Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.124.8.1
      1  1.124.8.1    bouyer /*	$NetBSD: uipc_socket2.c,v 1.124.8.1 2018/04/09 13:34:10 bouyer Exp $	*/
      2       1.91        ad 
      3       1.91        ad /*-
      4       1.91        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5       1.91        ad  * All rights reserved.
      6       1.91        ad  *
      7       1.91        ad  * Redistribution and use in source and binary forms, with or without
      8       1.91        ad  * modification, are permitted provided that the following conditions
      9       1.91        ad  * are met:
     10       1.91        ad  * 1. Redistributions of source code must retain the above copyright
     11       1.91        ad  *    notice, this list of conditions and the following disclaimer.
     12       1.91        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.91        ad  *    notice, this list of conditions and the following disclaimer in the
     14       1.91        ad  *    documentation and/or other materials provided with the distribution.
     15       1.91        ad  *
     16       1.91        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17       1.91        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18       1.91        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19       1.91        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20       1.91        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21       1.91        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22       1.91        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23       1.91        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24       1.91        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25       1.91        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26       1.91        ad  * POSSIBILITY OF SUCH DAMAGE.
     27       1.91        ad  */
     28        1.9       cgd 
     29        1.1       cgd /*
     30        1.7   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31        1.7   mycroft  *	The Regents of the University of California.  All rights reserved.
     32        1.1       cgd  *
     33        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     34        1.1       cgd  * modification, are permitted provided that the following conditions
     35        1.1       cgd  * are met:
     36        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     37        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     38        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     39        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     40        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     41       1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     42        1.1       cgd  *    may be used to endorse or promote products derived from this software
     43        1.1       cgd  *    without specific prior written permission.
     44        1.1       cgd  *
     45        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55        1.1       cgd  * SUCH DAMAGE.
     56        1.1       cgd  *
     57       1.23      fvdl  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58        1.1       cgd  */
     59       1.42     lukem 
     60       1.42     lukem #include <sys/cdefs.h>
     61  1.124.8.1    bouyer __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.124.8.1 2018/04/09 13:34:10 bouyer Exp $");
     62       1.51    martin 
     63      1.122     pooka #ifdef _KERNEL_OPT
     64       1.51    martin #include "opt_mbuftrace.h"
     65       1.58   thorpej #include "opt_sb_max.h"
     66      1.122     pooka #endif
     67        1.1       cgd 
     68        1.5   mycroft #include <sys/param.h>
     69        1.5   mycroft #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.5   mycroft #include <sys/file.h>
     72        1.5   mycroft #include <sys/buf.h>
     73        1.5   mycroft #include <sys/mbuf.h>
     74        1.5   mycroft #include <sys/protosw.h>
     75       1.91        ad #include <sys/domain.h>
     76       1.55  christos #include <sys/poll.h>
     77        1.5   mycroft #include <sys/socket.h>
     78        1.5   mycroft #include <sys/socketvar.h>
     79       1.11  christos #include <sys/signalvar.h>
     80       1.71      elad #include <sys/kauth.h>
     81       1.91        ad #include <sys/pool.h>
     82       1.98     pooka #include <sys/uidinfo.h>
     83        1.1       cgd 
     84        1.1       cgd /*
     85       1.91        ad  * Primitive routines for operating on sockets and socket buffers.
     86       1.91        ad  *
     87      1.116     rmind  * Connection life-cycle:
     88      1.116     rmind  *
     89      1.116     rmind  *	Normal sequence from the active (originating) side:
     90      1.116     rmind  *
     91      1.116     rmind  *	- soisconnecting() is called during processing of connect() call,
     92      1.116     rmind  *	- resulting in an eventual call to soisconnected() if/when the
     93      1.116     rmind  *	  connection is established.
     94      1.116     rmind  *
     95      1.116     rmind  *	When the connection is torn down during processing of disconnect():
     96      1.116     rmind  *
     97      1.116     rmind  *	- soisdisconnecting() is called and,
     98      1.116     rmind  *	- soisdisconnected() is called when the connection to the peer
     99      1.116     rmind  *	  is totally severed.
    100      1.116     rmind  *
    101      1.116     rmind  *	The semantics of these routines are such that connectionless protocols
    102      1.116     rmind  *	can call soisconnected() and soisdisconnected() only, bypassing the
    103      1.116     rmind  *	in-progress calls when setting up a ``connection'' takes no time.
    104      1.116     rmind  *
    105      1.116     rmind  *	From the passive side, a socket is created with two queues of sockets:
    106      1.116     rmind  *
    107      1.116     rmind  *	- so_q0 (0) for partial connections (i.e. connections in progress)
    108      1.116     rmind  *	- so_q (1) for connections already made and awaiting user acceptance.
    109      1.116     rmind  *
    110      1.116     rmind  *	As a protocol is preparing incoming connections, it creates a socket
    111      1.116     rmind  *	structure queued on so_q0 by calling sonewconn().  When the connection
    112      1.116     rmind  *	is established, soisconnected() is called, and transfers the
    113      1.116     rmind  *	socket structure to so_q, making it available to accept().
    114      1.116     rmind  *
    115      1.116     rmind  *	If a socket is closed with sockets on either so_q0 or so_q, these
    116      1.116     rmind  *	sockets are dropped.
    117      1.116     rmind  *
    118       1.91        ad  * Locking rules and assumptions:
    119       1.91        ad  *
    120       1.91        ad  * o socket::so_lock can change on the fly.  The low level routines used
    121       1.91        ad  *   to lock sockets are aware of this.  When so_lock is acquired, the
    122       1.91        ad  *   routine locking must check to see if so_lock still points to the
    123       1.91        ad  *   lock that was acquired.  If so_lock has changed in the meantime, the
    124      1.116     rmind  *   now irrelevant lock that was acquired must be dropped and the lock
    125       1.91        ad  *   operation retried.  Although not proven here, this is completely safe
    126       1.91        ad  *   on a multiprocessor system, even with relaxed memory ordering, given
    127       1.91        ad  *   the next two rules:
    128       1.91        ad  *
    129       1.91        ad  * o In order to mutate so_lock, the lock pointed to by the current value
    130       1.91        ad  *   of so_lock must be held: i.e., the socket must be held locked by the
    131       1.91        ad  *   changing thread.  The thread must issue membar_exit() to prevent
    132       1.91        ad  *   memory accesses being reordered, and can set so_lock to the desired
    133       1.91        ad  *   value.  If the lock pointed to by the new value of so_lock is not
    134       1.91        ad  *   held by the changing thread, the socket must then be considered
    135       1.91        ad  *   unlocked.
    136       1.91        ad  *
    137       1.91        ad  * o If so_lock is mutated, and the previous lock referred to by so_lock
    138       1.91        ad  *   could still be visible to other threads in the system (e.g. via file
    139       1.91        ad  *   descriptor or protocol-internal reference), then the old lock must
    140       1.91        ad  *   remain valid until the socket and/or protocol control block has been
    141       1.91        ad  *   torn down.
    142       1.91        ad  *
    143       1.91        ad  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    144       1.91        ad  *   connecting), then locking the socket must also lock the socket pointed
    145       1.91        ad  *   to by so_head: their lock pointers must match.
    146       1.91        ad  *
    147       1.91        ad  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    148       1.91        ad  *   locking the socket must also lock the sockets attached to both queues.
    149       1.91        ad  *   Again, their lock pointers must match.
    150       1.91        ad  *
    151      1.116     rmind  * o Beyond the initial lock assignment in socreate(), assigning locks to
    152       1.91        ad  *   sockets is the responsibility of the individual protocols / protocol
    153       1.91        ad  *   domains.
    154        1.1       cgd  */
    155        1.1       cgd 
    156      1.116     rmind static pool_cache_t	socket_cache;
    157      1.116     rmind u_long			sb_max = SB_MAX;/* maximum socket buffer size */
    158      1.116     rmind static u_long		sb_max_adj;	/* adjusted sb_max */
    159        1.1       cgd 
    160        1.7   mycroft void
    161       1.37     lukem soisconnecting(struct socket *so)
    162        1.1       cgd {
    163        1.1       cgd 
    164       1.91        ad 	KASSERT(solocked(so));
    165       1.91        ad 
    166        1.1       cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    167        1.1       cgd 	so->so_state |= SS_ISCONNECTING;
    168        1.1       cgd }
    169        1.1       cgd 
    170        1.7   mycroft void
    171       1.37     lukem soisconnected(struct socket *so)
    172        1.1       cgd {
    173       1.37     lukem 	struct socket	*head;
    174        1.1       cgd 
    175       1.37     lukem 	head = so->so_head;
    176       1.91        ad 
    177       1.91        ad 	KASSERT(solocked(so));
    178       1.91        ad 	KASSERT(head == NULL || solocked2(so, head));
    179       1.91        ad 
    180      1.113     rmind 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    181        1.1       cgd 	so->so_state |= SS_ISCONNECTED;
    182       1.97       tls 	if (head && so->so_onq == &head->so_q0) {
    183       1.97       tls 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    184      1.116     rmind 			/*
    185      1.116     rmind 			 * Re-enqueue and wake up any waiters, e.g.
    186      1.116     rmind 			 * processes blocking on accept().
