Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.117
      1  1.117     rmind /*	$NetBSD: uipc_socket2.c,v 1.117 2014/05/17 23:55:24 rmind Exp $	*/
      2   1.91        ad 
      3   1.91        ad /*-
      4   1.91        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5   1.91        ad  * All rights reserved.
      6   1.91        ad  *
      7   1.91        ad  * Redistribution and use in source and binary forms, with or without
      8   1.91        ad  * modification, are permitted provided that the following conditions
      9   1.91        ad  * are met:
     10   1.91        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.91        ad  *    notice, this list of conditions and the following disclaimer.
     12   1.91        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.91        ad  *    notice, this list of conditions and the following disclaimer in the
     14   1.91        ad  *    documentation and/or other materials provided with the distribution.
     15   1.91        ad  *
     16   1.91        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17   1.91        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.91        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.91        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.91        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.91        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.91        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.91        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.91        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.91        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.91        ad  * POSSIBILITY OF SUCH DAMAGE.
     27   1.91        ad  */
     28    1.9       cgd 
     29    1.1       cgd /*
     30    1.7   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31    1.7   mycroft  *	The Regents of the University of California.  All rights reserved.
     32    1.1       cgd  *
     33    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     34    1.1       cgd  * modification, are permitted provided that the following conditions
     35    1.1       cgd  * are met:
     36    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     37    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     38    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     39    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     40    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     41   1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     42    1.1       cgd  *    may be used to endorse or promote products derived from this software
     43    1.1       cgd  *    without specific prior written permission.
     44    1.1       cgd  *
     45    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55    1.1       cgd  * SUCH DAMAGE.
     56    1.1       cgd  *
     57   1.23      fvdl  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58    1.1       cgd  */
     59   1.42     lukem 
     60   1.42     lukem #include <sys/cdefs.h>
     61  1.117     rmind __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.117 2014/05/17 23:55:24 rmind Exp $");
     62   1.51    martin 
     63   1.51    martin #include "opt_mbuftrace.h"
     64   1.58   thorpej #include "opt_sb_max.h"
     65    1.1       cgd 
     66    1.5   mycroft #include <sys/param.h>
     67    1.5   mycroft #include <sys/systm.h>
     68    1.5   mycroft #include <sys/proc.h>
     69    1.5   mycroft #include <sys/file.h>
     70    1.5   mycroft #include <sys/buf.h>
     71    1.5   mycroft #include <sys/mbuf.h>
     72    1.5   mycroft #include <sys/protosw.h>
     73   1.91        ad #include <sys/domain.h>
     74   1.55  christos #include <sys/poll.h>
     75    1.5   mycroft #include <sys/socket.h>
     76    1.5   mycroft #include <sys/socketvar.h>
     77   1.11  christos #include <sys/signalvar.h>
     78   1.71      elad #include <sys/kauth.h>
     79   1.91        ad #include <sys/pool.h>
     80   1.98     pooka #include <sys/uidinfo.h>
     81    1.1       cgd 
     82    1.1       cgd /*
     83   1.91        ad  * Primitive routines for operating on sockets and socket buffers.
     84   1.91        ad  *
     85  1.116     rmind  * Connection life-cycle:
     86  1.116     rmind  *
     87  1.116     rmind  *	Normal sequence from the active (originating) side:
     88  1.116     rmind  *
     89  1.116     rmind  *	- soisconnecting() is called during processing of connect() call,
     90  1.116     rmind  *	- resulting in an eventual call to soisconnected() if/when the
     91  1.116     rmind  *	  connection is established.
     92  1.116     rmind  *
     93  1.116     rmind  *	When the connection is torn down during processing of disconnect():
     94  1.116     rmind  *
     95  1.116     rmind  *	- soisdisconnecting() is called and,
     96  1.116     rmind  *	- soisdisconnected() is called when the connection to the peer
     97  1.116     rmind  *	  is totally severed.
     98  1.116     rmind  *
     99  1.116     rmind  *	The semantics of these routines are such that connectionless protocols
    100  1.116     rmind  *	can call soisconnected() and soisdisconnected() only, bypassing the
    101  1.116     rmind  *	in-progress calls when setting up a ``connection'' takes no time.
    102  1.116     rmind  *
    103  1.116     rmind  *	From the passive side, a socket is created with two queues of sockets:
    104  1.116     rmind  *
    105  1.116     rmind  *	- so_q0 (0) for partial connections (i.e. connections in progress)
    106  1.116     rmind  *	- so_q (1) for connections already made and awaiting user acceptance.
    107  1.116     rmind  *
    108  1.116     rmind  *	As a protocol is preparing incoming connections, it creates a socket
    109  1.116     rmind  *	structure queued on so_q0 by calling sonewconn().  When the connection
    110  1.116     rmind  *	is established, soisconnected() is called, and transfers the
    111  1.116     rmind  *	socket structure to so_q, making it available to accept().
    112  1.116     rmind  *
    113  1.116     rmind  *	If a socket is closed with sockets on either so_q0 or so_q, these
    114  1.116     rmind  *	sockets are dropped.
    115  1.116     rmind  *
    116   1.91        ad  * Locking rules and assumptions:
    117   1.91        ad  *
    118   1.91        ad  * o socket::so_lock can change on the fly.  The low level routines used
    119   1.91        ad  *   to lock sockets are aware of this.  When so_lock is acquired, the
    120   1.91        ad  *   routine locking must check to see if so_lock still points to the
    121   1.91        ad  *   lock that was acquired.  If so_lock has changed in the meantime, the
    122  1.116     rmind  *   now irrelevant lock that was acquired must be dropped and the lock
    123   1.91        ad  *   operation retried.  Although not proven here, this is completely safe
    124   1.91        ad  *   on a multiprocessor system, even with relaxed memory ordering, given
    125   1.91        ad  *   the next two rules:
    126   1.91        ad  *
    127   1.91        ad  * o In order to mutate so_lock, the lock pointed to by the current value
    128   1.91        ad  *   of so_lock must be held: i.e., the socket must be held locked by the
    129   1.91        ad  *   changing thread.  The thread must issue membar_exit() to prevent
    130   1.91        ad  *   memory accesses being reordered, and can set so_lock to the desired
    131   1.91        ad  *   value.  If the lock pointed to by the new value of so_lock is not
    132   1.91        ad  *   held by the changing thread, the socket must then be considered
    133   1.91        ad  *   unlocked.
    134   1.91        ad  *
    135   1.91        ad  * o If so_lock is mutated, and the previous lock referred to by so_lock
    136   1.91        ad  *   could still be visible to other threads in the system (e.g. via file
    137   1.91        ad  *   descriptor or protocol-internal reference), then the old lock must
    138   1.91        ad  *   remain valid until the socket and/or protocol control block has been
    139   1.91        ad  *   torn down.
    140   1.91        ad  *
    141   1.91        ad  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    142   1.91        ad  *   connecting), then locking the socket must also lock the socket pointed
    143   1.91        ad  *   to by so_head: their lock pointers must match.
    144   1.91        ad  *
    145   1.91        ad  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    146   1.91        ad  *   locking the socket must also lock the sockets attached to both queues.
    147   1.91        ad  *   Again, their lock pointers must match.
    148   1.91        ad  *
    149  1.116     rmind  * o Beyond the initial lock assignment in socreate(), assigning locks to
    150   1.91        ad  *   sockets is the responsibility of the individual protocols / protocol
    151   1.91        ad  *   domains.
    152    1.1       cgd  */
    153    1.1       cgd 
    154  1.116     rmind static pool_cache_t	socket_cache;
    155  1.116     rmind u_long			sb_max = SB_MAX;/* maximum socket buffer size */
    156  1.116     rmind static u_long		sb_max_adj;	/* adjusted sb_max */
    157    1.1       cgd 
    158    1.7   mycroft void
    159   1.37     lukem soisconnecting(struct socket *so)
    160    1.1       cgd {
    161    1.1       cgd 
    162   1.91        ad 	KASSERT(solocked(so));
    163   1.91        ad 
    164    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    165    1.1       cgd 	so->so_state |= SS_ISCONNECTING;
    166    1.1       cgd }
    167    1.1       cgd 
    168    1.7   mycroft void
    169   1.37     lukem soisconnected(struct socket *so)
    170    1.1       cgd {
    171   1.37     lukem 	struct socket	*head;
    172    1.1       cgd 
    173   1.37     lukem 	head = so->so_head;
    174   1.91        ad 
    175   1.91        ad 	KASSERT(solocked(so));
    176   1.91        ad 	KASSERT(head == NULL || solocked2(so, head));
    177   1.91        ad 
    178  1.113     rmind 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    179    1.1       cgd 	so->so_state |= SS_ISCONNECTED;
    180   1.97       tls 	if (head && so->so_onq == &head->so_q0) {
    181   1.97       tls 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    182  1.116     rmind 			/*
    183  1.116     rmind 			 * Re-enqueue and wake up any waiters, e.g.
    184  1.116     rmind 			 * processes blocking on accept().
