Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.122
      1  1.122     pooka /*	$NetBSD: uipc_socket2.c,v 1.122 2015/08/24 22:21:26 pooka Exp $	*/
      2   1.91        ad 
      3   1.91        ad /*-
      4   1.91        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5   1.91        ad  * All rights reserved.
      6   1.91        ad  *
      7   1.91        ad  * Redistribution and use in source and binary forms, with or without
      8   1.91        ad  * modification, are permitted provided that the following conditions
      9   1.91        ad  * are met:
     10   1.91        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.91        ad  *    notice, this list of conditions and the following disclaimer.
     12   1.91        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.91        ad  *    notice, this list of conditions and the following disclaimer in the
     14   1.91        ad  *    documentation and/or other materials provided with the distribution.
     15   1.91        ad  *
     16   1.91        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17   1.91        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.91        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.91        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.91        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.91        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.91        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.91        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.91        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.91        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.91        ad  * POSSIBILITY OF SUCH DAMAGE.
     27   1.91        ad  */
     28    1.9       cgd 
     29    1.1       cgd /*
     30    1.7   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31    1.7   mycroft  *	The Regents of the University of California.  All rights reserved.
     32    1.1       cgd  *
     33    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     34    1.1       cgd  * modification, are permitted provided that the following conditions
     35    1.1       cgd  * are met:
     36    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     37    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     38    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     39    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     40    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     41   1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     42    1.1       cgd  *    may be used to endorse or promote products derived from this software
     43    1.1       cgd  *    without specific prior written permission.
     44    1.1       cgd  *
     45    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55    1.1       cgd  * SUCH DAMAGE.
     56    1.1       cgd  *
     57   1.23      fvdl  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58    1.1       cgd  */
     59   1.42     lukem 
     60   1.42     lukem #include <sys/cdefs.h>
     61  1.122     pooka __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.122 2015/08/24 22:21:26 pooka Exp $");
     62   1.51    martin 
     63  1.122     pooka #ifdef _KERNEL_OPT
     64   1.51    martin #include "opt_mbuftrace.h"
     65   1.58   thorpej #include "opt_sb_max.h"
     66  1.122     pooka #endif
     67    1.1       cgd 
     68    1.5   mycroft #include <sys/param.h>
     69    1.5   mycroft #include <sys/systm.h>
     70    1.5   mycroft #include <sys/proc.h>
     71    1.5   mycroft #include <sys/file.h>
     72    1.5   mycroft #include <sys/buf.h>
     73    1.5   mycroft #include <sys/mbuf.h>
     74    1.5   mycroft #include <sys/protosw.h>
     75   1.91        ad #include <sys/domain.h>
     76   1.55  christos #include <sys/poll.h>
     77    1.5   mycroft #include <sys/socket.h>
     78    1.5   mycroft #include <sys/socketvar.h>
     79   1.11  christos #include <sys/signalvar.h>
     80   1.71      elad #include <sys/kauth.h>
     81   1.91        ad #include <sys/pool.h>
     82   1.98     pooka #include <sys/uidinfo.h>
     83    1.1       cgd 
     84    1.1       cgd /*
     85   1.91        ad  * Primitive routines for operating on sockets and socket buffers.
     86   1.91        ad  *
     87  1.116     rmind  * Connection life-cycle:
     88  1.116     rmind  *
     89  1.116     rmind  *	Normal sequence from the active (originating) side:
     90  1.116     rmind  *
     91  1.116     rmind  *	- soisconnecting() is called during processing of connect() call,
     92  1.116     rmind  *	- resulting in an eventual call to soisconnected() if/when the
     93  1.116     rmind  *	  connection is established.
     94  1.116     rmind  *
     95  1.116     rmind  *	When the connection is torn down during processing of disconnect():
     96  1.116     rmind  *
     97  1.116     rmind  *	- soisdisconnecting() is called and,
     98  1.116     rmind  *	- soisdisconnected() is called when the connection to the peer
     99  1.116     rmind  *	  is totally severed.
    100  1.116     rmind  *
    101  1.116     rmind  *	The semantics of these routines are such that connectionless protocols
    102  1.116     rmind  *	can call soisconnected() and soisdisconnected() only, bypassing the
    103  1.116     rmind  *	in-progress calls when setting up a ``connection'' takes no time.
    104  1.116     rmind  *
    105  1.116     rmind  *	From the passive side, a socket is created with two queues of sockets:
    106  1.116     rmind  *
    107  1.116     rmind  *	- so_q0 (0) for partial connections (i.e. connections in progress)
    108  1.116     rmind  *	- so_q (1) for connections already made and awaiting user acceptance.
    109  1.116     rmind  *
    110  1.116     rmind  *	As a protocol is preparing incoming connections, it creates a socket
    111  1.116     rmind  *	structure queued on so_q0 by calling sonewconn().  When the connection
    112  1.116     rmind  *	is established, soisconnected() is called, and transfers the
    113  1.116     rmind  *	socket structure to so_q, making it available to accept().
    114  1.116     rmind  *
    115  1.116     rmind  *	If a socket is closed with sockets on either so_q0 or so_q, these
    116  1.116     rmind  *	sockets are dropped.
    117  1.116     rmind  *
    118   1.91        ad  * Locking rules and assumptions:
    119   1.91        ad  *
    120   1.91        ad  * o socket::so_lock can change on the fly.  The low level routines used
    121   1.91        ad  *   to lock sockets are aware of this.  When so_lock is acquired, the
    122   1.91        ad  *   routine locking must check to see if so_lock still points to the
    123   1.91        ad  *   lock that was acquired.  If so_lock has changed in the meantime, the
    124  1.116     rmind  *   now irrelevant lock that was acquired must be dropped and the lock
    125   1.91        ad  *   operation retried.  Although not proven here, this is completely safe
    126   1.91        ad  *   on a multiprocessor system, even with relaxed memory ordering, given
    127   1.91        ad  *   the next two rules:
    128   1.91        ad  *
    129   1.91        ad  * o In order to mutate so_lock, the lock pointed to by the current value
    130   1.91        ad  *   of so_lock must be held: i.e., the socket must be held locked by the
    131   1.91        ad  *   changing thread.  The thread must issue membar_exit() to prevent
    132   1.91        ad  *   memory accesses being reordered, and can set so_lock to the desired
    133   1.91        ad  *   value.  If the lock pointed to by the new value of so_lock is not
    134   1.91        ad  *   held by the changing thread, the socket must then be considered
    135   1.91        ad  *   unlocked.
    136   1.91        ad  *
    137   1.91        ad  * o If so_lock is mutated, and the previous lock referred to by so_lock
    138   1.91        ad  *   could still be visible to other threads in the system (e.g. via file
    139   1.91        ad  *   descriptor or protocol-internal reference), then the old lock must
    140   1.91        ad  *   remain valid until the socket and/or protocol control block has been
    141   1.91        ad  *   torn down.
    142   1.91        ad  *
    143   1.91        ad  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    144   1.91        ad  *   connecting), then locking the socket must also lock the socket pointed
    145   1.91        ad  *   to by so_head: their lock pointers must match.
    146   1.91        ad  *
    147   1.91        ad  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    148   1.91        ad  *   locking the socket must also lock the sockets attached to both queues.
    149   1.91        ad  *   Again, their lock pointers must match.
    150   1.91        ad  *
    151  1.116     rmind  * o Beyond the initial lock assignment in socreate(), assigning locks to
    152   1.91        ad  *   sockets is the responsibility of the individual protocols / protocol
    153   1.91        ad  *   domains.
    154    1.1       cgd  */
    155    1.1       cgd 
    156  1.116     rmind static pool_cache_t	socket_cache;
    157  1.116     rmind u_long			sb_max = SB_MAX;/* maximum socket buffer size */
    158  1.116     rmind static u_long		sb_max_adj;	/* adjusted sb_max */
    159    1.1       cgd 
    160    1.7   mycroft void
    161   1.37     lukem soisconnecting(struct socket *so)
    162    1.1       cgd {
    163    1.1       cgd 
    164   1.91        ad 	KASSERT(solocked(so));
    165   1.91        ad 
    166    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    167    1.1       cgd 	so->so_state |= SS_ISCONNECTING;
    168    1.1       cgd }
    169    1.1       cgd 
    170    1.7   mycroft void
    171   1.37     lukem soisconnected(struct socket *so)
    172    1.1       cgd {
    173   1.37     lukem 	struct socket	*head;
    174    1.1       cgd 
    175   1.37     lukem 	head = so->so_head;
    176   1.91        ad 
    177   1.91        ad 	KASSERT(solocked(so));
    178   1.91        ad 	KASSERT(head == NULL || solocked2(so, head));
    179   1.91        ad 
    180  1.113     rmind 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    181    1.1       cgd 	so->so_state |= SS_ISCONNECTED;
    182   1.97       tls 	if (head && so->so_onq == &head->so_q0) {
    183   1.97       tls 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    184  1.116     rmind 			/*
    185  1.116     rmind 			 * Re-enqueue and wake up any waiters, e.g.
    186  1.116     rmind 			 * processes blocking on accept().