    187      1.116     rmind 			 */
    188       1.97       tls 			soqremque(so, 0);
    189       1.97       tls 			soqinsque(head, so, 1);
    190       1.97       tls 			sorwakeup(head);
    191       1.97       tls 			cv_broadcast(&head->so_cv);
    192       1.97       tls 		} else {
    193       1.97       tls 			so->so_upcall =
    194       1.97       tls 			    head->so_accf->so_accept_filter->accf_callback;
    195       1.97       tls 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    196       1.97       tls 			so->so_rcv.sb_flags |= SB_UPCALL;
    197       1.97       tls 			so->so_options &= ~SO_ACCEPTFILTER;
    198      1.104       tls 			(*so->so_upcall)(so, so->so_upcallarg,
    199      1.104       tls 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    200      1.101      yamt 		}
    201        1.1       cgd 	} else {
    202       1.91        ad 		cv_broadcast(&so->so_cv);
    203        1.1       cgd 		sorwakeup(so);
    204        1.1       cgd 		sowwakeup(so);
    205        1.1       cgd 	}
    206        1.1       cgd }
    207        1.1       cgd 
    208        1.7   mycroft void
    209       1.37     lukem soisdisconnecting(struct socket *so)
    210        1.1       cgd {
    211        1.1       cgd 
    212       1.91        ad 	KASSERT(solocked(so));
    213       1.91        ad 
    214        1.1       cgd 	so->so_state &= ~SS_ISCONNECTING;
    215        1.1       cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    216       1.91        ad 	cv_broadcast(&so->so_cv);
    217        1.1       cgd 	sowwakeup(so);
    218        1.1       cgd 	sorwakeup(so);
    219        1.1       cgd }
    220        1.1       cgd 
    221        1.7   mycroft void
    222       1.37     lukem soisdisconnected(struct socket *so)
    223        1.1       cgd {
    224        1.1       cgd 
    225       1.91        ad 	KASSERT(solocked(so));
    226       1.91        ad 
    227        1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    228       1.27   mycroft 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    229       1.91        ad 	cv_broadcast(&so->so_cv);
    230        1.1       cgd 	sowwakeup(so);
    231        1.1       cgd 	sorwakeup(so);
    232        1.1       cgd }
    233        1.1       cgd 
    234       1.94        ad void
    235       1.94        ad soinit2(void)
    236       1.94        ad {
    237       1.94        ad 
    238       1.94        ad 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    239       1.94        ad 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    240       1.94        ad }
    241       1.94        ad 
    242        1.1       cgd /*
    243      1.116     rmind  * sonewconn: accept a new connection.
    244      1.116     rmind  *
    245      1.116     rmind  * When an attempt at a new connection is noted on a socket which accepts
    246      1.116     rmind  * connections, sonewconn(9) is called.  If the connection is possible
    247      1.116     rmind  * (subject to space constraints, etc) then we allocate a new structure,
    248      1.116     rmind  * properly linked into the data structure of the original socket.
    249      1.116     rmind  *
    250      1.116     rmind  * => If 'soready' is true, then socket will become ready for accept() i.e.
    251      1.116     rmind  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
    252      1.116     rmind  * => May be called from soft-interrupt context.
    253      1.116     rmind  * => Listening socket should be locked.
    254      1.116     rmind  * => Returns the new socket locked.
    255        1.1       cgd  */
    256        1.1       cgd struct socket *
    257      1.116     rmind sonewconn(struct socket *head, bool soready)
    258        1.1       cgd {
    259      1.116     rmind 	struct socket *so;
    260      1.116     rmind 	int soqueue, error;
    261       1.91        ad 
    262       1.91        ad 	KASSERT(solocked(head));
    263        1.1       cgd 
    264      1.116     rmind 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
    265      1.123       tls 		/*
    266      1.123       tls 		 * Listen queue overflow.  If there is an accept filter
    267      1.123       tls 		 * active, pass through the oldest cxn it's handling.
    268      1.123       tls 		 */
    269      1.123       tls 		if (head->so_accf == NULL) {
    270      1.123       tls 			return NULL;
    271      1.123       tls 		} else {
    272      1.123       tls 			struct socket *so2, *next;
    273      1.123       tls 
    274      1.123       tls 			/* Pass the oldest connection waiting in the
    275      1.123       tls 			   accept filter */
    276      1.123       tls 			for (so2 = TAILQ_FIRST(&head->so_q0);
    277      1.123       tls 			     so2 != NULL; so2 = next) {
    278      1.123       tls 				next = TAILQ_NEXT(so2, so_qe);
    279      1.123       tls 				if (so2->so_upcall == NULL) {
    280      1.123       tls 					continue;
    281      1.123       tls 				}
    282      1.123       tls 				so2->so_upcall = NULL;
    283      1.123       tls 				so2->so_upcallarg = NULL;
    284      1.123       tls 				so2->so_options &= ~SO_ACCEPTFILTER;
    285      1.123       tls 				so2->so_rcv.sb_flags &= ~SB_UPCALL;
    286      1.123       tls 				soisconnected(so2);
    287      1.123       tls 				break;
    288      1.123       tls 			}
    289      1.123       tls 
    290      1.123       tls 			/* If nothing was nudged out of the acept filter, bail
    291      1.123       tls 			 * out; otherwise proceed allocating the socket. */
    292      1.123       tls 			if (so2 == NULL) {
    293      1.123       tls 				return NULL;
    294      1.123       tls 			}
    295      1.123       tls 		}
    296      1.116     rmind 	}
    297      1.116     rmind 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
    298      1.116     rmind 		soready = false;
    299      1.116     rmind 	}
    300      1.116     rmind 	soqueue = soready ? 1 : 0;
    301      1.113     rmind 
    302      1.116     rmind 	if ((so = soget(false)) == NULL) {
    303      1.100    dyoung 		return NULL;
    304      1.116     rmind 	}
    305        1.1       cgd 	so->so_type = head->so_type;
    306      1.116     rmind 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
    307        1.1       cgd 	so->so_linger = head->so_linger;
    308        1.1       cgd 	so->so_state = head->so_state | SS_NOFDREF;
    309        1.1       cgd 	so->so_proto = head->so_proto;
    310        1.1       cgd 	so->so_timeo = head->so_timeo;
    311        1.1       cgd 	so->so_pgid = head->so_pgid;
    312       1.24      matt 	so->so_send = head->so_send;
    313       1.24      matt 	so->so_receive = head->so_receive;
    314       1.67  christos 	so->so_uidinfo = head->so_uidinfo;
    315       1.96      yamt 	so->so_cpid = head->so_cpid;
    316      1.119     rmind 
    317      1.119     rmind 	/*
    318      1.119     rmind 	 * Share the lock with the listening-socket, it may get unshared
    319      1.119     rmind 	 * once the connection is complete.
    320      1.119     rmind 	 */
    321      1.119     rmind 	mutex_obj_hold(head->so_lock);
    322      1.119     rmind 	so->so_lock = head->so_lock;
    323      1.119     rmind 
    324      1.119     rmind 	/*
    325      1.119     rmind 	 * Reserve the space for socket buffers.
    326      1.119     rmind 	 */
    327       1.49      matt #ifdef MBUFTRACE
    328       1.49      matt 	so->so_mowner = head->so_mowner;
    329       1.49      matt 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    330       1.49      matt 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    331       1.49      matt #endif
    332      1.119     rmind 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
    333      1.103  christos 		goto out;
    334      1.119     rmind 	}
    335       1.83       tls 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    336       1.83       tls 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    337       1.84       tls 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    338       1.84       tls 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    339      1.107  christos 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    340      1.107  christos 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    341      1.116     rmind 
    342      1.116     rmind 	/*
    343      1.119     rmind 	 * Finally, perform the protocol attach.  Note: a new socket
    344      1.119     rmind 	 * lock may be assigned at this point (if so, it will be held).
    345      1.116     rmind 	 */
    346      1.119     rmind 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
    347      1.116     rmind 	if (error) {
    348      1.103  christos out:
    349      1.119     rmind 		KASSERT(solocked(so));
    350      1.116     rmind 		KASSERT(so->so_accf == NULL);
    351       1.91        ad 		soput(so);
    352      1.116     rmind 
    353      1.116     rmind 		/* Note: the listening socket shall stay locked. */
    354      1.116     rmind 		KASSERT(solocked(head));
    355      1.100    dyoung 		return NULL;
    356        1.1       cgd 	}
    357      1.119     rmind 	KASSERT(solocked2(head, so));
    358      1.116     rmind 
    359      1.116     rmind 	/*
    360      1.117     rmind 	 * Insert into the queue.  If ready, update the connection status
    361      1.117     rmind 	 * and wake up any waiters, e.g. processes blocking on accept().