    185  1.116     rmind 			 */
    186   1.97       tls 			soqremque(so, 0);
    187   1.97       tls 			soqinsque(head, so, 1);
    188   1.97       tls 			sorwakeup(head);
    189   1.97       tls 			cv_broadcast(&head->so_cv);
    190   1.97       tls 		} else {
    191   1.97       tls 			so->so_upcall =
    192   1.97       tls 			    head->so_accf->so_accept_filter->accf_callback;
    193   1.97       tls 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    194   1.97       tls 			so->so_rcv.sb_flags |= SB_UPCALL;
    195   1.97       tls 			so->so_options &= ~SO_ACCEPTFILTER;
    196  1.104       tls 			(*so->so_upcall)(so, so->so_upcallarg,
    197  1.104       tls 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    198  1.101      yamt 		}
    199    1.1       cgd 	} else {
    200   1.91        ad 		cv_broadcast(&so->so_cv);
    201    1.1       cgd 		sorwakeup(so);
    202    1.1       cgd 		sowwakeup(so);
    203    1.1       cgd 	}
    204    1.1       cgd }
    205    1.1       cgd 
    206    1.7   mycroft void
    207   1.37     lukem soisdisconnecting(struct socket *so)
    208    1.1       cgd {
    209    1.1       cgd 
    210   1.91        ad 	KASSERT(solocked(so));
    211   1.91        ad 
    212    1.1       cgd 	so->so_state &= ~SS_ISCONNECTING;
    213    1.1       cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    214   1.91        ad 	cv_broadcast(&so->so_cv);
    215    1.1       cgd 	sowwakeup(so);
    216    1.1       cgd 	sorwakeup(so);
    217    1.1       cgd }
    218    1.1       cgd 
    219    1.7   mycroft void
    220   1.37     lukem soisdisconnected(struct socket *so)
    221    1.1       cgd {
    222    1.1       cgd 
    223   1.91        ad 	KASSERT(solocked(so));
    224   1.91        ad 
    225    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    226   1.27   mycroft 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    227   1.91        ad 	cv_broadcast(&so->so_cv);
    228    1.1       cgd 	sowwakeup(so);
    229    1.1       cgd 	sorwakeup(so);
    230    1.1       cgd }
    231    1.1       cgd 
    232   1.94        ad void
    233   1.94        ad soinit2(void)
    234   1.94        ad {
    235   1.94        ad 
    236   1.94        ad 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    237   1.94        ad 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    238   1.94        ad }
    239   1.94        ad 
    240    1.1       cgd /*
    241  1.116     rmind  * sonewconn: accept a new connection.
    242  1.116     rmind  *
    243  1.116     rmind  * When an attempt at a new connection is noted on a socket which accepts
    244  1.116     rmind  * connections, sonewconn(9) is called.  If the connection is possible
    245  1.116     rmind  * (subject to space constraints, etc) then we allocate a new structure,
    246  1.116     rmind  * properly linked into the data structure of the original socket.
    247  1.116     rmind  *
    248  1.116     rmind  * => If 'soready' is true, then socket will become ready for accept() i.e.
    249  1.116     rmind  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
    250  1.116     rmind  * => May be called from soft-interrupt context.
    251  1.116     rmind  * => Listening socket should be locked.
    252  1.116     rmind  * => Returns the new socket locked.
    253    1.1       cgd  */
    254    1.1       cgd struct socket *
    255  1.116     rmind sonewconn(struct socket *head, bool soready)
    256    1.1       cgd {
    257  1.116     rmind 	struct socket *so;
    258  1.116     rmind 	int soqueue, error;
    259   1.91        ad 
    260   1.91        ad 	KASSERT(solocked(head));
    261    1.1       cgd 
    262  1.116     rmind 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
    263  1.116     rmind 		/* Listen queue overflow. */
    264  1.116     rmind 		return NULL;
    265  1.116     rmind 	}
    266  1.116     rmind 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
    267  1.116     rmind 		soready = false;
    268  1.116     rmind 	}
    269  1.116     rmind 	soqueue = soready ? 1 : 0;
    270  1.113     rmind 
    271  1.116     rmind 	if ((so = soget(false)) == NULL) {
    272  1.100    dyoung 		return NULL;
    273  1.116     rmind 	}
    274    1.1       cgd 	so->so_type = head->so_type;
    275  1.116     rmind 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
    276    1.1       cgd 	so->so_linger = head->so_linger;
    277    1.1       cgd 	so->so_state = head->so_state | SS_NOFDREF;
    278    1.1       cgd 	so->so_proto = head->so_proto;
    279    1.1       cgd 	so->so_timeo = head->so_timeo;
    280    1.1       cgd 	so->so_pgid = head->so_pgid;
    281   1.24      matt 	so->so_send = head->so_send;
    282   1.24      matt 	so->so_receive = head->so_receive;
    283   1.67  christos 	so->so_uidinfo = head->so_uidinfo;
    284   1.96      yamt 	so->so_cpid = head->so_cpid;
    285   1.49      matt #ifdef MBUFTRACE
    286   1.49      matt 	so->so_mowner = head->so_mowner;
    287   1.49      matt 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    288   1.49      matt 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    289   1.49      matt #endif
    290  1.103  christos 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
    291  1.103  christos 		goto out;
    292   1.83       tls 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    293   1.83       tls 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    294   1.84       tls 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    295   1.84       tls 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    296  1.107  christos 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    297  1.107  christos 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    298  1.116     rmind 
    299  1.116     rmind 	/*
    300  1.116     rmind 	 * Share the lock with the listening-socket, it may get unshared
    301  1.116     rmind 	 * once the connection is complete.
    302  1.116     rmind 	 */
    303  1.116     rmind 	mutex_obj_hold(head->so_lock);
    304  1.116     rmind 	so->so_lock = head->so_lock;
    305  1.116     rmind 
    306   1.91        ad 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    307   1.91        ad 	    NULL, NULL);
    308   1.91        ad 	KASSERT(solocked(so));
    309  1.116     rmind 	if (error) {
    310  1.103  christos out:
    311  1.116     rmind 		KASSERT(so->so_accf == NULL);
    312   1.91        ad 		soput(so);
    313  1.116     rmind 
    314  1.116     rmind 		/* Note: the listening socket shall stay locked. */
    315  1.116     rmind 		KASSERT(solocked(head));
    316  1.100    dyoung 		return NULL;
    317    1.1       cgd 	}
    318  1.116     rmind 
    319  1.116     rmind 	/*
    320  1.117     rmind 	 * Insert into the queue.  If ready, update the connection status
    321  1.117     rmind 	 * and wake up any waiters, e.g. processes blocking on accept().
    322  1.116     rmind 	 */
    323  1.117     rmind 	soqinsque(head, so, soqueue);
    324  1.116     rmind 	if (soready) {
    325  1.116     rmind 		so->so_state |= SS_ISCONNECTED;
    326    1.1       cgd 		sorwakeup(head);
    327   1.91        ad 		cv_broadcast(&head->so_cv);
    328    1.1       cgd 	}
    329  1.116     rmind 	KASSERT(solocked2(head, so));
    330  1.100    dyoung 	return so;
    331    1.1       cgd }
    332    1.1       cgd 
    333   1.91        ad struct socket *
    334   1.91        ad soget(bool waitok)
    335   1.91        ad {
    336   1.91        ad 	struct socket *so;
    337   1.91        ad 
    338   1.94        ad 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    339   1.91        ad 	if (__predict_false(so == NULL))
    340   1.91        ad 		return (NULL);
    341   1.91        ad 	memset(so, 0, sizeof(*so));
    342   1.91        ad 	TAILQ_INIT(&so->so_q0);
    343   1.91        ad 	TAILQ_INIT(&so->so_q);
    344   1.91        ad 	cv_init(&so->so_cv, "socket");
    345   1.91        ad 	cv_init(&so->so_rcv.sb_cv, "netio");
    346   1.91        ad 	cv_init(&so->so_snd.sb_cv, "netio");
    347   1.91        ad 	selinit(&so->so_rcv.sb_sel);
    348   1.91        ad 	selinit(&so->so_snd.sb_sel);
    349   1.91        ad 	so->so_rcv.sb_so = so;
    350   1.91        ad 	so->so_snd.sb_so = so;
    351   1.91        ad 	return so;
    352   1.91        ad }
    353   1.91        ad 
    354   1.91        ad void
    355   1.91        ad soput(struct socket *so)
    356   1.91        ad {
    357   1.91        ad 
    358   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    359   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    360   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    361   1.91        ad 	seldestroy(&so->so_rcv.sb_sel);
    362   1.91        ad 	seldestroy(&so->so_snd.sb_sel);
    363   1.91        ad 	mutex_obj_free(so->so_lock);
    364   1.91        ad 	cv_destroy(&so->so_cv);
    365   1.91        ad 	cv_destroy(&so->so_rcv.sb_cv);
    366   1.91        ad 	cv_destroy(&so->so_snd.sb_cv);
    367   1.94        ad 	pool_cache_put(socket_cache, so);
    368   1.91        ad }
    369   1.91        ad 
    370  1.116     rmind /*
    371  1.116     rmind  * soqinsque: insert socket of a new connection into the specified
    372  1.116     rmind  * accept queue of the listening socket (head).
