uipc_socket2.c revision 1.125 1 1.125 christos /* $NetBSD: uipc_socket2.c,v 1.125 2017/07/06 17:08:57 christos Exp $ */
2 1.91 ad
3 1.91 ad /*-
4 1.91 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.91 ad * All rights reserved.
6 1.91 ad *
7 1.91 ad * Redistribution and use in source and binary forms, with or without
8 1.91 ad * modification, are permitted provided that the following conditions
9 1.91 ad * are met:
10 1.91 ad * 1. Redistributions of source code must retain the above copyright
11 1.91 ad * notice, this list of conditions and the following disclaimer.
12 1.91 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.91 ad * notice, this list of conditions and the following disclaimer in the
14 1.91 ad * documentation and/or other materials provided with the distribution.
15 1.91 ad *
16 1.91 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.91 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.91 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.91 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.91 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.91 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.91 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.91 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.91 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.91 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.91 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.91 ad */
28 1.9 cgd
29 1.1 cgd /*
30 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 1.7 mycroft * The Regents of the University of California. All rights reserved.
32 1.1 cgd *
33 1.1 cgd * Redistribution and use in source and binary forms, with or without
34 1.1 cgd * modification, are permitted provided that the following conditions
35 1.1 cgd * are met:
36 1.1 cgd * 1. Redistributions of source code must retain the above copyright
37 1.1 cgd * notice, this list of conditions and the following disclaimer.
38 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
39 1.1 cgd * notice, this list of conditions and the following disclaimer in the
40 1.1 cgd * documentation and/or other materials provided with the distribution.
41 1.54 agc * 3. Neither the name of the University nor the names of its contributors
42 1.1 cgd * may be used to endorse or promote products derived from this software
43 1.1 cgd * without specific prior written permission.
44 1.1 cgd *
45 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 cgd * SUCH DAMAGE.
56 1.1 cgd *
57 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 1.1 cgd */
59 1.42 lukem
60 1.42 lukem #include <sys/cdefs.h>
61 1.125 christos __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.125 2017/07/06 17:08:57 christos Exp $");
62 1.51 martin
63 1.122 pooka #ifdef _KERNEL_OPT
64 1.51 martin #include "opt_mbuftrace.h"
65 1.58 thorpej #include "opt_sb_max.h"
66 1.125 christos #include "opt_compat_netbsd.h"
67 1.122 pooka #endif
68 1.1 cgd
69 1.5 mycroft #include <sys/param.h>
70 1.5 mycroft #include <sys/systm.h>
71 1.5 mycroft #include <sys/proc.h>
72 1.5 mycroft #include <sys/file.h>
73 1.5 mycroft #include <sys/buf.h>
74 1.5 mycroft #include <sys/mbuf.h>
75 1.5 mycroft #include <sys/protosw.h>
76 1.91 ad #include <sys/domain.h>
77 1.55 christos #include <sys/poll.h>
78 1.5 mycroft #include <sys/socket.h>
79 1.5 mycroft #include <sys/socketvar.h>
80 1.11 christos #include <sys/signalvar.h>
81 1.71 elad #include <sys/kauth.h>
82 1.91 ad #include <sys/pool.h>
83 1.98 pooka #include <sys/uidinfo.h>
84 1.1 cgd
85 1.1 cgd /*
86 1.91 ad * Primitive routines for operating on sockets and socket buffers.
87 1.91 ad *
88 1.116 rmind * Connection life-cycle:
89 1.116 rmind *
90 1.116 rmind * Normal sequence from the active (originating) side:
91 1.116 rmind *
92 1.116 rmind * - soisconnecting() is called during processing of connect() call,
93 1.116 rmind * - resulting in an eventual call to soisconnected() if/when the
94 1.116 rmind * connection is established.
95 1.116 rmind *
96 1.116 rmind * When the connection is torn down during processing of disconnect():
97 1.116 rmind *
98 1.116 rmind * - soisdisconnecting() is called and,
99 1.116 rmind * - soisdisconnected() is called when the connection to the peer
100 1.116 rmind * is totally severed.
101 1.116 rmind *
102 1.116 rmind * The semantics of these routines are such that connectionless protocols
103 1.116 rmind * can call soisconnected() and soisdisconnected() only, bypassing the
104 1.116 rmind * in-progress calls when setting up a ``connection'' takes no time.
105 1.116 rmind *
106 1.116 rmind * From the passive side, a socket is created with two queues of sockets:
107 1.116 rmind *
108 1.116 rmind * - so_q0 (0) for partial connections (i.e. connections in progress)
109 1.116 rmind * - so_q (1) for connections already made and awaiting user acceptance.
110 1.116 rmind *
111 1.116 rmind * As a protocol is preparing incoming connections, it creates a socket
112 1.116 rmind * structure queued on so_q0 by calling sonewconn(). When the connection
113 1.116 rmind * is established, soisconnected() is called, and transfers the
114 1.116 rmind * socket structure to so_q, making it available to accept().
115 1.116 rmind *
116 1.116 rmind * If a socket is closed with sockets on either so_q0 or so_q, these
117 1.116 rmind * sockets are dropped.
118 1.116 rmind *
119 1.91 ad * Locking rules and assumptions:
120 1.91 ad *
121 1.91 ad * o socket::so_lock can change on the fly. The low level routines used
122 1.91 ad * to lock sockets are aware of this. When so_lock is acquired, the
123 1.91 ad * routine locking must check to see if so_lock still points to the
124 1.91 ad * lock that was acquired. If so_lock has changed in the meantime, the
125 1.116 rmind * now irrelevant lock that was acquired must be dropped and the lock
126 1.91 ad * operation retried. Although not proven here, this is completely safe
127 1.91 ad * on a multiprocessor system, even with relaxed memory ordering, given
128 1.91 ad * the next two rules:
129 1.91 ad *
130 1.91 ad * o In order to mutate so_lock, the lock pointed to by the current value
131 1.91 ad * of so_lock must be held: i.e., the socket must be held locked by the
132 1.91 ad * changing thread. The thread must issue membar_exit() to prevent
133 1.91 ad * memory accesses being reordered, and can set so_lock to the desired
134 1.91 ad * value. If the lock pointed to by the new value of so_lock is not
135 1.91 ad * held by the changing thread, the socket must then be considered
136 1.91 ad * unlocked.