    362      1.116     rmind 	 */
    363      1.117     rmind 	soqinsque(head, so, soqueue);
    364      1.116     rmind 	if (soready) {
    365      1.116     rmind 		so->so_state |= SS_ISCONNECTED;
    366        1.1       cgd 		sorwakeup(head);
    367       1.91        ad 		cv_broadcast(&head->so_cv);
    368        1.1       cgd 	}
    369      1.100    dyoung 	return so;
    370        1.1       cgd }
    371        1.1       cgd 
    372       1.91        ad struct socket *
    373       1.91        ad soget(bool waitok)
    374       1.91        ad {
    375       1.91        ad 	struct socket *so;
    376       1.91        ad 
    377       1.94        ad 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    378       1.91        ad 	if (__predict_false(so == NULL))
    379       1.91        ad 		return (NULL);
    380       1.91        ad 	memset(so, 0, sizeof(*so));
    381       1.91        ad 	TAILQ_INIT(&so->so_q0);
    382       1.91        ad 	TAILQ_INIT(&so->so_q);
    383       1.91        ad 	cv_init(&so->so_cv, "socket");
    384       1.91        ad 	cv_init(&so->so_rcv.sb_cv, "netio");
    385       1.91        ad 	cv_init(&so->so_snd.sb_cv, "netio");
    386       1.91        ad 	selinit(&so->so_rcv.sb_sel);
    387       1.91        ad 	selinit(&so->so_snd.sb_sel);
    388       1.91        ad 	so->so_rcv.sb_so = so;
    389       1.91        ad 	so->so_snd.sb_so = so;
    390       1.91        ad 	return so;
    391       1.91        ad }
    392       1.91        ad 
    393       1.91        ad void
    394       1.91        ad soput(struct socket *so)
    395       1.91        ad {
    396       1.91        ad 
    397       1.91        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    398       1.91        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    399       1.91        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    400       1.91        ad 	seldestroy(&so->so_rcv.sb_sel);
    401       1.91        ad 	seldestroy(&so->so_snd.sb_sel);
    402       1.91        ad 	mutex_obj_free(so->so_lock);
    403       1.91        ad 	cv_destroy(&so->so_cv);
    404       1.91        ad 	cv_destroy(&so->so_rcv.sb_cv);
    405       1.91        ad 	cv_destroy(&so->so_snd.sb_cv);
    406       1.94        ad 	pool_cache_put(socket_cache, so);
    407       1.91        ad }
    408       1.91        ad 
    409      1.116     rmind /*
    410      1.116     rmind  * soqinsque: insert socket of a new connection into the specified
    411      1.116     rmind  * accept queue of the listening socket (head).
    412      1.116     rmind  *
    413      1.116     rmind  *	q = 0: queue of partial connections
    414      1.116     rmind  *	q = 1: queue of incoming connections
    415      1.116     rmind  */
    416        1.7   mycroft void
    417       1.37     lukem soqinsque(struct socket *head, struct socket *so, int q)
    418        1.1       cgd {
    419      1.116     rmind 	KASSERT(q == 0 || q == 1);
    420       1.91        ad 	KASSERT(solocked2(head, so));
    421      1.116     rmind 	KASSERT(so->so_onq == NULL);
    422      1.116     rmind 	KASSERT(so->so_head == NULL);
    423       1.22   thorpej 
    424        1.1       cgd 	so->so_head = head;
    425        1.1       cgd 	if (q == 0) {
    426        1.1       cgd 		head->so_q0len++;
    427       1.22   thorpej 		so->so_onq = &head->so_q0;
    428        1.1       cgd 	} else {
    429        1.1       cgd 		head->so_qlen++;
    430       1.22   thorpej 		so->so_onq = &head->so_q;
    431        1.1       cgd 	}
    432       1.22   thorpej 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    433        1.1       cgd }
    434        1.1       cgd 
    435      1.116     rmind /*
    436      1.116     rmind  * soqremque: remove socket from the specified queue.
    437      1.116     rmind  *
    438      1.116     rmind  * => Returns true if socket was removed from the specified queue.
    439      1.116     rmind  * => False if socket was not removed (because it was in other queue).
    440      1.116     rmind  */
    441      1.116     rmind bool
    442       1.37     lukem soqremque(struct socket *so, int q)
    443        1.1       cgd {
    444      1.116     rmind 	struct socket *head = so->so_head;
    445        1.1       cgd 
    446      1.116     rmind 	KASSERT(q == 0 || q == 1);
    447      1.116     rmind 	KASSERT(solocked(so));
    448      1.116     rmind 	KASSERT(so->so_onq != NULL);
    449      1.116     rmind 	KASSERT(head != NULL);
    450       1.91        ad 
    451       1.22   thorpej 	if (q == 0) {
    452       1.22   thorpej 		if (so->so_onq != &head->so_q0)
    453      1.116     rmind 			return false;
    454        1.1       cgd 		head->so_q0len--;
    455        1.1       cgd 	} else {
    456       1.22   thorpej 		if (so->so_onq != &head->so_q)
    457      1.116     rmind 			return false;
    458        1.1       cgd 		head->so_qlen--;
    459        1.1       cgd 	}
    460       1.91        ad 	KASSERT(solocked2(so, head));
    461       1.22   thorpej 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    462       1.22   thorpej 	so->so_onq = NULL;
    463       1.22   thorpej 	so->so_head = NULL;
    464      1.116     rmind 	return true;
    465        1.1       cgd }
    466        1.1       cgd 
    467        1.1       cgd /*
    468      1.116     rmind  * socantsendmore: indicates that no more data will be sent on the
    469        1.1       cgd  * socket; it would normally be applied to a socket when the user
    470        1.1       cgd  * informs the system that no more data is to be sent, by the protocol
    471      1.120       rtr  * code (in case pr_shutdown()).
    472        1.1       cgd  */
    473        1.4    andrew void
    474       1.37     lukem socantsendmore(struct socket *so)
    475        1.1       cgd {
    476       1.91        ad 	KASSERT(solocked(so));
    477       1.91        ad 
    478        1.1       cgd 	so->so_state |= SS_CANTSENDMORE;
    479        1.1       cgd 	sowwakeup(so);
    480        1.1       cgd }
    481        1.1       cgd 
    482      1.116     rmind /*
    483      1.116     rmind  * socantrcvmore(): indicates that no more data will be received and
    484      1.116     rmind  * will normally be applied to the socket by a protocol when it detects
    485      1.116     rmind  * that the peer will send no more data.  Data queued for reading in
    486      1.116     rmind  * the socket may yet be read.
    487      1.116     rmind  */
    488        1.4    andrew void
    489       1.37     lukem socantrcvmore(struct socket *so)
    490        1.1       cgd {
    491       1.91        ad 	KASSERT(solocked(so));
    492       1.91        ad 
    493        1.1       cgd 	so->so_state |= SS_CANTRCVMORE;
    494        1.1       cgd 	sorwakeup(so);
    495        1.1       cgd }
    496        1.1       cgd 
    497        1.1       cgd /*
    498  1.124.8.1    bouyer  * soroverflow(): indicates that data was attempted to be sent
    499  1.124.8.1    bouyer  * but the receiving buffer overflowed.
    500  1.124.8.1    bouyer  */
    501  1.124.8.1    bouyer void
    502  1.124.8.1    bouyer soroverflow(struct socket *so)
    503  1.124.8.1    bouyer {
    504  1.124.8.1    bouyer 	KASSERT(solocked(so));
    505  1.124.8.1    bouyer 
    506  1.124.8.1    bouyer 	so->so_rcv.sb_overflowed++;
    507  1.124.8.1    bouyer 	so->so_error = ENOBUFS;
    508  1.124.8.1    bouyer 	sorwakeup(so);
    509  1.124.8.1    bouyer }
    510  1.124.8.1    bouyer 
    511  1.124.8.1    bouyer /*
    512        1.1       cgd  * Wait for data to arrive at/drain from a socket buffer.
    513        1.1       cgd  */
    514        1.7   mycroft int
    515       1.37     lukem sbwait(struct sockbuf *sb)
    516        1.1       cgd {
    517       1.91        ad 	struct socket *so;
    518       1.91        ad 	kmutex_t *lock;
    519       1.91        ad 	int error;
    520        1.1       cgd 
    521       1.91        ad 	so = sb->sb_so;
    522        1.1       cgd 
    523       1.91        ad 	KASSERT(solocked(so));
    524        1.1       cgd 
    525       1.91        ad 	sb->sb_flags |= SB_NOTIFY;
    526       1.91        ad 	lock = so->so_lock;
    527       1.91        ad 	if ((sb->sb_flags & SB_NOINTR) != 0)
    528       1.91        ad 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    529       1.91        ad 	else
    530       1.91        ad 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    531       1.91        ad 	if (__predict_false(lock != so->so_lock))
    532       1.91        ad 		solockretry(so, lock);
    533       1.91        ad 	return error;
    534        1.1       cgd }
    535        1.1       cgd 
    536        1.1       cgd /*
    537        1.1       cgd  * Wakeup processes waiting on a socket buffer.
    538        1.1       cgd  * Do asynchronous notification via SIGIO
    539       1.39      manu  * if the socket buffer has the SB_ASYNC flag set.
    540        1.1       cgd  */
    541        1.7   mycroft void
    542       1.55  christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
    543        1.1       cgd {
    544       1.90     rmind 	int band;
    545       1.90     rmind 
    546       1.91        ad 	KASSERT(solocked(so));
    547       1.91        ad 	KASSERT(sb->sb_so == so);
    548       1.91        ad 
    549       1.90     rmind 	if (code == POLL_IN)
    550       1.90     rmind 		band = POLLIN|POLLRDNORM;
    551       1.90     rmind 	else
    552       1.90     rmind 		band = POLLOUT|POLLWRNORM;
    553       1.91        ad 	sb->sb_flags &= ~SB_NOTIFY;
    554       1.91        ad 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    555       1.91        ad 	cv_broadcast(&sb->sb_cv);
    556       1.90     rmind 	if (sb->sb_flags & SB_ASYNC)
    557       1.57  christos 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    558       1.24      matt 	if (sb->sb_flags & SB_UPCALL)
    559      1.104       tls 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    560        1.1       cgd }
    561        1.1       cgd 
    562        1.1       cgd /*
    563       1.95        ad  * Reset a socket's lock pointer.  Wake all threads waiting on the
    564       1.95        ad  * socket's condition variables so that they can restart their waits
    565       1.95        ad  * using the new lock.  The existing lock must be held.