    187  1.116     rmind 			 */
    188   1.97       tls 			soqremque(so, 0);
    189   1.97       tls 			soqinsque(head, so, 1);
    190   1.97       tls 			sorwakeup(head);
    191   1.97       tls 			cv_broadcast(&head->so_cv);
    192   1.97       tls 		} else {
    193   1.97       tls 			so->so_upcall =
    194   1.97       tls 			    head->so_accf->so_accept_filter->accf_callback;
    195   1.97       tls 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    196   1.97       tls 			so->so_rcv.sb_flags |= SB_UPCALL;
    197   1.97       tls 			so->so_options &= ~SO_ACCEPTFILTER;
    198  1.104       tls 			(*so->so_upcall)(so, so->so_upcallarg,
    199  1.104       tls 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    200  1.101      yamt 		}
    201    1.1       cgd 	} else {
    202   1.91        ad 		cv_broadcast(&so->so_cv);
    203    1.1       cgd 		sorwakeup(so);
    204    1.1       cgd 		sowwakeup(so);
    205    1.1       cgd 	}
    206    1.1       cgd }
    207    1.1       cgd 
    208    1.7   mycroft void
    209   1.37     lukem soisdisconnecting(struct socket *so)
    210    1.1       cgd {
    211    1.1       cgd 
    212   1.91        ad 	KASSERT(solocked(so));
    213   1.91        ad 
    214    1.1       cgd 	so->so_state &= ~SS_ISCONNECTING;
    215    1.1       cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    216   1.91        ad 	cv_broadcast(&so->so_cv);
    217    1.1       cgd 	sowwakeup(so);
    218    1.1       cgd 	sorwakeup(so);
    219    1.1       cgd }
    220    1.1       cgd 
    221    1.7   mycroft void
    222   1.37     lukem soisdisconnected(struct socket *so)
    223    1.1       cgd {
    224    1.1       cgd 
    225   1.91        ad 	KASSERT(solocked(so));
    226   1.91        ad 
    227    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    228   1.27   mycroft 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    229   1.91        ad 	cv_broadcast(&so->so_cv);
    230    1.1       cgd 	sowwakeup(so);
    231    1.1       cgd 	sorwakeup(so);
    232    1.1       cgd }
    233    1.1       cgd 
    234   1.94        ad void
    235   1.94        ad soinit2(void)
    236   1.94        ad {
    237   1.94        ad 
    238   1.94        ad 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    239   1.94        ad 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    240   1.94        ad }
    241   1.94        ad 
    242    1.1       cgd /*
    243  1.116     rmind  * sonewconn: accept a new connection.
    244  1.116     rmind  *
    245  1.116     rmind  * When an attempt at a new connection is noted on a socket which accepts
    246  1.116     rmind  * connections, sonewconn(9) is called.  If the connection is possible
    247  1.116     rmind  * (subject to space constraints, etc) then we allocate a new structure,
    248  1.116     rmind  * properly linked into the data structure of the original socket.
    249  1.116     rmind  *
    250  1.116     rmind  * => If 'soready' is true, then socket will become ready for accept() i.e.
    251  1.116     rmind  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
    252  1.116     rmind  * => May be called from soft-interrupt context.
    253  1.116     rmind  * => Listening socket should be locked.
    254  1.116     rmind  * => Returns the new socket locked.
    255    1.1       cgd  */
    256    1.1       cgd struct socket *
    257  1.116     rmind sonewconn(struct socket *head, bool soready)
    258    1.1       cgd {
    259  1.116     rmind 	struct socket *so;
    260  1.116     rmind 	int soqueue, error;
    261   1.91        ad 
    262   1.91        ad 	KASSERT(solocked(head));
    263    1.1       cgd 
    264  1.116     rmind 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
    265  1.116     rmind 		/* Listen queue overflow. */
    266  1.116     rmind 		return NULL;
    267  1.116     rmind 	}
    268  1.116     rmind 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
    269  1.116     rmind 		soready = false;
    270  1.116     rmind 	}
    271  1.116     rmind 	soqueue = soready ? 1 : 0;
    272  1.113     rmind 
    273  1.116     rmind 	if ((so = soget(false)) == NULL) {
    274  1.100    dyoung 		return NULL;
    275  1.116     rmind 	}
    276    1.1       cgd 	so->so_type = head->so_type;
    277  1.116     rmind 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
    278    1.1       cgd 	so->so_linger = head->so_linger;
    279    1.1       cgd 	so->so_state = head->so_state | SS_NOFDREF;
    280    1.1       cgd 	so->so_proto = head->so_proto;
    281    1.1       cgd 	so->so_timeo = head->so_timeo;
    282    1.1       cgd 	so->so_pgid = head->so_pgid;
    283   1.24      matt 	so->so_send = head->so_send;
    284   1.24      matt 	so->so_receive = head->so_receive;
    285   1.67  christos 	so->so_uidinfo = head->so_uidinfo;
    286   1.96      yamt 	so->so_cpid = head->so_cpid;
    287  1.119     rmind 
    288  1.119     rmind 	/*
    289  1.119     rmind 	 * Share the lock with the listening-socket, it may get unshared
    290  1.119     rmind 	 * once the connection is complete.
    291  1.119     rmind 	 */
    292  1.119     rmind 	mutex_obj_hold(head->so_lock);
    293  1.119     rmind 	so->so_lock = head->so_lock;
    294  1.119     rmind 
    295  1.119     rmind 	/*
    296  1.119     rmind 	 * Reserve the space for socket buffers.
    297  1.119     rmind 	 */
    298   1.49      matt #ifdef MBUFTRACE
    299   1.49      matt 	so->so_mowner = head->so_mowner;
    300   1.49      matt 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    301   1.49      matt 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    302   1.49      matt #endif
    303  1.119     rmind 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
    304  1.103  christos 		goto out;
    305  1.119     rmind 	}
    306   1.83       tls 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    307   1.83       tls 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    308   1.84       tls 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    309   1.84       tls 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    310  1.107  christos 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    311  1.107  christos 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    312  1.116     rmind 
    313  1.116     rmind 	/*
    314  1.119     rmind 	 * Finally, perform the protocol attach.  Note: a new socket
    315  1.119     rmind 	 * lock may be assigned at this point (if so, it will be held).
    316  1.116     rmind 	 */
    317  1.119     rmind 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
    318  1.116     rmind 	if (error) {
    319  1.103  christos out:
    320  1.119     rmind 		KASSERT(solocked(so));
    321  1.116     rmind 		KASSERT(so->so_accf == NULL);
    322   1.91        ad 		soput(so);
    323  1.116     rmind 
    324  1.116     rmind 		/* Note: the listening socket shall stay locked. */
    325  1.116     rmind 		KASSERT(solocked(head));
    326  1.100    dyoung 		return NULL;
    327    1.1       cgd 	}
    328  1.119     rmind 	KASSERT(solocked2(head, so));
    329  1.116     rmind 
    330  1.116     rmind 	/*
    331  1.117     rmind 	 * Insert into the queue.  If ready, update the connection status
    332  1.117     rmind 	 * and wake up any waiters, e.g. processes blocking on accept().
    333  1.116     rmind 	 */
    334  1.117     rmind 	soqinsque(head, so, soqueue);
    335  1.116     rmind 	if (soready) {
    336  1.116     rmind 		so->so_state |= SS_ISCONNECTED;
    337    1.1       cgd 		sorwakeup(head);
    338   1.91        ad 		cv_broadcast(&head->so_cv);
    339    1.1       cgd 	}
    340  1.100    dyoung 	return so;
    341    1.1       cgd }
    342    1.1       cgd 
    343   1.91        ad struct socket *
    344   1.91        ad soget(bool waitok)
    345   1.91        ad {
    346   1.91        ad 	struct socket *so;
    347   1.91        ad 
    348   1.94        ad 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    349   1.91        ad 	if (__predict_false(so == NULL))
    350   1.91        ad 		return (NULL);
    351   1.91        ad 	memset(so, 0, sizeof(*so));
    352   1.91        ad 	TAILQ_INIT(&so->so_q0);
    353   1.91        ad 	TAILQ_INIT(&so->so_q);
    354   1.91        ad 	cv_init(&so->so_cv, "socket");
    355   1.91        ad 	cv_init(&so->so_rcv.sb_cv, "netio");
    356   1.91        ad 	cv_init(&so->so_snd.sb_cv, "netio");
    357   1.91        ad 	selinit(&so->so_rcv.sb_sel);
    358   1.91        ad 	selinit(&so->so_snd.sb_sel);
    359   1.91        ad 	so->so_rcv.sb_so = so;
    360   1.91        ad 	so->so_snd.sb_so = so;
    361   1.91        ad 	return so;
    362   1.91        ad }
    363   1.91        ad 
    364   1.91        ad void
    365   1.91        ad soput(struct socket *so)
    366   1.91        ad {
    367   1.91        ad 
    368   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    369   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    370   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    371   1.91        ad 	seldestroy(&so->so_rcv.sb_sel);
    372   1.91        ad 	seldestroy(&so->so_snd.sb_sel);
    373   1.91        ad 	mutex_obj_free(so->so_lock);
    374   1.91        ad 	cv_destroy(&so->so_cv);
    375   1.91        ad 	cv_destroy(&so->so_rcv.sb_cv);
    376   1.91        ad 	cv_destroy(&so->so_snd.sb_cv);
    377   1.94        ad 	pool_cache_put(socket_cache, so);
    378   1.91        ad }
    379   1.91        ad 
    380  1.116     rmind /*
    381  1.116     rmind  * soqinsque: insert socket of a new connection into the specified
    382  1.116     rmind  * accept queue of the listening socket (head).