137 1.91 ad *
138 1.91 ad * o If so_lock is mutated, and the previous lock referred to by so_lock
139 1.91 ad * could still be visible to other threads in the system (e.g. via file
140 1.91 ad * descriptor or protocol-internal reference), then the old lock must
141 1.91 ad * remain valid until the socket and/or protocol control block has been
142 1.91 ad * torn down.
143 1.91 ad *
144 1.91 ad * o If a socket has a non-NULL so_head value (i.e. is in the process of
145 1.91 ad * connecting), then locking the socket must also lock the socket pointed
146 1.91 ad * to by so_head: their lock pointers must match.
147 1.91 ad *
148 1.91 ad * o If a socket has connections in progress (so_q, so_q0 not empty) then
149 1.91 ad * locking the socket must also lock the sockets attached to both queues.
150 1.91 ad * Again, their lock pointers must match.
151 1.91 ad *
152 1.116 rmind * o Beyond the initial lock assignment in socreate(), assigning locks to
153 1.91 ad * sockets is the responsibility of the individual protocols / protocol
154 1.91 ad * domains.
155 1.1 cgd */
156 1.1 cgd
157 1.116 rmind static pool_cache_t socket_cache;
158 1.116 rmind u_long sb_max = SB_MAX;/* maximum socket buffer size */
159 1.116 rmind static u_long sb_max_adj; /* adjusted sb_max */
160 1.1 cgd
161 1.7 mycroft void
162 1.37 lukem soisconnecting(struct socket *so)
163 1.1 cgd {
164 1.1 cgd
165 1.91 ad KASSERT(solocked(so));
166 1.91 ad
167 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
168 1.1 cgd so->so_state |= SS_ISCONNECTING;
169 1.1 cgd }
170 1.1 cgd
171 1.7 mycroft void
172 1.37 lukem soisconnected(struct socket *so)
173 1.1 cgd {
174 1.37 lukem struct socket *head;
175 1.1 cgd
176 1.37 lukem head = so->so_head;
177 1.91 ad
178 1.91 ad KASSERT(solocked(so));
179 1.91 ad KASSERT(head == NULL || solocked2(so, head));
180 1.91 ad
181 1.113 rmind so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
182 1.1 cgd so->so_state |= SS_ISCONNECTED;
183 1.97 tls if (head && so->so_onq == &head->so_q0) {
184 1.97 tls if ((so->so_options & SO_ACCEPTFILTER) == 0) {
185 1.116 rmind /*
186 1.116 rmind * Re-enqueue and wake up any waiters, e.g.
187 1.116 rmind * processes blocking on accept().
188 1.116 rmind */
189 1.97 tls soqremque(so, 0);
190 1.97 tls soqinsque(head, so, 1);
191 1.97 tls sorwakeup(head);
192 1.97 tls cv_broadcast(&head->so_cv);
193 1.97 tls } else {
194 1.97 tls so->so_upcall =
195 1.97 tls head->so_accf->so_accept_filter->accf_callback;
196 1.97 tls so->so_upcallarg = head->so_accf->so_accept_filter_arg;
197 1.97 tls so->so_rcv.sb_flags |= SB_UPCALL;
198 1.97 tls so->so_options &= ~SO_ACCEPTFILTER;
199 1.104 tls (*so->so_upcall)(so, so->so_upcallarg,
200 1.104 tls POLLIN|POLLRDNORM, M_DONTWAIT);
201 1.101 yamt }
202 1.1 cgd } else {
203 1.91 ad cv_broadcast(&so->so_cv);
204 1.1 cgd sorwakeup(so);
205 1.1 cgd sowwakeup(so);
206 1.1 cgd }
207 1.1 cgd }
208 1.1 cgd
209 1.7 mycroft void
210 1.37 lukem soisdisconnecting(struct socket *so)
211 1.1 cgd {
212 1.1 cgd
213 1.91 ad KASSERT(solocked(so));
214 1.91 ad
215 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
216 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
217 1.91 ad cv_broadcast(&so->so_cv);
218 1.1 cgd sowwakeup(so);
219 1.1 cgd sorwakeup(so);
220 1.1 cgd }
221 1.1 cgd
222 1.7 mycroft void
223 1.37 lukem soisdisconnected(struct socket *so)
224 1.1 cgd {
225 1.1 cgd
226 1.91 ad KASSERT(solocked(so));
227 1.91 ad
228 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
229 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
230 1.91 ad cv_broadcast(&so->so_cv);
231 1.1 cgd sowwakeup(so);
232 1.1 cgd sorwakeup(so);
233 1.1 cgd }
234 1.1 cgd
235 1.94 ad void
236 1.94 ad soinit2(void)
237 1.94 ad {
238 1.94 ad
239 1.94 ad socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
240 1.94 ad "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
241 1.94 ad }
242 1.94 ad
243 1.1 cgd /*
244 1.116 rmind * sonewconn: accept a new connection.
245 1.116 rmind *
246 1.116 rmind * When an attempt at a new connection is noted on a socket which accepts
247 1.116 rmind * connections, sonewconn(9) is called. If the connection is possible
248 1.116 rmind * (subject to space constraints, etc) then we allocate a new structure,
249 1.116 rmind * properly linked into the data structure of the original socket.
