Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.124.8.3
      1  1.124.8.3    martin /*	$NetBSD: uipc_socket2.c,v 1.124.8.3 2018/07/31 17:01:20 martin Exp $	*/
      2       1.91        ad 
      3       1.91        ad /*-
      4       1.91        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5       1.91        ad  * All rights reserved.
      6       1.91        ad  *
      7       1.91        ad  * Redistribution and use in source and binary forms, with or without
      8       1.91        ad  * modification, are permitted provided that the following conditions
      9       1.91        ad  * are met:
     10       1.91        ad  * 1. Redistributions of source code must retain the above copyright
     11       1.91        ad  *    notice, this list of conditions and the following disclaimer.
     12       1.91        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.91        ad  *    notice, this list of conditions and the following disclaimer in the
     14       1.91        ad  *    documentation and/or other materials provided with the distribution.
     15       1.91        ad  *
     16       1.91        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17       1.91        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18       1.91        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19       1.91        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20       1.91        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21       1.91        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22       1.91        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23       1.91        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24       1.91        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25       1.91        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26       1.91        ad  * POSSIBILITY OF SUCH DAMAGE.
     27       1.91        ad  */
     28        1.9       cgd 
     29        1.1       cgd /*
     30        1.7   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31        1.7   mycroft  *	The Regents of the University of California.  All rights reserved.
     32        1.1       cgd  *
     33        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     34        1.1       cgd  * modification, are permitted provided that the following conditions
     35        1.1       cgd  * are met:
     36        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     37        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     38        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     39        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     40        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     41       1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     42        1.1       cgd  *    may be used to endorse or promote products derived from this software
     43        1.1       cgd  *    without specific prior written permission.
     44        1.1       cgd  *
     45        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55        1.1       cgd  * SUCH DAMAGE.
     56        1.1       cgd  *
     57       1.23      fvdl  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58        1.1       cgd  */
     59       1.42     lukem 
     60       1.42     lukem #include <sys/cdefs.h>
     61  1.124.8.3    martin __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.124.8.3 2018/07/31 17:01:20 martin Exp $");
     62       1.51    martin 
     63      1.122     pooka #ifdef _KERNEL_OPT
     64  1.124.8.3    martin #include "opt_ddb.h"
     65       1.51    martin #include "opt_mbuftrace.h"
     66       1.58   thorpej #include "opt_sb_max.h"
     67      1.122     pooka #endif
     68        1.1       cgd 
     69        1.5   mycroft #include <sys/param.h>
     70        1.5   mycroft #include <sys/systm.h>
     71        1.5   mycroft #include <sys/proc.h>
     72        1.5   mycroft #include <sys/file.h>
     73        1.5   mycroft #include <sys/buf.h>
     74        1.5   mycroft #include <sys/mbuf.h>
     75        1.5   mycroft #include <sys/protosw.h>
     76       1.91        ad #include <sys/domain.h>
     77       1.55  christos #include <sys/poll.h>
     78        1.5   mycroft #include <sys/socket.h>
     79        1.5   mycroft #include <sys/socketvar.h>
     80       1.11  christos #include <sys/signalvar.h>
     81       1.71      elad #include <sys/kauth.h>
     82       1.91        ad #include <sys/pool.h>
     83       1.98     pooka #include <sys/uidinfo.h>
     84        1.1       cgd 
     85  1.124.8.3    martin #ifdef DDB
     86  1.124.8.3    martin #include <sys/filedesc.h>
     87  1.124.8.3    martin #endif
     88  1.124.8.3    martin 
     89        1.1       cgd /*
     90       1.91        ad  * Primitive routines for operating on sockets and socket buffers.
     91       1.91        ad  *
     92      1.116     rmind  * Connection life-cycle:
     93      1.116     rmind  *
     94      1.116     rmind  *	Normal sequence from the active (originating) side:
     95      1.116     rmind  *
     96      1.116     rmind  *	- soisconnecting() is called during processing of connect() call,
     97      1.116     rmind  *	- resulting in an eventual call to soisconnected() if/when the
     98      1.116     rmind  *	  connection is established.
     99      1.116     rmind  *
    100      1.116     rmind  *	When the connection is torn down during processing of disconnect():
    101      1.116     rmind  *
    102      1.116     rmind  *	- soisdisconnecting() is called and,
    103      1.116     rmind  *	- soisdisconnected() is called when the connection to the peer
    104      1.116     rmind  *	  is totally severed.
    105      1.116     rmind  *
    106      1.116     rmind  *	The semantics of these routines are such that connectionless protocols
    107      1.116     rmind  *	can call soisconnected() and soisdisconnected() only, bypassing the
    108      1.116     rmind  *	in-progress calls when setting up a ``connection'' takes no time.
    109      1.116     rmind  *
    110      1.116     rmind  *	From the passive side, a socket is created with two queues of sockets:
    111      1.116     rmind  *
    112      1.116     rmind  *	- so_q0 (0) for partial connections (i.e. connections in progress)
    113      1.116     rmind  *	- so_q (1) for connections already made and awaiting user acceptance.
    114      1.116     rmind  *
    115      1.116     rmind  *	As a protocol is preparing incoming connections, it creates a socket
    116      1.116     rmind  *	structure queued on so_q0 by calling sonewconn().  When the connection
    117      1.116     rmind  *	is established, soisconnected() is called, and transfers the
    118      1.116     rmind  *	socket structure to so_q, making it available to accept().
    119      1.116     rmind  *
    120      1.116     rmind  *	If a socket is closed with sockets on either so_q0 or so_q, these
    121      1.116     rmind  *	sockets are dropped.
    122      1.116     rmind  *
    123       1.91        ad  * Locking rules and assumptions:
    124       1.91        ad  *
    125       1.91        ad  * o socket::so_lock can change on the fly.  The low level routines used
    126       1.91        ad  *   to lock sockets are aware of this.  When so_lock is acquired, the
    127       1.91        ad  *   routine locking must check to see if so_lock still points to the
    128       1.91        ad  *   lock that was acquired.  If so_lock has changed in the meantime, the
    129      1.116     rmind  *   now irrelevant lock that was acquired must be dropped and the lock
    130       1.91        ad  *   operation retried.  Although not proven here, this is completely safe
    131       1.91        ad  *   on a multiprocessor system, even with relaxed memory ordering, given
    132       1.91        ad  *   the next two rules:
    133       1.91        ad  *
    134       1.91        ad  * o In order to mutate so_lock, the lock pointed to by the current value
    135       1.91        ad  *   of so_lock must be held: i.e., the socket must be held locked by the
    136       1.91        ad  *   changing thread.  The thread must issue membar_exit() to prevent
    137       1.91        ad  *   memory accesses being reordered, and can set so_lock to the desired
    138       1.91        ad  *   value.  If the lock pointed to by the new value of so_lock is not
    139       1.91        ad  *   held by the changing thread, the socket must then be considered
    140       1.91        ad  *   unlocked.
    141       1.91        ad  *
    142       1.91        ad  * o If so_lock is mutated, and the previous lock referred to by so_lock
    143       1.91        ad  *   could still be visible to other threads in the system (e.g. via file
    144       1.91        ad  *   descriptor or protocol-internal reference), then the old lock must
    145       1.91        ad  *   remain valid until the socket and/or protocol control block has been
    146       1.91        ad  *   torn down.
    147       1.91        ad  *
    148       1.91        ad  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    149       1.91        ad  *   connecting), then locking the socket must also lock the socket pointed
    150       1.91        ad  *   to by so_head: their lock pointers must match.
    151       1.91        ad  *
    152       1.91        ad  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    153       1.91        ad  *   locking the socket must also lock the sockets attached to both queues.
    154       1.91        ad  *   Again, their lock pointers must match.
    155       1.91        ad  *
    156      1.116     rmind  * o Beyond the initial lock assignment in socreate(), assigning locks to
    157       1.91        ad  *   sockets is the responsibility of the individual protocols / protocol
    158       1.91        ad  *   domains.
    159        1.1       cgd  */
    160        1.1       cgd 
    161      1.116     rmind static pool_cache_t	socket_cache;
    162      1.116     rmind u_long			sb_max = SB_MAX;/* maximum socket buffer size */
    163      1.116     rmind static u_long		sb_max_adj;	/* adjusted sb_max */
    164        1.1       cgd 
    165        1.7   mycroft void
    166       1.37     lukem soisconnecting(struct socket *so)
    167        1.1       cgd {
    168        1.1       cgd 
    169       1.91        ad 	KASSERT(solocked(so));
    170       1.91        ad 
    171        1.1       cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    172        1.1       cgd 	so->so_state |= SS_ISCONNECTING;
    173        1.1       cgd }
    174        1.1       cgd 
    175        1.7   mycroft void
    176       1.37     lukem soisconnected(struct socket *so)
    177        1.1       cgd {
    178       1.37     lukem 	struct socket	*head;
    179        1.1       cgd 
    180       1.37     lukem 	head = so->so_head;
    181       1.91        ad 
    182       1.91        ad 	KASSERT(solocked(so));
    183       1.91        ad 	KASSERT(head == NULL || solocked2(so, head));
    184       1.91        ad 
    185      1.113     rmind 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    186        1.1       cgd 	so->so_state |= SS_ISCONNECTED;
    187       1.97       tls 	if (head && so->so_onq == &head->so_q0) {
    188       1.97       tls 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    189      1.116     rmind 			/*
    190      1.116     rmind 			 * Re-enqueue and wake up any waiters, e.g.
    191      1.116     rmind 			 * processes blocking on accept().
    192      1.116     rmind 			 */
    193       1.97       tls 			soqremque(so, 0);
    194       1.97       tls 			soqinsque(head, so, 1);
    195       1.97       tls 			sorwakeup(head);
    196       1.97       tls 			cv_broadcast(&head->so_cv);
    197       1.97       tls 		} else {
    198       1.97       tls 			so->so_upcall =
    199       1.97       tls 			    head->so_accf->so_accept_filter->accf_callback;
    200       1.97       tls 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    201       1.97       tls 			so->so_rcv.sb_flags |= SB_UPCALL;
    202       1.97       tls 			so->so_options &= ~SO_ACCEPTFILTER;
    203      1.104       tls 			(*so->so_upcall)(so, so->so_upcallarg,
    204      1.104       tls 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    205      1.101      yamt 		}
    206        1.1       cgd 	} else {
    207       1.91        ad 		cv_broadcast(&so->so_cv);
    208        1.1       cgd 		sorwakeup(so);
    209        1.1       cgd 		sowwakeup(so);
    210        1.1       cgd 	}
    211        1.1       cgd }
    212        1.1       cgd 
    213        1.7   mycroft void
    214       1.37     lukem soisdisconnecting(struct socket *so)
    215        1.1       cgd {
    216        1.1       cgd 
    217       1.91        ad 	KASSERT(solocked(so));
    218       1.91        ad 
    219        1.1       cgd 	so->so_state &= ~SS_ISCONNECTING;
    220        1.1       cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    221       1.91        ad 	cv_broadcast(&so->so_cv);
    222        1.1       cgd 	sowwakeup(so);
    223        1.1       cgd 	sorwakeup(so);
    224        1.1       cgd }
    225        1.1       cgd 
    226        1.7   mycroft void
    227       1.37     lukem soisdisconnected(struct socket *so)
    228        1.1       cgd {
    229        1.1       cgd 
    230       1.91        ad 	KASSERT(solocked(so));
    231       1.91        ad 
    232        1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    233       1.27   mycroft 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    234       1.91        ad 	cv_broadcast(&so->so_cv);
    235        1.1       cgd 	sowwakeup(so);
    236        1.1       cgd 	sorwakeup(so);
    237        1.1       cgd }
    238        1.1       cgd 
    239       1.94        ad void
    240       1.94        ad soinit2(void)
    241       1.94        ad {
    242       1.94        ad 
    243       1.94        ad 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    244       1.94        ad 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    245       1.94        ad }
    246       1.94        ad 
    247        1.1       cgd /*
    248      1.116     rmind  * sonewconn: accept a new connection.