    383  1.116     rmind  *
    384  1.116     rmind  *	q = 0: queue of partial connections
    385  1.116     rmind  *	q = 1: queue of incoming connections
    386  1.116     rmind  */
    387    1.7   mycroft void
    388   1.37     lukem soqinsque(struct socket *head, struct socket *so, int q)
    389    1.1       cgd {
    390  1.116     rmind 	KASSERT(q == 0 || q == 1);
    391   1.91        ad 	KASSERT(solocked2(head, so));
    392  1.116     rmind 	KASSERT(so->so_onq == NULL);
    393  1.116     rmind 	KASSERT(so->so_head == NULL);
    394   1.22   thorpej 
    395    1.1       cgd 	so->so_head = head;
    396    1.1       cgd 	if (q == 0) {
    397    1.1       cgd 		head->so_q0len++;
    398   1.22   thorpej 		so->so_onq = &head->so_q0;
    399    1.1       cgd 	} else {
    400    1.1       cgd 		head->so_qlen++;
    401   1.22   thorpej 		so->so_onq = &head->so_q;
    402    1.1       cgd 	}
    403   1.22   thorpej 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    404    1.1       cgd }
    405    1.1       cgd 
    406  1.116     rmind /*
    407  1.116     rmind  * soqremque: remove socket from the specified queue.
    408  1.116     rmind  *
    409  1.116     rmind  * => Returns true if socket was removed from the specified queue.
    410  1.116     rmind  * => False if socket was not removed (because it was in other queue).
    411  1.116     rmind  */
    412  1.116     rmind bool
    413   1.37     lukem soqremque(struct socket *so, int q)
    414    1.1       cgd {
    415  1.116     rmind 	struct socket *head = so->so_head;
    416    1.1       cgd 
    417  1.116     rmind 	KASSERT(q == 0 || q == 1);
    418  1.116     rmind 	KASSERT(solocked(so));
    419  1.116     rmind 	KASSERT(so->so_onq != NULL);
    420  1.116     rmind 	KASSERT(head != NULL);
    421   1.91        ad 
    422   1.22   thorpej 	if (q == 0) {
    423   1.22   thorpej 		if (so->so_onq != &head->so_q0)
    424  1.116     rmind 			return false;
    425    1.1       cgd 		head->so_q0len--;
    426    1.1       cgd 	} else {
    427   1.22   thorpej 		if (so->so_onq != &head->so_q)
    428  1.116     rmind 			return false;
    429    1.1       cgd 		head->so_qlen--;
    430    1.1       cgd 	}
    431   1.91        ad 	KASSERT(solocked2(so, head));
    432   1.22   thorpej 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    433   1.22   thorpej 	so->so_onq = NULL;
    434   1.22   thorpej 	so->so_head = NULL;
    435  1.116     rmind 	return true;
    436    1.1       cgd }
    437    1.1       cgd 
    438    1.1       cgd /*
    439  1.116     rmind  * socantsendmore: indicates that no more data will be sent on the
    440    1.1       cgd  * socket; it would normally be applied to a socket when the user
    441    1.1       cgd  * informs the system that no more data is to be sent, by the protocol
    442  1.120       rtr  * code (in case pr_shutdown()).
    443    1.1       cgd  */
    444    1.4    andrew void
    445   1.37     lukem socantsendmore(struct socket *so)
    446    1.1       cgd {
    447   1.91        ad 	KASSERT(solocked(so));
    448   1.91        ad 
    449    1.1       cgd 	so->so_state |= SS_CANTSENDMORE;
    450    1.1       cgd 	sowwakeup(so);
    451    1.1       cgd }
    452    1.1       cgd 
    453  1.116     rmind /*
    454  1.116     rmind  * socantrcvmore(): indicates that no more data will be received and
    455  1.116     rmind  * will normally be applied to the socket by a protocol when it detects
    456  1.116     rmind  * that the peer will send no more data.  Data queued for reading in
    457  1.116     rmind  * the socket may yet be read.
    458  1.116     rmind  */
    459    1.4    andrew void
    460   1.37     lukem socantrcvmore(struct socket *so)
    461    1.1       cgd {
    462   1.91        ad 	KASSERT(solocked(so));
    463   1.91        ad 
    464    1.1       cgd 	so->so_state |= SS_CANTRCVMORE;
    465    1.1       cgd 	sorwakeup(so);
    466    1.1       cgd }
    467    1.1       cgd 
    468    1.1       cgd /*
    469    1.1       cgd  * Wait for data to arrive at/drain from a socket buffer.
    470    1.1       cgd  */
    471    1.7   mycroft int
    472   1.37     lukem sbwait(struct sockbuf *sb)
    473    1.1       cgd {
    474   1.91        ad 	struct socket *so;
    475   1.91        ad 	kmutex_t *lock;
    476   1.91        ad 	int error;
    477    1.1       cgd 
    478   1.91        ad 	so = sb->sb_so;
    479    1.1       cgd 
    480   1.91        ad 	KASSERT(solocked(so));
    481    1.1       cgd 
    482   1.91        ad 	sb->sb_flags |= SB_NOTIFY;
    483   1.91        ad 	lock = so->so_lock;
    484   1.91        ad 	if ((sb->sb_flags & SB_NOINTR) != 0)
    485   1.91        ad 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    486   1.91        ad 	else
    487   1.91        ad 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    488   1.91        ad 	if (__predict_false(lock != so->so_lock))
    489   1.91        ad 		solockretry(so, lock);
    490   1.91        ad 	return error;
    491    1.1       cgd }
    492    1.1       cgd 
    493    1.1       cgd /*
    494    1.1       cgd  * Wakeup processes waiting on a socket buffer.
    495    1.1       cgd  * Do asynchronous notification via SIGIO
    496   1.39      manu  * if the socket buffer has the SB_ASYNC flag set.
    497    1.1       cgd  */
    498    1.7   mycroft void
    499   1.55  christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
    500    1.1       cgd {
    501   1.90     rmind 	int band;
    502   1.90     rmind 
    503   1.91        ad 	KASSERT(solocked(so));
    504   1.91        ad 	KASSERT(sb->sb_so == so);
    505   1.91        ad 
    506   1.90     rmind 	if (code == POLL_IN)
    507   1.90     rmind 		band = POLLIN|POLLRDNORM;
    508   1.90     rmind 	else
    509   1.90     rmind 		band = POLLOUT|POLLWRNORM;
    510   1.91        ad 	sb->sb_flags &= ~SB_NOTIFY;
    511   1.91        ad 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    512   1.91        ad 	cv_broadcast(&sb->sb_cv);
    513   1.90     rmind 	if (sb->sb_flags & SB_ASYNC)
    514   1.57  christos 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    515   1.24      matt 	if (sb->sb_flags & SB_UPCALL)
    516  1.104       tls 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    517    1.1       cgd }
    518    1.1       cgd 
    519    1.1       cgd /*
    520   1.95        ad  * Reset a socket's lock pointer.  Wake all threads waiting on the
    521   1.95        ad  * socket's condition variables so that they can restart their waits
    522   1.95        ad  * using the new lock.  The existing lock must be held.
    523   1.95        ad  */
    524   1.95        ad void
    525   1.95        ad solockreset(struct socket *so, kmutex_t *lock)
    526   1.95        ad {
    527   1.95        ad 
    528   1.95        ad 	KASSERT(solocked(so));
    529   1.95        ad 
    530   1.95        ad 	so->so_lock = lock;
    531   1.95        ad 	cv_broadcast(&so->so_snd.sb_cv);
    532   1.95        ad 	cv_broadcast(&so->so_rcv.sb_cv);
    533   1.95        ad 	cv_broadcast(&so->so_cv);
    534   1.95        ad }
    535   1.95        ad 
    536   1.95        ad /*
    537    1.1       cgd  * Socket buffer (struct sockbuf) utility routines.
    538    1.1       cgd  *
    539    1.1       cgd  * Each socket contains two socket buffers: one for sending data and
    540    1.1       cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    541    1.1       cgd  * information about the number of mbufs and amount of data in the
    542   1.13   mycroft  * queue, and other fields allowing poll() statements and notification
    543    1.1       cgd  * on data availability to be implemented.
    544    1.1       cgd  *
    545    1.1       cgd  * Data stored in a socket buffer is maintained as a list of records.
    546    1.1       cgd  * Each record is a list of mbufs chained together with the m_next
    547    1.1       cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    548    1.1       cgd  * level routine soreceive() expects the following conventions to be
    549    1.1       cgd  * observed when placing information in the receive buffer:
    550    1.1       cgd  *
    551    1.1       cgd  * 1. If the protocol requires each message be preceded by the sender's
    552    1.1       cgd  *    name, then a record containing that name must be present before
    553    1.1       cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    554    1.1       cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    555    1.1       cgd  *    just additional data associated with the message), and there are
    556    1.1       cgd  *    ``rights'' to be received, then a record containing this data
    557   1.10   mycroft  *    should be present (mbuf's must be of type MT_CONTROL).