    566       1.95        ad  */
    567       1.95        ad void
    568       1.95        ad solockreset(struct socket *so, kmutex_t *lock)
    569       1.95        ad {
    570       1.95        ad 
    571       1.95        ad 	KASSERT(solocked(so));
    572       1.95        ad 
    573       1.95        ad 	so->so_lock = lock;
    574       1.95        ad 	cv_broadcast(&so->so_snd.sb_cv);
    575       1.95        ad 	cv_broadcast(&so->so_rcv.sb_cv);
    576       1.95        ad 	cv_broadcast(&so->so_cv);
    577       1.95        ad }
    578       1.95        ad 
    579       1.95        ad /*
    580        1.1       cgd  * Socket buffer (struct sockbuf) utility routines.
    581        1.1       cgd  *
    582        1.1       cgd  * Each socket contains two socket buffers: one for sending data and
    583        1.1       cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    584        1.1       cgd  * information about the number of mbufs and amount of data in the
    585       1.13   mycroft  * queue, and other fields allowing poll() statements and notification
    586        1.1       cgd  * on data availability to be implemented.
    587        1.1       cgd  *
    588        1.1       cgd  * Data stored in a socket buffer is maintained as a list of records.
    589        1.1       cgd  * Each record is a list of mbufs chained together with the m_next
    590        1.1       cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    591        1.1       cgd  * level routine soreceive() expects the following conventions to be
    592        1.1       cgd  * observed when placing information in the receive buffer:
    593        1.1       cgd  *
    594        1.1       cgd  * 1. If the protocol requires each message be preceded by the sender's
    595        1.1       cgd  *    name, then a record containing that name must be present before
    596        1.1       cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    597        1.1       cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    598        1.1       cgd  *    just additional data associated with the message), and there are
    599        1.1       cgd  *    ``rights'' to be received, then a record containing this data
    600       1.10   mycroft  *    should be present (mbuf's must be of type MT_CONTROL).
    601        1.1       cgd  * 3. If a name or rights record exists, then it must be followed by
    602        1.1       cgd  *    a data record, perhaps of zero length.
    603        1.1       cgd  *
    604        1.1       cgd  * Before using a new socket structure it is first necessary to reserve
    605        1.1       cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    606        1.1       cgd  * some of the available buffer space in the system buffer pool for the
    607        1.1       cgd  * socket (currently, it does nothing but enforce limits).  The space
    608        1.1       cgd  * should be released by calling sbrelease() when the socket is destroyed.
    609        1.1       cgd  */
    610        1.1       cgd 
    611        1.7   mycroft int
    612       1.58   thorpej sb_max_set(u_long new_sbmax)
    613       1.58   thorpej {
    614       1.58   thorpej 	int s;
    615       1.58   thorpej 
    616       1.58   thorpej 	if (new_sbmax < (16 * 1024))
    617       1.58   thorpej 		return (EINVAL);
    618       1.58   thorpej 
    619       1.58   thorpej 	s = splsoftnet();
    620       1.58   thorpej 	sb_max = new_sbmax;
    621       1.58   thorpej 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    622       1.58   thorpej 	splx(s);
    623       1.58   thorpej 
    624       1.58   thorpej 	return (0);
    625       1.58   thorpej }
    626       1.58   thorpej 
    627       1.58   thorpej int
    628       1.37     lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    629        1.1       cgd {
    630      1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    631       1.91        ad 
    632       1.74  christos 	/*
    633       1.74  christos 	 * there's at least one application (a configure script of screen)
    634       1.74  christos 	 * which expects a fifo is writable even if it has "some" bytes
    635       1.74  christos 	 * in its buffer.
    636       1.74  christos 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    637       1.74  christos 	 *
    638       1.74  christos 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    639       1.74  christos 	 * we expect it's large enough for such applications.
    640       1.74  christos 	 */
    641       1.74  christos 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    642       1.74  christos 	u_long  hiwat = lowat + PIPE_BUF;
    643        1.1       cgd 
    644       1.74  christos 	if (sndcc < hiwat)
    645       1.74  christos 		sndcc = hiwat;
    646       1.59  christos 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    647        1.1       cgd 		goto bad;
    648       1.59  christos 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    649        1.1       cgd 		goto bad2;
    650        1.1       cgd 	if (so->so_rcv.sb_lowat == 0)
    651        1.1       cgd 		so->so_rcv.sb_lowat = 1;
    652        1.1       cgd 	if (so->so_snd.sb_lowat == 0)
    653       1.74  christos 		so->so_snd.sb_lowat = lowat;
    654        1.1       cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    655        1.1       cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    656        1.1       cgd 	return (0);
    657       1.37     lukem  bad2:
    658       1.59  christos 	sbrelease(&so->so_snd, so);
    659       1.37     lukem  bad:
    660        1.1       cgd 	return (ENOBUFS);
    661        1.1       cgd }
    662        1.1       cgd 
    663        1.1       cgd /*
    664        1.1       cgd  * Allot mbufs to a sockbuf.
    665        1.1       cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    666        1.1       cgd  * if buffering efficiency is near the normal case.
    667        1.1       cgd  */
    668        1.7   mycroft int
    669       1.59  christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    670        1.1       cgd {
    671       1.75        ad 	struct lwp *l = curlwp; /* XXX */
    672       1.62  christos 	rlim_t maxcc;
    673       1.67  christos 	struct uidinfo *uidinfo;
    674        1.1       cgd 
    675      1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    676       1.91        ad 	KASSERT(sb->sb_so == so);
    677       1.91        ad 	KASSERT(sb_max_adj != 0);
    678       1.91        ad 
    679       1.58   thorpej 	if (cc == 0 || cc > sb_max_adj)
    680        1.1       cgd 		return (0);
    681       1.93  christos 
    682      1.105      elad 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    683       1.93  christos 
    684       1.93  christos 	uidinfo = so->so_uidinfo;
    685       1.67  christos 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    686       1.62  christos 		return 0;
    687        1.1       cgd 	sb->sb_mbmax = min(cc * 2, sb_max);
    688        1.1       cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    689        1.1       cgd 		sb->sb_lowat = sb->sb_hiwat;
    690        1.1       cgd 	return (1);
    691        1.1       cgd }
    692        1.1       cgd 
    693        1.1       cgd /*
    694       1.91        ad  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    695       1.91        ad  * that the socket is held locked here: see sorflush().
    696        1.1       cgd  */
    697        1.7   mycroft void
    698       1.59  christos sbrelease(struct sockbuf *sb, struct socket *so)
    699        1.1       cgd {
    700        1.1       cgd 
    701       1.91        ad 	KASSERT(sb->sb_so == so);
    702       1.91        ad 
    703        1.1       cgd 	sbflush(sb);
    704       1.87      yamt 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    705       1.59  christos 	sb->sb_mbmax = 0;
    706        1.1       cgd }
    707        1.1       cgd 
    708        1.1       cgd /*
    709        1.1       cgd  * Routines to add and remove
    710        1.1       cgd  * data from an mbuf queue.
    711        1.1       cgd  *
    712        1.1       cgd  * The routines sbappend() or sbappendrecord() are normally called to
    713        1.1       cgd  * append new mbufs to a socket buffer, after checking that adequate
    714        1.1       cgd  * space is available, comparing the function sbspace() with the amount
    715        1.1       cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    716        1.1       cgd  * that data supplied is treated as the beginning of a new record.
    717        1.1       cgd  * To place a sender's address, optional access rights, and data in a
    718        1.1       cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    719        1.1       cgd  * access rights and data in a socket receive buffer, sbappendrights()
    720        1.1       cgd  * should be used.  In either case, the new data begins a new record.
    721        1.1       cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    722        1.1       cgd  * for the caller that there will be enough space to store the data.
    723        1.1       cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    724        1.1       cgd  * to store additional information in.
    725        1.1       cgd  *
    726        1.1       cgd  * Reliable protocols may use the socket send buffer to hold data
    727        1.1       cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    728        1.1       cgd  * send buffer in a protocol with m_copy for output to a peer,
    729        1.1       cgd  * and then removing the data from the socket buffer with sbdrop()
    730        1.1       cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    731        1.1       cgd  */
    732        1.1       cgd 
    733       1.43   thorpej #ifdef SOCKBUF_DEBUG
    734       1.43   thorpej void
    735       1.43   thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
    736       1.43   thorpej {
    737       1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    738       1.43   thorpej 
    739       1.91        ad 	KASSERT(solocked(sb->sb_so));
    740       1.91        ad 
    741       1.43   thorpej 	while (m && m->m_nextpkt)
    742       1.43   thorpej 		m = m->m_nextpkt;
    743       1.43   thorpej 
    744       1.43   thorpej 	if (m != sb->sb_lastrecord) {
    745       1.43   thorpej 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    746       1.43   thorpej 		    sb->sb_mb, sb->sb_lastrecord, m);
    747       1.43   thorpej 		printf("packet chain:\n");
    748       1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    749       1.43   thorpej 			printf("\t%p\n", m);
    750       1.47    provos 		panic("sblastrecordchk from %s", where);
    751       1.43   thorpej 	}
    752       1.43   thorpej }
    753       1.43   thorpej 
    754       1.43   thorpej void
    755       1.43   thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
    756       1.43   thorpej {
    757       1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    758       1.43   thorpej 	struct mbuf *n;
    759       1.43   thorpej 
    760       1.91        ad 	KASSERT(solocked(sb->sb_so));
    761       1.91        ad 
    762       1.43   thorpej 	while (m && m->m_nextpkt)
    763       1.43   thorpej 		m = m->m_nextpkt;
    764       1.43   thorpej 
    765       1.43   thorpej 	while (m && m->m_next)
    766       1.43   thorpej 		m = m->m_next;
    767       1.43   thorpej 
    768       1.43   thorpej 	if (m != sb->sb_mbtail) {
    769       1.43   thorpej 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    770       1.43   thorpej 		    sb->sb_mb, sb->sb_mbtail, m);
    771       1.43   thorpej 		printf("packet tree:\n");
    772       1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    773       1.43   thorpej 			printf("\t");
    774       1.43   thorpej 			for (n = m; n != NULL; n = n->m_next)
    775       1.43   thorpej 				printf("%p ", n);
    776       1.43   thorpej 			printf("\n");
    777       1.43   thorpej 		}
    778       1.43   thorpej 		panic("sblastmbufchk from %s", where);
    779       1.43   thorpej 	}
    780       1.43   thorpej }
    781       1.43   thorpej #endif /* SOCKBUF_DEBUG */
    782       1.43   thorpej 
    783       1.63  jonathan /*
    784       1.63  jonathan  * Link a chain of records onto a socket buffer
    785       1.63  jonathan  */
    786       1.63  jonathan #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    787       1.43   thorpej do {									\
    788       1.43   thorpej 	if ((sb)->sb_lastrecord != NULL)				\
    789       1.43   thorpej 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    790       1.43   thorpej 	else								\
    791       1.43   thorpej 		(sb)->sb_mb = (m0);					\
    792       1.63  jonathan 	(sb)->sb_lastrecord = (mlast);					\
    793       1.43   thorpej } while (/*CONSTCOND*/0)
    794       1.43   thorpej 
    795       1.63  jonathan 
    796       1.63  jonathan #define	SBLINKRECORD(sb, m0)						\
    797       1.63  jonathan     SBLINKRECORDCHAIN(sb, m0, m0)
    798       1.63  jonathan 
    799        1.1       cgd /*
    800        1.1       cgd  * Append mbuf chain m to the last record in the
    801        1.1       cgd  * socket buffer sb.  The additional space associated
    802        1.1       cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    803        1.1       cgd  * discarded and mbufs are compacted where possible.