    249      1.116     rmind  *
    250      1.116     rmind  * When an attempt at a new connection is noted on a socket which accepts
    251      1.116     rmind  * connections, sonewconn(9) is called.  If the connection is possible
    252      1.116     rmind  * (subject to space constraints, etc) then we allocate a new structure,
    253      1.116     rmind  * properly linked into the data structure of the original socket.
    254      1.116     rmind  *
    255      1.116     rmind  * => If 'soready' is true, then socket will become ready for accept() i.e.
    256      1.116     rmind  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
    257      1.116     rmind  * => May be called from soft-interrupt context.
    258      1.116     rmind  * => Listening socket should be locked.
    259      1.116     rmind  * => Returns the new socket locked.
    260        1.1       cgd  */
    261        1.1       cgd struct socket *
    262      1.116     rmind sonewconn(struct socket *head, bool soready)
    263        1.1       cgd {
    264      1.116     rmind 	struct socket *so;
    265      1.116     rmind 	int soqueue, error;
    266       1.91        ad 
    267       1.91        ad 	KASSERT(solocked(head));
    268        1.1       cgd 
    269      1.116     rmind 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
    270      1.123       tls 		/*
    271      1.123       tls 		 * Listen queue overflow.  If there is an accept filter
    272      1.123       tls 		 * active, pass through the oldest cxn it's handling.
    273      1.123       tls 		 */
    274      1.123       tls 		if (head->so_accf == NULL) {
    275      1.123       tls 			return NULL;
    276      1.123       tls 		} else {
    277      1.123       tls 			struct socket *so2, *next;
    278      1.123       tls 
    279      1.123       tls 			/* Pass the oldest connection waiting in the
    280      1.123       tls 			   accept filter */
    281      1.123       tls 			for (so2 = TAILQ_FIRST(&head->so_q0);
    282      1.123       tls 			     so2 != NULL; so2 = next) {
    283      1.123       tls 				next = TAILQ_NEXT(so2, so_qe);
    284      1.123       tls 				if (so2->so_upcall == NULL) {
    285      1.123       tls 					continue;
    286      1.123       tls 				}
    287      1.123       tls 				so2->so_upcall = NULL;
    288      1.123       tls 				so2->so_upcallarg = NULL;
    289      1.123       tls 				so2->so_options &= ~SO_ACCEPTFILTER;
    290      1.123       tls 				so2->so_rcv.sb_flags &= ~SB_UPCALL;
    291      1.123       tls 				soisconnected(so2);
    292      1.123       tls 				break;
    293      1.123       tls 			}
    294      1.123       tls 
    295      1.123       tls 			/* If nothing was nudged out of the acept filter, bail
    296      1.123       tls 			 * out; otherwise proceed allocating the socket. */
    297      1.123       tls 			if (so2 == NULL) {
    298      1.123       tls 				return NULL;
    299      1.123       tls 			}
    300      1.123       tls 		}
    301      1.116     rmind 	}
    302      1.116     rmind 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
    303      1.116     rmind 		soready = false;
    304      1.116     rmind 	}
    305      1.116     rmind 	soqueue = soready ? 1 : 0;
    306      1.113     rmind 
    307      1.116     rmind 	if ((so = soget(false)) == NULL) {
    308      1.100    dyoung 		return NULL;
    309      1.116     rmind 	}
    310        1.1       cgd 	so->so_type = head->so_type;
    311      1.116     rmind 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
    312        1.1       cgd 	so->so_linger = head->so_linger;
    313        1.1       cgd 	so->so_state = head->so_state | SS_NOFDREF;
    314        1.1       cgd 	so->so_proto = head->so_proto;
    315        1.1       cgd 	so->so_timeo = head->so_timeo;
    316        1.1       cgd 	so->so_pgid = head->so_pgid;
    317       1.24      matt 	so->so_send = head->so_send;
    318       1.24      matt 	so->so_receive = head->so_receive;
    319       1.67  christos 	so->so_uidinfo = head->so_uidinfo;
    320       1.96      yamt 	so->so_cpid = head->so_cpid;
    321      1.119     rmind 
    322      1.119     rmind 	/*
    323      1.119     rmind 	 * Share the lock with the listening-socket, it may get unshared
    324      1.119     rmind 	 * once the connection is complete.
    325      1.119     rmind 	 */
    326      1.119     rmind 	mutex_obj_hold(head->so_lock);
    327      1.119     rmind 	so->so_lock = head->so_lock;
    328      1.119     rmind 
    329      1.119     rmind 	/*
    330      1.119     rmind 	 * Reserve the space for socket buffers.
    331      1.119     rmind 	 */
    332       1.49      matt #ifdef MBUFTRACE
    333       1.49      matt 	so->so_mowner = head->so_mowner;
    334       1.49      matt 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    335       1.49      matt 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    336       1.49      matt #endif
    337      1.119     rmind 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
    338      1.103  christos 		goto out;
    339      1.119     rmind 	}
    340       1.83       tls 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    341       1.83       tls 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    342       1.84       tls 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    343       1.84       tls 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    344      1.107  christos 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    345      1.107  christos 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    346      1.116     rmind 
    347      1.116     rmind 	/*
    348      1.119     rmind 	 * Finally, perform the protocol attach.  Note: a new socket
    349      1.119     rmind 	 * lock may be assigned at this point (if so, it will be held).
    350      1.116     rmind 	 */
    351      1.119     rmind 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
    352      1.116     rmind 	if (error) {
    353      1.103  christos out:
    354      1.119     rmind 		KASSERT(solocked(so));
    355      1.116     rmind 		KASSERT(so->so_accf == NULL);
    356       1.91        ad 		soput(so);
    357      1.116     rmind 
    358      1.116     rmind 		/* Note: the listening socket shall stay locked. */
    359      1.116     rmind 		KASSERT(solocked(head));
    360      1.100    dyoung 		return NULL;
    361        1.1       cgd 	}
    362      1.119     rmind 	KASSERT(solocked2(head, so));
    363      1.116     rmind 
    364      1.116     rmind 	/*
    365      1.117     rmind 	 * Insert into the queue.  If ready, update the connection status
    366      1.117     rmind 	 * and wake up any waiters, e.g. processes blocking on accept().
    367      1.116     rmind 	 */
    368      1.117     rmind 	soqinsque(head, so, soqueue);
    369      1.116     rmind 	if (soready) {
    370      1.116     rmind 		so->so_state |= SS_ISCONNECTED;
    371        1.1       cgd 		sorwakeup(head);
    372       1.91        ad 		cv_broadcast(&head->so_cv);
    373        1.1       cgd 	}
    374      1.100    dyoung 	return so;
    375        1.1       cgd }
    376        1.1       cgd 
    377       1.91        ad struct socket *
    378       1.91        ad soget(bool waitok)
    379       1.91        ad {
    380       1.91        ad 	struct socket *so;
    381       1.91        ad 
    382       1.94        ad 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    383       1.91        ad 	if (__predict_false(so == NULL))
    384       1.91        ad 		return (NULL);
    385       1.91        ad 	memset(so, 0, sizeof(*so));
    386       1.91        ad 	TAILQ_INIT(&so->so_q0);
    387       1.91        ad 	TAILQ_INIT(&so->so_q);
    388       1.91        ad 	cv_init(&so->so_cv, "socket");
    389       1.91        ad 	cv_init(&so->so_rcv.sb_cv, "netio");
    390       1.91        ad 	cv_init(&so->so_snd.sb_cv, "netio");
    391       1.91        ad 	selinit(&so->so_rcv.sb_sel);
    392       1.91        ad 	selinit(&so->so_snd.sb_sel);
    393       1.91        ad 	so->so_rcv.sb_so = so;
    394       1.91        ad 	so->so_snd.sb_so = so;
    395       1.91        ad 	return so;
    396       1.91        ad }
    397       1.91        ad 
    398       1.91        ad void
    399       1.91        ad soput(struct socket *so)
    400       1.91        ad {
    401       1.91        ad 
    402       1.91        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    403       1.91        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    404       1.91        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    405       1.91        ad 	seldestroy(&so->so_rcv.sb_sel);
    406       1.91        ad 	seldestroy(&so->so_snd.sb_sel);
    407       1.91        ad 	mutex_obj_free(so->so_lock);
    408       1.91        ad 	cv_destroy(&so->so_cv);
    409       1.91        ad 	cv_destroy(&so->so_rcv.sb_cv);
    410       1.91        ad 	cv_destroy(&so->so_snd.sb_cv);
    411       1.94        ad 	pool_cache_put(socket_cache, so);
    412       1.91        ad }
    413       1.91        ad 
    414      1.116     rmind /*
    415      1.116     rmind  * soqinsque: insert socket of a new connection into the specified
    416      1.116     rmind  * accept queue of the listening socket (head).
    417      1.116     rmind  *
    418      1.116     rmind  *	q = 0: queue of partial connections
    419      1.116     rmind  *	q = 1: queue of incoming connections
    420      1.116     rmind  */
    421        1.7   mycroft void
    422       1.37     lukem soqinsque(struct socket *head, struct socket *so, int q)
    423        1.1       cgd {
    424      1.116     rmind 	KASSERT(q == 0 || q == 1);
    425       1.91        ad 	KASSERT(solocked2(head, so));
    426      1.116     rmind 	KASSERT(so->so_onq == NULL);
    427      1.116     rmind 	KASSERT(so->so_head == NULL);
    428       1.22   thorpej 
    429        1.1       cgd 	so->so_head = head;
    430        1.1       cgd 	if (q == 0) {
    431        1.1       cgd 		head->so_q0len++;
    432       1.22   thorpej 		so->so_onq = &head->so_q0;
    433        1.1       cgd 	} else {
    434        1.1       cgd 		head->so_qlen++;
    435       1.22   thorpej 		so->so_onq = &head->so_q;
    436        1.1       cgd 	}
    437       1.22   thorpej 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    438        1.1       cgd }
    439        1.1       cgd 
    440      1.116     rmind /*
    441      1.116     rmind  * soqremque: remove socket from the specified queue.