    558    1.1       cgd  * 3. If a name or rights record exists, then it must be followed by
    559    1.1       cgd  *    a data record, perhaps of zero length.
    560    1.1       cgd  *
    561    1.1       cgd  * Before using a new socket structure it is first necessary to reserve
    562    1.1       cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    563    1.1       cgd  * some of the available buffer space in the system buffer pool for the
    564    1.1       cgd  * socket (currently, it does nothing but enforce limits).  The space
    565    1.1       cgd  * should be released by calling sbrelease() when the socket is destroyed.
    566    1.1       cgd  */
    567    1.1       cgd 
    568    1.7   mycroft int
    569   1.58   thorpej sb_max_set(u_long new_sbmax)
    570   1.58   thorpej {
    571   1.58   thorpej 	int s;
    572   1.58   thorpej 
    573   1.58   thorpej 	if (new_sbmax < (16 * 1024))
    574   1.58   thorpej 		return (EINVAL);
    575   1.58   thorpej 
    576   1.58   thorpej 	s = splsoftnet();
    577   1.58   thorpej 	sb_max = new_sbmax;
    578   1.58   thorpej 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    579   1.58   thorpej 	splx(s);
    580   1.58   thorpej 
    581   1.58   thorpej 	return (0);
    582   1.58   thorpej }
    583   1.58   thorpej 
    584   1.58   thorpej int
    585   1.37     lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    586    1.1       cgd {
    587  1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    588   1.91        ad 
    589   1.74  christos 	/*
    590   1.74  christos 	 * there's at least one application (a configure script of screen)
    591   1.74  christos 	 * which expects a fifo is writable even if it has "some" bytes
    592   1.74  christos 	 * in its buffer.
    593   1.74  christos 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    594   1.74  christos 	 *
    595   1.74  christos 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    596   1.74  christos 	 * we expect it's large enough for such applications.
    597   1.74  christos 	 */
    598   1.74  christos 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    599   1.74  christos 	u_long  hiwat = lowat + PIPE_BUF;
    600    1.1       cgd 
    601   1.74  christos 	if (sndcc < hiwat)
    602   1.74  christos 		sndcc = hiwat;
    603   1.59  christos 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    604    1.1       cgd 		goto bad;
    605   1.59  christos 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    606    1.1       cgd 		goto bad2;
    607    1.1       cgd 	if (so->so_rcv.sb_lowat == 0)
    608    1.1       cgd 		so->so_rcv.sb_lowat = 1;
    609    1.1       cgd 	if (so->so_snd.sb_lowat == 0)
    610   1.74  christos 		so->so_snd.sb_lowat = lowat;
    611    1.1       cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    612    1.1       cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    613    1.1       cgd 	return (0);
    614   1.37     lukem  bad2:
    615   1.59  christos 	sbrelease(&so->so_snd, so);
    616   1.37     lukem  bad:
    617    1.1       cgd 	return (ENOBUFS);
    618    1.1       cgd }
    619    1.1       cgd 
    620    1.1       cgd /*
    621    1.1       cgd  * Allot mbufs to a sockbuf.
    622    1.1       cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    623    1.1       cgd  * if buffering efficiency is near the normal case.
    624    1.1       cgd  */
    625    1.7   mycroft int
    626   1.59  christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    627    1.1       cgd {
    628   1.75        ad 	struct lwp *l = curlwp; /* XXX */
    629   1.62  christos 	rlim_t maxcc;
    630   1.67  christos 	struct uidinfo *uidinfo;
    631    1.1       cgd 
    632  1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    633   1.91        ad 	KASSERT(sb->sb_so == so);
    634   1.91        ad 	KASSERT(sb_max_adj != 0);
    635   1.91        ad 
    636   1.58   thorpej 	if (cc == 0 || cc > sb_max_adj)
    637    1.1       cgd 		return (0);
    638   1.93  christos 
    639  1.105      elad 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    640   1.93  christos 
    641   1.93  christos 	uidinfo = so->so_uidinfo;
    642   1.67  christos 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    643   1.62  christos 		return 0;
    644    1.1       cgd 	sb->sb_mbmax = min(cc * 2, sb_max);
    645    1.1       cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    646    1.1       cgd 		sb->sb_lowat = sb->sb_hiwat;
    647    1.1       cgd 	return (1);
    648    1.1       cgd }
    649    1.1       cgd 
    650    1.1       cgd /*
    651   1.91        ad  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    652   1.91        ad  * that the socket is held locked here: see sorflush().
    653    1.1       cgd  */
    654    1.7   mycroft void
    655   1.59  christos sbrelease(struct sockbuf *sb, struct socket *so)
    656    1.1       cgd {
    657    1.1       cgd 
    658   1.91        ad 	KASSERT(sb->sb_so == so);
    659   1.91        ad 
    660    1.1       cgd 	sbflush(sb);
    661   1.87      yamt 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    662   1.59  christos 	sb->sb_mbmax = 0;
    663    1.1       cgd }
    664    1.1       cgd 
    665    1.1       cgd /*
    666    1.1       cgd  * Routines to add and remove
    667    1.1       cgd  * data from an mbuf queue.
    668    1.1       cgd  *
    669    1.1       cgd  * The routines sbappend() or sbappendrecord() are normally called to
    670    1.1       cgd  * append new mbufs to a socket buffer, after checking that adequate
    671    1.1       cgd  * space is available, comparing the function sbspace() with the amount
    672    1.1       cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    673    1.1       cgd  * that data supplied is treated as the beginning of a new record.
    674    1.1       cgd  * To place a sender's address, optional access rights, and data in a
    675    1.1       cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    676    1.1       cgd  * access rights and data in a socket receive buffer, sbappendrights()
    677    1.1       cgd  * should be used.  In either case, the new data begins a new record.
    678    1.1       cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    679    1.1       cgd  * for the caller that there will be enough space to store the data.
    680    1.1       cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    681    1.1       cgd  * to store additional information in.
    682    1.1       cgd  *
    683    1.1       cgd  * Reliable protocols may use the socket send buffer to hold data
    684    1.1       cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    685    1.1       cgd  * send buffer in a protocol with m_copy for output to a peer,
    686    1.1       cgd  * and then removing the data from the socket buffer with sbdrop()
    687    1.1       cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    688    1.1       cgd  */
    689    1.1       cgd 
    690   1.43   thorpej #ifdef SOCKBUF_DEBUG
    691   1.43   thorpej void
    692   1.43   thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
    693   1.43   thorpej {
    694   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    695   1.43   thorpej 
    696   1.91        ad 	KASSERT(solocked(sb->sb_so));
    697   1.91        ad 
    698   1.43   thorpej 	while (m && m->m_nextpkt)
    699   1.43   thorpej 		m = m->m_nextpkt;
    700   1.43   thorpej 
    701   1.43   thorpej 	if (m != sb->sb_lastrecord) {
    702   1.43   thorpej 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    703   1.43   thorpej 		    sb->sb_mb, sb->sb_lastrecord, m);
    704   1.43   thorpej 		printf("packet chain:\n");
    705   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    706   1.43   thorpej 			printf("\t%p\n", m);
    707   1.47    provos 		panic("sblastrecordchk from %s", where);
    708   1.43   thorpej 	}
    709   1.43   thorpej }
    710   1.43   thorpej 
    711   1.43   thorpej void
    712   1.43   thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
    713   1.43   thorpej {
    714   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    715   1.43   thorpej 	struct mbuf *n;
    716   1.43   thorpej 
    717   1.91        ad 	KASSERT(solocked(sb->sb_so));
    718   1.91        ad 
    719   1.43   thorpej 	while (m && m->m_nextpkt)
    720   1.43   thorpej 		m = m->m_nextpkt;
    721   1.43   thorpej 
    722   1.43   thorpej 	while (m && m->m_next)
    723   1.43   thorpej 		m = m->m_next;
    724   1.43   thorpej 
    725   1.43   thorpej 	if (m != sb->sb_mbtail) {
    726   1.43   thorpej 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    727   1.43   thorpej 		    sb->sb_mb, sb->sb_mbtail, m);
    728   1.43   thorpej 		printf("packet tree:\n");
    729   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    730   1.43   thorpej 			printf("\t");
    731   1.43   thorpej 			for (n = m; n != NULL; n = n->m_next)
    732   1.43   thorpej 				printf("%p ", n);
    733   1.43   thorpej 			printf("\n");
    734   1.43   thorpej 		}
    735   1.43   thorpej 		panic("sblastmbufchk from %s", where);
    736   1.43   thorpej 	}
    737   1.43   thorpej }
    738   1.43   thorpej #endif /* SOCKBUF_DEBUG */
    739   1.43   thorpej 
    740   1.63  jonathan /*
    741   1.63  jonathan  * Link a chain of records onto a socket buffer
    742   1.63  jonathan  */
    743   1.63  jonathan #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    744   1.43   thorpej do {									\
    745   1.43   thorpej 	if ((sb)->sb_lastrecord != NULL)				\
    746   1.43   thorpej 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    747   1.43   thorpej 	else								\
    748   1.43   thorpej 		(sb)->sb_mb = (m0);					\
    749   1.63  jonathan 	(sb)->sb_lastrecord = (mlast);					\
    750   1.43   thorpej } while (/*CONSTCOND*/0)
    751   1.43   thorpej 
    752   1.63  jonathan 
    753   1.63  jonathan #define	SBLINKRECORD(sb, m0)						\
    754   1.63  jonathan     SBLINKRECORDCHAIN(sb, m0, m0)
    755   1.63  jonathan 
    756    1.1       cgd /*
    757    1.1       cgd  * Append mbuf chain m to the last record in the
    758    1.1       cgd  * socket buffer sb.  The additional space associated
    759    1.1       cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    760    1.1       cgd  * discarded and mbufs are compacted where possible.