    373  1.116     rmind  *
    374  1.116     rmind  *	q = 0: queue of partial connections
    375  1.116     rmind  *	q = 1: queue of incoming connections
    376  1.116     rmind  */
    377    1.7   mycroft void
    378   1.37     lukem soqinsque(struct socket *head, struct socket *so, int q)
    379    1.1       cgd {
    380  1.116     rmind 	KASSERT(q == 0 || q == 1);
    381   1.91        ad 	KASSERT(solocked2(head, so));
    382  1.116     rmind 	KASSERT(so->so_onq == NULL);
    383  1.116     rmind 	KASSERT(so->so_head == NULL);
    384   1.22   thorpej 
    385    1.1       cgd 	so->so_head = head;
    386    1.1       cgd 	if (q == 0) {
    387    1.1       cgd 		head->so_q0len++;
    388   1.22   thorpej 		so->so_onq = &head->so_q0;
    389    1.1       cgd 	} else {
    390    1.1       cgd 		head->so_qlen++;
    391   1.22   thorpej 		so->so_onq = &head->so_q;
    392    1.1       cgd 	}
    393   1.22   thorpej 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    394    1.1       cgd }
    395    1.1       cgd 
    396  1.116     rmind /*
    397  1.116     rmind  * soqremque: remove socket from the specified queue.
    398  1.116     rmind  *
    399  1.116     rmind  * => Returns true if socket was removed from the specified queue.
    400  1.116     rmind  * => False if socket was not removed (because it was in other queue).
    401  1.116     rmind  */
    402  1.116     rmind bool
    403   1.37     lukem soqremque(struct socket *so, int q)
    404    1.1       cgd {
    405  1.116     rmind 	struct socket *head = so->so_head;
    406    1.1       cgd 
    407  1.116     rmind 	KASSERT(q == 0 || q == 1);
    408  1.116     rmind 	KASSERT(solocked(so));
    409  1.116     rmind 	KASSERT(so->so_onq != NULL);
    410  1.116     rmind 	KASSERT(head != NULL);
    411   1.91        ad 
    412   1.22   thorpej 	if (q == 0) {
    413   1.22   thorpej 		if (so->so_onq != &head->so_q0)
    414  1.116     rmind 			return false;
    415    1.1       cgd 		head->so_q0len--;
    416    1.1       cgd 	} else {
    417   1.22   thorpej 		if (so->so_onq != &head->so_q)
    418  1.116     rmind 			return false;
    419    1.1       cgd 		head->so_qlen--;
    420    1.1       cgd 	}
    421   1.91        ad 	KASSERT(solocked2(so, head));
    422   1.22   thorpej 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    423   1.22   thorpej 	so->so_onq = NULL;
    424   1.22   thorpej 	so->so_head = NULL;
    425  1.116     rmind 	return true;
    426    1.1       cgd }
    427    1.1       cgd 
    428    1.1       cgd /*
    429  1.116     rmind  * socantsendmore: indicates that no more data will be sent on the
    430    1.1       cgd  * socket; it would normally be applied to a socket when the user
    431    1.1       cgd  * informs the system that no more data is to be sent, by the protocol
    432  1.116     rmind  * code (in case PRU_SHUTDOWN).
    433    1.1       cgd  */
    434    1.4    andrew void
    435   1.37     lukem socantsendmore(struct socket *so)
    436    1.1       cgd {
    437   1.91        ad 	KASSERT(solocked(so));
    438   1.91        ad 
    439    1.1       cgd 	so->so_state |= SS_CANTSENDMORE;
    440    1.1       cgd 	sowwakeup(so);
    441    1.1       cgd }
    442    1.1       cgd 
    443  1.116     rmind /*
    444  1.116     rmind  * socantrcvmore(): indicates that no more data will be received and
    445  1.116     rmind  * will normally be applied to the socket by a protocol when it detects
    446  1.116     rmind  * that the peer will send no more data.  Data queued for reading in
    447  1.116     rmind  * the socket may yet be read.
    448  1.116     rmind  */
    449    1.4    andrew void
    450   1.37     lukem socantrcvmore(struct socket *so)
    451    1.1       cgd {
    452   1.91        ad 	KASSERT(solocked(so));
    453   1.91        ad 
    454    1.1       cgd 	so->so_state |= SS_CANTRCVMORE;
    455    1.1       cgd 	sorwakeup(so);
    456    1.1       cgd }
    457    1.1       cgd 
    458    1.1       cgd /*
    459    1.1       cgd  * Wait for data to arrive at/drain from a socket buffer.
    460    1.1       cgd  */
    461    1.7   mycroft int
    462   1.37     lukem sbwait(struct sockbuf *sb)
    463    1.1       cgd {
    464   1.91        ad 	struct socket *so;
    465   1.91        ad 	kmutex_t *lock;
    466   1.91        ad 	int error;
    467    1.1       cgd 
    468   1.91        ad 	so = sb->sb_so;
    469    1.1       cgd 
    470   1.91        ad 	KASSERT(solocked(so));
    471    1.1       cgd 
    472   1.91        ad 	sb->sb_flags |= SB_NOTIFY;
    473   1.91        ad 	lock = so->so_lock;
    474   1.91        ad 	if ((sb->sb_flags & SB_NOINTR) != 0)
    475   1.91        ad 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    476   1.91        ad 	else
    477   1.91        ad 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    478   1.91        ad 	if (__predict_false(lock != so->so_lock))
    479   1.91        ad 		solockretry(so, lock);
    480   1.91        ad 	return error;
    481    1.1       cgd }
    482    1.1       cgd 
    483    1.1       cgd /*
    484    1.1       cgd  * Wakeup processes waiting on a socket buffer.
    485    1.1       cgd  * Do asynchronous notification via SIGIO
    486   1.39      manu  * if the socket buffer has the SB_ASYNC flag set.
    487    1.1       cgd  */
    488    1.7   mycroft void
    489   1.55  christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
    490    1.1       cgd {
    491   1.90     rmind 	int band;
    492   1.90     rmind 
    493   1.91        ad 	KASSERT(solocked(so));
    494   1.91        ad 	KASSERT(sb->sb_so == so);
    495   1.91        ad 
    496   1.90     rmind 	if (code == POLL_IN)
    497   1.90     rmind 		band = POLLIN|POLLRDNORM;
    498   1.90     rmind 	else
    499   1.90     rmind 		band = POLLOUT|POLLWRNORM;
    500   1.91        ad 	sb->sb_flags &= ~SB_NOTIFY;
    501   1.91        ad 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    502   1.91        ad 	cv_broadcast(&sb->sb_cv);
    503   1.90     rmind 	if (sb->sb_flags & SB_ASYNC)
    504   1.57  christos 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    505   1.24      matt 	if (sb->sb_flags & SB_UPCALL)
    506  1.104       tls 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    507    1.1       cgd }
    508    1.1       cgd 
    509    1.1       cgd /*
    510   1.95        ad  * Reset a socket's lock pointer.  Wake all threads waiting on the
    511   1.95        ad  * socket's condition variables so that they can restart their waits
    512   1.95        ad  * using the new lock.  The existing lock must be held.
    513   1.95        ad  */
    514   1.95        ad void
    515   1.95        ad solockreset(struct socket *so, kmutex_t *lock)
    516   1.95        ad {
    517   1.95        ad 
    518   1.95        ad 	KASSERT(solocked(so));
    519   1.95        ad 
    520   1.95        ad 	so->so_lock = lock;
    521   1.95        ad 	cv_broadcast(&so->so_snd.sb_cv);
    522   1.95        ad 	cv_broadcast(&so->so_rcv.sb_cv);
    523   1.95        ad 	cv_broadcast(&so->so_cv);
    524   1.95        ad }
    525   1.95        ad 
    526   1.95        ad /*
    527    1.1       cgd  * Socket buffer (struct sockbuf) utility routines.
    528    1.1       cgd  *
    529    1.1       cgd  * Each socket contains two socket buffers: one for sending data and
    530    1.1       cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    531    1.1       cgd  * information about the number of mbufs and amount of data in the
    532   1.13   mycroft  * queue, and other fields allowing poll() statements and notification
    533    1.1       cgd  * on data availability to be implemented.
    534    1.1       cgd  *
    535    1.1       cgd  * Data stored in a socket buffer is maintained as a list of records.
    536    1.1       cgd  * Each record is a list of mbufs chained together with the m_next
    537    1.1       cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    538    1.1       cgd  * level routine soreceive() expects the following conventions to be
    539    1.1       cgd  * observed when placing information in the receive buffer:
    540    1.1       cgd  *
    541    1.1       cgd  * 1. If the protocol requires each message be preceded by the sender's
    542    1.1       cgd  *    name, then a record containing that name must be present before
    543    1.1       cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    544    1.1       cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    545    1.1       cgd  *    just additional data associated with the message), and there are
    546    1.1       cgd  *    ``rights'' to be received, then a record containing this data
    547   1.10   mycroft  *    should be present (mbuf's must be of type MT_CONTROL).
    548    1.1       cgd  * 3. If a name or rights record exists, then it must be followed by
    549    1.1       cgd  *    a data record, perhaps of zero length.
    550    1.1       cgd  *
    551    1.1       cgd  * Before using a new socket structure it is first necessary to reserve
    552    1.1       cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    553    1.1       cgd  * some of the available buffer space in the system buffer pool for the
    554    1.1       cgd  * socket (currently, it does nothing but enforce limits).  The space
    555    1.1       cgd  * should be released by calling sbrelease() when the socket is destroyed.