    804        1.1       cgd  */
    805        1.7   mycroft void
    806       1.37     lukem sbappend(struct sockbuf *sb, struct mbuf *m)
    807        1.1       cgd {
    808       1.37     lukem 	struct mbuf	*n;
    809        1.1       cgd 
    810       1.91        ad 	KASSERT(solocked(sb->sb_so));
    811       1.91        ad 
    812      1.115  christos 	if (m == NULL)
    813        1.1       cgd 		return;
    814       1.43   thorpej 
    815       1.49      matt #ifdef MBUFTRACE
    816       1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    817       1.49      matt #endif
    818       1.49      matt 
    819       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 1");
    820       1.43   thorpej 
    821       1.43   thorpej 	if ((n = sb->sb_lastrecord) != NULL) {
    822       1.43   thorpej 		/*
    823       1.43   thorpej 		 * XXX Would like to simply use sb_mbtail here, but
    824       1.43   thorpej 		 * XXX I need to verify that I won't miss an EOR that
    825       1.43   thorpej 		 * XXX way.
    826       1.43   thorpej 		 */
    827        1.1       cgd 		do {
    828        1.1       cgd 			if (n->m_flags & M_EOR) {
    829        1.1       cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    830        1.1       cgd 				return;
    831        1.1       cgd 			}
    832        1.1       cgd 		} while (n->m_next && (n = n->m_next));
    833       1.43   thorpej 	} else {
    834       1.43   thorpej 		/*
    835       1.43   thorpej 		 * If this is the first record in the socket buffer, it's
    836       1.43   thorpej 		 * also the last record.
    837       1.43   thorpej 		 */
    838       1.43   thorpej 		sb->sb_lastrecord = m;
    839        1.1       cgd 	}
    840        1.1       cgd 	sbcompress(sb, m, n);
    841       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 2");
    842       1.43   thorpej }
    843       1.43   thorpej 
    844       1.43   thorpej /*
    845       1.43   thorpej  * This version of sbappend() should only be used when the caller
    846       1.43   thorpej  * absolutely knows that there will never be more than one record
    847       1.43   thorpej  * in the socket buffer, that is, a stream protocol (such as TCP).
    848       1.43   thorpej  */
    849       1.43   thorpej void
    850       1.44   thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
    851       1.43   thorpej {
    852       1.43   thorpej 
    853       1.91        ad 	KASSERT(solocked(sb->sb_so));
    854       1.43   thorpej 	KDASSERT(m->m_nextpkt == NULL);
    855       1.43   thorpej 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    856       1.43   thorpej 
    857       1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
    858       1.43   thorpej 
    859       1.49      matt #ifdef MBUFTRACE
    860       1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    861       1.49      matt #endif
    862       1.49      matt 
    863       1.43   thorpej 	sbcompress(sb, m, sb->sb_mbtail);
    864       1.43   thorpej 
    865       1.43   thorpej 	sb->sb_lastrecord = sb->sb_mb;
    866       1.43   thorpej 	SBLASTRECORDCHK(sb, __func__);
    867        1.1       cgd }
    868        1.1       cgd 
    869        1.1       cgd #ifdef SOCKBUF_DEBUG
    870        1.7   mycroft void
    871       1.37     lukem sbcheck(struct sockbuf *sb)
    872        1.1       cgd {
    873       1.91        ad 	struct mbuf	*m, *m2;
    874       1.43   thorpej 	u_long		len, mbcnt;
    875        1.1       cgd 
    876       1.91        ad 	KASSERT(solocked(sb->sb_so));
    877       1.91        ad 
    878       1.37     lukem 	len = 0;
    879       1.37     lukem 	mbcnt = 0;
    880       1.91        ad 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    881       1.91        ad 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    882       1.91        ad 			len += m2->m_len;
    883       1.91        ad 			mbcnt += MSIZE;
    884       1.91        ad 			if (m2->m_flags & M_EXT)
    885       1.91        ad 				mbcnt += m2->m_ext.ext_size;
    886       1.91        ad 			if (m2->m_nextpkt != NULL)
    887       1.91        ad 				panic("sbcheck nextpkt");
    888       1.91        ad 		}
    889        1.1       cgd 	}
    890        1.1       cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    891       1.43   thorpej 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    892        1.1       cgd 		    mbcnt, sb->sb_mbcnt);
    893        1.1       cgd 		panic("sbcheck");
    894        1.1       cgd 	}
    895        1.1       cgd }
    896        1.1       cgd #endif
    897        1.1       cgd 
    898        1.1       cgd /*
    899        1.1       cgd  * As above, except the mbuf chain
    900        1.1       cgd  * begins a new record.
    901        1.1       cgd  */
    902        1.7   mycroft void
    903       1.37     lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    904        1.1       cgd {
    905       1.37     lukem 	struct mbuf	*m;
    906        1.1       cgd 
    907       1.91        ad 	KASSERT(solocked(sb->sb_so));
    908       1.91        ad 
    909      1.115  christos 	if (m0 == NULL)
    910        1.1       cgd 		return;
    911       1.43   thorpej 
    912       1.49      matt #ifdef MBUFTRACE
    913       1.65  jonathan 	m_claimm(m0, sb->sb_mowner);
    914       1.49      matt #endif
    915        1.1       cgd 	/*
    916        1.1       cgd 	 * Put the first mbuf on the queue.
    917        1.1       cgd 	 * Note this permits zero length records.
    918        1.1       cgd 	 */
    919        1.1       cgd 	sballoc(sb, m0);
    920       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    921       1.43   thorpej 	SBLINKRECORD(sb, m0);
    922        1.1       cgd 	m = m0->m_next;
    923        1.1       cgd 	m0->m_next = 0;
    924        1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    925        1.1       cgd 		m0->m_flags &= ~M_EOR;
    926        1.1       cgd 		m->m_flags |= M_EOR;
    927        1.1       cgd 	}
    928        1.1       cgd 	sbcompress(sb, m, m0);
    929       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    930        1.1       cgd }
    931        1.1       cgd 
    932        1.1       cgd /*
    933        1.1       cgd  * As above except that OOB data
    934        1.1       cgd  * is inserted at the beginning of the sockbuf,
    935        1.1       cgd  * but after any other OOB data.
    936        1.1       cgd  */
    937        1.7   mycroft void
    938       1.37     lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    939        1.1       cgd {
    940       1.37     lukem 	struct mbuf	*m, **mp;
    941        1.1       cgd 
    942       1.91        ad 	KASSERT(solocked(sb->sb_so));
    943       1.91        ad 
    944      1.115  christos 	if (m0 == NULL)
    945        1.1       cgd 		return;
    946       1.43   thorpej 
    947       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    948       1.43   thorpej 
    949       1.11  christos 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    950        1.1       cgd 	    again:
    951        1.1       cgd 		switch (m->m_type) {
    952        1.1       cgd 
    953        1.1       cgd 		case MT_OOBDATA:
    954        1.1       cgd 			continue;		/* WANT next train */
    955        1.1       cgd 
    956        1.1       cgd 		case MT_CONTROL:
    957       1.11  christos 			if ((m = m->m_next) != NULL)
    958        1.1       cgd 				goto again;	/* inspect THIS train further */
    959        1.1       cgd 		}
    960        1.1       cgd 		break;
    961        1.1       cgd 	}
    962        1.1       cgd 	/*
    963        1.1       cgd 	 * Put the first mbuf on the queue.
    964        1.1       cgd 	 * Note this permits zero length records.