    761    1.1       cgd  */
    762    1.7   mycroft void
    763   1.37     lukem sbappend(struct sockbuf *sb, struct mbuf *m)
    764    1.1       cgd {
    765   1.37     lukem 	struct mbuf	*n;
    766    1.1       cgd 
    767   1.91        ad 	KASSERT(solocked(sb->sb_so));
    768   1.91        ad 
    769  1.115  christos 	if (m == NULL)
    770    1.1       cgd 		return;
    771   1.43   thorpej 
    772   1.49      matt #ifdef MBUFTRACE
    773   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    774   1.49      matt #endif
    775   1.49      matt 
    776   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 1");
    777   1.43   thorpej 
    778   1.43   thorpej 	if ((n = sb->sb_lastrecord) != NULL) {
    779   1.43   thorpej 		/*
    780   1.43   thorpej 		 * XXX Would like to simply use sb_mbtail here, but
    781   1.43   thorpej 		 * XXX I need to verify that I won't miss an EOR that
    782   1.43   thorpej 		 * XXX way.
    783   1.43   thorpej 		 */
    784    1.1       cgd 		do {
    785    1.1       cgd 			if (n->m_flags & M_EOR) {
    786    1.1       cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    787    1.1       cgd 				return;
    788    1.1       cgd 			}
    789    1.1       cgd 		} while (n->m_next && (n = n->m_next));
    790   1.43   thorpej 	} else {
    791   1.43   thorpej 		/*
    792   1.43   thorpej 		 * If this is the first record in the socket buffer, it's
    793   1.43   thorpej 		 * also the last record.
    794   1.43   thorpej 		 */
    795   1.43   thorpej 		sb->sb_lastrecord = m;
    796    1.1       cgd 	}
    797    1.1       cgd 	sbcompress(sb, m, n);
    798   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 2");
    799   1.43   thorpej }
    800   1.43   thorpej 
    801   1.43   thorpej /*
    802   1.43   thorpej  * This version of sbappend() should only be used when the caller
    803   1.43   thorpej  * absolutely knows that there will never be more than one record
    804   1.43   thorpej  * in the socket buffer, that is, a stream protocol (such as TCP).
    805   1.43   thorpej  */
    806   1.43   thorpej void
    807   1.44   thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
    808   1.43   thorpej {
    809   1.43   thorpej 
    810   1.91        ad 	KASSERT(solocked(sb->sb_so));
    811   1.43   thorpej 	KDASSERT(m->m_nextpkt == NULL);
    812   1.43   thorpej 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    813   1.43   thorpej 
    814   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
    815   1.43   thorpej 
    816   1.49      matt #ifdef MBUFTRACE
    817   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    818   1.49      matt #endif
    819   1.49      matt 
    820   1.43   thorpej 	sbcompress(sb, m, sb->sb_mbtail);
    821   1.43   thorpej 
    822   1.43   thorpej 	sb->sb_lastrecord = sb->sb_mb;
    823   1.43   thorpej 	SBLASTRECORDCHK(sb, __func__);
    824    1.1       cgd }
    825    1.1       cgd 
    826    1.1       cgd #ifdef SOCKBUF_DEBUG
    827    1.7   mycroft void
    828   1.37     lukem sbcheck(struct sockbuf *sb)
    829    1.1       cgd {
    830   1.91        ad 	struct mbuf	*m, *m2;
    831   1.43   thorpej 	u_long		len, mbcnt;
    832    1.1       cgd 
    833   1.91        ad 	KASSERT(solocked(sb->sb_so));
    834   1.91        ad 
    835   1.37     lukem 	len = 0;
    836   1.37     lukem 	mbcnt = 0;
    837   1.91        ad 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    838   1.91        ad 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    839   1.91        ad 			len += m2->m_len;
    840   1.91        ad 			mbcnt += MSIZE;
    841   1.91        ad 			if (m2->m_flags & M_EXT)
    842   1.91        ad 				mbcnt += m2->m_ext.ext_size;
    843   1.91        ad 			if (m2->m_nextpkt != NULL)
    844   1.91        ad 				panic("sbcheck nextpkt");
    845   1.91        ad 		}
    846    1.1       cgd 	}
    847    1.1       cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    848   1.43   thorpej 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    849    1.1       cgd 		    mbcnt, sb->sb_mbcnt);
    850    1.1       cgd 		panic("sbcheck");
    851    1.1       cgd 	}
    852    1.1       cgd }
    853    1.1       cgd #endif
    854    1.1       cgd 
    855    1.1       cgd /*
    856    1.1       cgd  * As above, except the mbuf chain
    857    1.1       cgd  * begins a new record.
    858    1.1       cgd  */
    859    1.7   mycroft void
    860   1.37     lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    861    1.1       cgd {
    862   1.37     lukem 	struct mbuf	*m;
    863    1.1       cgd 
    864   1.91        ad 	KASSERT(solocked(sb->sb_so));
    865   1.91        ad 
    866  1.115  christos 	if (m0 == NULL)
    867    1.1       cgd 		return;
    868   1.43   thorpej 
    869   1.49      matt #ifdef MBUFTRACE
    870   1.65  jonathan 	m_claimm(m0, sb->sb_mowner);
    871   1.49      matt #endif
    872    1.1       cgd 	/*
    873    1.1       cgd 	 * Put the first mbuf on the queue.
    874    1.1       cgd 	 * Note this permits zero length records.
    875    1.1       cgd 	 */
    876    1.1       cgd 	sballoc(sb, m0);
    877   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    878   1.43   thorpej 	SBLINKRECORD(sb, m0);
    879    1.1       cgd 	m = m0->m_next;
    880    1.1       cgd 	m0->m_next = 0;
    881    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    882    1.1       cgd 		m0->m_flags &= ~M_EOR;
    883    1.1       cgd 		m->m_flags |= M_EOR;
    884    1.1       cgd 	}
    885    1.1       cgd 	sbcompress(sb, m, m0);
    886   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    887    1.1       cgd }
    888    1.1       cgd 
    889    1.1       cgd /*
    890    1.1       cgd  * As above except that OOB data
    891    1.1       cgd  * is inserted at the beginning of the sockbuf,
    892    1.1       cgd  * but after any other OOB data.
    893    1.1       cgd  */
    894    1.7   mycroft void
    895   1.37     lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    896    1.1       cgd {
    897   1.37     lukem 	struct mbuf	*m, **mp;
    898    1.1       cgd 
    899   1.91        ad 	KASSERT(solocked(sb->sb_so));
    900   1.91        ad 
    901  1.115  christos 	if (m0 == NULL)
    902    1.1       cgd 		return;
    903   1.43   thorpej 
    904   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    905   1.43   thorpej 
    906   1.11  christos 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    907    1.1       cgd 	    again:
    908    1.1       cgd 		switch (m->m_type) {
    909    1.1       cgd 
    910    1.1       cgd 		case MT_OOBDATA:
    911    1.1       cgd 			continue;		/* WANT next train */
    912    1.1       cgd 
    913    1.1       cgd 		case MT_CONTROL:
    914   1.11  christos 			if ((m = m->m_next) != NULL)
    915    1.1       cgd 				goto again;	/* inspect THIS train further */
    916    1.1       cgd 		}
    917    1.1       cgd 		break;
    918    1.1       cgd 	}
    919    1.1       cgd 	/*
    920    1.1       cgd 	 * Put the first mbuf on the queue.
    921    1.1       cgd 	 * Note this permits zero length records.
    922    1.1       cgd 	 */
    923    1.1       cgd 	sballoc(sb, m0);
    924    1.1       cgd 	m0->m_nextpkt = *mp;
    925   1.43   thorpej 	if (*mp == NULL) {
    926   1.43   thorpej 		/* m0 is actually the new tail */
    927   1.43   thorpej 		sb->sb_lastrecord = m0;
    928   1.43   thorpej 	}
    929    1.1       cgd 	*mp = m0;
    930    1.1       cgd 	m = m0->m_next;
    931    1.1       cgd 	m0->m_next = 0;
    932    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    933    1.1       cgd 		m0->m_flags &= ~M_EOR;
    934    1.1       cgd 		m->m_flags |= M_EOR;
    935    1.1       cgd 	}
    936    1.1       cgd 	sbcompress(sb, m, m0);
    937   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    938    1.1       cgd }
    939    1.1       cgd 
    940    1.1       cgd /*
    941    1.1       cgd  * Append address and data, and optionally, control (ancillary) data
    942    1.1       cgd  * to the receive queue of a socket.  If present,
    943    1.1       cgd  * m0 must include a packet header with total length.