250 1.116 rmind *
251 1.116 rmind * => If 'soready' is true, then socket will become ready for accept() i.e.
252 1.116 rmind * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
253 1.116 rmind * => May be called from soft-interrupt context.
254 1.116 rmind * => Listening socket should be locked.
255 1.116 rmind * => Returns the new socket locked.
256 1.1 cgd */
257 1.1 cgd struct socket *
258 1.116 rmind sonewconn(struct socket *head, bool soready)
259 1.1 cgd {
260 1.116 rmind struct socket *so;
261 1.116 rmind int soqueue, error;
262 1.91 ad
263 1.91 ad KASSERT(solocked(head));
264 1.1 cgd
265 1.116 rmind if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
266 1.123 tls /*
267 1.123 tls * Listen queue overflow. If there is an accept filter
268 1.123 tls * active, pass through the oldest cxn it's handling.
269 1.123 tls */
270 1.123 tls if (head->so_accf == NULL) {
271 1.123 tls return NULL;
272 1.123 tls } else {
273 1.123 tls struct socket *so2, *next;
274 1.123 tls
275 1.123 tls /* Pass the oldest connection waiting in the
276 1.123 tls accept filter */
277 1.123 tls for (so2 = TAILQ_FIRST(&head->so_q0);
278 1.123 tls so2 != NULL; so2 = next) {
279 1.123 tls next = TAILQ_NEXT(so2, so_qe);
280 1.123 tls if (so2->so_upcall == NULL) {
281 1.123 tls continue;
282 1.123 tls }
283 1.123 tls so2->so_upcall = NULL;
284 1.123 tls so2->so_upcallarg = NULL;
285 1.123 tls so2->so_options &= ~SO_ACCEPTFILTER;
286 1.123 tls so2->so_rcv.sb_flags &= ~SB_UPCALL;
287 1.123 tls soisconnected(so2);
288 1.123 tls break;
289 1.123 tls }
290 1.123 tls
291 1.123 tls /* If nothing was nudged out of the acept filter, bail
292 1.123 tls * out; otherwise proceed allocating the socket. */
293 1.123 tls if (so2 == NULL) {
294 1.123 tls return NULL;
295 1.123 tls }
296 1.123 tls }
297 1.116 rmind }
298 1.116 rmind if ((head->so_options & SO_ACCEPTFILTER) != 0) {
299 1.116 rmind soready = false;
300 1.116 rmind }
301 1.116 rmind soqueue = soready ? 1 : 0;
302 1.113 rmind
303 1.116 rmind if ((so = soget(false)) == NULL) {
304 1.100 dyoung return NULL;
305 1.116 rmind }
306 1.1 cgd so->so_type = head->so_type;
307 1.116 rmind so->so_options = head->so_options & ~SO_ACCEPTCONN;
308 1.1 cgd so->so_linger = head->so_linger;
309 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
310 1.1 cgd so->so_proto = head->so_proto;
311 1.1 cgd so->so_timeo = head->so_timeo;
312 1.1 cgd so->so_pgid = head->so_pgid;
313 1.24 matt so->so_send = head->so_send;
314 1.24 matt so->so_receive = head->so_receive;
315 1.67 christos so->so_uidinfo = head->so_uidinfo;
316 1.96 yamt so->so_cpid = head->so_cpid;
317 1.119 rmind
318 1.119 rmind /*
319 1.119 rmind * Share the lock with the listening-socket, it may get unshared
320 1.119 rmind * once the connection is complete.
321 1.119 rmind */
322 1.119 rmind mutex_obj_hold(head->so_lock);
323 1.119 rmind so->so_lock = head->so_lock;
324 1.119 rmind
325 1.119 rmind /*
326 1.119 rmind * Reserve the space for socket buffers.
327 1.119 rmind */
328 1.49 matt #ifdef MBUFTRACE
329 1.49 matt so->so_mowner = head->so_mowner;
330 1.49 matt so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
331 1.49 matt so->so_snd.sb_mowner = head->so_snd.sb_mowner;
332 1.49 matt #endif
333 1.119 rmind if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
334 1.103 christos goto out;
335 1.119 rmind }
336 1.83 tls so->so_snd.sb_lowat = head->so_snd.sb_lowat;
337 1.83 tls so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
338 1.84 tls so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
339 1.84 tls so->so_snd.sb_timeo = head->so_snd.sb_timeo;
340 1.107 christos so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
341 1.107 christos so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
342 1.116 rmind
343 1.116 rmind /*
344 1.119 rmind * Finally, perform the protocol attach. Note: a new socket
345 1.119 rmind * lock may be assigned at this point (if so, it will be held).
346 1.116 rmind */
347 1.119 rmind error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
348 1.116 rmind if (error) {
349 1.103 christos out:
350 1.119 rmind KASSERT(solocked(so));
351 1.116 rmind KASSERT(so->so_accf == NULL);
352 1.91 ad soput(so);
353 1.116 rmind
354 1.116 rmind /* Note: the listening socket shall stay locked. */
355 1.116 rmind KASSERT(solocked(head));
356 1.100 dyoung return NULL;
357 1.1 cgd }
358 1.119 rmind KASSERT(solocked2(head, so));
359 1.116 rmind
360 1.116 rmind /*
361 1.117 rmind * Insert into the queue. If ready, update the connection status
362 1.117 rmind * and wake up any waiters, e.g. processes blocking on accept().