    556    1.1       cgd  */
    557    1.1       cgd 
    558    1.7   mycroft int
    559   1.58   thorpej sb_max_set(u_long new_sbmax)
    560   1.58   thorpej {
    561   1.58   thorpej 	int s;
    562   1.58   thorpej 
    563   1.58   thorpej 	if (new_sbmax < (16 * 1024))
    564   1.58   thorpej 		return (EINVAL);
    565   1.58   thorpej 
    566   1.58   thorpej 	s = splsoftnet();
    567   1.58   thorpej 	sb_max = new_sbmax;
    568   1.58   thorpej 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    569   1.58   thorpej 	splx(s);
    570   1.58   thorpej 
    571   1.58   thorpej 	return (0);
    572   1.58   thorpej }
    573   1.58   thorpej 
    574   1.58   thorpej int
    575   1.37     lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    576    1.1       cgd {
    577  1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    578   1.91        ad 
    579   1.74  christos 	/*
    580   1.74  christos 	 * there's at least one application (a configure script of screen)
    581   1.74  christos 	 * which expects a fifo is writable even if it has "some" bytes
    582   1.74  christos 	 * in its buffer.
    583   1.74  christos 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    584   1.74  christos 	 *
    585   1.74  christos 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    586   1.74  christos 	 * we expect it's large enough for such applications.
    587   1.74  christos 	 */
    588   1.74  christos 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    589   1.74  christos 	u_long  hiwat = lowat + PIPE_BUF;
    590    1.1       cgd 
    591   1.74  christos 	if (sndcc < hiwat)
    592   1.74  christos 		sndcc = hiwat;
    593   1.59  christos 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    594    1.1       cgd 		goto bad;
    595   1.59  christos 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    596    1.1       cgd 		goto bad2;
    597    1.1       cgd 	if (so->so_rcv.sb_lowat == 0)
    598    1.1       cgd 		so->so_rcv.sb_lowat = 1;
    599    1.1       cgd 	if (so->so_snd.sb_lowat == 0)
    600   1.74  christos 		so->so_snd.sb_lowat = lowat;
    601    1.1       cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    602    1.1       cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    603    1.1       cgd 	return (0);
    604   1.37     lukem  bad2:
    605   1.59  christos 	sbrelease(&so->so_snd, so);
    606   1.37     lukem  bad:
    607    1.1       cgd 	return (ENOBUFS);
    608    1.1       cgd }
    609    1.1       cgd 
    610    1.1       cgd /*
    611    1.1       cgd  * Allot mbufs to a sockbuf.
    612    1.1       cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    613    1.1       cgd  * if buffering efficiency is near the normal case.
    614    1.1       cgd  */
    615    1.7   mycroft int
    616   1.59  christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    617    1.1       cgd {
    618   1.75        ad 	struct lwp *l = curlwp; /* XXX */
    619   1.62  christos 	rlim_t maxcc;
    620   1.67  christos 	struct uidinfo *uidinfo;
    621    1.1       cgd 
    622  1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    623   1.91        ad 	KASSERT(sb->sb_so == so);
    624   1.91        ad 	KASSERT(sb_max_adj != 0);
    625   1.91        ad 
    626   1.58   thorpej 	if (cc == 0 || cc > sb_max_adj)
    627    1.1       cgd 		return (0);
    628   1.93  christos 
    629  1.105      elad 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    630   1.93  christos 
    631   1.93  christos 	uidinfo = so->so_uidinfo;
    632   1.67  christos 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    633   1.62  christos 		return 0;
    634    1.1       cgd 	sb->sb_mbmax = min(cc * 2, sb_max);
    635    1.1       cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    636    1.1       cgd 		sb->sb_lowat = sb->sb_hiwat;
    637    1.1       cgd 	return (1);
    638    1.1       cgd }
    639    1.1       cgd 
    640    1.1       cgd /*
    641   1.91        ad  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    642   1.91        ad  * that the socket is held locked here: see sorflush().
    643    1.1       cgd  */
    644    1.7   mycroft void
    645   1.59  christos sbrelease(struct sockbuf *sb, struct socket *so)
    646    1.1       cgd {
    647    1.1       cgd 
    648   1.91        ad 	KASSERT(sb->sb_so == so);
    649   1.91        ad 
    650    1.1       cgd 	sbflush(sb);
    651   1.87      yamt 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    652   1.59  christos 	sb->sb_mbmax = 0;
    653    1.1       cgd }
    654    1.1       cgd 
    655    1.1       cgd /*
    656    1.1       cgd  * Routines to add and remove
    657    1.1       cgd  * data from an mbuf queue.
    658    1.1       cgd  *
    659    1.1       cgd  * The routines sbappend() or sbappendrecord() are normally called to
    660    1.1       cgd  * append new mbufs to a socket buffer, after checking that adequate
    661    1.1       cgd  * space is available, comparing the function sbspace() with the amount
    662    1.1       cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    663    1.1       cgd  * that data supplied is treated as the beginning of a new record.
    664    1.1       cgd  * To place a sender's address, optional access rights, and data in a
    665    1.1       cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    666    1.1       cgd  * access rights and data in a socket receive buffer, sbappendrights()
    667    1.1       cgd  * should be used.  In either case, the new data begins a new record.
    668    1.1       cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    669    1.1       cgd  * for the caller that there will be enough space to store the data.
    670    1.1       cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    671    1.1       cgd  * to store additional information in.
    672    1.1       cgd  *
    673    1.1       cgd  * Reliable protocols may use the socket send buffer to hold data
    674    1.1       cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    675    1.1       cgd  * send buffer in a protocol with m_copy for output to a peer,
    676    1.1       cgd  * and then removing the data from the socket buffer with sbdrop()
    677    1.1       cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    678    1.1       cgd  */
    679    1.1       cgd 
    680   1.43   thorpej #ifdef SOCKBUF_DEBUG
    681   1.43   thorpej void
    682   1.43   thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
    683   1.43   thorpej {
    684   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    685   1.43   thorpej 
    686   1.91        ad 	KASSERT(solocked(sb->sb_so));
    687   1.91        ad 
    688   1.43   thorpej 	while (m && m->m_nextpkt)
    689   1.43   thorpej 		m = m->m_nextpkt;
    690   1.43   thorpej 
    691   1.43   thorpej 	if (m != sb->sb_lastrecord) {
    692   1.43   thorpej 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    693   1.43   thorpej 		    sb->sb_mb, sb->sb_lastrecord, m);
    694   1.43   thorpej 		printf("packet chain:\n");
    695   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    696   1.43   thorpej 			printf("\t%p\n", m);
    697   1.47    provos 		panic("sblastrecordchk from %s", where);
    698   1.43   thorpej 	}
    699   1.43   thorpej }
    700   1.43   thorpej 
    701   1.43   thorpej void
    702   1.43   thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
    703   1.43   thorpej {
    704   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    705   1.43   thorpej 	struct mbuf *n;
    706   1.43   thorpej 
    707   1.91        ad 	KASSERT(solocked(sb->sb_so));
    708   1.91        ad 
    709   1.43   thorpej 	while (m && m->m_nextpkt)
    710   1.43   thorpej 		m = m->m_nextpkt;
    711   1.43   thorpej 
    712   1.43   thorpej 	while (m && m->m_next)
    713   1.43   thorpej 		m = m->m_next;
    714   1.43   thorpej 
    715   1.43   thorpej 	if (m != sb->sb_mbtail) {
    716   1.43   thorpej 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    717   1.43   thorpej 		    sb->sb_mb, sb->sb_mbtail, m);
    718   1.43   thorpej 		printf("packet tree:\n");
    719   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    720   1.43   thorpej 			printf("\t");
    721   1.43   thorpej 			for (n = m; n != NULL; n = n->m_next)
    722   1.43   thorpej 				printf("%p ", n);
    723   1.43   thorpej 			printf("\n");
    724   1.43   thorpej 		}
    725   1.43   thorpej 		panic("sblastmbufchk from %s", where);
    726   1.43   thorpej 	}
    727   1.43   thorpej }
    728   1.43   thorpej #endif /* SOCKBUF_DEBUG */
    729   1.43   thorpej 
    730   1.63  jonathan /*
    731   1.63  jonathan  * Link a chain of records onto a socket buffer
    732   1.63  jonathan  */
    733   1.63  jonathan #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    734   1.43   thorpej do {									\
    735   1.43   thorpej 	if ((sb)->sb_lastrecord != NULL)				\
    736   1.43   thorpej 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    737   1.43   thorpej 	else								\
    738   1.43   thorpej 		(sb)->sb_mb = (m0);					\
    739   1.63  jonathan 	(sb)->sb_lastrecord = (mlast);					\
    740   1.43   thorpej } while (/*CONSTCOND*/0)
    741   1.43   thorpej 
    742   1.63  jonathan 
    743   1.63  jonathan #define	SBLINKRECORD(sb, m0)						\
    744   1.63  jonathan     SBLINKRECORDCHAIN(sb, m0, m0)
    745   1.63  jonathan 
    746    1.1       cgd /*
    747    1.1       cgd  * Append mbuf chain m to the last record in the
    748    1.1       cgd  * socket buffer sb.  The additional space associated
    749    1.1       cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    750    1.1       cgd  * discarded and mbufs are compacted where possible.
