sb);
   1295   1.19   thorpej }
   1296   1.19   thorpej 
   1297   1.19   thorpej /*
   1298   1.19   thorpej  * Create a "control" mbuf containing the specified data
   1299   1.19   thorpej  * with the specified type for presentation on a socket buffer.
   1300   1.19   thorpej  */
   1301   1.19   thorpej struct mbuf *
   1302  1.111  christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1303   1.19   thorpej {
   1304   1.37     lukem 	struct cmsghdr	*cp;
   1305   1.37     lukem 	struct mbuf	*m;
   1306  1.111  christos 	int space = CMSG_SPACE(size);
   1307   1.19   thorpej 
   1308  1.111  christos 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1309  1.111  christos 		printf("%s: message too large %d\n", __func__, space);
   1310   1.30    itojun 		return NULL;
   1311   1.30    itojun 	}
   1312   1.30    itojun 
   1313  1.111  christos 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1314  1.111  christos 		return NULL;
   1315  1.111  christos 	if (space > MLEN) {
   1316  1.111  christos 		if (space > MCLBYTES)
   1317  1.111  christos 			MEXTMALLOC(m, space, M_WAITOK);
   1318  1.111  christos 		else
   1319  1.111  christos 			MCLGET(m, flags);
   1320   1.30    itojun 		if ((m->m_flags & M_EXT) == 0) {
   1321   1.30    itojun 			m_free(m);
   1322   1.30    itojun 			return NULL;
   1323   1.30    itojun 		}
   1324   1.30    itojun 	}
   1325   1.19   thorpej 	cp = mtod(m, struct cmsghdr *);
   1326  1.111  christos 	*p = CMSG_DATA(cp);
   1327  1.111  christos 	m->m_len = space;
   1328   1.35    itojun 	cp->cmsg_len = CMSG_LEN(size);
   1329   1.19   thorpej 	cp->cmsg_level = level;
   1330   1.19   thorpej 	cp->cmsg_type = type;
   1331  1.111  christos 	return m;
   1332  1.111  christos }
   1333  1.111  christos 
   1334  1.111  christos struct mbuf *
   1335  1.111  christos sbcreatecontrol(void *p, int size, int type, int level)
   1336  1.111  christos {
   1337  1.111  christos 	struct mbuf *m;
   1338  1.111  christos 	void *v;
   1339  1.111  christos 
   1340  1.111  christos 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1341  1.111  christos 	if (m == NULL)
   1342  1.111  christos 		return NULL;
   1343  1.111  christos 	memcpy(v, p, size);
   1344  1.111  christos 	return m;
   1345    1.1       cgd }
   1346   1.91        ad 
   1347   1.91        ad void
   1348   1.91        ad solockretry(struct socket *so, kmutex_t *lock)
   1349   1.91        ad {
   1350   1.91        ad 
   1351   1.91        ad 	while (lock != so->so_lock) {
   1352   1.91        ad 		mutex_exit(lock);
   1353   1.91        ad 		lock = so->so_lock;
   1354   1.91        ad 		mutex_enter(lock);
   1355   1.91        ad 	}
   1356   1.91        ad }
   1357   1.91        ad 
   1358   1.91        ad bool
   1359   1.91        ad solocked(struct socket *so)
   1360   1.91        ad {
   1361   1.91        ad 
   1362   1.91        ad 	return mutex_owned(so->so_lock);
   1363   1.91        ad }
   1364   1.91        ad 
   1365   1.91        ad bool
   1366   1.91        ad solocked2(struct socket *so1, struct socket *so2)
   1367   1.91        ad {
   1368   1.91        ad 	kmutex_t *lock;
   1369   1.91        ad 
   1370   1.91        ad 	lock = so1->so_lock;
   1371   1.91        ad 	if (lock != so2->so_lock)
   1372   1.91        ad 		return false;
   1373   1.91        ad 	return mutex_owned(lock);
   1374   1.91        ad }
   1375   1.91        ad 
   1376   1.91        ad /*
   1377   1.91        ad  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1378   1.91        ad  * protocols that do not have special locking requirements.