    442      1.116     rmind  *
    443      1.116     rmind  * => Returns true if socket was removed from the specified queue.
    444      1.116     rmind  * => False if socket was not removed (because it was in other queue).
    445      1.116     rmind  */
    446      1.116     rmind bool
    447       1.37     lukem soqremque(struct socket *so, int q)
    448        1.1       cgd {
    449      1.116     rmind 	struct socket *head = so->so_head;
    450        1.1       cgd 
    451      1.116     rmind 	KASSERT(q == 0 || q == 1);
    452      1.116     rmind 	KASSERT(solocked(so));
    453      1.116     rmind 	KASSERT(so->so_onq != NULL);
    454      1.116     rmind 	KASSERT(head != NULL);
    455       1.91        ad 
    456       1.22   thorpej 	if (q == 0) {
    457       1.22   thorpej 		if (so->so_onq != &head->so_q0)
    458      1.116     rmind 			return false;
    459        1.1       cgd 		head->so_q0len--;
    460        1.1       cgd 	} else {
    461       1.22   thorpej 		if (so->so_onq != &head->so_q)
    462      1.116     rmind 			return false;
    463        1.1       cgd 		head->so_qlen--;
    464        1.1       cgd 	}
    465       1.91        ad 	KASSERT(solocked2(so, head));
    466       1.22   thorpej 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    467       1.22   thorpej 	so->so_onq = NULL;
    468       1.22   thorpej 	so->so_head = NULL;
    469      1.116     rmind 	return true;
    470        1.1       cgd }
    471        1.1       cgd 
    472        1.1       cgd /*
    473      1.116     rmind  * socantsendmore: indicates that no more data will be sent on the
    474        1.1       cgd  * socket; it would normally be applied to a socket when the user
    475        1.1       cgd  * informs the system that no more data is to be sent, by the protocol
    476      1.120       rtr  * code (in case pr_shutdown()).
    477        1.1       cgd  */
    478        1.4    andrew void
    479       1.37     lukem socantsendmore(struct socket *so)
    480        1.1       cgd {
    481       1.91        ad 	KASSERT(solocked(so));
    482       1.91        ad 
    483        1.1       cgd 	so->so_state |= SS_CANTSENDMORE;
    484        1.1       cgd 	sowwakeup(so);
    485        1.1       cgd }
    486        1.1       cgd 
    487      1.116     rmind /*
    488      1.116     rmind  * socantrcvmore(): indicates that no more data will be received and
    489      1.116     rmind  * will normally be applied to the socket by a protocol when it detects
    490      1.116     rmind  * that the peer will send no more data.  Data queued for reading in
    491      1.116     rmind  * the socket may yet be read.
    492      1.116     rmind  */
    493        1.4    andrew void
    494       1.37     lukem socantrcvmore(struct socket *so)
    495        1.1       cgd {
    496       1.91        ad 	KASSERT(solocked(so));
    497       1.91        ad 
    498        1.1       cgd 	so->so_state |= SS_CANTRCVMORE;
    499        1.1       cgd 	sorwakeup(so);
    500        1.1       cgd }
    501        1.1       cgd 
    502        1.1       cgd /*
    503  1.124.8.1    bouyer  * soroverflow(): indicates that data was attempted to be sent
    504  1.124.8.1    bouyer  * but the receiving buffer overflowed.
    505  1.124.8.1    bouyer  */
    506  1.124.8.1    bouyer void
    507  1.124.8.1    bouyer soroverflow(struct socket *so)
    508  1.124.8.1    bouyer {
    509  1.124.8.1    bouyer 	KASSERT(solocked(so));
    510  1.124.8.1    bouyer 
    511  1.124.8.1    bouyer 	so->so_rcv.sb_overflowed++;
    512  1.124.8.2    martin 	so->so_rerror = ENOBUFS;
    513  1.124.8.1    bouyer 	sorwakeup(so);
    514  1.124.8.1    bouyer }
    515  1.124.8.1    bouyer 
    516  1.124.8.1    bouyer /*
    517        1.1       cgd  * Wait for data to arrive at/drain from a socket buffer.
    518        1.1       cgd  */
    519        1.7   mycroft int
    520       1.37     lukem sbwait(struct sockbuf *sb)
    521        1.1       cgd {
    522       1.91        ad 	struct socket *so;
    523       1.91        ad 	kmutex_t *lock;
    524       1.91        ad 	int error;
    525        1.1       cgd 
    526       1.91        ad 	so = sb->sb_so;
    527        1.1       cgd 
    528       1.91        ad 	KASSERT(solocked(so));
    529        1.1       cgd 
    530       1.91        ad 	sb->sb_flags |= SB_NOTIFY;
    531       1.91        ad 	lock = so->so_lock;
    532       1.91        ad 	if ((sb->sb_flags & SB_NOINTR) != 0)
    533       1.91        ad 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    534       1.91        ad 	else
    535       1.91        ad 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    536       1.91        ad 	if (__predict_false(lock != so->so_lock))
    537       1.91        ad 		solockretry(so, lock);
    538       1.91        ad 	return error;
    539        1.1       cgd }
    540        1.1       cgd 
    541        1.1       cgd /*
    542        1.1       cgd  * Wakeup processes waiting on a socket buffer.
    543        1.1       cgd  * Do asynchronous notification via SIGIO
    544       1.39      manu  * if the socket buffer has the SB_ASYNC flag set.
    545        1.1       cgd  */
    546        1.7   mycroft void
    547       1.55  christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
    548        1.1       cgd {
    549       1.90     rmind 	int band;
    550       1.90     rmind 
    551       1.91        ad 	KASSERT(solocked(so));
    552       1.91        ad 	KASSERT(sb->sb_so == so);
    553       1.91        ad 
    554       1.90     rmind 	if (code == POLL_IN)
    555       1.90     rmind 		band = POLLIN|POLLRDNORM;
    556       1.90     rmind 	else
    557       1.90     rmind 		band = POLLOUT|POLLWRNORM;
    558       1.91        ad 	sb->sb_flags &= ~SB_NOTIFY;
    559       1.91        ad 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    560       1.91        ad 	cv_broadcast(&sb->sb_cv);
    561       1.90     rmind 	if (sb->sb_flags & SB_ASYNC)
    562       1.57  christos 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    563       1.24      matt 	if (sb->sb_flags & SB_UPCALL)
    564      1.104       tls 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    565        1.1       cgd }
    566        1.1       cgd 
    567        1.1       cgd /*
    568       1.95        ad  * Reset a socket's lock pointer.  Wake all threads waiting on the
    569       1.95        ad  * socket's condition variables so that they can restart their waits
    570       1.95        ad  * using the new lock.  The existing lock must be held.
    571       1.95        ad  */
    572       1.95        ad void
    573       1.95        ad solockreset(struct socket *so, kmutex_t *lock)
    574       1.95        ad {
    575       1.95        ad 
    576       1.95        ad 	KASSERT(solocked(so));
    577       1.95        ad 
    578       1.95        ad 	so->so_lock = lock;
    579       1.95        ad 	cv_broadcast(&so->so_snd.sb_cv);
    580       1.95        ad 	cv_broadcast(&so->so_rcv.sb_cv);
    581       1.95        ad 	cv_broadcast(&so->so_cv);
    582       1.95        ad }
    583       1.95        ad 
    584       1.95        ad /*
    585        1.1       cgd  * Socket buffer (struct sockbuf) utility routines.
    586        1.1       cgd  *
    587        1.1       cgd  * Each socket contains two socket buffers: one for sending data and
    588        1.1       cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    589        1.1       cgd  * information about the number of mbufs and amount of data in the
    590       1.13   mycroft  * queue, and other fields allowing poll() statements and notification
    591        1.1       cgd  * on data availability to be implemented.
    592        1.1       cgd  *
    593        1.1       cgd  * Data stored in a socket buffer is maintained as a list of records.
    594        1.1       cgd  * Each record is a list of mbufs chained together with the m_next
    595        1.1       cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    596        1.1       cgd  * level routine soreceive() expects the following conventions to be
    597        1.1       cgd  * observed when placing information in the receive buffer:
    598        1.1       cgd  *
    599        1.1       cgd  * 1. If the protocol requires each message be preceded by the sender's
    600        1.1       cgd  *    name, then a record containing that name must be present before
    601        1.1       cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    602        1.1       cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    603        1.1       cgd  *    just additional data associated with the message), and there are
    604        1.1       cgd  *    ``rights'' to be received, then a record containing this data
    605       1.10   mycroft  *    should be present (mbuf's must be of type MT_CONTROL).
    606        1.1       cgd  * 3. If a name or rights record exists, then it must be followed by
    607        1.1       cgd  *    a data record, perhaps of zero length.
    608        1.1       cgd  *
    609        1.1       cgd  * Before using a new socket structure it is first necessary to reserve
    610        1.1       cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    611        1.1       cgd  * some of the available buffer space in the system buffer pool for the
    612        1.1       cgd  * socket (currently, it does nothing but enforce limits).  The space
    613        1.1       cgd  * should be released by calling sbrelease() when the socket is destroyed.
    614        1.1       cgd  */
    615        1.1       cgd 
    616        1.7   mycroft int
    617       1.58   thorpej sb_max_set(u_long new_sbmax)
    618       1.58   thorpej {
    619       1.58   thorpej 	int s;
    620       1.58   thorpej 
    621       1.58   thorpej 	if (new_sbmax < (16 * 1024))
    622       1.58   thorpej 		return (EINVAL);
    623       1.58   thorpej 
    624       1.58   thorpej 	s = splsoftnet();
    625       1.58   thorpej 	sb_max = new_sbmax;
    626       1.58   thorpej 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    627       1.58   thorpej 	splx(s);
    628       1.58   thorpej 
    629       1.58   thorpej 	return (0);
    630       1.58   thorpej }
    631       1.58   thorpej 
    632       1.58   thorpej int
    633       1.37     lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    634        1.1       cgd {
    635      1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    636       1.91        ad 
    637       1.74  christos 	/*
    638       1.74  christos 	 * there's at least one application (a configure script of screen)
    639       1.74  christos 	 * which expects a fifo is writable even if it has "some" bytes
    640       1.74  christos 	 * in its buffer.
    641       1.74  christos 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    642       1.74  christos 	 *
    643       1.74  christos 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    644       1.74  christos 	 * we expect it's large enough for such applications.
    645       1.74  christos 	 */
    646       1.74  christos 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    647       1.74  christos 	u_long  hiwat = lowat + PIPE_BUF;
    648        1.1       cgd 
    649       1.74  christos 	if (sndcc < hiwat)
    650       1.74  christos 		sndcc = hiwat;
    651       1.59  christos 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    652        1.1       cgd 		goto bad;
    653       1.59  christos 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    654        1.1       cgd 		goto bad2;
    655        1.1       cgd 	if (so->so_rcv.sb_lowat == 0)
    656        1.1       cgd 		so->so_rcv.sb_lowat = 1;
    657        1.1       cgd 	if (so->so_snd.sb_lowat == 0)
    658       1.74  christos 		so->so_snd.sb_lowat = lowat;
    659        1.1       cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    660        1.1       cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    661        1.1       cgd 	return (0);
    662       1.37     lukem  bad2:
    663       1.59  christos 	sbrelease(&so->so_snd, so);
    664       1.37     lukem  bad:
    665        1.1       cgd 	return (ENOBUFS);
    666        1.1       cgd }
    667        1.1       cgd 
    668        1.1       cgd /*
    669        1.1       cgd  * Allot mbufs to a sockbuf.