363 1.116 rmind */
364 1.117 rmind soqinsque(head, so, soqueue);
365 1.116 rmind if (soready) {
366 1.116 rmind so->so_state |= SS_ISCONNECTED;
367 1.1 cgd sorwakeup(head);
368 1.91 ad cv_broadcast(&head->so_cv);
369 1.1 cgd }
370 1.100 dyoung return so;
371 1.1 cgd }
372 1.1 cgd
373 1.91 ad struct socket *
374 1.91 ad soget(bool waitok)
375 1.91 ad {
376 1.91 ad struct socket *so;
377 1.91 ad
378 1.94 ad so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
379 1.91 ad if (__predict_false(so == NULL))
380 1.91 ad return (NULL);
381 1.91 ad memset(so, 0, sizeof(*so));
382 1.91 ad TAILQ_INIT(&so->so_q0);
383 1.91 ad TAILQ_INIT(&so->so_q);
384 1.91 ad cv_init(&so->so_cv, "socket");
385 1.91 ad cv_init(&so->so_rcv.sb_cv, "netio");
386 1.91 ad cv_init(&so->so_snd.sb_cv, "netio");
387 1.91 ad selinit(&so->so_rcv.sb_sel);
388 1.91 ad selinit(&so->so_snd.sb_sel);
389 1.91 ad so->so_rcv.sb_so = so;
390 1.91 ad so->so_snd.sb_so = so;
391 1.91 ad return so;
392 1.91 ad }
393 1.91 ad
394 1.91 ad void
395 1.91 ad soput(struct socket *so)
396 1.91 ad {
397 1.91 ad
398 1.91 ad KASSERT(!cv_has_waiters(&so->so_cv));
399 1.91 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
400 1.91 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
401 1.91 ad seldestroy(&so->so_rcv.sb_sel);
402 1.91 ad seldestroy(&so->so_snd.sb_sel);
403 1.91 ad mutex_obj_free(so->so_lock);
404 1.91 ad cv_destroy(&so->so_cv);
405 1.91 ad cv_destroy(&so->so_rcv.sb_cv);
406 1.91 ad cv_destroy(&so->so_snd.sb_cv);
407 1.94 ad pool_cache_put(socket_cache, so);
408 1.91 ad }
409 1.91 ad
410 1.116 rmind /*
411 1.116 rmind * soqinsque: insert socket of a new connection into the specified
412 1.116 rmind * accept queue of the listening socket (head).
413 1.116 rmind *
414 1.116 rmind * q = 0: queue of partial connections
415 1.116 rmind * q = 1: queue of incoming connections
416 1.116 rmind */
417 1.7 mycroft void
418 1.37 lukem soqinsque(struct socket *head, struct socket *so, int q)
419 1.1 cgd {
420 1.116 rmind KASSERT(q == 0 || q == 1);
421 1.91 ad KASSERT(solocked2(head, so));
422 1.116 rmind KASSERT(so->so_onq == NULL);
423 1.116 rmind KASSERT(so->so_head == NULL);
424 1.22 thorpej
425 1.1 cgd so->so_head = head;
426 1.1 cgd if (q == 0) {
427 1.1 cgd head->so_q0len++;
428 1.22 thorpej so->so_onq = &head->so_q0;
429 1.1 cgd } else {
430 1.1 cgd head->so_qlen++;
431 1.22 thorpej so->so_onq = &head->so_q;
432 1.1 cgd }
433 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
434 1.1 cgd }
435 1.1 cgd
436 1.116 rmind /*
437 1.116 rmind * soqremque: remove socket from the specified queue.
438 1.116 rmind *
439 1.116 rmind * => Returns true if socket was removed from the specified queue.
440 1.116 rmind * => False if socket was not removed (because it was in other queue).
441 1.116 rmind */
442 1.116 rmind bool
443 1.37 lukem soqremque(struct socket *so, int q)
444 1.1 cgd {
445 1.116 rmind struct socket *head = so->so_head;
446 1.1 cgd
447 1.116 rmind KASSERT(q == 0 || q == 1);
448 1.116 rmind KASSERT(solocked(so));
449 1.116 rmind KASSERT(so->so_onq != NULL);
450 1.116 rmind KASSERT(head != NULL);
451 1.91 ad
452 1.22 thorpej if (q == 0) {
453 1.22 thorpej if (so->so_onq != &head->so_q0)
454 1.116 rmind return false;
455 1.1 cgd head->so_q0len--;
456 1.1 cgd } else {
457 1.22 thorpej if (so->so_onq != &head->so_q)
458 1.116 rmind return false;
459 1.1 cgd head->so_qlen--;
460 1.1 cgd }
461 1.91 ad KASSERT(solocked2(so, head));
462 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe);
463 1.22 thorpej so->so_onq = NULL;
464 1.22 thorpej so->so_head = NULL;
465 1.116 rmind return true;
466 1.1 cgd }
467 1.1 cgd
468 1.1 cgd /*
469 1.116 rmind * socantsendmore: indicates that no more data will be sent on the
470 1.1 cgd * socket; it would normally be applied to a socket when the user
471 1.1 cgd * informs the system that no more data is to be sent, by the protocol
472 1.120 rtr * code (in case pr_shutdown()).
473 1.1 cgd */
474 1.4 andrew void
475 1.37 lukem socantsendmore(struct socket *so)
476 1.1 cgd {
477 1.91 ad KASSERT(solocked(so));
478 1.91 ad
479 1.1 cgd so->so_state |= SS_CANTSENDMORE;
480 1.1 cgd sowwakeup(so);
481 1.1 cgd }
482 1.1 cgd
483 1.116 rmind /*
484 1.116 rmind * socantrcvmore(): indicates that no more data will be received and
485 1.116 rmind * will normally be applied to the socket by a protocol when it detects
486 1.116 rmind * that the peer will send no more data. Data queued for reading in
487 1.116 rmind * the socket may yet be read.