    944    1.1       cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
    945    1.1       cgd  */
    946    1.7   mycroft int
    947   1.61      matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    948   1.37     lukem 	struct mbuf *control)
    949    1.1       cgd {
    950   1.43   thorpej 	struct mbuf	*m, *n, *nlast;
    951   1.50      fvdl 	int		space, len;
    952    1.1       cgd 
    953   1.91        ad 	KASSERT(solocked(sb->sb_so));
    954   1.91        ad 
    955   1.37     lukem 	space = asa->sa_len;
    956   1.37     lukem 
    957   1.49      matt 	if (m0 != NULL) {
    958   1.49      matt 		if ((m0->m_flags & M_PKTHDR) == 0)
    959   1.49      matt 			panic("sbappendaddr");
    960    1.1       cgd 		space += m0->m_pkthdr.len;
    961   1.49      matt #ifdef MBUFTRACE
    962   1.65  jonathan 		m_claimm(m0, sb->sb_mowner);
    963   1.49      matt #endif
    964   1.49      matt 	}
    965    1.1       cgd 	for (n = control; n; n = n->m_next) {
    966    1.1       cgd 		space += n->m_len;
    967   1.49      matt 		MCLAIM(n, sb->sb_mowner);
    968  1.115  christos 		if (n->m_next == NULL)	/* keep pointer to last control buf */
    969    1.1       cgd 			break;
    970    1.1       cgd 	}
    971    1.1       cgd 	if (space > sbspace(sb))
    972    1.1       cgd 		return (0);
    973  1.115  christos 	m = m_get(M_DONTWAIT, MT_SONAME);
    974  1.115  christos 	if (m == NULL)
    975    1.1       cgd 		return (0);
    976   1.49      matt 	MCLAIM(m, sb->sb_mowner);
    977   1.50      fvdl 	/*
    978   1.50      fvdl 	 * XXX avoid 'comparison always true' warning which isn't easily
    979   1.50      fvdl 	 * avoided.
    980   1.50      fvdl 	 */
    981   1.50      fvdl 	len = asa->sa_len;
    982   1.50      fvdl 	if (len > MLEN) {
    983   1.20   thorpej 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    984   1.20   thorpej 		if ((m->m_flags & M_EXT) == 0) {
    985   1.20   thorpej 			m_free(m);
    986   1.20   thorpej 			return (0);
    987   1.20   thorpej 		}
    988   1.20   thorpej 	}
    989    1.1       cgd 	m->m_len = asa->sa_len;
    990   1.82  christos 	memcpy(mtod(m, void *), asa, asa->sa_len);
    991    1.1       cgd 	if (n)
    992    1.1       cgd 		n->m_next = m0;		/* concatenate data to control */
    993    1.1       cgd 	else
    994    1.1       cgd 		control = m0;
    995    1.1       cgd 	m->m_next = control;
    996   1.43   thorpej 
    997   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    998   1.43   thorpej 
    999   1.43   thorpej 	for (n = m; n->m_next != NULL; n = n->m_next)
   1000    1.1       cgd 		sballoc(sb, n);
   1001   1.43   thorpej 	sballoc(sb, n);
   1002   1.43   thorpej 	nlast = n;
   1003   1.43   thorpej 	SBLINKRECORD(sb, m);
   1004   1.43   thorpej 
   1005   1.43   thorpej 	sb->sb_mbtail = nlast;
   1006   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendaddr");
   1007   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
   1008   1.43   thorpej 
   1009    1.1       cgd 	return (1);
   1010    1.1       cgd }
   1011    1.1       cgd 
   1012   1.63  jonathan /*
   1013   1.63  jonathan  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
   1014   1.63  jonathan  * an mbuf chain.
   1015   1.63  jonathan  */
   1016   1.70     perry static inline struct mbuf *
   1017   1.81      yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
   1018   1.64  jonathan 		   const struct sockaddr *asa)
   1019   1.63  jonathan {
   1020   1.63  jonathan 	struct mbuf *m;
   1021   1.64  jonathan 	const int salen = asa->sa_len;
   1022   1.63  jonathan 
   1023   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1024   1.91        ad 
   1025   1.63  jonathan 	/* only the first in each chain need be a pkthdr */
   1026  1.115  christos 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
   1027  1.115  christos 	if (m == NULL)
   1028  1.115  christos 		return NULL;
   1029   1.63  jonathan 	MCLAIM(m, sb->sb_mowner);
   1030   1.64  jonathan #ifdef notyet
   1031   1.64  jonathan 	if (salen > MHLEN) {
   1032   1.64  jonathan 		MEXTMALLOC(m, salen, M_NOWAIT);
   1033   1.64  jonathan 		if ((m->m_flags & M_EXT) == 0) {
   1034   1.64  jonathan 			m_free(m);
   1035  1.115  christos 			return NULL;
   1036   1.64  jonathan 		}
   1037   1.64  jonathan 	}
   1038   1.64  jonathan #else
   1039   1.64  jonathan 	KASSERT(salen <= MHLEN);
   1040   1.64  jonathan #endif
   1041   1.64  jonathan 	m->m_len = salen;
   1042   1.82  christos 	memcpy(mtod(m, void *), asa, salen);
   1043   1.63  jonathan 	m->m_next = m0;
   1044   1.64  jonathan 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1045   1.63  jonathan 
   1046   1.63  jonathan 	return m;
   1047   1.63  jonathan }
   1048   1.63  jonathan 
   1049   1.63  jonathan int
   1050   1.63  jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1051   1.63  jonathan 		  struct mbuf *m0, int sbprio)
   1052   1.63  jonathan {
   1053   1.63  jonathan 	struct mbuf *m, *n, *n0, *nlast;
   1054   1.63  jonathan 	int error;
   1055   1.63  jonathan 
   1056   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1057   1.91        ad 
   1058   1.63  jonathan 	/*
   1059   1.63  jonathan 	 * XXX sbprio reserved for encoding priority of this* request:
   1060   1.63  jonathan 	 *  SB_PRIO_NONE --> honour normal sb limits
   1061   1.63  jonathan 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1062   1.63  jonathan 	 *	take whole chain. Intended for large requests
   1063   1.63  jonathan 	 *      that should be delivered atomically (all, or none).
   1064   1.63  jonathan 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1065   1.63  jonathan 	 *       over normal socket limits, for messages indicating
   1066   1.63  jonathan 	 *       buffer overflow in earlier normal/lower-priority messages
   1067   1.63  jonathan 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1068   1.63  jonathan 	 *       Intended for  kernel-generated messages only.
   1069   1.63  jonathan 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1070   1.63  jonathan 	 */
   1071   1.63  jonathan 	(void)sbprio;
   1072   1.63  jonathan 
   1073   1.63  jonathan 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1074   1.63  jonathan 		panic("sbappendaddrchain");
   1075   1.63  jonathan 
   1076  1.114    martin #ifdef notyet
   1077   1.63  jonathan 	space = sbspace(sb);
   1078   1.66     perry 
   1079   1.66     perry 	/*
   1080   1.63  jonathan 	 * Enforce SB_PRIO_* limits as described above.
   1081   1.63  jonathan 	 */
   1082   1.63  jonathan #endif
   1083   1.63  jonathan 
   1084   1.63  jonathan 	n0 = NULL;
   1085   1.63  jonathan 	nlast = NULL;
   1086   1.63  jonathan 	for (m = m0; m; m = m->m_nextpkt) {
   1087   1.63  jonathan 		struct mbuf *np;
   1088   1.63  jonathan 
   1089   1.64  jonathan #ifdef MBUFTRACE
   1090   1.65  jonathan 		m_claimm(m, sb->sb_mowner);
   1091   1.64  jonathan #endif
   1092   1.64  jonathan 
   1093   1.63  jonathan 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1094   1.64  jonathan 	  	n = m_prepend_sockaddr(sb, m, asa);
   1095   1.63  jonathan 		if (n == NULL) {
   1096   1.63  jonathan 			error = ENOBUFS;
   1097   1.63  jonathan 			goto bad;
   1098   1.63  jonathan 		}
   1099   1.63  jonathan 
   1100   1.63  jonathan 		/* Append record (asa+m) to end of new chain n0 */
   1101   1.63  jonathan 		if (n0 == NULL) {
   1102   1.63  jonathan 			n0 = n;
   1103   1.63  jonathan 		} else {
   1104   1.63  jonathan 			nlast->m_nextpkt = n;
   1105   1.63  jonathan 		}
   1106   1.63  jonathan 		/* Keep track of last record on new chain */
   1107   1.63  jonathan 		nlast = n;
   1108   1.63  jonathan 
   1109   1.63  jonathan 		for (np = n; np; np = np->m_next)
   1110   1.63  jonathan 			sballoc(sb, np);
   1111   1.63  jonathan 	}
   1112   1.63  jonathan 
   1113   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1114   1.64  jonathan 
   1115   1.63  jonathan 	/* Drop the entire chain of (asa+m) records onto the socket */
   1116   1.63  jonathan 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1117   1.64  jonathan 
   1118   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1119   1.64  jonathan 
   1120   1.63  jonathan 	for (m = nlast; m->m_next; m = m->m_next)
   1121   1.63  jonathan 		;
   1122   1.63  jonathan 	sb->sb_mbtail = m;
   1123   1.64  jonathan 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1124   1.64  jonathan 
   1125   1.63  jonathan 	return (1);
   1126   1.63  jonathan 
   1127   1.63  jonathan bad:
   1128   1.64  jonathan 	/*
   1129   1.64  jonathan 	 * On error, free the prepended addreseses. For consistency
   1130   1.64  jonathan 	 * with sbappendaddr(), leave it to our caller to free
   1131   1.64  jonathan 	 * the input record chain passed to us as m0.