    670        1.1       cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    671        1.1       cgd  * if buffering efficiency is near the normal case.
    672        1.1       cgd  */
    673        1.7   mycroft int
    674       1.59  christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    675        1.1       cgd {
    676       1.75        ad 	struct lwp *l = curlwp; /* XXX */
    677       1.62  christos 	rlim_t maxcc;
    678       1.67  christos 	struct uidinfo *uidinfo;
    679        1.1       cgd 
    680      1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    681       1.91        ad 	KASSERT(sb->sb_so == so);
    682       1.91        ad 	KASSERT(sb_max_adj != 0);
    683       1.91        ad 
    684       1.58   thorpej 	if (cc == 0 || cc > sb_max_adj)
    685        1.1       cgd 		return (0);
    686       1.93  christos 
    687      1.105      elad 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    688       1.93  christos 
    689       1.93  christos 	uidinfo = so->so_uidinfo;
    690       1.67  christos 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    691       1.62  christos 		return 0;
    692        1.1       cgd 	sb->sb_mbmax = min(cc * 2, sb_max);
    693        1.1       cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    694        1.1       cgd 		sb->sb_lowat = sb->sb_hiwat;
    695  1.124.8.3    martin 
    696        1.1       cgd 	return (1);
    697        1.1       cgd }
    698        1.1       cgd 
    699        1.1       cgd /*
    700       1.91        ad  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    701       1.91        ad  * that the socket is held locked here: see sorflush().
    702        1.1       cgd  */
    703        1.7   mycroft void
    704       1.59  christos sbrelease(struct sockbuf *sb, struct socket *so)
    705        1.1       cgd {
    706        1.1       cgd 
    707       1.91        ad 	KASSERT(sb->sb_so == so);
    708       1.91        ad 
    709        1.1       cgd 	sbflush(sb);
    710       1.87      yamt 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    711       1.59  christos 	sb->sb_mbmax = 0;
    712        1.1       cgd }
    713        1.1       cgd 
    714        1.1       cgd /*
    715        1.1       cgd  * Routines to add and remove
    716        1.1       cgd  * data from an mbuf queue.
    717        1.1       cgd  *
    718        1.1       cgd  * The routines sbappend() or sbappendrecord() are normally called to
    719        1.1       cgd  * append new mbufs to a socket buffer, after checking that adequate
    720        1.1       cgd  * space is available, comparing the function sbspace() with the amount
    721        1.1       cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    722        1.1       cgd  * that data supplied is treated as the beginning of a new record.
    723        1.1       cgd  * To place a sender's address, optional access rights, and data in a
    724        1.1       cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    725        1.1       cgd  * access rights and data in a socket receive buffer, sbappendrights()
    726        1.1       cgd  * should be used.  In either case, the new data begins a new record.
    727        1.1       cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    728        1.1       cgd  * for the caller that there will be enough space to store the data.
    729        1.1       cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    730        1.1       cgd  * to store additional information in.
    731        1.1       cgd  *
    732        1.1       cgd  * Reliable protocols may use the socket send buffer to hold data
    733        1.1       cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    734        1.1       cgd  * send buffer in a protocol with m_copy for output to a peer,
    735        1.1       cgd  * and then removing the data from the socket buffer with sbdrop()
    736        1.1       cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    737        1.1       cgd  */
    738        1.1       cgd 
    739       1.43   thorpej #ifdef SOCKBUF_DEBUG
    740       1.43   thorpej void
    741       1.43   thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
    742       1.43   thorpej {
    743       1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    744       1.43   thorpej 
    745       1.91        ad 	KASSERT(solocked(sb->sb_so));
    746       1.91        ad 
    747       1.43   thorpej 	while (m && m->m_nextpkt)
    748       1.43   thorpej 		m = m->m_nextpkt;
    749       1.43   thorpej 
    750       1.43   thorpej 	if (m != sb->sb_lastrecord) {
    751       1.43   thorpej 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    752       1.43   thorpej 		    sb->sb_mb, sb->sb_lastrecord, m);
    753       1.43   thorpej 		printf("packet chain:\n");
    754       1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    755       1.43   thorpej 			printf("\t%p\n", m);
    756       1.47    provos 		panic("sblastrecordchk from %s", where);
    757       1.43   thorpej 	}
    758       1.43   thorpej }
    759       1.43   thorpej 
    760       1.43   thorpej void
    761       1.43   thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
    762       1.43   thorpej {
    763       1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    764       1.43   thorpej 	struct mbuf *n;
    765       1.43   thorpej 
    766       1.91        ad 	KASSERT(solocked(sb->sb_so));
    767       1.91        ad 
    768       1.43   thorpej 	while (m && m->m_nextpkt)
    769       1.43   thorpej 		m = m->m_nextpkt;
    770       1.43   thorpej 
    771       1.43   thorpej 	while (m && m->m_next)
    772       1.43   thorpej 		m = m->m_next;
    773       1.43   thorpej 
    774       1.43   thorpej 	if (m != sb->sb_mbtail) {
    775       1.43   thorpej 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    776       1.43   thorpej 		    sb->sb_mb, sb->sb_mbtail, m);
    777       1.43   thorpej 		printf("packet tree:\n");
    778       1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    779       1.43   thorpej 			printf("\t");
    780       1.43   thorpej 			for (n = m; n != NULL; n = n->m_next)
    781       1.43   thorpej 				printf("%p ", n);
    782       1.43   thorpej 			printf("\n");
    783       1.43   thorpej 		}
    784       1.43   thorpej 		panic("sblastmbufchk from %s", where);
    785       1.43   thorpej 	}
    786       1.43   thorpej }
    787       1.43   thorpej #endif /* SOCKBUF_DEBUG */
    788       1.43   thorpej 
    789       1.63  jonathan /*
    790       1.63  jonathan  * Link a chain of records onto a socket buffer
    791       1.63  jonathan  */
    792       1.63  jonathan #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    793       1.43   thorpej do {									\
    794       1.43   thorpej 	if ((sb)->sb_lastrecord != NULL)				\
    795       1.43   thorpej 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    796       1.43   thorpej 	else								\
    797       1.43   thorpej 		(sb)->sb_mb = (m0);					\
    798       1.63  jonathan 	(sb)->sb_lastrecord = (mlast);					\
    799       1.43   thorpej } while (/*CONSTCOND*/0)
    800       1.43   thorpej 
    801       1.63  jonathan 
    802       1.63  jonathan #define	SBLINKRECORD(sb, m0)						\
    803       1.63  jonathan     SBLINKRECORDCHAIN(sb, m0, m0)
    804       1.63  jonathan 
    805        1.1       cgd /*
    806        1.1       cgd  * Append mbuf chain m to the last record in the
    807        1.1       cgd  * socket buffer sb.  The additional space associated
    808        1.1       cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    809        1.1       cgd  * discarded and mbufs are compacted where possible.
    810        1.1       cgd  */
    811        1.7   mycroft void
    812       1.37     lukem sbappend(struct sockbuf *sb, struct mbuf *m)
    813        1.1       cgd {
    814       1.37     lukem 	struct mbuf	*n;
    815        1.1       cgd 
    816       1.91        ad 	KASSERT(solocked(sb->sb_so));
    817       1.91        ad 
    818      1.115  christos 	if (m == NULL)
    819        1.1       cgd 		return;
    820       1.43   thorpej 
    821       1.49      matt #ifdef MBUFTRACE
    822       1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    823       1.49      matt #endif
    824       1.49      matt 
    825       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 1");
    826       1.43   thorpej 
    827       1.43   thorpej 	if ((n = sb->sb_lastrecord) != NULL) {
    828       1.43   thorpej 		/*
    829       1.43   thorpej 		 * XXX Would like to simply use sb_mbtail here, but
    830       1.43   thorpej 		 * XXX I need to verify that I won't miss an EOR that
    831       1.43   thorpej 		 * XXX way.
    832       1.43   thorpej 		 */
    833        1.1       cgd 		do {
    834        1.1       cgd 			if (n->m_flags & M_EOR) {
    835        1.1       cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    836        1.1       cgd 				return;
    837        1.1       cgd 			}
    838        1.1       cgd 		} while (n->m_next && (n = n->m_next));
    839       1.43   thorpej 	} else {
    840       1.43   thorpej 		/*
    841       1.43   thorpej 		 * If this is the first record in the socket buffer, it's
    842       1.43   thorpej 		 * also the last record.
    843       1.43   thorpej 		 */
    844       1.43   thorpej 		sb->sb_lastrecord = m;
    845        1.1       cgd 	}
    846        1.1       cgd 	sbcompress(sb, m, n);
    847       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 2");
    848       1.43   thorpej }
    849       1.43   thorpej 
    850       1.43   thorpej /*
    851       1.43   thorpej  * This version of sbappend() should only be used when the caller
    852       1.43   thorpej  * absolutely knows that there will never be more than one record
    853       1.43   thorpej  * in the socket buffer, that is, a stream protocol (such as TCP).
    854       1.43   thorpej  */
    855       1.43   thorpej void
    856       1.44   thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
    857       1.43   thorpej {
    858       1.43   thorpej 
    859       1.91        ad 	KASSERT(solocked(sb->sb_so));
    860       1.43   thorpej 	KDASSERT(m->m_nextpkt == NULL);
    861       1.43   thorpej 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    862       1.43   thorpej 
    863       1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
    864       1.43   thorpej 
    865       1.49      matt #ifdef MBUFTRACE
    866       1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    867       1.49      matt #endif
    868       1.49      matt 
    869       1.43   thorpej 	sbcompress(sb, m, sb->sb_mbtail);
    870       1.43   thorpej 
    871       1.43   thorpej 	sb->sb_lastrecord = sb->sb_mb;
    872       1.43   thorpej 	SBLASTRECORDCHK(sb, __func__);
    873        1.1       cgd }
    874        1.1       cgd 
    875        1.1       cgd #ifdef SOCKBUF_DEBUG
    876        1.7   mycroft void
    877       1.37     lukem sbcheck(struct sockbuf *sb)
    878        1.1       cgd {
    879       1.91        ad 	struct mbuf	*m, *m2;
    880       1.43   thorpej 	u_long		len, mbcnt;
    881        1.1       cgd 
    882       1.91        ad 	KASSERT(solocked(sb->sb_so));
    883       1.91        ad 
    884       1.37     lukem 	len = 0;
    885       1.37     lukem 	mbcnt = 0;
    886       1.91        ad 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    887       1.91        ad 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    888       1.91        ad 			len += m2->m_len;
    889       1.91        ad 			mbcnt += MSIZE;
    890       1.91        ad 			if (m2->m_flags & M_EXT)
    891       1.91        ad 				mbcnt += m2->m_ext.ext_size;
    892       1.91        ad 			if (m2->m_nextpkt != NULL)
    893       1.91        ad 				panic("sbcheck nextpkt");
    894       1.91        ad 		}
    895        1.1       cgd 	}
    896        1.1       cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    897       1.43   thorpej 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    898        1.1       cgd 		    mbcnt, sb->sb_mbcnt);
    899        1.1       cgd 		panic("sbcheck");
    900        1.1       cgd 	}
    901        1.1       cgd }
    902        1.1       cgd #endif
    903        1.1       cgd 
    904        1.1       cgd /*
    905        1.1       cgd  * As above, except the mbuf chain
    906        1.1       cgd  * begins a new record.