488 1.116 rmind */
489 1.4 andrew void
490 1.37 lukem socantrcvmore(struct socket *so)
491 1.1 cgd {
492 1.91 ad KASSERT(solocked(so));
493 1.91 ad
494 1.1 cgd so->so_state |= SS_CANTRCVMORE;
495 1.1 cgd sorwakeup(so);
496 1.1 cgd }
497 1.1 cgd
498 1.1 cgd /*
499 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
500 1.1 cgd */
501 1.7 mycroft int
502 1.37 lukem sbwait(struct sockbuf *sb)
503 1.1 cgd {
504 1.91 ad struct socket *so;
505 1.91 ad kmutex_t *lock;
506 1.91 ad int error;
507 1.1 cgd
508 1.91 ad so = sb->sb_so;
509 1.1 cgd
510 1.91 ad KASSERT(solocked(so));
511 1.1 cgd
512 1.91 ad sb->sb_flags |= SB_NOTIFY;
513 1.91 ad lock = so->so_lock;
514 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0)
515 1.91 ad error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
516 1.91 ad else
517 1.91 ad error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
518 1.91 ad if (__predict_false(lock != so->so_lock))
519 1.91 ad solockretry(so, lock);
520 1.91 ad return error;
521 1.1 cgd }
522 1.1 cgd
523 1.1 cgd /*
524 1.1 cgd * Wakeup processes waiting on a socket buffer.
525 1.1 cgd * Do asynchronous notification via SIGIO
526 1.39 manu * if the socket buffer has the SB_ASYNC flag set.
527 1.1 cgd */
528 1.7 mycroft void
529 1.55 christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
530 1.1 cgd {
531 1.90 rmind int band;
532 1.90 rmind
533 1.91 ad KASSERT(solocked(so));
534 1.91 ad KASSERT(sb->sb_so == so);
535 1.91 ad
536 1.90 rmind if (code == POLL_IN)
537 1.90 rmind band = POLLIN|POLLRDNORM;
538 1.90 rmind else
539 1.90 rmind band = POLLOUT|POLLWRNORM;
540 1.91 ad sb->sb_flags &= ~SB_NOTIFY;
541 1.91 ad selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
542 1.91 ad cv_broadcast(&sb->sb_cv);
543 1.90 rmind if (sb->sb_flags & SB_ASYNC)
544 1.57 christos fownsignal(so->so_pgid, SIGIO, code, band, so);
545 1.24 matt if (sb->sb_flags & SB_UPCALL)
546 1.104 tls (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
547 1.1 cgd }
548 1.1 cgd
549 1.1 cgd /*
550 1.95 ad * Reset a socket's lock pointer. Wake all threads waiting on the
551 1.95 ad * socket's condition variables so that they can restart their waits
552 1.95 ad * using the new lock. The existing lock must be held.
553 1.95 ad */
554 1.95 ad void
555 1.95 ad solockreset(struct socket *so, kmutex_t *lock)
556 1.95 ad {
557 1.95 ad
558 1.95 ad KASSERT(solocked(so));
559 1.95 ad
560 1.95 ad so->so_lock = lock;
561 1.95 ad cv_broadcast(&so->so_snd.sb_cv);
562 1.95 ad cv_broadcast(&so->so_rcv.sb_cv);
563 1.95 ad cv_broadcast(&so->so_cv);
564 1.95 ad }
565 1.95 ad
566 1.95 ad /*
567 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
568 1.1 cgd *
569 1.1 cgd * Each socket contains two socket buffers: one for sending data and
570 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
571 1.1 cgd * information about the number of mbufs and amount of data in the
572 1.13 mycroft * queue, and other fields allowing poll() statements and notification
573 1.1 cgd * on data availability to be implemented.
574 1.1 cgd *
575 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
576 1.1 cgd * Each record is a list of mbufs chained together with the m_next
577 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
578 1.1 cgd * level routine soreceive() expects the following conventions to be
579 1.1 cgd * observed when placing information in the receive buffer:
580 1.1 cgd *
581 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
582 1.1 cgd * name, then a record containing that name must be present before
583 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
584 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
585 1.1 cgd * just additional data associated with the message), and there are
586 1.1 cgd * ``rights'' to be received, then a record containing this data
587 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL).
588 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
589 1.1 cgd * a data record, perhaps of zero length.
590 1.1 cgd *
591 1.1 cgd * Before using a new socket structure it is first necessary to reserve
592 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
593 1.1 cgd * some of the available buffer space in the system buffer pool for the
594 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
595 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
596 1.1 cgd */
597 1.1 cgd
598 1.7 mycroft int
599 1.58 thorpej sb_max_set(u_long new_sbmax)
600 1.58 thorpej {
601 1.58 thorpej int s;
602 1.58 thorpej
603 1.58 thorpej if (new_sbmax < (16 * 1024))
604 1.58 thorpej return (EINVAL);
605 1.58 thorpej
606 1.58 thorpej s = splsoftnet();
607 1.58 thorpej sb_max = new_sbmax;
608 1.58 thorpej sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
609 1.58 thorpej splx(s);
610 1.58 thorpej
611 1.58 thorpej return (0);
612 1.58 thorpej }
613 1.58 thorpej
614 1.58 thorpej int
615 1.37 lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
616 1.1 cgd {
617 1.116 rmind KASSERT(so->so_pcb == NULL || solocked(so));
618 1.91 ad
619 1.74 christos /*
620 1.74 christos * there's at least one application (a configure script of screen)
621 1.74 christos * which expects a fifo is writable even if it has "some" bytes
622 1.74 christos * in its buffer.
623 1.74 christos * so we want to make sure (hiwat - lowat) >= (some bytes).
624 1.74 christos *
625 1.74 christos * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
626 1.74 christos * we expect it's large enough for such applications.