   1379   1.91        ad  */
   1380   1.91        ad void
   1381   1.91        ad sosetlock(struct socket *so)
   1382   1.91        ad {
   1383   1.91        ad 	kmutex_t *lock;
   1384   1.91        ad 
   1385   1.91        ad 	if (so->so_lock == NULL) {
   1386   1.91        ad 		lock = softnet_lock;
   1387   1.91        ad 		so->so_lock = lock;
   1388   1.91        ad 		mutex_obj_hold(lock);
   1389   1.91        ad 		mutex_enter(lock);
   1390   1.91        ad 	}
   1391   1.91        ad 
   1392   1.91        ad 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1393   1.91        ad 	KASSERT(solocked(so));
   1394   1.91        ad }
   1395   1.91        ad 
   1396   1.91        ad /*
   1397   1.91        ad  * Set lock on sockbuf sb; sleep if lock is already held.
   1398   1.91        ad  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1399   1.91        ad  * Returns error without lock if sleep is interrupted.
   1400   1.91        ad  */
   1401   1.91        ad int
   1402   1.91        ad sblock(struct sockbuf *sb, int wf)
   1403   1.91        ad {
   1404   1.91        ad 	struct socket *so;
   1405   1.91        ad 	kmutex_t *lock;
   1406   1.91        ad 	int error;
   1407   1.91        ad 
   1408   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1409   1.91        ad 
   1410   1.91        ad 	for (;;) {
   1411   1.91        ad 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1412   1.91        ad 			sb->sb_flags |= SB_LOCK;
   1413   1.91        ad 			return 0;
   1414   1.91        ad 		}
   1415   1.91        ad 		if (wf != M_WAITOK)
   1416   1.91        ad 			return EWOULDBLOCK;
   1417   1.91        ad 		so = sb->sb_so;
   1418   1.91        ad 		lock = so->so_lock;
   1419   1.91        ad 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1420   1.91        ad 			cv_wait(&so->so_cv, lock);
   1421   1.91        ad 			error = 0;
   1422   1.91        ad 		} else
   1423   1.91        ad 			error = cv_wait_sig(&so->so_cv, lock);
   1424   1.91        ad 		if (__predict_false(lock != so->so_lock))
   1425   1.91        ad 			solockretry(so, lock);
   1426   1.91        ad 		if (error != 0)
   1427   1.91        ad 			return error;
   1428   1.91        ad 	}
   1429   1.91        ad }
   1430   1.91        ad 
   1431   1.91        ad void
   1432   1.91        ad sbunlock(struct sockbuf *sb)
   1433   1.91        ad {
   1434   1.91        ad 	struct socket *so;
   1435   1.91        ad 
   1436   1.91        ad 	so = sb->sb_so;
   1437   1.91        ad 
   1438   1.91        ad 	KASSERT(solocked(so));
   1439   1.91        ad 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1440   1.91        ad 
   1441   1.91        ad 	sb->sb_flags &= ~SB_LOCK;
   1442   1.91        ad 	cv_broadcast(&so->so_cv);
   1443   1.91        ad }
   1444   1.91        ad 
   1445   1.91        ad int
   1446  1.101      yamt sowait(struct socket *so, bool catch, int timo)
   1447   1.91        ad {
   1448   1.91        ad 	kmutex_t *lock;
   1449   1.91        ad 	int error;
   1450   1.91        ad 
   1451   1.91        ad 	KASSERT(solocked(so));
   1452  1.101      yamt 	KASSERT(catch || timo != 0);
   1453   1.91        ad 
   1454   1.91        ad 	lock = so->so_lock;
   1455  1.101      yamt 	if (catch)
   1456  1.101      yamt 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1457  1.101      yamt 	else
   1458  1.101      yamt 		error = cv_timedwait(&so->so_cv, lock, timo);
   1459   1.91        ad 	if (__predict_false(lock != so->so_lock))
   1460   1.91        ad 		solockretry(so, lock);
   1461   1.91        ad 	return error;
   1462   1.91        ad }
   1463