    907        1.1       cgd  */
    908        1.7   mycroft void
    909       1.37     lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    910        1.1       cgd {
    911       1.37     lukem 	struct mbuf	*m;
    912        1.1       cgd 
    913       1.91        ad 	KASSERT(solocked(sb->sb_so));
    914       1.91        ad 
    915      1.115  christos 	if (m0 == NULL)
    916        1.1       cgd 		return;
    917       1.43   thorpej 
    918       1.49      matt #ifdef MBUFTRACE
    919       1.65  jonathan 	m_claimm(m0, sb->sb_mowner);
    920       1.49      matt #endif
    921        1.1       cgd 	/*
    922        1.1       cgd 	 * Put the first mbuf on the queue.
    923        1.1       cgd 	 * Note this permits zero length records.
    924        1.1       cgd 	 */
    925        1.1       cgd 	sballoc(sb, m0);
    926       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    927       1.43   thorpej 	SBLINKRECORD(sb, m0);
    928        1.1       cgd 	m = m0->m_next;
    929        1.1       cgd 	m0->m_next = 0;
    930        1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    931        1.1       cgd 		m0->m_flags &= ~M_EOR;
    932        1.1       cgd 		m->m_flags |= M_EOR;
    933        1.1       cgd 	}
    934        1.1       cgd 	sbcompress(sb, m, m0);
    935       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    936        1.1       cgd }
    937        1.1       cgd 
    938        1.1       cgd /*
    939        1.1       cgd  * As above except that OOB data
    940        1.1       cgd  * is inserted at the beginning of the sockbuf,
    941        1.1       cgd  * but after any other OOB data.
    942        1.1       cgd  */
    943        1.7   mycroft void
    944       1.37     lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    945        1.1       cgd {
    946       1.37     lukem 	struct mbuf	*m, **mp;
    947        1.1       cgd 
    948       1.91        ad 	KASSERT(solocked(sb->sb_so));
    949       1.91        ad 
    950      1.115  christos 	if (m0 == NULL)
    951        1.1       cgd 		return;
    952       1.43   thorpej 
    953       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    954       1.43   thorpej 
    955       1.11  christos 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    956        1.1       cgd 	    again:
    957        1.1       cgd 		switch (m->m_type) {
    958        1.1       cgd 
    959        1.1       cgd 		case MT_OOBDATA:
    960        1.1       cgd 			continue;		/* WANT next train */
    961        1.1       cgd 
    962        1.1       cgd 		case MT_CONTROL:
    963       1.11  christos 			if ((m = m->m_next) != NULL)
    964        1.1       cgd 				goto again;	/* inspect THIS train further */
    965        1.1       cgd 		}
    966        1.1       cgd 		break;
    967        1.1       cgd 	}
    968        1.1       cgd 	/*
    969        1.1       cgd 	 * Put the first mbuf on the queue.
    970        1.1       cgd 	 * Note this permits zero length records.
    971        1.1       cgd 	 */
    972        1.1       cgd 	sballoc(sb, m0);
    973        1.1       cgd 	m0->m_nextpkt = *mp;
    974       1.43   thorpej 	if (*mp == NULL) {
    975       1.43   thorpej 		/* m0 is actually the new tail */
    976       1.43   thorpej 		sb->sb_lastrecord = m0;
    977       1.43   thorpej 	}
    978        1.1       cgd 	*mp = m0;
    979        1.1       cgd 	m = m0->m_next;
    980        1.1       cgd 	m0->m_next = 0;
    981        1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    982        1.1       cgd 		m0->m_flags &= ~M_EOR;
    983        1.1       cgd 		m->m_flags |= M_EOR;
    984        1.1       cgd 	}
    985        1.1       cgd 	sbcompress(sb, m, m0);
    986       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    987        1.1       cgd }
    988        1.1       cgd 
    989        1.1       cgd /*
    990        1.1       cgd  * Append address and data, and optionally, control (ancillary) data
    991        1.1       cgd  * to the receive queue of a socket.  If present,
    992        1.1       cgd  * m0 must include a packet header with total length.
    993        1.1       cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
    994        1.1       cgd  */
    995        1.7   mycroft int
    996       1.61      matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    997       1.37     lukem 	struct mbuf *control)
    998        1.1       cgd {
    999       1.43   thorpej 	struct mbuf	*m, *n, *nlast;
   1000       1.50      fvdl 	int		space, len;
   1001        1.1       cgd 
   1002       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1003       1.91        ad 
   1004       1.37     lukem 	space = asa->sa_len;
   1005       1.37     lukem 
   1006       1.49      matt 	if (m0 != NULL) {
   1007       1.49      matt 		if ((m0->m_flags & M_PKTHDR) == 0)
   1008       1.49      matt 			panic("sbappendaddr");
   1009        1.1       cgd 		space += m0->m_pkthdr.len;
   1010       1.49      matt #ifdef MBUFTRACE
   1011       1.65  jonathan 		m_claimm(m0, sb->sb_mowner);
   1012       1.49      matt #endif
   1013       1.49      matt 	}
   1014        1.1       cgd 	for (n = control; n; n = n->m_next) {
   1015        1.1       cgd 		space += n->m_len;
   1016       1.49      matt 		MCLAIM(n, sb->sb_mowner);
   1017      1.115  christos 		if (n->m_next == NULL)	/* keep pointer to last control buf */
   1018        1.1       cgd 			break;
   1019        1.1       cgd 	}
   1020        1.1       cgd 	if (space > sbspace(sb))
   1021        1.1       cgd 		return (0);
   1022      1.115  christos 	m = m_get(M_DONTWAIT, MT_SONAME);
   1023      1.115  christos 	if (m == NULL)
   1024        1.1       cgd 		return (0);
   1025       1.49      matt 	MCLAIM(m, sb->sb_mowner);
   1026       1.50      fvdl 	/*
   1027       1.50      fvdl 	 * XXX avoid 'comparison always true' warning which isn't easily
   1028       1.50      fvdl 	 * avoided.
   1029       1.50      fvdl 	 */
   1030       1.50      fvdl 	len = asa->sa_len;
   1031       1.50      fvdl 	if (len > MLEN) {
   1032       1.20   thorpej 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
   1033       1.20   thorpej 		if ((m->m_flags & M_EXT) == 0) {
   1034       1.20   thorpej 			m_free(m);
   1035       1.20   thorpej 			return (0);
   1036       1.20   thorpej 		}
   1037       1.20   thorpej 	}
   1038        1.1       cgd 	m->m_len = asa->sa_len;
   1039       1.82  christos 	memcpy(mtod(m, void *), asa, asa->sa_len);
   1040        1.1       cgd 	if (n)
   1041        1.1       cgd 		n->m_next = m0;		/* concatenate data to control */
   1042        1.1       cgd 	else
   1043        1.1       cgd 		control = m0;
   1044        1.1       cgd 	m->m_next = control;
   1045       1.43   thorpej 
   1046       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
   1047       1.43   thorpej 
   1048       1.43   thorpej 	for (n = m; n->m_next != NULL; n = n->m_next)
   1049        1.1       cgd 		sballoc(sb, n);
   1050       1.43   thorpej 	sballoc(sb, n);
   1051       1.43   thorpej 	nlast = n;
   1052       1.43   thorpej 	SBLINKRECORD(sb, m);
   1053       1.43   thorpej 
   1054       1.43   thorpej 	sb->sb_mbtail = nlast;
   1055       1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendaddr");
   1056       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
   1057       1.43   thorpej 
   1058        1.1       cgd 	return (1);
   1059        1.1       cgd }
   1060        1.1       cgd 
   1061       1.63  jonathan /*
   1062       1.63  jonathan  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
   1063       1.63  jonathan  * an mbuf chain.
   1064       1.63  jonathan  */
   1065       1.70     perry static inline struct mbuf *
   1066       1.81      yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
   1067       1.64  jonathan 		   const struct sockaddr *asa)
   1068       1.63  jonathan {
   1069       1.63  jonathan 	struct mbuf *m;
   1070       1.64  jonathan 	const int salen = asa->sa_len;
   1071       1.63  jonathan 
   1072       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1073       1.91        ad 
   1074       1.63  jonathan 	/* only the first in each chain need be a pkthdr */
   1075      1.115  christos 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
   1076      1.115  christos 	if (m == NULL)
   1077      1.115  christos 		return NULL;
   1078       1.63  jonathan 	MCLAIM(m, sb->sb_mowner);
   1079       1.64  jonathan #ifdef notyet
   1080       1.64  jonathan 	if (salen > MHLEN) {
   1081       1.64  jonathan 		MEXTMALLOC(m, salen, M_NOWAIT);
   1082       1.64  jonathan 		if ((m->m_flags & M_EXT) == 0) {
   1083       1.64  jonathan 			m_free(m);
   1084      1.115  christos 			return NULL;
   1085       1.64  jonathan 		}
   1086       1.64  jonathan 	}
   1087       1.64  jonathan #else
   1088       1.64  jonathan 	KASSERT(salen <= MHLEN);
   1089       1.64  jonathan #endif
   1090       1.64  jonathan 	m->m_len = salen;
   1091       1.82  christos 	memcpy(mtod(m, void *), asa, salen);
   1092       1.63  jonathan 	m->m_next = m0;
   1093       1.64  jonathan 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1094       1.63  jonathan 
   1095       1.63  jonathan 	return m;
   1096       1.63  jonathan }
   1097       1.63  jonathan 
   1098       1.63  jonathan int
   1099       1.63  jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1100       1.63  jonathan 		  struct mbuf *m0, int sbprio)
   1101       1.63  jonathan {
   1102       1.63  jonathan 	struct mbuf *m, *n, *n0, *nlast;
   1103       1.63  jonathan 	int error;
   1104       1.63  jonathan 
   1105       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1106       1.91        ad 
   1107       1.63  jonathan 	/*
   1108       1.63  jonathan 	 * XXX sbprio reserved for encoding priority of this* request:
   1109       1.63  jonathan 	 *  SB_PRIO_NONE --> honour normal sb limits
   1110       1.63  jonathan 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1111       1.63  jonathan 	 *	take whole chain. Intended for large requests
   1112       1.63  jonathan 	 *      that should be delivered atomically (all, or none).