627 1.74 christos */
628 1.74 christos u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
629 1.74 christos u_long hiwat = lowat + PIPE_BUF;
630 1.1 cgd
631 1.74 christos if (sndcc < hiwat)
632 1.74 christos sndcc = hiwat;
633 1.59 christos if (sbreserve(&so->so_snd, sndcc, so) == 0)
634 1.1 cgd goto bad;
635 1.59 christos if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
636 1.1 cgd goto bad2;
637 1.1 cgd if (so->so_rcv.sb_lowat == 0)
638 1.1 cgd so->so_rcv.sb_lowat = 1;
639 1.1 cgd if (so->so_snd.sb_lowat == 0)
640 1.74 christos so->so_snd.sb_lowat = lowat;
641 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
642 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
643 1.1 cgd return (0);
644 1.37 lukem bad2:
645 1.59 christos sbrelease(&so->so_snd, so);
646 1.37 lukem bad:
647 1.1 cgd return (ENOBUFS);
648 1.1 cgd }
649 1.1 cgd
650 1.1 cgd /*
651 1.1 cgd * Allot mbufs to a sockbuf.
652 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
653 1.1 cgd * if buffering efficiency is near the normal case.
654 1.1 cgd */
655 1.7 mycroft int
656 1.59 christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
657 1.1 cgd {
658 1.75 ad struct lwp *l = curlwp; /* XXX */
659 1.62 christos rlim_t maxcc;
660 1.67 christos struct uidinfo *uidinfo;
661 1.1 cgd
662 1.116 rmind KASSERT(so->so_pcb == NULL || solocked(so));
663 1.91 ad KASSERT(sb->sb_so == so);
664 1.91 ad KASSERT(sb_max_adj != 0);
665 1.91 ad
666 1.58 thorpej if (cc == 0 || cc > sb_max_adj)
667 1.1 cgd return (0);
668 1.93 christos
669 1.105 elad maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
670 1.93 christos
671 1.93 christos uidinfo = so->so_uidinfo;
672 1.67 christos if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
673 1.62 christos return 0;
674 1.1 cgd sb->sb_mbmax = min(cc * 2, sb_max);
675 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
676 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
677 1.1 cgd return (1);
678 1.1 cgd }
679 1.1 cgd
680 1.1 cgd /*
681 1.91 ad * Free mbufs held by a socket, and reserved mbuf space. We do not assert
682 1.91 ad * that the socket is held locked here: see sorflush().
683 1.1 cgd */
684 1.7 mycroft void
685 1.59 christos sbrelease(struct sockbuf *sb, struct socket *so)
686 1.1 cgd {
687 1.1 cgd
688 1.91 ad KASSERT(sb->sb_so == so);
689 1.91 ad
690 1.1 cgd sbflush(sb);
691 1.87 yamt (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
692 1.59 christos sb->sb_mbmax = 0;
693 1.1 cgd }
694 1.1 cgd
695 1.1 cgd /*
696 1.1 cgd * Routines to add and remove
697 1.1 cgd * data from an mbuf queue.
698 1.1 cgd *
699 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
700 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
701 1.1 cgd * space is available, comparing the function sbspace() with the amount
702 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
703 1.1 cgd * that data supplied is treated as the beginning of a new record.
704 1.1 cgd * To place a sender's address, optional access rights, and data in a
705 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
706 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
707 1.1 cgd * should be used. In either case, the new data begins a new record.
708 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
709 1.1 cgd * for the caller that there will be enough space to store the data.
710 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
711 1.1 cgd * to store additional information in.
712 1.1 cgd *
713 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
714 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
715 1.1 cgd * send buffer in a protocol with m_copy for output to a peer,
716 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
717 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
718 1.1 cgd */
719 1.1 cgd
720 1.43 thorpej #ifdef SOCKBUF_DEBUG
721 1.43 thorpej void
722 1.43 thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
723 1.43 thorpej {
724 1.43 thorpej struct mbuf *m = sb->sb_mb;
725 1.43 thorpej
726 1.91 ad KASSERT(solocked(sb->sb_so));
727 1.91 ad
728 1.43 thorpej while (m && m->m_nextpkt)
729 1.43 thorpej m = m->m_nextpkt;
730 1.43 thorpej
731 1.43 thorpej if (m != sb->sb_lastrecord) {
732 1.43 thorpej printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
733 1.43 thorpej sb->sb_mb, sb->sb_lastrecord, m);
734 1.43 thorpej printf("packet chain:\n");
735 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
736 1.43 thorpej printf("\t%p\n", m);
737 1.47 provos panic("sblastrecordchk from %s", where);
738 1.43 thorpej }
739 1.43 thorpej }
740 1.43 thorpej
741 1.43 thorpej void
742 1.43 thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
743 1.43 thorpej {
744 1.43 thorpej struct mbuf *m = sb->sb_mb;
745 1.43 thorpej struct mbuf *n;
746 1.43 thorpej
747 1.91 ad KASSERT(solocked(sb->sb_so));
748 1.91 ad
749 1.43 thorpej while (m && m->m_nextpkt)
750 1.43 thorpej m = m->m_nextpkt;
751 1.43 thorpej
752 1.43 thorpej while (m && m->m_next)
753 1.43 thorpej m = m->m_next;
754 1.43 thorpej
755 1.43 thorpej if (m != sb->sb_mbtail) {
756 1.43 thorpej printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
757 1.43 thorpej sb->sb_mb, sb->sb_mbtail, m);
758 1.43 thorpej printf("packet tree:\n");
759 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
760 1.43 thorpej printf("\t");
761 1.43 thorpej for (n = m; n != NULL; n = n->m_next)
762 1.43 thorpej printf("%p ", n);
763 1.43 thorpej printf("\n");
764 1.43 thorpej }
765 1.43 thorpej panic("sblastmbufchk from %s", where);
766 1.43 thorpej }
767 1.43 thorpej }
768 1.43 thorpej #endif /* SOCKBUF_DEBUG */
769 1.43 thorpej
770 1.63 jonathan /*
771 1.63 jonathan * Link a chain of records onto a socket buffer
772 1.63 jonathan */
773 1.63 jonathan #define SBLINKRECORDCHAIN(sb, m0, mlast) \
774 1.43 thorpej do { \
775 1.43 thorpej if ((sb)->sb_lastrecord != NULL) \
776 1.43 thorpej (sb)->sb_lastrecord->m_nextpkt = (m0); \
777 1.43 thorpej else \
778 1.43 thorpej (sb)->sb_mb = (m0); \
779 1.63 jonathan (sb)->sb_lastrecord = (mlast); \
780 1.43 thorpej } while (/*CONSTCOND*/0)
781 1.43 thorpej
782 1.63 jonathan
783 1.63 jonathan #define SBLINKRECORD(sb, m0) \
784 1.63 jonathan SBLINKRECORDCHAIN(sb, m0, m0)
785 1.63 jonathan
786 1.1 cgd /*
787 1.1 cgd * Append mbuf chain m to the last record in the
788 1.1 cgd * socket buffer sb. The additional space associated
789 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
790 1.1 cgd * discarded and mbufs are compacted where possible.