    751    1.1       cgd  */
    752    1.7   mycroft void
    753   1.37     lukem sbappend(struct sockbuf *sb, struct mbuf *m)
    754    1.1       cgd {
    755   1.37     lukem 	struct mbuf	*n;
    756    1.1       cgd 
    757   1.91        ad 	KASSERT(solocked(sb->sb_so));
    758   1.91        ad 
    759  1.115  christos 	if (m == NULL)
    760    1.1       cgd 		return;
    761   1.43   thorpej 
    762   1.49      matt #ifdef MBUFTRACE
    763   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    764   1.49      matt #endif
    765   1.49      matt 
    766   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 1");
    767   1.43   thorpej 
    768   1.43   thorpej 	if ((n = sb->sb_lastrecord) != NULL) {
    769   1.43   thorpej 		/*
    770   1.43   thorpej 		 * XXX Would like to simply use sb_mbtail here, but
    771   1.43   thorpej 		 * XXX I need to verify that I won't miss an EOR that
    772   1.43   thorpej 		 * XXX way.
    773   1.43   thorpej 		 */
    774    1.1       cgd 		do {
    775    1.1       cgd 			if (n->m_flags & M_EOR) {
    776    1.1       cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    777    1.1       cgd 				return;
    778    1.1       cgd 			}
    779    1.1       cgd 		} while (n->m_next && (n = n->m_next));
    780   1.43   thorpej 	} else {
    781   1.43   thorpej 		/*
    782   1.43   thorpej 		 * If this is the first record in the socket buffer, it's
    783   1.43   thorpej 		 * also the last record.
    784   1.43   thorpej 		 */
    785   1.43   thorpej 		sb->sb_lastrecord = m;
    786    1.1       cgd 	}
    787    1.1       cgd 	sbcompress(sb, m, n);
    788   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 2");
    789   1.43   thorpej }
    790   1.43   thorpej 
    791   1.43   thorpej /*
    792   1.43   thorpej  * This version of sbappend() should only be used when the caller
    793   1.43   thorpej  * absolutely knows that there will never be more than one record
    794   1.43   thorpej  * in the socket buffer, that is, a stream protocol (such as TCP).
    795   1.43   thorpej  */
    796   1.43   thorpej void
    797   1.44   thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
    798   1.43   thorpej {
    799   1.43   thorpej 
    800   1.91        ad 	KASSERT(solocked(sb->sb_so));
    801   1.43   thorpej 	KDASSERT(m->m_nextpkt == NULL);
    802   1.43   thorpej 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    803   1.43   thorpej 
    804   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
    805   1.43   thorpej 
    806   1.49      matt #ifdef MBUFTRACE
    807   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    808   1.49      matt #endif
    809   1.49      matt 
    810   1.43   thorpej 	sbcompress(sb, m, sb->sb_mbtail);
    811   1.43   thorpej 
    812   1.43   thorpej 	sb->sb_lastrecord = sb->sb_mb;
    813   1.43   thorpej 	SBLASTRECORDCHK(sb, __func__);
    814    1.1       cgd }
    815    1.1       cgd 
    816    1.1       cgd #ifdef SOCKBUF_DEBUG
    817    1.7   mycroft void
    818   1.37     lukem sbcheck(struct sockbuf *sb)
    819    1.1       cgd {
    820   1.91        ad 	struct mbuf	*m, *m2;
    821   1.43   thorpej 	u_long		len, mbcnt;
    822    1.1       cgd 
    823   1.91        ad 	KASSERT(solocked(sb->sb_so));
    824   1.91        ad 
    825   1.37     lukem 	len = 0;
    826   1.37     lukem 	mbcnt = 0;
    827   1.91        ad 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    828   1.91        ad 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    829   1.91        ad 			len += m2->m_len;
    830   1.91        ad 			mbcnt += MSIZE;
    831   1.91        ad 			if (m2->m_flags & M_EXT)
    832   1.91        ad 				mbcnt += m2->m_ext.ext_size;
    833   1.91        ad 			if (m2->m_nextpkt != NULL)
    834   1.91        ad 				panic("sbcheck nextpkt");
    835   1.91        ad 		}
    836    1.1       cgd 	}
    837    1.1       cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    838   1.43   thorpej 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    839    1.1       cgd 		    mbcnt, sb->sb_mbcnt);
    840    1.1       cgd 		panic("sbcheck");
    841    1.1       cgd 	}
    842    1.1       cgd }
    843    1.1       cgd #endif
    844    1.1       cgd 
    845    1.1       cgd /*
    846    1.1       cgd  * As above, except the mbuf chain
    847    1.1       cgd  * begins a new record.
    848    1.1       cgd  */
    849    1.7   mycroft void
    850   1.37     lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    851    1.1       cgd {
    852   1.37     lukem 	struct mbuf	*m;
    853    1.1       cgd 
    854   1.91        ad 	KASSERT(solocked(sb->sb_so));
    855   1.91        ad 
    856  1.115  christos 	if (m0 == NULL)
    857    1.1       cgd 		return;
    858   1.43   thorpej 
    859   1.49      matt #ifdef MBUFTRACE
    860   1.65  jonathan 	m_claimm(m0, sb->sb_mowner);
    861   1.49      matt #endif
    862    1.1       cgd 	/*
    863    1.1       cgd 	 * Put the first mbuf on the queue.
    864    1.1       cgd 	 * Note this permits zero length records.
    865    1.1       cgd 	 */
    866    1.1       cgd 	sballoc(sb, m0);
    867   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    868   1.43   thorpej 	SBLINKRECORD(sb, m0);
    869    1.1       cgd 	m = m0->m_next;
    870    1.1       cgd 	m0->m_next = 0;
    871    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    872    1.1       cgd 		m0->m_flags &= ~M_EOR;
    873    1.1       cgd 		m->m_flags |= M_EOR;
    874    1.1       cgd 	}
    875    1.1       cgd 	sbcompress(sb, m, m0);
    876   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    877    1.1       cgd }
    878    1.1       cgd 
    879    1.1       cgd /*
    880    1.1       cgd  * As above except that OOB data
    881    1.1       cgd  * is inserted at the beginning of the sockbuf,
    882    1.1       cgd  * but after any other OOB data.
    883    1.1       cgd  */
    884    1.7   mycroft void
    885   1.37     lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    886    1.1       cgd {
    887   1.37     lukem 	struct mbuf	*m, **mp;
    888    1.1       cgd 
    889   1.91        ad 	KASSERT(solocked(sb->sb_so));
    890   1.91        ad 
    891  1.115  christos 	if (m0 == NULL)
    892    1.1       cgd 		return;
    893   1.43   thorpej 
    894   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    895   1.43   thorpej 
    896   1.11  christos 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    897    1.1       cgd 	    again:
    898    1.1       cgd 		switch (m->m_type) {
    899    1.1       cgd 
    900    1.1       cgd 		case MT_OOBDATA:
    901    1.1       cgd 			continue;		/* WANT next train */
    902    1.1       cgd 
    903    1.1       cgd 		case MT_CONTROL:
    904   1.11  christos 			if ((m = m->m_next) != NULL)
    905    1.1       cgd 				goto again;	/* inspect THIS train further */
    906    1.1       cgd 		}
    907    1.1       cgd 		break;
    908    1.1       cgd 	}
    909    1.1       cgd 	/*
    910    1.1       cgd 	 * Put the first mbuf on the queue.
    911    1.1       cgd 	 * Note this permits zero length records.
    912    1.1       cgd 	 */
    913    1.1       cgd 	sballoc(sb, m0);
    914    1.1       cgd 	m0->m_nextpkt = *mp;
    915   1.43   thorpej 	if (*mp == NULL) {
    916   1.43   thorpej 		/* m0 is actually the new tail */
    917   1.43   thorpej 		sb->sb_lastrecord = m0;
    918   1.43   thorpej 	}
    919    1.1       cgd 	*mp = m0;
    920    1.1       cgd 	m = m0->m_next;
    921    1.1       cgd 	m0->m_next = 0;
    922    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    923    1.1       cgd 		m0->m_flags &= ~M_EOR;
    924    1.1       cgd 		m->m_flags |= M_EOR;
    925    1.1       cgd 	}
    926    1.1       cgd 	sbcompress(sb, m, m0);
    927   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    928    1.1       cgd }
    929    1.1       cgd 
    930    1.1       cgd /*
    931    1.1       cgd  * Append address and data, and optionally, control (ancillary) data
    932    1.1       cgd  * to the receive queue of a socket.  If present,
    933    1.1       cgd  * m0 must include a packet header with total length.