    965        1.1       cgd 	 */
    966        1.1       cgd 	sballoc(sb, m0);
    967        1.1       cgd 	m0->m_nextpkt = *mp;
    968       1.43   thorpej 	if (*mp == NULL) {
    969       1.43   thorpej 		/* m0 is actually the new tail */
    970       1.43   thorpej 		sb->sb_lastrecord = m0;
    971       1.43   thorpej 	}
    972        1.1       cgd 	*mp = m0;
    973        1.1       cgd 	m = m0->m_next;
    974        1.1       cgd 	m0->m_next = 0;
    975        1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    976        1.1       cgd 		m0->m_flags &= ~M_EOR;
    977        1.1       cgd 		m->m_flags |= M_EOR;
    978        1.1       cgd 	}
    979        1.1       cgd 	sbcompress(sb, m, m0);
    980       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    981        1.1       cgd }
    982        1.1       cgd 
    983        1.1       cgd /*
    984        1.1       cgd  * Append address and data, and optionally, control (ancillary) data
    985        1.1       cgd  * to the receive queue of a socket.  If present,
    986        1.1       cgd  * m0 must include a packet header with total length.
    987        1.1       cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
    988        1.1       cgd  */
    989        1.7   mycroft int
    990       1.61      matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    991       1.37     lukem 	struct mbuf *control)
    992        1.1       cgd {
    993       1.43   thorpej 	struct mbuf	*m, *n, *nlast;
    994       1.50      fvdl 	int		space, len;
    995        1.1       cgd 
    996       1.91        ad 	KASSERT(solocked(sb->sb_so));
    997       1.91        ad 
    998       1.37     lukem 	space = asa->sa_len;
    999       1.37     lukem 
   1000       1.49      matt 	if (m0 != NULL) {
   1001       1.49      matt 		if ((m0->m_flags & M_PKTHDR) == 0)
   1002       1.49      matt 			panic("sbappendaddr");
   1003        1.1       cgd 		space += m0->m_pkthdr.len;
   1004       1.49      matt #ifdef MBUFTRACE
   1005       1.65  jonathan 		m_claimm(m0, sb->sb_mowner);
   1006       1.49      matt #endif
   1007       1.49      matt 	}
   1008        1.1       cgd 	for (n = control; n; n = n->m_next) {
   1009        1.1       cgd 		space += n->m_len;
   1010       1.49      matt 		MCLAIM(n, sb->sb_mowner);
   1011      1.115  christos 		if (n->m_next == NULL)	/* keep pointer to last control buf */
   1012        1.1       cgd 			break;
   1013        1.1       cgd 	}
   1014        1.1       cgd 	if (space > sbspace(sb))
   1015        1.1       cgd 		return (0);
   1016      1.115  christos 	m = m_get(M_DONTWAIT, MT_SONAME);
   1017      1.115  christos 	if (m == NULL)
   1018        1.1       cgd 		return (0);
   1019       1.49      matt 	MCLAIM(m, sb->sb_mowner);
   1020       1.50      fvdl 	/*
   1021       1.50      fvdl 	 * XXX avoid 'comparison always true' warning which isn't easily
   1022       1.50      fvdl 	 * avoided.
   1023       1.50      fvdl 	 */
   1024       1.50      fvdl 	len = asa->sa_len;
   1025       1.50      fvdl 	if (len > MLEN) {
   1026       1.20   thorpej 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
   1027       1.20   thorpej 		if ((m->m_flags & M_EXT) == 0) {
   1028       1.20   thorpej 			m_free(m);
   1029       1.20   thorpej 			return (0);
   1030       1.20   thorpej 		}
   1031       1.20   thorpej 	}
   1032        1.1       cgd 	m->m_len = asa->sa_len;
   1033       1.82  christos 	memcpy(mtod(m, void *), asa, asa->sa_len);
   1034        1.1       cgd 	if (n)
   1035        1.1       cgd 		n->m_next = m0;		/* concatenate data to control */
   1036        1.1       cgd 	else
   1037        1.1       cgd 		control = m0;
   1038        1.1       cgd 	m->m_next = control;
   1039       1.43   thorpej 
   1040       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
   1041       1.43   thorpej 
   1042       1.43   thorpej 	for (n = m; n->m_next != NULL; n = n->m_next)
   1043        1.1       cgd 		sballoc(sb, n);
   1044       1.43   thorpej 	sballoc(sb, n);
   1045       1.43   thorpej 	nlast = n;
   1046       1.43   thorpej 	SBLINKRECORD(sb, m);
   1047       1.43   thorpej 
   1048       1.43   thorpej 	sb->sb_mbtail = nlast;
   1049       1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendaddr");
   1050       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
   1051       1.43   thorpej 
   1052        1.1       cgd 	return (1);
   1053        1.1       cgd }
   1054        1.1       cgd 
   1055       1.63  jonathan /*
   1056       1.63  jonathan  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
   1057       1.63  jonathan  * an mbuf chain.
   1058       1.63  jonathan  */
   1059       1.70     perry static inline struct mbuf *
   1060       1.81      yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
   1061       1.64  jonathan 		   const struct sockaddr *asa)
   1062       1.63  jonathan {
   1063       1.63  jonathan 	struct mbuf *m;
   1064       1.64  jonathan 	const int salen = asa->sa_len;
   1065       1.63  jonathan 
   1066       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1067       1.91        ad 
   1068       1.63  jonathan 	/* only the first in each chain need be a pkthdr */
   1069      1.115  christos 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
   1070      1.115  christos 	if (m == NULL)
   1071      1.115  christos 		return NULL;
   1072       1.63  jonathan 	MCLAIM(m, sb->sb_mowner);
   1073       1.64  jonathan #ifdef notyet
   1074       1.64  jonathan 	if (salen > MHLEN) {
   1075       1.64  jonathan 		MEXTMALLOC(m, salen, M_NOWAIT);
   1076       1.64  jonathan 		if ((m->m_flags & M_EXT) == 0) {
   1077       1.64  jonathan 			m_free(m);
   1078      1.115  christos 			return NULL;
   1079       1.64  jonathan 		}
   1080       1.64  jonathan 	}
   1081       1.64  jonathan #else
   1082       1.64  jonathan 	KASSERT(salen <= MHLEN);
   1083       1.64  jonathan #endif
   1084       1.64  jonathan 	m->m_len = salen;
   1085       1.82  christos 	memcpy(mtod(m, void *), asa, salen);
   1086       1.63  jonathan 	m->m_next = m0;
   1087       1.64  jonathan 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1088       1.63  jonathan 
   1089       1.63  jonathan 	return m;
   1090       1.63  jonathan }
   1091       1.63  jonathan 
   1092       1.63  jonathan int
   1093       1.63  jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1094       1.63  jonathan 		  struct mbuf *m0, int sbprio)
   1095       1.63  jonathan {
   1096       1.63  jonathan 	struct mbuf *m, *n, *n0, *nlast;
   1097       1.63  jonathan 	int error;
   1098       1.63  jonathan 
   1099       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1100       1.91        ad 
   1101       1.63  jonathan 	/*
   1102       1.63  jonathan 	 * XXX sbprio reserved for encoding priority of this* request:
   1103       1.63  jonathan 	 *  SB_PRIO_NONE --> honour normal sb limits
   1104       1.63  jonathan 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1105       1.63  jonathan 	 *	take whole chain. Intended for large requests
   1106       1.63  jonathan 	 *      that should be delivered atomically (all, or none).
   1107       1.63  jonathan 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1108       1.63  jonathan 	 *       over normal socket limits, for messages indicating
   1109       1.63  jonathan 	 *       buffer overflow in earlier normal/lower-priority messages
   1110       1.63  jonathan 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1111       1.63  jonathan 	 *       Intended for  kernel-generated messages only.
   1112       1.63  jonathan 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1113       1.63  jonathan 	 */
   1114       1.63  jonathan 	(void)sbprio;
   1115       1.63  jonathan 
   1116       1.63  jonathan 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1117       1.63  jonathan 		panic("sbappendaddrchain");
   1118       1.63  jonathan 
   1119      1.114    martin #ifdef notyet
   1120       1.63  jonathan 	space = sbspace(sb);
   1121       1.66     perry 
   1122       1.66     perry 	/*
   1123       1.63  jonathan 	 * Enforce SB_PRIO_* limits as described above.
   1124       1.63  jonathan 	 */
   1125       1.63  jonathan #endif
   1126       1.63  jonathan 
   1127       1.63  jonathan 	n0 = NULL;
   1128       1.63  jonathan 	nlast = NULL;
   1129       1.63  jonathan 	for (m = m0; m; m = m->m_nextpkt) {
   1130       1.63  jonathan 		struct mbuf *np;
   1131       1.63  jonathan 
   1132       1.64  jonathan #ifdef MBUFTRACE
   1133       1.65  jonathan 		m_claimm(m, sb->sb_mowner);
   1134       1.64  jonathan #endif
   1135       1.64  jonathan 
   1136       1.63  jonathan 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1137       1.64  jonathan 	  	n = m_prepend_sockaddr(sb, m, asa);
   1138       1.63  jonathan 		if (n == NULL) {
   1139       1.63  jonathan 			error = ENOBUFS;
   1140       1.63  jonathan 			goto bad;
   1141       1.63  jonathan 		}
   1142       1.63  jonathan 
   1143       1.63  jonathan 		/* Append record (asa+m) to end of new chain n0 */
   1144       1.63  jonathan 		if (n0 == NULL) {
   1145       1.63  jonathan 			n0 = n;
   1146       1.63  jonathan 		} else {
   1147       1.63  jonathan 			nlast->m_nextpkt = n;
   1148       1.63  jonathan 		}
   1149       1.63  jonathan 		/* Keep track of last record on new chain */
   1150       1.63  jonathan 		nlast = n;
   1151       1.63  jonathan 
   1152       1.63  jonathan 		for (np = n; np; np = np->m_next)
   1153       1.63  jonathan 			sballoc(sb, np);
   1154       1.63  jonathan 	}
   1155       1.63  jonathan 
   1156       1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1157       1.64  jonathan 
   1158       1.63  jonathan 	/* Drop the entire chain of (asa+m) records onto the socket */
   1159       1.63  jonathan 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1160       1.64  jonathan 
   1161       1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1162       1.64  jonathan 
   1163       1.63  jonathan 	for (m = nlast; m->m_next; m = m->m_next)
   1164       1.63  jonathan 		;
   1165       1.63  jonathan 	sb->sb_mbtail = m;
   1166       1.64  jonathan 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1167       1.64  jonathan 
   1168       1.63  jonathan 	return (1);
   1169       1.63  jonathan 
   1170       1.63  jonathan bad:
   1171       1.64  jonathan 	/*
   1172       1.64  jonathan 	 * On error, free the prepended addreseses. For consistency
   1173       1.64  jonathan 	 * with sbappendaddr(), leave it to our caller to free
   1174       1.64  jonathan 	 * the input record chain passed to us as m0.