   1113       1.63  jonathan 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1114       1.63  jonathan 	 *       over normal socket limits, for messages indicating
   1115       1.63  jonathan 	 *       buffer overflow in earlier normal/lower-priority messages
   1116       1.63  jonathan 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1117       1.63  jonathan 	 *       Intended for  kernel-generated messages only.
   1118       1.63  jonathan 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1119       1.63  jonathan 	 */
   1120       1.63  jonathan 	(void)sbprio;
   1121       1.63  jonathan 
   1122       1.63  jonathan 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1123       1.63  jonathan 		panic("sbappendaddrchain");
   1124       1.63  jonathan 
   1125      1.114    martin #ifdef notyet
   1126       1.63  jonathan 	space = sbspace(sb);
   1127       1.66     perry 
   1128       1.66     perry 	/*
   1129       1.63  jonathan 	 * Enforce SB_PRIO_* limits as described above.
   1130       1.63  jonathan 	 */
   1131       1.63  jonathan #endif
   1132       1.63  jonathan 
   1133       1.63  jonathan 	n0 = NULL;
   1134       1.63  jonathan 	nlast = NULL;
   1135       1.63  jonathan 	for (m = m0; m; m = m->m_nextpkt) {
   1136       1.63  jonathan 		struct mbuf *np;
   1137       1.63  jonathan 
   1138       1.64  jonathan #ifdef MBUFTRACE
   1139       1.65  jonathan 		m_claimm(m, sb->sb_mowner);
   1140       1.64  jonathan #endif
   1141       1.64  jonathan 
   1142       1.63  jonathan 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1143       1.64  jonathan 	  	n = m_prepend_sockaddr(sb, m, asa);
   1144       1.63  jonathan 		if (n == NULL) {
   1145       1.63  jonathan 			error = ENOBUFS;
   1146       1.63  jonathan 			goto bad;
   1147       1.63  jonathan 		}
   1148       1.63  jonathan 
   1149       1.63  jonathan 		/* Append record (asa+m) to end of new chain n0 */
   1150       1.63  jonathan 		if (n0 == NULL) {
   1151       1.63  jonathan 			n0 = n;
   1152       1.63  jonathan 		} else {
   1153       1.63  jonathan 			nlast->m_nextpkt = n;
   1154       1.63  jonathan 		}
   1155       1.63  jonathan 		/* Keep track of last record on new chain */
   1156       1.63  jonathan 		nlast = n;
   1157       1.63  jonathan 
   1158       1.63  jonathan 		for (np = n; np; np = np->m_next)
   1159       1.63  jonathan 			sballoc(sb, np);
   1160       1.63  jonathan 	}
   1161       1.63  jonathan 
   1162       1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1163       1.64  jonathan 
   1164       1.63  jonathan 	/* Drop the entire chain of (asa+m) records onto the socket */
   1165       1.63  jonathan 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1166       1.64  jonathan 
   1167       1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1168       1.64  jonathan 
   1169       1.63  jonathan 	for (m = nlast; m->m_next; m = m->m_next)
   1170       1.63  jonathan 		;
   1171       1.63  jonathan 	sb->sb_mbtail = m;
   1172       1.64  jonathan 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1173       1.64  jonathan 
   1174       1.63  jonathan 	return (1);
   1175       1.63  jonathan 
   1176       1.63  jonathan bad:
   1177       1.64  jonathan 	/*
   1178       1.64  jonathan 	 * On error, free the prepended addreseses. For consistency
   1179       1.64  jonathan 	 * with sbappendaddr(), leave it to our caller to free
   1180       1.64  jonathan 	 * the input record chain passed to us as m0.
   1181       1.64  jonathan 	 */
   1182       1.64  jonathan 	while ((n = n0) != NULL) {
   1183       1.64  jonathan 	  	struct mbuf *np;
   1184       1.64  jonathan 
   1185       1.64  jonathan 		/* Undo the sballoc() of this record */
   1186       1.64  jonathan 		for (np = n; np; np = np->m_next)
   1187       1.64  jonathan 			sbfree(sb, np);
   1188       1.64  jonathan 
   1189       1.64  jonathan 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1190      1.124  christos 		np = m_free(n);		/* free prepended address (not data) */
   1191       1.64  jonathan 	}
   1192      1.114    martin 	return error;
   1193       1.63  jonathan }
   1194       1.63  jonathan 
   1195       1.63  jonathan 
   1196        1.7   mycroft int
   1197       1.37     lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1198        1.1       cgd {
   1199       1.43   thorpej 	struct mbuf	*m, *mlast, *n;
   1200       1.37     lukem 	int		space;
   1201        1.1       cgd 
   1202       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1203       1.91        ad 
   1204       1.37     lukem 	space = 0;
   1205      1.115  christos 	if (control == NULL)
   1206        1.1       cgd 		panic("sbappendcontrol");
   1207        1.1       cgd 	for (m = control; ; m = m->m_next) {
   1208        1.1       cgd 		space += m->m_len;
   1209       1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1210      1.115  christos 		if (m->m_next == NULL)
   1211        1.1       cgd 			break;
   1212        1.1       cgd 	}
   1213        1.1       cgd 	n = m;			/* save pointer to last control buffer */
   1214       1.49      matt 	for (m = m0; m; m = m->m_next) {
   1215       1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1216        1.1       cgd 		space += m->m_len;
   1217       1.49      matt 	}
   1218        1.1       cgd 	if (space > sbspace(sb))
   1219        1.1       cgd 		return (0);
   1220        1.1       cgd 	n->m_next = m0;			/* concatenate data to control */
   1221       1.43   thorpej 
   1222       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1223       1.43   thorpej 
   1224       1.43   thorpej 	for (m = control; m->m_next != NULL; m = m->m_next)
   1225        1.1       cgd 		sballoc(sb, m);
   1226       1.43   thorpej 	sballoc(sb, m);
   1227       1.43   thorpej 	mlast = m;
   1228       1.43   thorpej 	SBLINKRECORD(sb, control);
   1229       1.43   thorpej 
   1230       1.43   thorpej 	sb->sb_mbtail = mlast;
   1231       1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1232       1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1233       1.43   thorpej 
   1234        1.1       cgd 	return (1);
   1235        1.1       cgd }
   1236        1.1       cgd 
   1237        1.1       cgd /*
   1238        1.1       cgd  * Compress mbuf chain m into the socket
   1239        1.1       cgd  * buffer sb following mbuf n.  If n
   1240        1.1       cgd  * is null, the buffer is presumed empty.
   1241        1.1       cgd  */
   1242        1.7   mycroft void
   1243       1.37     lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1244        1.1       cgd {
   1245       1.37     lukem 	int		eor;
   1246       1.37     lukem 	struct mbuf	*o;
   1247        1.1       cgd 
   1248       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1249       1.91        ad 
   1250       1.37     lukem 	eor = 0;
   1251        1.1       cgd 	while (m) {
   1252        1.1       cgd 		eor |= m->m_flags & M_EOR;
   1253        1.1       cgd 		if (m->m_len == 0 &&
   1254        1.1       cgd 		    (eor == 0 ||
   1255        1.1       cgd 		     (((o = m->m_next) || (o = n)) &&
   1256        1.1       cgd 		      o->m_type == m->m_type))) {
   1257       1.46   thorpej 			if (sb->sb_lastrecord == m)
   1258       1.46   thorpej 				sb->sb_lastrecord = m->m_next;
   1259        1.1       cgd 			m = m_free(m);
   1260        1.1       cgd 			continue;
   1261        1.1       cgd 		}
   1262       1.40   thorpej 		if (n && (n->m_flags & M_EOR) == 0 &&
   1263       1.40   thorpej 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1264       1.40   thorpej 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1265       1.40   thorpej 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1266       1.40   thorpej 		    n->m_type == m->m_type) {
   1267       1.82  christos 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1268        1.1       cgd 			    (unsigned)m->m_len);
   1269        1.1       cgd 			n->m_len += m->m_len;
   1270        1.1       cgd 			sb->sb_cc += m->m_len;
   1271        1.1       cgd 			m = m_free(m);
   1272        1.1       cgd 			continue;
   1273        1.1       cgd 		}
   1274        1.1       cgd 		if (n)
   1275        1.1       cgd 			n->m_next = m;
   1276        1.1       cgd 		else
   1277        1.1       cgd 			sb->sb_mb = m;
   1278       1.43   thorpej 		sb->sb_mbtail = m;
   1279        1.1       cgd 		sballoc(sb, m);
   1280        1.1       cgd 		n = m;
   1281        1.1       cgd 		m->m_flags &= ~M_EOR;
   1282        1.1       cgd 		m = m->m_next;
   1283        1.1       cgd 		n->m_next = 0;
   1284        1.1       cgd 	}
   1285        1.1       cgd 	if (eor) {
   1286        1.1       cgd 		if (n)
   1287        1.1       cgd 			n->m_flags |= eor;
   1288        1.1       cgd 		else
   1289       1.15  christos 			printf("semi-panic: sbcompress\n");
   1290        1.1       cgd 	}
   1291       1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
   1292        1.1       cgd }
   1293        1.1       cgd 
   1294        1.1       cgd /*
   1295        1.1       cgd  * Free all mbufs in a sockbuf.
   1296        1.1       cgd  * Check that all resources are reclaimed.
   1297        1.1       cgd  */
   1298        1.7   mycroft void
   1299       1.37     lukem sbflush(struct sockbuf *sb)
   1300        1.1       cgd {
   1301        1.1       cgd 
   1302       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1303       1.43   thorpej 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1304       1.43   thorpej 
   1305        1.1       cgd 	while (sb->sb_mbcnt)
   1306        1.1       cgd 		sbdrop(sb, (int)sb->sb_cc);
   1307       1.43   thorpej 
   1308       1.43   thorpej 	KASSERT(sb->sb_cc == 0);
   1309       1.43   thorpej 	KASSERT(sb->sb_mb == NULL);
   1310       1.43   thorpej 	KASSERT(sb->sb_mbtail == NULL);
   1311       1.43   thorpej 	KASSERT(sb->sb_lastrecord == NULL);
   1312        1.1       cgd }
   1313        1.1       cgd 
   1314        1.1       cgd /*
   1315        1.1       cgd  * Drop data from (the front of) a sockbuf.