791 1.1 cgd */
792 1.7 mycroft void
793 1.37 lukem sbappend(struct sockbuf *sb, struct mbuf *m)
794 1.1 cgd {
795 1.37 lukem struct mbuf *n;
796 1.1 cgd
797 1.91 ad KASSERT(solocked(sb->sb_so));
798 1.91 ad
799 1.115 christos if (m == NULL)
800 1.1 cgd return;
801 1.43 thorpej
802 1.49 matt #ifdef MBUFTRACE
803 1.65 jonathan m_claimm(m, sb->sb_mowner);
804 1.49 matt #endif
805 1.49 matt
806 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 1");
807 1.43 thorpej
808 1.43 thorpej if ((n = sb->sb_lastrecord) != NULL) {
809 1.43 thorpej /*
810 1.43 thorpej * XXX Would like to simply use sb_mbtail here, but
811 1.43 thorpej * XXX I need to verify that I won't miss an EOR that
812 1.43 thorpej * XXX way.
813 1.43 thorpej */
814 1.1 cgd do {
815 1.1 cgd if (n->m_flags & M_EOR) {
816 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
817 1.1 cgd return;
818 1.1 cgd }
819 1.1 cgd } while (n->m_next && (n = n->m_next));
820 1.43 thorpej } else {
821 1.43 thorpej /*
822 1.43 thorpej * If this is the first record in the socket buffer, it's
823 1.43 thorpej * also the last record.
824 1.43 thorpej */
825 1.43 thorpej sb->sb_lastrecord = m;
826 1.1 cgd }
827 1.1 cgd sbcompress(sb, m, n);
828 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 2");
829 1.43 thorpej }
830 1.43 thorpej
831 1.43 thorpej /*
832 1.43 thorpej * This version of sbappend() should only be used when the caller
833 1.43 thorpej * absolutely knows that there will never be more than one record
834 1.43 thorpej * in the socket buffer, that is, a stream protocol (such as TCP).
835 1.43 thorpej */
836 1.43 thorpej void
837 1.44 thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
838 1.43 thorpej {
839 1.43 thorpej
840 1.91 ad KASSERT(solocked(sb->sb_so));
841 1.43 thorpej KDASSERT(m->m_nextpkt == NULL);
842 1.43 thorpej KASSERT(sb->sb_mb == sb->sb_lastrecord);
843 1.43 thorpej
844 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
845 1.43 thorpej
846 1.49 matt #ifdef MBUFTRACE
847 1.65 jonathan m_claimm(m, sb->sb_mowner);
848 1.49 matt #endif
849 1.49 matt
850 1.43 thorpej sbcompress(sb, m, sb->sb_mbtail);
851 1.43 thorpej
852 1.43 thorpej sb->sb_lastrecord = sb->sb_mb;
853 1.43 thorpej SBLASTRECORDCHK(sb, __func__);
854 1.1 cgd }
855 1.1 cgd
856 1.1 cgd #ifdef SOCKBUF_DEBUG
857 1.7 mycroft void
858 1.37 lukem sbcheck(struct sockbuf *sb)
859 1.1 cgd {
860 1.91 ad struct mbuf *m, *m2;
861 1.43 thorpej u_long len, mbcnt;
862 1.1 cgd
863 1.91 ad KASSERT(solocked(sb->sb_so));
864 1.91 ad
865 1.37 lukem len = 0;
866 1.37 lukem mbcnt = 0;
867 1.91 ad for (m = sb->sb_mb; m; m = m->m_nextpkt) {
868 1.91 ad for (m2 = m; m2 != NULL; m2 = m2->m_next) {
869 1.91 ad len += m2->m_len;
870 1.91 ad mbcnt += MSIZE;
871 1.91 ad if (m2->m_flags & M_EXT)
872 1.91 ad mbcnt += m2->m_ext.ext_size;
873 1.91 ad if (m2->m_nextpkt != NULL)
874 1.91 ad panic("sbcheck nextpkt");
875 1.91 ad }
876 1.1 cgd }
877 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
878 1.43 thorpej printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
879 1.1 cgd mbcnt, sb->sb_mbcnt);
880 1.1 cgd panic("sbcheck");
881 1.1 cgd }
882 1.1 cgd }
883 1.1 cgd #endif
884 1.1 cgd
885 1.1 cgd /*
886 1.1 cgd * As above, except the mbuf chain
887 1.1 cgd * begins a new record.
888 1.1 cgd */
889 1.7 mycroft void
890 1.37 lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
891 1.1 cgd {
892 1.37 lukem struct mbuf *m;
893 1.1 cgd
894 1.91 ad KASSERT(solocked(sb->sb_so));
895 1.91 ad
896 1.115 christos if (m0 == NULL)
897 1.1 cgd return;
898 1.43 thorpej
899 1.49 matt #ifdef MBUFTRACE
900 1.65 jonathan m_claimm(m0, sb->sb_mowner);
901 1.49 matt #endif
902 1.1 cgd /*
903 1.1 cgd * Put the first mbuf on the queue.