   1175       1.64  jonathan 	 */
   1176       1.64  jonathan 	while ((n = n0) != NULL) {
   1177       1.64  jonathan 	  	struct mbuf *np;
   1178       1.64  jonathan 
   1179       1.64  jonathan 		/* Undo the sballoc() of this record */
   1180       1.64  jonathan 		for (np = n; np; np = np->m_next)
   1181       1.64  jonathan 			sbfree(sb, np);
   1182       1.64  jonathan 
   1183       1.64  jonathan 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1184      1.124  christos 		np = m_free(n);		/* free prepended address (not data) */
   1185       1.64  jonathan 	}
   1186      1.114    martin 	return error;
   1187       1.63  jonathan }
   1188       1.63  jonathan 
   1189       1.63  jonathan 
   1190        1.7   mycroft int
   1191       1.37     lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1192        1.1       cgd {
   1193       1.43   thorpej 	struct mbuf	*m, *mlast, *n;
   1194       1.37     lukem 	int		space;
   1195        1.1       cgd 
   1196       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1197       1.91        ad 
   1198       1.37     lukem 	space = 0;
   1199      1.115  christos 	if (control == NULL)
   1200        1.1       cgd 		panic("sbappendcontrol");
   1201        1.1       cgd 	for (m = control; ; m = m->m_next) {
   1202        1.1       cgd 		space += m->m_len;
   1203       1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1204      1.115  christos 		if (m->m_next == NULL)
   1205        1.1       cgd 			break;
   1206        1.1       cgd 	}
   1207        1.1       cgd 	n = m;			/* save pointer to last control buffer */
   1208       1.49      matt 	for (m = m0; m; m = m->m_next) {
   1209       1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1210        1.1       cgd 		space += m->m_len;
   1211       1.49      matt 	}
   1212        1.1       cgd 	if (space > sbspace(sb))
   1213        1.1       cgd 		return (0);
   1214        1.1       cgd 	n->m_next = m0;			/* concatenate data to control */
   1215       1.43   thorpej 
   1216       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1217       1.43   thorpej 
   1218       1.43   thorpej 	for (m = control; m->m_next != NULL; m = m->m_next)
   1219        1.1       cgd 		sballoc(sb, m);
   1220       1.43   thorpej 	sballoc(sb, m);
   1221       1.43   thorpej 	mlast = m;
   1222       1.43   thorpej 	SBLINKRECORD(sb, control);
   1223       1.43   thorpej 
   1224       1.43   thorpej 	sb->sb_mbtail = mlast;
   1225       1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1226       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1227       1.43   thorpej 
   1228        1.1       cgd 	return (1);
   1229        1.1       cgd }
   1230        1.1       cgd 
   1231        1.1       cgd /*
   1232        1.1       cgd  * Compress mbuf chain m into the socket
   1233        1.1       cgd  * buffer sb following mbuf n.  If n
   1234        1.1       cgd  * is null, the buffer is presumed empty.
   1235        1.1       cgd  */
   1236        1.7   mycroft void
   1237       1.37     lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1238        1.1       cgd {
   1239       1.37     lukem 	int		eor;
   1240       1.37     lukem 	struct mbuf	*o;
   1241        1.1       cgd 
   1242       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1243       1.91        ad 
   1244       1.37     lukem 	eor = 0;
   1245        1.1       cgd 	while (m) {
   1246        1.1       cgd 		eor |= m->m_flags & M_EOR;
   1247        1.1       cgd 		if (m->m_len == 0 &&
   1248        1.1       cgd 		    (eor == 0 ||
   1249        1.1       cgd 		     (((o = m->m_next) || (o = n)) &&
   1250        1.1       cgd 		      o->m_type == m->m_type))) {
   1251       1.46   thorpej 			if (sb->sb_lastrecord == m)
   1252       1.46   thorpej 				sb->sb_lastrecord = m->m_next;
   1253        1.1       cgd 			m = m_free(m);
   1254        1.1       cgd 			continue;
   1255        1.1       cgd 		}
   1256       1.40   thorpej 		if (n && (n->m_flags & M_EOR) == 0 &&
   1257       1.40   thorpej 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1258       1.40   thorpej 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1259       1.40   thorpej 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1260       1.40   thorpej 		    n->m_type == m->m_type) {
   1261       1.82  christos 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1262        1.1       cgd 			    (unsigned)m->m_len);
   1263        1.1       cgd 			n->m_len += m->m_len;
   1264        1.1       cgd 			sb->sb_cc += m->m_len;
   1265        1.1       cgd 			m = m_free(m);
   1266        1.1       cgd 			continue;
   1267        1.1       cgd 		}
   1268        1.1       cgd 		if (n)
   1269        1.1       cgd 			n->m_next = m;
   1270        1.1       cgd 		else
   1271        1.1       cgd 			sb->sb_mb = m;
   1272       1.43   thorpej 		sb->sb_mbtail = m;
   1273        1.1       cgd 		sballoc(sb, m);
   1274        1.1       cgd 		n = m;
   1275        1.1       cgd 		m->m_flags &= ~M_EOR;
   1276        1.1       cgd 		m = m->m_next;
   1277        1.1       cgd 		n->m_next = 0;
   1278        1.1       cgd 	}
   1279        1.1       cgd 	if (eor) {
   1280        1.1       cgd 		if (n)
   1281        1.1       cgd 			n->m_flags |= eor;
   1282        1.1       cgd 		else
   1283       1.15  christos 			printf("semi-panic: sbcompress\n");
   1284        1.1       cgd 	}
   1285       1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
   1286        1.1       cgd }
   1287        1.1       cgd 
   1288        1.1       cgd /*
   1289        1.1       cgd  * Free all mbufs in a sockbuf.
   1290        1.1       cgd  * Check that all resources are reclaimed.
   1291        1.1       cgd  */
   1292        1.7   mycroft void
   1293       1.37     lukem sbflush(struct sockbuf *sb)
   1294        1.1       cgd {
   1295        1.1       cgd 
   1296       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1297       1.43   thorpej 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1298       1.43   thorpej 
   1299        1.1       cgd 	while (sb->sb_mbcnt)
   1300        1.1       cgd 		sbdrop(sb, (int)sb->sb_cc);
   1301       1.43   thorpej 
   1302       1.43   thorpej 	KASSERT(sb->sb_cc == 0);
   1303       1.43   thorpej 	KASSERT(sb->sb_mb == NULL);
   1304       1.43   thorpej 	KASSERT(sb->sb_mbtail == NULL);
   1305       1.43   thorpej 	KASSERT(sb->sb_lastrecord == NULL);
   1306        1.1       cgd }
   1307        1.1       cgd 
   1308        1.1       cgd /*
   1309        1.1       cgd  * Drop data from (the front of) a sockbuf.
   1310        1.1       cgd  */
   1311        1.7   mycroft void
   1312       1.37     lukem sbdrop(struct sockbuf *sb, int len)
   1313        1.1       cgd {
   1314      1.124  christos 	struct mbuf	*m, *next;
   1315        1.1       cgd 
   1316       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1317       1.91        ad 
   1318      1.115  christos 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
   1319        1.1       cgd 	while (len > 0) {
   1320      1.115  christos 		if (m == NULL) {
   1321      1.115  christos 			if (next == NULL)
   1322      1.112      matt 				panic("sbdrop(%p,%d): cc=%lu",
   1323      1.112      matt 				    sb, len, sb->sb_cc);
   1324        1.1       cgd 			m = next;
   1325        1.1       cgd 			next = m->m_nextpkt;
   1326        1.1       cgd 			continue;
   1327        1.1       cgd 		}
   1328        1.1       cgd 		if (m->m_len > len) {
   1329        1.1       cgd 			m->m_len -= len;
   1330        1.1       cgd 			m->m_data += len;
   1331        1.1       cgd 			sb->sb_cc -= len;
   1332        1.1       cgd 			break;
   1333        1.1       cgd 		}
   1334        1.1       cgd 		len -= m->m_len;
   1335        1.1       cgd 		sbfree(sb, m);
   1336      1.124  christos 		m = m_free(m);
   1337        1.1       cgd 	}
   1338        1.1       cgd 	while (m && m->m_len == 0) {
   1339        1.1       cgd 		sbfree(sb, m);
   1340      1.124  christos 		m = m_free(m);
   1341        1.1       cgd 	}
   1342        1.1       cgd 	if (m) {
   1343        1.1       cgd 		sb->sb_mb = m;
   1344        1.1       cgd 		m->m_nextpkt = next;
   1345        1.1       cgd 	} else
   1346        1.1       cgd 		sb->sb_mb = next;
   1347       1.43   thorpej 	/*
   1348       1.45   thorpej 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1349       1.43   thorpej 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1350       1.43   thorpej 	 * part of the last record.