   1316        1.1       cgd  */
   1317        1.7   mycroft void
   1318       1.37     lukem sbdrop(struct sockbuf *sb, int len)
   1319        1.1       cgd {
   1320      1.124  christos 	struct mbuf	*m, *next;
   1321        1.1       cgd 
   1322       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1323       1.91        ad 
   1324      1.115  christos 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
   1325        1.1       cgd 	while (len > 0) {
   1326      1.115  christos 		if (m == NULL) {
   1327      1.115  christos 			if (next == NULL)
   1328      1.112      matt 				panic("sbdrop(%p,%d): cc=%lu",
   1329      1.112      matt 				    sb, len, sb->sb_cc);
   1330        1.1       cgd 			m = next;
   1331        1.1       cgd 			next = m->m_nextpkt;
   1332        1.1       cgd 			continue;
   1333        1.1       cgd 		}
   1334        1.1       cgd 		if (m->m_len > len) {
   1335        1.1       cgd 			m->m_len -= len;
   1336        1.1       cgd 			m->m_data += len;
   1337        1.1       cgd 			sb->sb_cc -= len;
   1338        1.1       cgd 			break;
   1339        1.1       cgd 		}
   1340        1.1       cgd 		len -= m->m_len;
   1341        1.1       cgd 		sbfree(sb, m);
   1342      1.124  christos 		m = m_free(m);
   1343        1.1       cgd 	}
   1344        1.1       cgd 	while (m && m->m_len == 0) {
   1345        1.1       cgd 		sbfree(sb, m);
   1346      1.124  christos 		m = m_free(m);
   1347        1.1       cgd 	}
   1348        1.1       cgd 	if (m) {
   1349        1.1       cgd 		sb->sb_mb = m;
   1350        1.1       cgd 		m->m_nextpkt = next;
   1351        1.1       cgd 	} else
   1352        1.1       cgd 		sb->sb_mb = next;
   1353       1.43   thorpej 	/*
   1354       1.45   thorpej 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1355       1.43   thorpej 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1356       1.43   thorpej 	 * part of the last record.
   1357       1.43   thorpej 	 */
   1358       1.43   thorpej 	m = sb->sb_mb;
   1359       1.43   thorpej 	if (m == NULL) {
   1360       1.43   thorpej 		sb->sb_mbtail = NULL;
   1361       1.43   thorpej 		sb->sb_lastrecord = NULL;
   1362       1.43   thorpej 	} else if (m->m_nextpkt == NULL)
   1363       1.43   thorpej 		sb->sb_lastrecord = m;
   1364        1.1       cgd }
   1365        1.1       cgd 
   1366        1.1       cgd /*
   1367        1.1       cgd  * Drop a record off the front of a sockbuf
   1368        1.1       cgd  * and move the next record to the front.
   1369        1.1       cgd  */
   1370        1.7   mycroft void
   1371       1.37     lukem sbdroprecord(struct sockbuf *sb)
   1372        1.1       cgd {
   1373       1.37     lukem 	struct mbuf	*m, *mn;
   1374        1.1       cgd 
   1375       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1376       1.91        ad 
   1377        1.1       cgd 	m = sb->sb_mb;
   1378        1.1       cgd 	if (m) {
   1379        1.1       cgd 		sb->sb_mb = m->m_nextpkt;
   1380        1.1       cgd 		do {
   1381        1.1       cgd 			sbfree(sb, m);
   1382      1.124  christos 			mn = m_free(m);
   1383       1.11  christos 		} while ((m = mn) != NULL);
   1384        1.1       cgd 	}
   1385       1.45   thorpej 	SB_EMPTY_FIXUP(sb);
   1386       1.19   thorpej }
   1387       1.19   thorpej 
   1388       1.19   thorpej /*
   1389       1.19   thorpej  * Create a "control" mbuf containing the specified data
   1390       1.19   thorpej  * with the specified type for presentation on a socket buffer.
   1391       1.19   thorpej  */
   1392       1.19   thorpej struct mbuf *
   1393      1.111  christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1394       1.19   thorpej {
   1395       1.37     lukem 	struct cmsghdr	*cp;
   1396       1.37     lukem 	struct mbuf	*m;
   1397      1.111  christos 	int space = CMSG_SPACE(size);
   1398       1.19   thorpej 
   1399      1.111  christos 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1400      1.111  christos 		printf("%s: message too large %d\n", __func__, space);
   1401       1.30    itojun 		return NULL;
   1402       1.30    itojun 	}
   1403       1.30    itojun 
   1404      1.111  christos 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1405      1.111  christos 		return NULL;
   1406      1.111  christos 	if (space > MLEN) {
   1407      1.111  christos 		if (space > MCLBYTES)
   1408      1.111  christos 			MEXTMALLOC(m, space, M_WAITOK);
   1409      1.111  christos 		else
   1410      1.111  christos 			MCLGET(m, flags);
   1411       1.30    itojun 		if ((m->m_flags & M_EXT) == 0) {
   1412       1.30    itojun 			m_free(m);
   1413       1.30    itojun 			return NULL;
   1414       1.30    itojun 		}
   1415       1.30    itojun 	}
   1416       1.19   thorpej 	cp = mtod(m, struct cmsghdr *);
   1417      1.111  christos 	*p = CMSG_DATA(cp);
   1418      1.111  christos 	m->m_len = space;
   1419       1.35    itojun 	cp->cmsg_len = CMSG_LEN(size);
   1420       1.19   thorpej 	cp->cmsg_level = level;
   1421       1.19   thorpej 	cp->cmsg_type = type;
   1422      1.111  christos 	return m;
   1423      1.111  christos }
   1424      1.111  christos 
   1425      1.111  christos struct mbuf *
   1426      1.111  christos sbcreatecontrol(void *p, int size, int type, int level)
   1427      1.111  christos {
   1428      1.111  christos 	struct mbuf *m;
   1429      1.111  christos 	void *v;
   1430      1.111  christos 
   1431      1.111  christos 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1432      1.111  christos 	if (m == NULL)
   1433      1.111  christos 		return NULL;
   1434      1.111  christos 	memcpy(v, p, size);
   1435      1.111  christos 	return m;
   1436        1.1       cgd }
   1437       1.91        ad 
   1438       1.91        ad void
   1439       1.91        ad solockretry(struct socket *so, kmutex_t *lock)
   1440       1.91        ad {
   1441       1.91        ad 
   1442       1.91        ad 	while (lock != so->so_lock) {
   1443       1.91        ad 		mutex_exit(lock);
   1444       1.91        ad 		lock = so->so_lock;
   1445       1.91        ad 		mutex_enter(lock);
   1446       1.91        ad 	}
   1447       1.91        ad }
   1448       1.91        ad 
   1449       1.91        ad bool
   1450       1.91        ad solocked(struct socket *so)
   1451       1.91        ad {
   1452       1.91        ad 
   1453       1.91        ad 	return mutex_owned(so->so_lock);
   1454       1.91        ad }
   1455       1.91        ad 
   1456       1.91        ad bool
   1457       1.91        ad solocked2(struct socket *so1, struct socket *so2)
   1458       1.91        ad {
   1459       1.91        ad 	kmutex_t *lock;
   1460       1.91        ad 
   1461       1.91        ad 	lock = so1->so_lock;
   1462       1.91        ad 	if (lock != so2->so_lock)
   1463       1.91        ad 		return false;
   1464       1.91        ad 	return mutex_owned(lock);
   1465       1.91        ad }
   1466       1.91        ad 
   1467       1.91        ad /*
   1468      1.116     rmind  * sosetlock: assign a default lock to a new socket.
   1469       1.91        ad  */
   1470       1.91        ad void
   1471       1.91        ad sosetlock(struct socket *so)
   1472       1.91        ad {
   1473      1.116     rmind 	if (so->so_lock == NULL) {
   1474      1.116     rmind 		kmutex_t *lock = softnet_lock;
   1475       1.91        ad 
   1476       1.91        ad 		so->so_lock = lock;
   1477       1.91        ad 		mutex_obj_hold(lock);
   1478       1.91        ad 		mutex_enter(lock);
   1479       1.91        ad 	}
   1480       1.91        ad 	KASSERT(solocked(so));
   1481       1.91        ad }
   1482       1.91        ad 
   1483       1.91        ad /*
   1484       1.91        ad  * Set lock on sockbuf sb; sleep if lock is already held.
   1485       1.91        ad  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1486       1.91        ad  * Returns error without lock if sleep is interrupted.
   1487       1.91        ad  */
   1488       1.91        ad int
   1489       1.91        ad sblock(struct sockbuf *sb, int wf)
   1490       1.91        ad {
   1491       1.91        ad 	struct socket *so;
   1492       1.91        ad 	kmutex_t *lock;
   1493       1.91        ad 	int error;
   1494       1.91        ad 
   1495       1.91        ad 	KASSERT(solocked(sb->sb_so));
   1496       1.91        ad 
   1497       1.91        ad 	for (;;) {
   1498       1.91        ad 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1499       1.91        ad 			sb->sb_flags |= SB_LOCK;
   1500       1.91        ad 			return 0;
   1501       1.91        ad 		}
   1502       1.91        ad 		if (wf != M_WAITOK)
   1503       1.91        ad 			return EWOULDBLOCK;
   1504       1.91        ad 		so = sb->sb_so;
   1505       1.91        ad 		lock = so->so_lock;
   1506       1.91        ad 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1507       1.91        ad 			cv_wait(&so->so_cv, lock);
   1508       1.91        ad 			error = 0;
   1509       1.91        ad 		} else
   1510       1.91        ad 			error = cv_wait_sig(&so->so_cv, lock);
   1511       1.91        ad 		if (__predict_false(lock != so->so_lock))
   1512       1.91        ad 			solockretry(so, lock);
   1513       1.91        ad 		if (error != 0)
   1514       1.91        ad 			return error;
   1515       1.91        ad 	}
   1516       1.91        ad }
   1517       1.91        ad 
   1518       1.91        ad void
   1519       1.91        ad sbunlock(struct sockbuf *sb)
   1520       1.91        ad {
   1521       1.91        ad 	struct socket *so;
   1522       1.91        ad 
   1523       1.91        ad 	so = sb->sb_so;
   1524       1.91        ad 
   1525       1.91        ad 	KASSERT(solocked(so));
   1526       1.91        ad 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1527       1.91        ad 
   1528       1.91        ad 	sb->sb_flags &= ~SB_LOCK;
   1529       1.91        ad 	cv_broadcast(&so->so_cv);