   1132   1.64  jonathan 	 */
   1133   1.64  jonathan 	while ((n = n0) != NULL) {
   1134   1.64  jonathan 	  	struct mbuf *np;
   1135   1.64  jonathan 
   1136   1.64  jonathan 		/* Undo the sballoc() of this record */
   1137   1.64  jonathan 		for (np = n; np; np = np->m_next)
   1138   1.64  jonathan 			sbfree(sb, np);
   1139   1.64  jonathan 
   1140   1.64  jonathan 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1141   1.64  jonathan 		MFREE(n, np);		/* free prepended address (not data) */
   1142   1.64  jonathan 	}
   1143  1.114    martin 	return error;
   1144   1.63  jonathan }
   1145   1.63  jonathan 
   1146   1.63  jonathan 
   1147    1.7   mycroft int
   1148   1.37     lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1149    1.1       cgd {
   1150   1.43   thorpej 	struct mbuf	*m, *mlast, *n;
   1151   1.37     lukem 	int		space;
   1152    1.1       cgd 
   1153   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1154   1.91        ad 
   1155   1.37     lukem 	space = 0;
   1156  1.115  christos 	if (control == NULL)
   1157    1.1       cgd 		panic("sbappendcontrol");
   1158    1.1       cgd 	for (m = control; ; m = m->m_next) {
   1159    1.1       cgd 		space += m->m_len;
   1160   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1161  1.115  christos 		if (m->m_next == NULL)
   1162    1.1       cgd 			break;
   1163    1.1       cgd 	}
   1164    1.1       cgd 	n = m;			/* save pointer to last control buffer */
   1165   1.49      matt 	for (m = m0; m; m = m->m_next) {
   1166   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1167    1.1       cgd 		space += m->m_len;
   1168   1.49      matt 	}
   1169    1.1       cgd 	if (space > sbspace(sb))
   1170    1.1       cgd 		return (0);
   1171    1.1       cgd 	n->m_next = m0;			/* concatenate data to control */
   1172   1.43   thorpej 
   1173   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1174   1.43   thorpej 
   1175   1.43   thorpej 	for (m = control; m->m_next != NULL; m = m->m_next)
   1176    1.1       cgd 		sballoc(sb, m);
   1177   1.43   thorpej 	sballoc(sb, m);
   1178   1.43   thorpej 	mlast = m;
   1179   1.43   thorpej 	SBLINKRECORD(sb, control);
   1180   1.43   thorpej 
   1181   1.43   thorpej 	sb->sb_mbtail = mlast;
   1182   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1183   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1184   1.43   thorpej 
   1185    1.1       cgd 	return (1);
   1186    1.1       cgd }
   1187    1.1       cgd 
   1188    1.1       cgd /*
   1189    1.1       cgd  * Compress mbuf chain m into the socket
   1190    1.1       cgd  * buffer sb following mbuf n.  If n
   1191    1.1       cgd  * is null, the buffer is presumed empty.
   1192    1.1       cgd  */
   1193    1.7   mycroft void
   1194   1.37     lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1195    1.1       cgd {
   1196   1.37     lukem 	int		eor;
   1197   1.37     lukem 	struct mbuf	*o;
   1198    1.1       cgd 
   1199   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1200   1.91        ad 
   1201   1.37     lukem 	eor = 0;
   1202    1.1       cgd 	while (m) {
   1203    1.1       cgd 		eor |= m->m_flags & M_EOR;
   1204    1.1       cgd 		if (m->m_len == 0 &&
   1205    1.1       cgd 		    (eor == 0 ||
   1206    1.1       cgd 		     (((o = m->m_next) || (o = n)) &&
   1207    1.1       cgd 		      o->m_type == m->m_type))) {
   1208   1.46   thorpej 			if (sb->sb_lastrecord == m)
   1209   1.46   thorpej 				sb->sb_lastrecord = m->m_next;
   1210    1.1       cgd 			m = m_free(m);
   1211    1.1       cgd 			continue;
   1212    1.1       cgd 		}
   1213   1.40   thorpej 		if (n && (n->m_flags & M_EOR) == 0 &&
   1214   1.40   thorpej 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1215   1.40   thorpej 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1216   1.40   thorpej 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1217   1.40   thorpej 		    n->m_type == m->m_type) {
   1218   1.82  christos 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1219    1.1       cgd 			    (unsigned)m->m_len);
   1220    1.1       cgd 			n->m_len += m->m_len;
   1221    1.1       cgd 			sb->sb_cc += m->m_len;
   1222    1.1       cgd 			m = m_free(m);
   1223    1.1       cgd 			continue;
   1224    1.1       cgd 		}
   1225    1.1       cgd 		if (n)
   1226    1.1       cgd 			n->m_next = m;
   1227    1.1       cgd 		else
   1228    1.1       cgd 			sb->sb_mb = m;
   1229   1.43   thorpej 		sb->sb_mbtail = m;
   1230    1.1       cgd 		sballoc(sb, m);
   1231    1.1       cgd 		n = m;
   1232    1.1       cgd 		m->m_flags &= ~M_EOR;
   1233    1.1       cgd 		m = m->m_next;
   1234    1.1       cgd 		n->m_next = 0;
   1235    1.1       cgd 	}
   1236    1.1       cgd 	if (eor) {
   1237    1.1       cgd 		if (n)
   1238    1.1       cgd 			n->m_flags |= eor;
   1239    1.1       cgd 		else
   1240   1.15  christos 			printf("semi-panic: sbcompress\n");
   1241    1.1       cgd 	}
   1242   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
   1243    1.1       cgd }
   1244    1.1       cgd 
   1245    1.1       cgd /*
   1246    1.1       cgd  * Free all mbufs in a sockbuf.
   1247    1.1       cgd  * Check that all resources are reclaimed.
   1248    1.1       cgd  */
   1249    1.7   mycroft void
   1250   1.37     lukem sbflush(struct sockbuf *sb)
   1251    1.1       cgd {
   1252    1.1       cgd 
   1253   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1254   1.43   thorpej 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1255   1.43   thorpej 
   1256    1.1       cgd 	while (sb->sb_mbcnt)
   1257    1.1       cgd 		sbdrop(sb, (int)sb->sb_cc);
   1258   1.43   thorpej 
   1259   1.43   thorpej 	KASSERT(sb->sb_cc == 0);
   1260   1.43   thorpej 	KASSERT(sb->sb_mb == NULL);
   1261   1.43   thorpej 	KASSERT(sb->sb_mbtail == NULL);
   1262   1.43   thorpej 	KASSERT(sb->sb_lastrecord == NULL);
   1263    1.1       cgd }
   1264    1.1       cgd 
   1265    1.1       cgd /*
   1266    1.1       cgd  * Drop data from (the front of) a sockbuf.
   1267    1.1       cgd  */
   1268    1.7   mycroft void
   1269   1.37     lukem sbdrop(struct sockbuf *sb, int len)
   1270    1.1       cgd {
   1271   1.37     lukem 	struct mbuf	*m, *mn, *next;
   1272    1.1       cgd 
   1273   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1274   1.91        ad 
   1275  1.115  christos 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
   1276    1.1       cgd 	while (len > 0) {
   1277  1.115  christos 		if (m == NULL) {
   1278  1.115  christos 			if (next == NULL)
   1279  1.112      matt 				panic("sbdrop(%p,%d): cc=%lu",
   1280  1.112      matt 				    sb, len, sb->sb_cc);
   1281    1.1       cgd 			m = next;
   1282    1.1       cgd 			next = m->m_nextpkt;
   1283    1.1       cgd 			continue;
   1284    1.1       cgd 		}
   1285    1.1       cgd 		if (m->m_len > len) {
   1286    1.1       cgd 			m->m_len -= len;
   1287    1.1       cgd 			m->m_data += len;
   1288    1.1       cgd 			sb->sb_cc -= len;
   1289    1.1       cgd 			break;
   1290    1.1       cgd 		}
   1291    1.1       cgd 		len -= m->m_len;
   1292    1.1       cgd 		sbfree(sb, m);
   1293    1.1       cgd 		MFREE(m, mn);
   1294    1.1       cgd 		m = mn;
   1295    1.1       cgd 	}
   1296    1.1       cgd 	while (m && m->m_len == 0) {
   1297    1.1       cgd 		sbfree(sb, m);
   1298    1.1       cgd 		MFREE(m, mn);
   1299    1.1       cgd 		m = mn;
   1300    1.1       cgd 	}
   1301    1.1       cgd 	if (m) {
   1302    1.1       cgd 		sb->sb_mb = m;
   1303    1.1       cgd 		m->m_nextpkt = next;
   1304    1.1       cgd 	} else
   1305    1.1       cgd 		sb->sb_mb = next;
   1306   1.43   thorpej 	/*
   1307   1.45   thorpej 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1308   1.43   thorpej 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1309   1.43   thorpej 	 * part of the last record.