    934    1.1       cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
    935    1.1       cgd  */
    936    1.7   mycroft int
    937   1.61      matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    938   1.37     lukem 	struct mbuf *control)
    939    1.1       cgd {
    940   1.43   thorpej 	struct mbuf	*m, *n, *nlast;
    941   1.50      fvdl 	int		space, len;
    942    1.1       cgd 
    943   1.91        ad 	KASSERT(solocked(sb->sb_so));
    944   1.91        ad 
    945   1.37     lukem 	space = asa->sa_len;
    946   1.37     lukem 
    947   1.49      matt 	if (m0 != NULL) {
    948   1.49      matt 		if ((m0->m_flags & M_PKTHDR) == 0)
    949   1.49      matt 			panic("sbappendaddr");
    950    1.1       cgd 		space += m0->m_pkthdr.len;
    951   1.49      matt #ifdef MBUFTRACE
    952   1.65  jonathan 		m_claimm(m0, sb->sb_mowner);
    953   1.49      matt #endif
    954   1.49      matt 	}
    955    1.1       cgd 	for (n = control; n; n = n->m_next) {
    956    1.1       cgd 		space += n->m_len;
    957   1.49      matt 		MCLAIM(n, sb->sb_mowner);
    958  1.115  christos 		if (n->m_next == NULL)	/* keep pointer to last control buf */
    959    1.1       cgd 			break;
    960    1.1       cgd 	}
    961    1.1       cgd 	if (space > sbspace(sb))
    962    1.1       cgd 		return (0);
    963  1.115  christos 	m = m_get(M_DONTWAIT, MT_SONAME);
    964  1.115  christos 	if (m == NULL)
    965    1.1       cgd 		return (0);
    966   1.49      matt 	MCLAIM(m, sb->sb_mowner);
    967   1.50      fvdl 	/*
    968   1.50      fvdl 	 * XXX avoid 'comparison always true' warning which isn't easily
    969   1.50      fvdl 	 * avoided.
    970   1.50      fvdl 	 */
    971   1.50      fvdl 	len = asa->sa_len;
    972   1.50      fvdl 	if (len > MLEN) {
    973   1.20   thorpej 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    974   1.20   thorpej 		if ((m->m_flags & M_EXT) == 0) {
    975   1.20   thorpej 			m_free(m);
    976   1.20   thorpej 			return (0);
    977   1.20   thorpej 		}
    978   1.20   thorpej 	}
    979    1.1       cgd 	m->m_len = asa->sa_len;
    980   1.82  christos 	memcpy(mtod(m, void *), asa, asa->sa_len);
    981    1.1       cgd 	if (n)
    982    1.1       cgd 		n->m_next = m0;		/* concatenate data to control */
    983    1.1       cgd 	else
    984    1.1       cgd 		control = m0;
    985    1.1       cgd 	m->m_next = control;
    986   1.43   thorpej 
    987   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    988   1.43   thorpej 
    989   1.43   thorpej 	for (n = m; n->m_next != NULL; n = n->m_next)
    990    1.1       cgd 		sballoc(sb, n);
    991   1.43   thorpej 	sballoc(sb, n);
    992   1.43   thorpej 	nlast = n;
    993   1.43   thorpej 	SBLINKRECORD(sb, m);
    994   1.43   thorpej 
    995   1.43   thorpej 	sb->sb_mbtail = nlast;
    996   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendaddr");
    997   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    998   1.43   thorpej 
    999    1.1       cgd 	return (1);
   1000    1.1       cgd }
   1001    1.1       cgd 
   1002   1.63  jonathan /*
   1003   1.63  jonathan  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
   1004   1.63  jonathan  * an mbuf chain.
   1005   1.63  jonathan  */
   1006   1.70     perry static inline struct mbuf *
   1007   1.81      yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
   1008   1.64  jonathan 		   const struct sockaddr *asa)
   1009   1.63  jonathan {
   1010   1.63  jonathan 	struct mbuf *m;
   1011   1.64  jonathan 	const int salen = asa->sa_len;
   1012   1.63  jonathan 
   1013   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1014   1.91        ad 
   1015   1.63  jonathan 	/* only the first in each chain need be a pkthdr */
   1016  1.115  christos 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
   1017  1.115  christos 	if (m == NULL)
   1018  1.115  christos 		return NULL;
   1019   1.63  jonathan 	MCLAIM(m, sb->sb_mowner);
   1020   1.64  jonathan #ifdef notyet
   1021   1.64  jonathan 	if (salen > MHLEN) {
   1022   1.64  jonathan 		MEXTMALLOC(m, salen, M_NOWAIT);
   1023   1.64  jonathan 		if ((m->m_flags & M_EXT) == 0) {
   1024   1.64  jonathan 			m_free(m);
   1025  1.115  christos 			return NULL;
   1026   1.64  jonathan 		}
   1027   1.64  jonathan 	}
   1028   1.64  jonathan #else
   1029   1.64  jonathan 	KASSERT(salen <= MHLEN);
   1030   1.64  jonathan #endif
   1031   1.64  jonathan 	m->m_len = salen;
   1032   1.82  christos 	memcpy(mtod(m, void *), asa, salen);
   1033   1.63  jonathan 	m->m_next = m0;
   1034   1.64  jonathan 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1035   1.63  jonathan 
   1036   1.63  jonathan 	return m;
   1037   1.63  jonathan }
   1038   1.63  jonathan 
   1039   1.63  jonathan int
   1040   1.63  jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1041   1.63  jonathan 		  struct mbuf *m0, int sbprio)
   1042   1.63  jonathan {
   1043   1.63  jonathan 	struct mbuf *m, *n, *n0, *nlast;
   1044   1.63  jonathan 	int error;
   1045   1.63  jonathan 
   1046   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1047   1.91        ad 
   1048   1.63  jonathan 	/*
   1049   1.63  jonathan 	 * XXX sbprio reserved for encoding priority of this* request:
   1050   1.63  jonathan 	 *  SB_PRIO_NONE --> honour normal sb limits
   1051   1.63  jonathan 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1052   1.63  jonathan 	 *	take whole chain. Intended for large requests
   1053   1.63  jonathan 	 *      that should be delivered atomically (all, or none).
   1054   1.63  jonathan 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1055   1.63  jonathan 	 *       over normal socket limits, for messages indicating
   1056   1.63  jonathan 	 *       buffer overflow in earlier normal/lower-priority messages
   1057   1.63  jonathan 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1058   1.63  jonathan 	 *       Intended for  kernel-generated messages only.
   1059   1.63  jonathan 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1060   1.63  jonathan 	 */
   1061   1.63  jonathan 	(void)sbprio;
   1062   1.63  jonathan 
   1063   1.63  jonathan 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1064   1.63  jonathan 		panic("sbappendaddrchain");
   1065   1.63  jonathan 
   1066  1.114    martin #ifdef notyet
   1067   1.63  jonathan 	space = sbspace(sb);
   1068   1.66     perry 
   1069   1.66     perry 	/*
   1070   1.63  jonathan 	 * Enforce SB_PRIO_* limits as described above.
   1071   1.63  jonathan 	 */
   1072   1.63  jonathan #endif
   1073   1.63  jonathan 
   1074   1.63  jonathan 	n0 = NULL;
   1075   1.63  jonathan 	nlast = NULL;
   1076   1.63  jonathan 	for (m = m0; m; m = m->m_nextpkt) {
   1077   1.63  jonathan 		struct mbuf *np;
   1078   1.63  jonathan 
   1079   1.64  jonathan #ifdef MBUFTRACE
   1080   1.65  jonathan 		m_claimm(m, sb->sb_mowner);
   1081   1.64  jonathan #endif
   1082   1.64  jonathan 
   1083   1.63  jonathan 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1084   1.64  jonathan 	  	n = m_prepend_sockaddr(sb, m, asa);
   1085   1.63  jonathan 		if (n == NULL) {
   1086   1.63  jonathan 			error = ENOBUFS;
   1087   1.63  jonathan 			goto bad;
   1088   1.63  jonathan 		}
   1089   1.63  jonathan 
   1090   1.63  jonathan 		/* Append record (asa+m) to end of new chain n0 */
   1091   1.63  jonathan 		if (n0 == NULL) {
   1092   1.63  jonathan 			n0 = n;
   1093   1.63  jonathan 		} else {
   1094   1.63  jonathan 			nlast->m_nextpkt = n;
   1095   1.63  jonathan 		}
   1096   1.63  jonathan 		/* Keep track of last record on new chain */
   1097   1.63  jonathan 		nlast = n;
   1098   1.63  jonathan 
   1099   1.63  jonathan 		for (np = n; np; np = np->m_next)
   1100   1.63  jonathan 			sballoc(sb, np);
   1101   1.63  jonathan 	}
   1102   1.63  jonathan 
   1103   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1104   1.64  jonathan 
   1105   1.63  jonathan 	/* Drop the entire chain of (asa+m) records onto the socket */
   1106   1.63  jonathan 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1107   1.64  jonathan 
   1108   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1109   1.64  jonathan 
   1110   1.63  jonathan 	for (m = nlast; m->m_next; m = m->m_next)
   1111   1.63  jonathan 		;
   1112   1.63  jonathan 	sb->sb_mbtail = m;
   1113   1.64  jonathan 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1114   1.64  jonathan 
   1115   1.63  jonathan 	return (1);
   1116   1.63  jonathan 
   1117   1.63  jonathan bad:
   1118   1.64  jonathan 	/*
   1119   1.64  jonathan 	 * On error, free the prepended addreseses. For consistency
   1120   1.64  jonathan 	 * with sbappendaddr(), leave it to our caller to free
   1121   1.64  jonathan 	 * the input record chain passed to us as m0.