   1530       1.91        ad }
   1531       1.91        ad 
   1532       1.91        ad int
   1533      1.121      matt sowait(struct socket *so, bool catch_p, int timo)
   1534       1.91        ad {
   1535       1.91        ad 	kmutex_t *lock;
   1536       1.91        ad 	int error;
   1537       1.91        ad 
   1538       1.91        ad 	KASSERT(solocked(so));
   1539      1.121      matt 	KASSERT(catch_p || timo != 0);
   1540       1.91        ad 
   1541       1.91        ad 	lock = so->so_lock;
   1542      1.121      matt 	if (catch_p)
   1543      1.101      yamt 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1544      1.101      yamt 	else
   1545      1.101      yamt 		error = cv_timedwait(&so->so_cv, lock, timo);
   1546       1.91        ad 	if (__predict_false(lock != so->so_lock))
   1547       1.91        ad 		solockretry(so, lock);
   1548       1.91        ad 	return error;
   1549       1.91        ad }
   1550  1.124.8.3    martin 
   1551  1.124.8.3    martin #ifdef DDB
   1552  1.124.8.3    martin 
   1553  1.124.8.3    martin /*
   1554  1.124.8.3    martin  * Currently, sofindproc() is used only from DDB. It could be used from others
   1555  1.124.8.3    martin  * by using db_mutex_enter()
   1556  1.124.8.3    martin  */
   1557  1.124.8.3    martin 
   1558  1.124.8.3    martin static inline int
   1559  1.124.8.3    martin db_mutex_enter(kmutex_t *mtx)
   1560  1.124.8.3    martin {
   1561  1.124.8.3    martin 	extern int db_active;
   1562  1.124.8.3    martin 	int rv;
   1563  1.124.8.3    martin 
   1564  1.124.8.3    martin 	if (!db_active) {
   1565  1.124.8.3    martin 		mutex_enter(mtx);
   1566  1.124.8.3    martin 		rv = 1;
   1567  1.124.8.3    martin 	} else
   1568  1.124.8.3    martin 		rv = mutex_tryenter(mtx);
   1569  1.124.8.3    martin 
   1570  1.124.8.3    martin 	return rv;
   1571  1.124.8.3    martin }
   1572  1.124.8.3    martin 
   1573  1.124.8.3    martin int
   1574  1.124.8.3    martin sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
   1575  1.124.8.3    martin {
   1576  1.124.8.3    martin 	proc_t *p;
   1577  1.124.8.3    martin 	filedesc_t *fdp;
   1578  1.124.8.3    martin 	fdtab_t *dt;
   1579  1.124.8.3    martin 	fdfile_t *ff;
   1580  1.124.8.3    martin 	file_t *fp = NULL;
   1581  1.124.8.3    martin 	int found = 0;
   1582  1.124.8.3    martin 	int i, t;
   1583  1.124.8.3    martin 
   1584  1.124.8.3    martin 	if (so == NULL)
   1585  1.124.8.3    martin 		return 0;
   1586  1.124.8.3    martin 
   1587  1.124.8.3    martin 	t = db_mutex_enter(proc_lock);
   1588  1.124.8.3    martin 	if (!t) {
   1589  1.124.8.3    martin 		pr("could not acquire proc_lock mutex\n");
   1590  1.124.8.3    martin 		return 0;
   1591  1.124.8.3    martin 	}
   1592  1.124.8.3    martin 	PROCLIST_FOREACH(p, &allproc) {
   1593  1.124.8.3    martin 		if (p->p_stat == SIDL)
   1594  1.124.8.3    martin 			continue;
   1595  1.124.8.3    martin 		fdp = p->p_fd;
   1596  1.124.8.3    martin 		t = db_mutex_enter(&fdp->fd_lock);
   1597  1.124.8.3    martin 		if (!t) {
   1598  1.124.8.3    martin 			pr("could not acquire fd_lock mutex\n");
   1599  1.124.8.3    martin 			continue;
   1600  1.124.8.3    martin 		}
   1601  1.124.8.3    martin 		dt = fdp->fd_dt;
   1602  1.124.8.3    martin 		for (i = 0; i < dt->dt_nfiles; i++) {
   1603  1.124.8.3    martin 			ff = dt->dt_ff[i];
   1604  1.124.8.3    martin 			if (ff == NULL)
   1605  1.124.8.3    martin 				continue;
   1606  1.124.8.3    martin 
   1607  1.124.8.3    martin 			fp = ff->ff_file;
   1608  1.124.8.3    martin 			if (fp == NULL)
   1609  1.124.8.3    martin 				continue;
   1610  1.124.8.3    martin 
   1611  1.124.8.3    martin 			t = db_mutex_enter(&fp->f_lock);
   1612  1.124.8.3    martin 			if (!t) {
   1613  1.124.8.3    martin 				pr("could not acquire f_lock mutex\n");
   1614  1.124.8.3    martin 				continue;
   1615  1.124.8.3    martin 			}
   1616  1.124.8.3    martin 			if ((struct socket *)fp->f_data != so) {
   1617  1.124.8.3    martin 				mutex_exit(&fp->f_lock);
   1618  1.124.8.3    martin 				continue;
   1619  1.124.8.3    martin 			}
   1620  1.124.8.3    martin 			found++;
   1621  1.124.8.3    martin 			if (pr)
   1622  1.124.8.3    martin 				pr("socket %p: owner %s(pid=%d)\n",
   1623  1.124.8.3    martin 				    so, p->p_comm, p->p_pid);
   1624  1.124.8.3    martin 			mutex_exit(&fp->f_lock);
   1625  1.124.8.3    martin 			if (all == 0)
   1626  1.124.8.3    martin 				break;
   1627  1.124.8.3    martin 		}
   1628  1.124.8.3    martin 		mutex_exit(&fdp->fd_lock);
   1629  1.124.8.3    martin 		if (all == 0 && found != 0)
   1630  1.124.8.3    martin 			break;
   1631  1.124.8.3    martin 	}
   1632  1.124.8.3    martin 	mutex_exit(proc_lock);
   1633  1.124.8.3    martin 
   1634  1.124.8.3    martin 	return found;
   1635  1.124.8.3    martin }
   1636  1.124.8.3    martin 
   1637  1.124.8.3    martin void
   1638  1.124.8.3    martin socket_print(const char *modif, void (*pr)(const char *, ...))
   1639  1.124.8.3    martin {
   1640  1.124.8.3    martin 	file_t *fp;
   1641  1.124.8.3    martin 	struct socket *so;
   1642  1.124.8.3    martin 	struct sockbuf *sb_snd, *sb_rcv;
   1643  1.124.8.3    martin 	struct mbuf *m_rec, *m;
   1644  1.124.8.3    martin 	bool opt_v = false;
   1645  1.124.8.3    martin 	bool opt_m = false;
   1646  1.124.8.3    martin 	bool opt_a = false;
   1647  1.124.8.3    martin 	bool opt_p = false;
   1648  1.124.8.3    martin 	int nrecs, nmbufs;
   1649  1.124.8.3    martin 	char ch;
   1650  1.124.8.3    martin 	const char *family;
   1651  1.124.8.3    martin 
   1652  1.124.8.3    martin 	while ( (ch = *(modif++)) != '\0') {
   1653  1.124.8.3    martin 		switch (ch) {
   1654  1.124.8.3    martin 		case 'v':
   1655  1.124.8.3    martin 			opt_v = true;
   1656  1.124.8.3    martin 			break;
   1657  1.124.8.3    martin 		case 'm':
   1658  1.124.8.3    martin 			opt_m = true;
   1659  1.124.8.3    martin 			break;
   1660  1.124.8.3    martin 		case 'a':
   1661  1.124.8.3    martin 			opt_a = true;
   1662  1.124.8.3    martin 			break;
   1663  1.124.8.3    martin 		case 'p':
   1664  1.124.8.3    martin 			opt_p = true;
   1665  1.124.8.3    martin 			break;
   1666  1.124.8.3    martin 		}
   1667  1.124.8.3    martin 	}
   1668  1.124.8.3    martin 	if (opt_v == false && pr)
   1669  1.124.8.3    martin 		(pr)("Ignore empty sockets. use /v to print all.\n");
   1670  1.124.8.3    martin 	if (opt_p == true && pr)
   1671  1.124.8.3    martin 		(pr)("Don't search owner process.\n");
   1672  1.124.8.3    martin 
   1673  1.124.8.3    martin 	LIST_FOREACH(fp, &filehead, f_list) {
   1674  1.124.8.3    martin 		if (fp->f_type != DTYPE_SOCKET)
   1675  1.124.8.3    martin 			continue;
   1676  1.124.8.3    martin 		so = (struct socket *)fp->f_data;
   1677  1.124.8.3    martin 		if (so == NULL)
   1678  1.124.8.3    martin 			continue;
   1679  1.124.8.3    martin 
   1680  1.124.8.3    martin 		if (so->so_proto->pr_domain->dom_family == AF_INET)
   1681  1.124.8.3    martin 			family = "INET";
   1682  1.124.8.3    martin #ifdef INET6
   1683  1.124.8.3    martin 		else if (so->so_proto->pr_domain->dom_family == AF_INET6)
   1684  1.124.8.3    martin 			family = "INET6";
   1685  1.124.8.3    martin #endif
   1686  1.124.8.3    martin 		else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
   1687  1.124.8.3    martin 			family = "KEY";
   1688  1.124.8.3    martin 		else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
   1689  1.124.8.3    martin 			family = "ROUTE";
   1690  1.124.8.3    martin 		else
   1691  1.124.8.3    martin 			continue;
   1692  1.124.8.3    martin 
   1693  1.124.8.3    martin 		sb_snd = &so->so_snd;
   1694  1.124.8.3    martin 		sb_rcv = &so->so_rcv;
   1695  1.124.8.3    martin 
   1696  1.124.8.3    martin 		if (opt_v != true &&
   1697  1.124.8.3    martin 		    sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
   1698  1.124.8.3    martin 			continue;
   1699  1.124.8.3    martin 
   1700  1.124.8.3    martin 		pr("---SOCKET %p: type %s\n", so, family);
   1701  1.124.8.3    martin 		if (opt_p != true)
   1702  1.124.8.3    martin 			sofindproc(so, opt_a == true ? 1 : 0, pr);
   1703  1.124.8.3    martin 		pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
   1704  1.124.8.3    martin 		pr("Send Buffer mbufs:\n");
   1705  1.124.8.3    martin 		m_rec = m = sb_snd->sb_mb;
   1706  1.124.8.3    martin 		nrecs = 0;
   1707  1.124.8.3    martin 		nmbufs = 0;
   1708  1.124.8.3    martin 		while (m_rec) {
   1709  1.124.8.3    martin 			nrecs++;
   1710  1.124.8.3    martin 			if (opt_m == true)
   1711  1.124.8.3    martin 				pr(" mbuf chain %p\n", m_rec);
   1712  1.124.8.3    martin 			while (m) {
   1713  1.124.8.3    martin 				nmbufs++;
   1714  1.124.8.3    martin 				m = m->m_next;
   1715  1.124.8.3    martin 			}
   1716  1.124.8.3    martin 			m_rec = m = m_rec->m_nextpkt;
   1717  1.124.8.3    martin 		}
   1718  1.124.8.3    martin 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
   1719  1.124.8.3    martin 
   1720  1.124.8.3    martin 		pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
   1721  1.124.8.3    martin 		pr("Recv Buffer mbufs:\n");
   1722  1.124.8.3    martin 		m_rec = m = sb_rcv->sb_mb;
   1723  1.124.8.3    martin 		nrecs = 0;
   1724  1.124.8.3    martin 		nmbufs = 0;
   1725  1.124.8.3    martin 		while (m_rec) {
   1726  1.124.8.3    martin 			nrecs++;
   1727  1.124.8.3    martin 			if (opt_m == true)
   1728  1.124.8.3    martin 				pr(" mbuf chain %p\n", m_rec);
   1729  1.124.8.3    martin 			while (m) {
   1730  1.124.8.3    martin 				nmbufs++;
   1731  1.124.8.3    martin 				m = m->m_next;
   1732  1.124.8.3    martin 			}
   1733  1.124.8.3    martin 			m_rec = m = m_rec->m_nextpkt;
   1734  1.124.8.3    martin 		}
   1735  1.124.8.3    martin 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
   1736  1.124.8.3    martin 	}
   1737  1.124.8.3    martin }
   1738  1.124.8.3    martin #endif /* DDB */
   1739