   1351       1.43   thorpej 	 */
   1352       1.43   thorpej 	m = sb->sb_mb;
   1353       1.43   thorpej 	if (m == NULL) {
   1354       1.43   thorpej 		sb->sb_mbtail = NULL;
   1355       1.43   thorpej 		sb->sb_lastrecord = NULL;
   1356       1.43   thorpej 	} else if (m->m_nextpkt == NULL)
   1357       1.43   thorpej 		sb->sb_lastrecord = m;
   1358        1.1       cgd }
   1359        1.1       cgd 
   1360        1.1       cgd /*
   1361        1.1       cgd  * Drop a record off the front of a sockbuf
   1362        1.1       cgd  * and move the next record to the front.
   1363        1.1       cgd  */
   1364        1.7   mycroft void
   1365       1.37     lukem sbdroprecord(struct sockbuf *sb)
   1366        1.1       cgd {
   1367       1.37     lukem 	struct mbuf	*m, *mn;
   1368        1.1       cgd 
   1369       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1370       1.91        ad 
   1371        1.1       cgd 	m = sb->sb_mb;
   1372        1.1       cgd 	if (m) {
   1373        1.1       cgd 		sb->sb_mb = m->m_nextpkt;
   1374        1.1       cgd 		do {
   1375        1.1       cgd 			sbfree(sb, m);
   1376      1.124  christos 			mn = m_free(m);
   1377       1.11  christos 		} while ((m = mn) != NULL);
   1378        1.1       cgd 	}
   1379       1.45   thorpej 	SB_EMPTY_FIXUP(sb);
   1380       1.19   thorpej }
   1381       1.19   thorpej 
   1382       1.19   thorpej /*
   1383       1.19   thorpej  * Create a "control" mbuf containing the specified data
   1384       1.19   thorpej  * with the specified type for presentation on a socket buffer.
   1385       1.19   thorpej  */
   1386       1.19   thorpej struct mbuf *
   1387      1.111  christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1388       1.19   thorpej {
   1389       1.37     lukem 	struct cmsghdr	*cp;
   1390       1.37     lukem 	struct mbuf	*m;
   1391      1.111  christos 	int space = CMSG_SPACE(size);
   1392       1.19   thorpej 
   1393      1.111  christos 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1394      1.111  christos 		printf("%s: message too large %d\n", __func__, space);
   1395       1.30    itojun 		return NULL;
   1396       1.30    itojun 	}
   1397       1.30    itojun 
   1398      1.111  christos 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1399      1.111  christos 		return NULL;
   1400      1.111  christos 	if (space > MLEN) {
   1401      1.111  christos 		if (space > MCLBYTES)
   1402      1.111  christos 			MEXTMALLOC(m, space, M_WAITOK);
   1403      1.111  christos 		else
   1404      1.111  christos 			MCLGET(m, flags);
   1405       1.30    itojun 		if ((m->m_flags & M_EXT) == 0) {
   1406       1.30    itojun 			m_free(m);
   1407       1.30    itojun 			return NULL;
   1408       1.30    itojun 		}
   1409       1.30    itojun 	}
   1410       1.19   thorpej 	cp = mtod(m, struct cmsghdr *);
   1411      1.111  christos 	*p = CMSG_DATA(cp);
   1412      1.111  christos 	m->m_len = space;
   1413       1.35    itojun 	cp->cmsg_len = CMSG_LEN(size);
   1414       1.19   thorpej 	cp->cmsg_level = level;
   1415       1.19   thorpej 	cp->cmsg_type = type;
   1416      1.111  christos 	return m;
   1417      1.111  christos }
   1418      1.111  christos 
   1419      1.111  christos struct mbuf *
   1420      1.111  christos sbcreatecontrol(void *p, int size, int type, int level)
   1421      1.111  christos {
   1422      1.111  christos 	struct mbuf *m;
   1423      1.111  christos 	void *v;
   1424      1.111  christos 
   1425      1.111  christos 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1426      1.111  christos 	if (m == NULL)
   1427      1.111  christos 		return NULL;
   1428      1.111  christos 	memcpy(v, p, size);
   1429      1.111  christos 	return m;
   1430        1.1       cgd }
   1431       1.91        ad 
   1432       1.91        ad void
   1433       1.91        ad solockretry(struct socket *so, kmutex_t *lock)
   1434       1.91        ad {
   1435       1.91        ad 
   1436       1.91        ad 	while (lock != so->so_lock) {
   1437       1.91        ad 		mutex_exit(lock);
   1438       1.91        ad 		lock = so->so_lock;
   1439       1.91        ad 		mutex_enter(lock);
   1440       1.91        ad 	}
   1441       1.91        ad }
   1442       1.91        ad 
   1443       1.91        ad bool
   1444       1.91        ad solocked(struct socket *so)
   1445       1.91        ad {
   1446       1.91        ad 
   1447       1.91        ad 	return mutex_owned(so->so_lock);
   1448       1.91        ad }
   1449       1.91        ad 
   1450       1.91        ad bool
   1451       1.91        ad solocked2(struct socket *so1, struct socket *so2)
   1452       1.91        ad {
   1453       1.91        ad 	kmutex_t *lock;
   1454       1.91        ad 
   1455       1.91        ad 	lock = so1->so_lock;
   1456       1.91        ad 	if (lock != so2->so_lock)
   1457       1.91        ad 		return false;
   1458       1.91        ad 	return mutex_owned(lock);
   1459       1.91        ad }
   1460       1.91        ad 
   1461       1.91        ad /*
   1462      1.116     rmind  * sosetlock: assign a default lock to a new socket.
   1463       1.91        ad  */
   1464       1.91        ad void
   1465       1.91        ad sosetlock(struct socket *so)
   1466       1.91        ad {
   1467      1.116     rmind 	if (so->so_lock == NULL) {
   1468      1.116     rmind 		kmutex_t *lock = softnet_lock;
   1469       1.91        ad 
   1470       1.91        ad 		so->so_lock = lock;
   1471       1.91        ad 		mutex_obj_hold(lock);
   1472       1.91        ad 		mutex_enter(lock);
   1473       1.91        ad 	}
   1474       1.91        ad 	KASSERT(solocked(so));
   1475       1.91        ad }
   1476       1.91        ad 
   1477       1.91        ad /*
   1478       1.91        ad  * Set lock on sockbuf sb; sleep if lock is already held.
   1479       1.91        ad  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1480       1.91        ad  * Returns error without lock if sleep is interrupted.
   1481       1.91        ad  */
   1482       1.91        ad int
   1483       1.91        ad sblock(struct sockbuf *sb, int wf)
   1484       1.91        ad {
   1485       1.91        ad 	struct socket *so;
   1486       1.91        ad 	kmutex_t *lock;
   1487       1.91        ad 	int error;
   1488       1.91        ad 
   1489       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1490       1.91        ad 
   1491       1.91        ad 	for (;;) {
   1492       1.91        ad 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1493       1.91        ad 			sb->sb_flags |= SB_LOCK;
   1494       1.91        ad 			return 0;
   1495       1.91        ad 		}
   1496       1.91        ad 		if (wf != M_WAITOK)
   1497       1.91        ad 			return EWOULDBLOCK;
   1498       1.91        ad 		so = sb->sb_so;
   1499       1.91        ad 		lock = so->so_lock;
   1500       1.91        ad 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1501       1.91        ad 			cv_wait(&so->so_cv, lock);
   1502       1.91        ad 			error = 0;
   1503       1.91        ad 		} else
   1504       1.91        ad 			error = cv_wait_sig(&so->so_cv, lock);
   1505       1.91        ad 		if (__predict_false(lock != so->so_lock))
   1506       1.91        ad 			solockretry(so, lock);
   1507       1.91        ad 		if (error != 0)
   1508       1.91        ad 			return error;
   1509       1.91        ad 	}
   1510       1.91        ad }
   1511       1.91        ad 
   1512       1.91        ad void
   1513       1.91        ad sbunlock(struct sockbuf *sb)
   1514       1.91        ad {
   1515       1.91        ad 	struct socket *so;
   1516       1.91        ad 
   1517       1.91        ad 	so = sb->sb_so;
   1518       1.91        ad 
   1519       1.91        ad 	KASSERT(solocked(so));
   1520       1.91        ad 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1521       1.91        ad 
   1522       1.91        ad 	sb->sb_flags &= ~SB_LOCK;
   1523       1.91        ad 	cv_broadcast(&so->so_cv);
   1524       1.91        ad }
   1525       1.91        ad 
   1526       1.91        ad int
   1527      1.121      matt sowait(struct socket *so, bool catch_p, int timo)
   1528       1.91        ad {
   1529       1.91        ad 	kmutex_t *lock;
   1530       1.91        ad 	int error;
   1531       1.91        ad 
   1532       1.91        ad 	KASSERT(solocked(so));
   1533      1.121      matt 	KASSERT(catch_p || timo != 0);
   1534       1.91        ad 
   1535       1.91        ad 	lock = so->so_lock;
   1536      1.121      matt 	if (catch_p)
   1537      1.101      yamt 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1538      1.101      yamt 	else
   1539      1.101      yamt 		error = cv_timedwait(&so->so_cv, lock, timo);
   1540       1.91        ad 	if (__predict_false(lock != so->so_lock))
   1541       1.91        ad 		solockretry(so, lock);
   1542       1.91        ad 	return error;
   1543       1.91        ad }
   1544