   1122   1.64  jonathan 	 */
   1123   1.64  jonathan 	while ((n = n0) != NULL) {
   1124   1.64  jonathan 	  	struct mbuf *np;
   1125   1.64  jonathan 
   1126   1.64  jonathan 		/* Undo the sballoc() of this record */
   1127   1.64  jonathan 		for (np = n; np; np = np->m_next)
   1128   1.64  jonathan 			sbfree(sb, np);
   1129   1.64  jonathan 
   1130   1.64  jonathan 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1131   1.64  jonathan 		MFREE(n, np);		/* free prepended address (not data) */
   1132   1.64  jonathan 	}
   1133  1.114    martin 	return error;
   1134   1.63  jonathan }
   1135   1.63  jonathan 
   1136   1.63  jonathan 
   1137    1.7   mycroft int
   1138   1.37     lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1139    1.1       cgd {
   1140   1.43   thorpej 	struct mbuf	*m, *mlast, *n;
   1141   1.37     lukem 	int		space;
   1142    1.1       cgd 
   1143   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1144   1.91        ad 
   1145   1.37     lukem 	space = 0;
   1146  1.115  christos 	if (control == NULL)
   1147    1.1       cgd 		panic("sbappendcontrol");
   1148    1.1       cgd 	for (m = control; ; m = m->m_next) {
   1149    1.1       cgd 		space += m->m_len;
   1150   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1151  1.115  christos 		if (m->m_next == NULL)
   1152    1.1       cgd 			break;
   1153    1.1       cgd 	}
   1154    1.1       cgd 	n = m;			/* save pointer to last control buffer */
   1155   1.49      matt 	for (m = m0; m; m = m->m_next) {
   1156   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1157    1.1       cgd 		space += m->m_len;
   1158   1.49      matt 	}
   1159    1.1       cgd 	if (space > sbspace(sb))
   1160    1.1       cgd 		return (0);
   1161    1.1       cgd 	n->m_next = m0;			/* concatenate data to control */
   1162   1.43   thorpej 
   1163   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1164   1.43   thorpej 
   1165   1.43   thorpej 	for (m = control; m->m_next != NULL; m = m->m_next)
   1166    1.1       cgd 		sballoc(sb, m);
   1167   1.43   thorpej 	sballoc(sb, m);
   1168   1.43   thorpej 	mlast = m;
   1169   1.43   thorpej 	SBLINKRECORD(sb, control);
   1170   1.43   thorpej 
   1171   1.43   thorpej 	sb->sb_mbtail = mlast;
   1172   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1173   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1174   1.43   thorpej 
   1175    1.1       cgd 	return (1);
   1176    1.1       cgd }
   1177    1.1       cgd 
   1178    1.1       cgd /*
   1179    1.1       cgd  * Compress mbuf chain m into the socket
   1180    1.1       cgd  * buffer sb following mbuf n.  If n
   1181    1.1       cgd  * is null, the buffer is presumed empty.
   1182    1.1       cgd  */
   1183    1.7   mycroft void
   1184   1.37     lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1185    1.1       cgd {
   1186   1.37     lukem 	int		eor;
   1187   1.37     lukem 	struct mbuf	*o;
   1188    1.1       cgd 
   1189   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1190   1.91        ad 
   1191   1.37     lukem 	eor = 0;
   1192    1.1       cgd 	while (m) {
   1193    1.1       cgd 		eor |= m->m_flags & M_EOR;
   1194    1.1       cgd 		if (m->m_len == 0 &&
   1195    1.1       cgd 		    (eor == 0 ||
   1196    1.1       cgd 		     (((o = m->m_next) || (o = n)) &&
   1197    1.1       cgd 		      o->m_type == m->m_type))) {
   1198   1.46   thorpej 			if (sb->sb_lastrecord == m)
   1199   1.46   thorpej 				sb->sb_lastrecord = m->m_next;
   1200    1.1       cgd 			m = m_free(m);
   1201    1.1       cgd 			continue;
   1202    1.1       cgd 		}
   1203   1.40   thorpej 		if (n && (n->m_flags & M_EOR) == 0 &&
   1204   1.40   thorpej 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1205   1.40   thorpej 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1206   1.40   thorpej 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1207   1.40   thorpej 		    n->m_type == m->m_type) {
   1208   1.82  christos 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1209    1.1       cgd 			    (unsigned)m->m_len);
   1210    1.1       cgd 			n->m_len += m->m_len;
   1211    1.1       cgd 			sb->sb_cc += m->m_len;
   1212    1.1       cgd 			m = m_free(m);
   1213    1.1       cgd 			continue;
   1214    1.1       cgd 		}
   1215    1.1       cgd 		if (n)
   1216    1.1       cgd 			n->m_next = m;
   1217    1.1       cgd 		else
   1218    1.1       cgd 			sb->sb_mb = m;
   1219   1.43   thorpej 		sb->sb_mbtail = m;
   1220    1.1       cgd 		sballoc(sb, m);
   1221    1.1       cgd 		n = m;
   1222    1.1       cgd 		m->m_flags &= ~M_EOR;
   1223    1.1       cgd 		m = m->m_next;
   1224    1.1       cgd 		n->m_next = 0;
   1225    1.1       cgd 	}
   1226    1.1       cgd 	if (eor) {
   1227    1.1       cgd 		if (n)
   1228    1.1       cgd 			n->m_flags |= eor;
   1229    1.1       cgd 		else
   1230   1.15  christos 			printf("semi-panic: sbcompress\n");
   1231    1.1       cgd 	}
   1232   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
   1233    1.1       cgd }
   1234    1.1       cgd 
   1235    1.1       cgd /*
   1236    1.1       cgd  * Free all mbufs in a sockbuf.
   1237    1.1       cgd  * Check that all resources are reclaimed.
   1238    1.1       cgd  */
   1239    1.7   mycroft void
   1240   1.37     lukem sbflush(struct sockbuf *sb)
   1241    1.1       cgd {
   1242    1.1       cgd 
   1243   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1244   1.43   thorpej 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1245   1.43   thorpej 
   1246    1.1       cgd 	while (sb->sb_mbcnt)
   1247    1.1       cgd 		sbdrop(sb, (int)sb->sb_cc);
   1248   1.43   thorpej 
   1249   1.43   thorpej 	KASSERT(sb->sb_cc == 0);
   1250   1.43   thorpej 	KASSERT(sb->sb_mb == NULL);
   1251   1.43   thorpej 	KASSERT(sb->sb_mbtail == NULL);
   1252   1.43   thorpej 	KASSERT(sb->sb_lastrecord == NULL);
   1253    1.1       cgd }
   1254    1.1       cgd 
   1255    1.1       cgd /*
   1256    1.1       cgd  * Drop data from (the front of) a sockbuf.
   1257    1.1       cgd  */
   1258    1.7   mycroft void
   1259   1.37     lukem sbdrop(struct sockbuf *sb, int len)
   1260    1.1       cgd {
   1261   1.37     lukem 	struct mbuf	*m, *mn, *next;
   1262    1.1       cgd 
   1263   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1264   1.91        ad 
   1265  1.115  christos 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
   1266    1.1       cgd 	while (len > 0) {
   1267  1.115  christos 		if (m == NULL) {
   1268  1.115  christos 			if (next == NULL)
   1269  1.112      matt 				panic("sbdrop(%p,%d): cc=%lu",
   1270  1.112      matt 				    sb, len, sb->sb_cc);
   1271    1.1       cgd 			m = next;
   1272    1.1       cgd 			next = m->m_nextpkt;
   1273    1.1       cgd 			continue;
   1274    1.1       cgd 		}
   1275    1.1       cgd 		if (m->m_len > len) {
   1276    1.1       cgd 			m->m_len -= len;
   1277    1.1       cgd 			m->m_data += len;
   1278    1.1       cgd 			sb->sb_cc -= len;
   1279    1.1       cgd 			break;
   1280    1.1       cgd 		}
   1281    1.1       cgd 		len -= m->m_len;
   1282    1.1       cgd 		sbfree(sb, m);
   1283    1.1       cgd 		MFREE(m, mn);
   1284    1.1       cgd 		m = mn;
   1285    1.1       cgd 	}
   1286    1.1       cgd 	while (m && m->m_len == 0) {
   1287    1.1       cgd 		sbfree(sb, m);
   1288    1.1       cgd 		MFREE(m, mn);
   1289    1.1       cgd 		m = mn;
   1290    1.1       cgd 	}
   1291    1.1       cgd 	if (m) {
   1292    1.1       cgd 		sb->sb_mb = m;
   1293    1.1       cgd 		m->m_nextpkt = next;
   1294    1.1       cgd 	} else
   1295    1.1       cgd 		sb->sb_mb = next;
   1296   1.43   thorpej 	/*
   1297   1.45   thorpej 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1298   1.43   thorpej 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1299   1.43   thorpej 	 * part of the last record.