   1310   1.43   thorpej 	 */
   1311   1.43   thorpej 	m = sb->sb_mb;
   1312   1.43   thorpej 	if (m == NULL) {
   1313   1.43   thorpej 		sb->sb_mbtail = NULL;
   1314   1.43   thorpej 		sb->sb_lastrecord = NULL;
   1315   1.43   thorpej 	} else if (m->m_nextpkt == NULL)
   1316   1.43   thorpej 		sb->sb_lastrecord = m;
   1317    1.1       cgd }
   1318    1.1       cgd 
   1319    1.1       cgd /*
   1320    1.1       cgd  * Drop a record off the front of a sockbuf
   1321    1.1       cgd  * and move the next record to the front.
   1322    1.1       cgd  */
   1323    1.7   mycroft void
   1324   1.37     lukem sbdroprecord(struct sockbuf *sb)
   1325    1.1       cgd {
   1326   1.37     lukem 	struct mbuf	*m, *mn;
   1327    1.1       cgd 
   1328   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1329   1.91        ad 
   1330    1.1       cgd 	m = sb->sb_mb;
   1331    1.1       cgd 	if (m) {
   1332    1.1       cgd 		sb->sb_mb = m->m_nextpkt;
   1333    1.1       cgd 		do {
   1334    1.1       cgd 			sbfree(sb, m);
   1335    1.1       cgd 			MFREE(m, mn);
   1336   1.11  christos 		} while ((m = mn) != NULL);
   1337    1.1       cgd 	}
   1338   1.45   thorpej 	SB_EMPTY_FIXUP(sb);
   1339   1.19   thorpej }
   1340   1.19   thorpej 
   1341   1.19   thorpej /*
   1342   1.19   thorpej  * Create a "control" mbuf containing the specified data
   1343   1.19   thorpej  * with the specified type for presentation on a socket buffer.
   1344   1.19   thorpej  */
   1345   1.19   thorpej struct mbuf *
   1346  1.111  christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1347   1.19   thorpej {
   1348   1.37     lukem 	struct cmsghdr	*cp;
   1349   1.37     lukem 	struct mbuf	*m;
   1350  1.111  christos 	int space = CMSG_SPACE(size);
   1351   1.19   thorpej 
   1352  1.111  christos 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1353  1.111  christos 		printf("%s: message too large %d\n", __func__, space);
   1354   1.30    itojun 		return NULL;
   1355   1.30    itojun 	}
   1356   1.30    itojun 
   1357  1.111  christos 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1358  1.111  christos 		return NULL;
   1359  1.111  christos 	if (space > MLEN) {
   1360  1.111  christos 		if (space > MCLBYTES)
   1361  1.111  christos 			MEXTMALLOC(m, space, M_WAITOK);
   1362  1.111  christos 		else
   1363  1.111  christos 			MCLGET(m, flags);
   1364   1.30    itojun 		if ((m->m_flags & M_EXT) == 0) {
   1365   1.30    itojun 			m_free(m);
   1366   1.30    itojun 			return NULL;
   1367   1.30    itojun 		}
   1368   1.30    itojun 	}
   1369   1.19   thorpej 	cp = mtod(m, struct cmsghdr *);
   1370  1.111  christos 	*p = CMSG_DATA(cp);
   1371  1.111  christos 	m->m_len = space;
   1372   1.35    itojun 	cp->cmsg_len = CMSG_LEN(size);
   1373   1.19   thorpej 	cp->cmsg_level = level;
   1374   1.19   thorpej 	cp->cmsg_type = type;
   1375  1.111  christos 	return m;
   1376  1.111  christos }
   1377  1.111  christos 
   1378  1.111  christos struct mbuf *
   1379  1.111  christos sbcreatecontrol(void *p, int size, int type, int level)
   1380  1.111  christos {
   1381  1.111  christos 	struct mbuf *m;
   1382  1.111  christos 	void *v;
   1383  1.111  christos 
   1384  1.111  christos 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1385  1.111  christos 	if (m == NULL)
   1386  1.111  christos 		return NULL;
   1387  1.111  christos 	memcpy(v, p, size);
   1388  1.111  christos 	return m;
   1389    1.1       cgd }
   1390   1.91        ad 
   1391   1.91        ad void
   1392   1.91        ad solockretry(struct socket *so, kmutex_t *lock)
   1393   1.91        ad {
   1394   1.91        ad 
   1395   1.91        ad 	while (lock != so->so_lock) {
   1396   1.91        ad 		mutex_exit(lock);
   1397   1.91        ad 		lock = so->so_lock;
   1398   1.91        ad 		mutex_enter(lock);
   1399   1.91        ad 	}
   1400   1.91        ad }
   1401   1.91        ad 
   1402   1.91        ad bool
   1403   1.91        ad solocked(struct socket *so)
   1404   1.91        ad {
   1405   1.91        ad 
   1406   1.91        ad 	return mutex_owned(so->so_lock);
   1407   1.91        ad }
   1408   1.91        ad 
   1409   1.91        ad bool
   1410   1.91        ad solocked2(struct socket *so1, struct socket *so2)
   1411   1.91        ad {
   1412   1.91        ad 	kmutex_t *lock;
   1413   1.91        ad 
   1414   1.91        ad 	lock = so1->so_lock;
   1415   1.91        ad 	if (lock != so2->so_lock)
   1416   1.91        ad 		return false;
   1417   1.91        ad 	return mutex_owned(lock);
   1418   1.91        ad }
   1419   1.91        ad 
   1420   1.91        ad /*
   1421  1.116     rmind  * sosetlock: assign a default lock to a new socket.
   1422   1.91        ad  */
   1423   1.91        ad void
   1424   1.91        ad sosetlock(struct socket *so)
   1425   1.91        ad {
   1426  1.116     rmind 	if (so->so_lock == NULL) {
   1427  1.116     rmind 		kmutex_t *lock = softnet_lock;
   1428   1.91        ad 
   1429   1.91        ad 		so->so_lock = lock;
   1430   1.91        ad 		mutex_obj_hold(lock);
   1431   1.91        ad 		mutex_enter(lock);
   1432   1.91        ad 	}
   1433   1.91        ad 	KASSERT(solocked(so));
   1434   1.91        ad }
   1435   1.91        ad 
   1436   1.91        ad /*
   1437   1.91        ad  * Set lock on sockbuf sb; sleep if lock is already held.
   1438   1.91        ad  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1439   1.91        ad  * Returns error without lock if sleep is interrupted.
   1440   1.91        ad  */
   1441   1.91        ad int
   1442   1.91        ad sblock(struct sockbuf *sb, int wf)
   1443   1.91        ad {
   1444   1.91        ad 	struct socket *so;
   1445   1.91        ad 	kmutex_t *lock;
   1446   1.91        ad 	int error;
   1447   1.91        ad 
   1448   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1449   1.91        ad 
   1450   1.91        ad 	for (;;) {
   1451   1.91        ad 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1452   1.91        ad 			sb->sb_flags |= SB_LOCK;
   1453   1.91        ad 			return 0;
   1454   1.91        ad 		}
   1455   1.91        ad 		if (wf != M_WAITOK)
   1456   1.91        ad 			return EWOULDBLOCK;
   1457   1.91        ad 		so = sb->sb_so;
   1458   1.91        ad 		lock = so->so_lock;
   1459   1.91        ad 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1460   1.91        ad 			cv_wait(&so->so_cv, lock);
   1461   1.91        ad 			error = 0;
   1462   1.91        ad 		} else
   1463   1.91        ad 			error = cv_wait_sig(&so->so_cv, lock);
   1464   1.91        ad 		if (__predict_false(lock != so->so_lock))
   1465   1.91        ad 			solockretry(so, lock);
   1466   1.91        ad 		if (error != 0)
   1467   1.91        ad 			return error;
   1468   1.91        ad 	}
   1469   1.91        ad }
   1470   1.91        ad 
   1471   1.91        ad void
   1472   1.91        ad sbunlock(struct sockbuf *sb)
   1473   1.91        ad {
   1474   1.91        ad 	struct socket *so;
   1475   1.91        ad 
   1476   1.91        ad 	so = sb->sb_so;
   1477   1.91        ad 
   1478   1.91        ad 	KASSERT(solocked(so));
   1479   1.91        ad 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1480   1.91        ad 
   1481   1.91        ad 	sb->sb_flags &= ~SB_LOCK;
   1482   1.91        ad 	cv_broadcast(&so->so_cv);
   1483   1.91        ad }
   1484   1.91        ad 
   1485   1.91        ad int
   1486  1.121      matt sowait(struct socket *so, bool catch_p, int timo)
   1487   1.91        ad {
   1488   1.91        ad 	kmutex_t *lock;
   1489   1.91        ad 	int error;
   1490   1.91        ad 
   1491   1.91        ad 	KASSERT(solocked(so));
   1492  1.121      matt 	KASSERT(catch_p || timo != 0);
   1493   1.91        ad 
   1494   1.91        ad 	lock = so->so_lock;
   1495  1.121      matt 	if (catch_p)
   1496  1.101      yamt 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1497  1.101      yamt 	else
   1498  1.101      yamt 		error = cv_timedwait(&so->so_cv, lock, timo);
   1499   1.91        ad 	if (__predict_false(lock != so->so_lock))
   1500   1.91        ad 		solockretry(so, lock);
   1501   1.91        ad 	return error;
   1502   1.91        ad }
   1503