   1300   1.43   thorpej 	 */
   1301   1.43   thorpej 	m = sb->sb_mb;
   1302   1.43   thorpej 	if (m == NULL) {
   1303   1.43   thorpej 		sb->sb_mbtail = NULL;
   1304   1.43   thorpej 		sb->sb_lastrecord = NULL;
   1305   1.43   thorpej 	} else if (m->m_nextpkt == NULL)
   1306   1.43   thorpej 		sb->sb_lastrecord = m;
   1307    1.1       cgd }
   1308    1.1       cgd 
   1309    1.1       cgd /*
   1310    1.1       cgd  * Drop a record off the front of a sockbuf
   1311    1.1       cgd  * and move the next record to the front.
   1312    1.1       cgd  */
   1313    1.7   mycroft void
   1314   1.37     lukem sbdroprecord(struct sockbuf *sb)
   1315    1.1       cgd {
   1316   1.37     lukem 	struct mbuf	*m, *mn;
   1317    1.1       cgd 
   1318   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1319   1.91        ad 
   1320    1.1       cgd 	m = sb->sb_mb;
   1321    1.1       cgd 	if (m) {
   1322    1.1       cgd 		sb->sb_mb = m->m_nextpkt;
   1323    1.1       cgd 		do {
   1324    1.1       cgd 			sbfree(sb, m);
   1325    1.1       cgd 			MFREE(m, mn);
   1326   1.11  christos 		} while ((m = mn) != NULL);
   1327    1.1       cgd 	}
   1328   1.45   thorpej 	SB_EMPTY_FIXUP(sb);
   1329   1.19   thorpej }
   1330   1.19   thorpej 
   1331   1.19   thorpej /*
   1332   1.19   thorpej  * Create a "control" mbuf containing the specified data
   1333   1.19   thorpej  * with the specified type for presentation on a socket buffer.
   1334   1.19   thorpej  */
   1335   1.19   thorpej struct mbuf *
   1336  1.111  christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1337   1.19   thorpej {
   1338   1.37     lukem 	struct cmsghdr	*cp;
   1339   1.37     lukem 	struct mbuf	*m;
   1340  1.111  christos 	int space = CMSG_SPACE(size);
   1341   1.19   thorpej 
   1342  1.111  christos 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1343  1.111  christos 		printf("%s: message too large %d\n", __func__, space);
   1344   1.30    itojun 		return NULL;
   1345   1.30    itojun 	}
   1346   1.30    itojun 
   1347  1.111  christos 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1348  1.111  christos 		return NULL;
   1349  1.111  christos 	if (space > MLEN) {
   1350  1.111  christos 		if (space > MCLBYTES)
   1351  1.111  christos 			MEXTMALLOC(m, space, M_WAITOK);
   1352  1.111  christos 		else
   1353  1.111  christos 			MCLGET(m, flags);
   1354   1.30    itojun 		if ((m->m_flags & M_EXT) == 0) {
   1355   1.30    itojun 			m_free(m);
   1356   1.30    itojun 			return NULL;
   1357   1.30    itojun 		}
   1358   1.30    itojun 	}
   1359   1.19   thorpej 	cp = mtod(m, struct cmsghdr *);
   1360  1.111  christos 	*p = CMSG_DATA(cp);
   1361  1.111  christos 	m->m_len = space;
   1362   1.35    itojun 	cp->cmsg_len = CMSG_LEN(size);
   1363   1.19   thorpej 	cp->cmsg_level = level;
   1364   1.19   thorpej 	cp->cmsg_type = type;
   1365  1.111  christos 	return m;
   1366  1.111  christos }
   1367  1.111  christos 
   1368  1.111  christos struct mbuf *
   1369  1.111  christos sbcreatecontrol(void *p, int size, int type, int level)
   1370  1.111  christos {
   1371  1.111  christos 	struct mbuf *m;
   1372  1.111  christos 	void *v;
   1373  1.111  christos 
   1374  1.111  christos 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1375  1.111  christos 	if (m == NULL)
   1376  1.111  christos 		return NULL;
   1377  1.111  christos 	memcpy(v, p, size);
   1378  1.111  christos 	return m;
   1379    1.1       cgd }
   1380   1.91        ad 
   1381   1.91        ad void
   1382   1.91        ad solockretry(struct socket *so, kmutex_t *lock)
   1383   1.91        ad {
   1384   1.91        ad 
   1385   1.91        ad 	while (lock != so->so_lock) {
   1386   1.91        ad 		mutex_exit(lock);
   1387   1.91        ad 		lock = so->so_lock;
   1388   1.91        ad 		mutex_enter(lock);
   1389   1.91        ad 	}
   1390   1.91        ad }
   1391   1.91        ad 
   1392   1.91        ad bool
   1393   1.91        ad solocked(struct socket *so)
   1394   1.91        ad {
   1395   1.91        ad 
   1396   1.91        ad 	return mutex_owned(so->so_lock);
   1397   1.91        ad }
   1398   1.91        ad 
   1399   1.91        ad bool
   1400   1.91        ad solocked2(struct socket *so1, struct socket *so2)
   1401   1.91        ad {
   1402   1.91        ad 	kmutex_t *lock;
   1403   1.91        ad 
   1404   1.91        ad 	lock = so1->so_lock;
   1405   1.91        ad 	if (lock != so2->so_lock)
   1406   1.91        ad 		return false;
   1407   1.91        ad 	return mutex_owned(lock);
   1408   1.91        ad }
   1409   1.91        ad 
   1410   1.91        ad /*
   1411  1.116     rmind  * sosetlock: assign a default lock to a new socket.
   1412   1.91        ad  */
   1413   1.91        ad void
   1414   1.91        ad sosetlock(struct socket *so)
   1415   1.91        ad {
   1416  1.116     rmind 	if (so->so_lock == NULL) {
   1417  1.116     rmind 		kmutex_t *lock = softnet_lock;
   1418   1.91        ad 
   1419   1.91        ad 		so->so_lock = lock;
   1420   1.91        ad 		mutex_obj_hold(lock);
   1421   1.91        ad 		mutex_enter(lock);
   1422   1.91        ad 	}
   1423   1.91        ad 
   1424   1.91        ad 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1425   1.91        ad 	KASSERT(solocked(so));
   1426   1.91        ad }
   1427   1.91        ad 
   1428   1.91        ad /*
   1429   1.91        ad  * Set lock on sockbuf sb; sleep if lock is already held.
   1430   1.91        ad  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1431   1.91        ad  * Returns error without lock if sleep is interrupted.
   1432   1.91        ad  */
   1433   1.91        ad int
   1434   1.91        ad sblock(struct sockbuf *sb, int wf)
   1435   1.91        ad {
   1436   1.91        ad 	struct socket *so;
   1437   1.91        ad 	kmutex_t *lock;
   1438   1.91        ad 	int error;
   1439   1.91        ad 
   1440   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1441   1.91        ad 
   1442   1.91        ad 	for (;;) {
   1443   1.91        ad 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1444   1.91        ad 			sb->sb_flags |= SB_LOCK;
   1445   1.91        ad 			return 0;
   1446   1.91        ad 		}
   1447   1.91        ad 		if (wf != M_WAITOK)
   1448   1.91        ad 			return EWOULDBLOCK;
   1449   1.91        ad 		so = sb->sb_so;
   1450   1.91        ad 		lock = so->so_lock;
   1451   1.91        ad 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1452   1.91        ad 			cv_wait(&so->so_cv, lock);
   1453   1.91        ad 			error = 0;
   1454   1.91        ad 		} else
   1455   1.91        ad 			error = cv_wait_sig(&so->so_cv, lock);
   1456   1.91        ad 		if (__predict_false(lock != so->so_lock))
   1457   1.91        ad 			solockretry(so, lock);
   1458   1.91        ad 		if (error != 0)
   1459   1.91        ad 			return error;
   1460   1.91        ad 	}
   1461   1.91        ad }
   1462   1.91        ad 
   1463   1.91        ad void
   1464   1.91        ad sbunlock(struct sockbuf *sb)
   1465   1.91        ad {
   1466   1.91        ad 	struct socket *so;
   1467   1.91        ad 
   1468   1.91        ad 	so = sb->sb_so;
   1469   1.91        ad 
   1470   1.91        ad 	KASSERT(solocked(so));
   1471   1.91        ad 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1472   1.91        ad 
   1473   1.91        ad 	sb->sb_flags &= ~SB_LOCK;
   1474   1.91        ad 	cv_broadcast(&so->so_cv);
   1475   1.91        ad }
   1476   1.91        ad 
   1477   1.91        ad int
   1478  1.101      yamt sowait(struct socket *so, bool catch, int timo)
   1479   1.91        ad {
   1480   1.91        ad 	kmutex_t *lock;
   1481   1.91        ad 	int error;
   1482   1.91        ad 
   1483   1.91        ad 	KASSERT(solocked(so));
   1484  1.101      yamt 	KASSERT(catch || timo != 0);
   1485   1.91        ad 
   1486   1.91        ad 	lock = so->so_lock;
   1487  1.101      yamt 	if (catch)
   1488  1.101      yamt 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1489  1.101      yamt 	else
   1490  1.101      yamt 		error = cv_timedwait(&so->so_cv, lock, timo);
   1491   1.91        ad 	if (__predict_false(lock != so->so_lock))
   1492   1.91        ad 		solockretry(so, lock);
   1493   1.91        ad 	return error;
   1494   1.91        ad }
   1495