904 1.1 cgd * Note this permits zero length records.
905 1.1 cgd */
906 1.1 cgd sballoc(sb, m0);
907 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 1");
908 1.43 thorpej SBLINKRECORD(sb, m0);
909 1.1 cgd m = m0->m_next;
910 1.1 cgd m0->m_next = 0;
911 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
912 1.1 cgd m0->m_flags &= ~M_EOR;
913 1.1 cgd m->m_flags |= M_EOR;
914 1.1 cgd }
915 1.1 cgd sbcompress(sb, m, m0);
916 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 2");
917 1.1 cgd }
918 1.1 cgd
919 1.1 cgd /*
920 1.1 cgd * As above except that OOB data
921 1.1 cgd * is inserted at the beginning of the sockbuf,
922 1.1 cgd * but after any other OOB data.
923 1.1 cgd */
924 1.7 mycroft void
925 1.37 lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
926 1.1 cgd {
927 1.37 lukem struct mbuf *m, **mp;
928 1.1 cgd
929 1.91 ad KASSERT(solocked(sb->sb_so));
930 1.91 ad
931 1.115 christos if (m0 == NULL)
932 1.1 cgd return;
933 1.43 thorpej
934 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 1");
935 1.43 thorpej
936 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
937 1.1 cgd again:
938 1.1 cgd switch (m->m_type) {
939 1.1 cgd
940 1.1 cgd case MT_OOBDATA:
941 1.1 cgd continue; /* WANT next train */
942 1.1 cgd
943 1.1 cgd case MT_CONTROL:
944 1.11 christos if ((m = m->m_next) != NULL)
945 1.1 cgd goto again; /* inspect THIS train further */
946 1.1 cgd }
947 1.1 cgd break;
948 1.1 cgd }
949 1.1 cgd /*
950 1.1 cgd * Put the first mbuf on the queue.
951 1.1 cgd * Note this permits zero length records.
952 1.1 cgd */
953 1.1 cgd sballoc(sb, m0);
954 1.1 cgd m0->m_nextpkt = *mp;
955 1.43 thorpej if (*mp == NULL) {
956 1.43 thorpej /* m0 is actually the new tail */
957 1.43 thorpej sb->sb_lastrecord = m0;
958 1.43 thorpej }
959 1.1 cgd *mp = m0;
960 1.1 cgd m = m0->m_next;
961 1.1 cgd m0->m_next = 0;
962 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
963 1.1 cgd m0->m_flags &= ~M_EOR;
964 1.1 cgd m->m_flags |= M_EOR;
965 1.1 cgd }
966 1.1 cgd sbcompress(sb, m, m0);
967 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 2");
968 1.1 cgd }
969 1.1 cgd
970 1.1 cgd /*
971 1.1 cgd * Append address and data, and optionally, control (ancillary) data
972 1.1 cgd * to the receive queue of a socket. If present,
973 1.1 cgd * m0 must include a packet header with total length.
974 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
975 1.1 cgd */
976 1.7 mycroft int
977 1.61 matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
978 1.37 lukem struct mbuf *control)
979 1.1 cgd {
980 1.43 thorpej struct mbuf *m, *n, *nlast;
981 1.50 fvdl int space, len;
982 1.1 cgd
983 1.91 ad KASSERT(solocked(sb->sb_so));
984 1.91 ad
985 1.37 lukem space = asa->sa_len;
986 1.37 lukem
987 1.49 matt if (m0 != NULL) {
988 1.49 matt if ((m0->m_flags & M_PKTHDR) == 0)
989 1.49 matt panic("sbappendaddr");
990 1.1 cgd space += m0->m_pkthdr.len;
991 1.49 matt #ifdef MBUFTRACE
992 1.65 jonathan m_claimm(m0, sb->sb_mowner);
993 1.49 matt #endif
994 1.49 matt }
995 1.1 cgd for (n = control; n; n = n->m_next) {
996 1.1 cgd space += n->m_len;
997 1.49 matt MCLAIM(n, sb->sb_mowner);
998 1.115 christos if (n->m_next == NULL) /* keep pointer to last control buf */
999 1.1 cgd break;
1000 1.1 cgd }
1001 1.1 cgd if (space > sbspace(sb))
1002 1.1 cgd return (0);
1003 1.115 christos m = m_get(M_DONTWAIT, MT_SONAME);
1004 1.115 christos if (m == NULL)
1005 1.1 cgd return (0);
1006 1.49 matt MCLAIM(m, sb->sb_mowner);
1007 1.50 fvdl /*
1008 1.50 fvdl * XXX avoid 'comparison always true' warning which isn't easily
1009 1.50 fvdl * avoided.
1010 1.50 fvdl */
1011 1.50 fvdl len = asa->sa_len;
1012 1.50 fvdl if (len > MLEN) {
1013 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1014 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
1015 1.20 thorpej m_free(m);
1016 1.20 thorpej return (0);
1017 1.20 thorpej }
1018 1.20 thorpej }
1019 1.1 cgd m->m_len = asa->sa_len;
1020 1.82 christos memcpy(mtod(m, void *), asa, asa->sa_len);
1021 1.1 cgd if (n)
1022 1.1 cgd n->m_next = m0; /* concatenate data to control */
1023 1.1 cgd else
1024 1.1 cgd control = m0;
1025 1.1 cgd m->m_next = control;
1026 1.43 thorpej
1027 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 1");
1028 1.43 thorpej
1029 1.43 thorpej for (n = m; n->m_next != NULL; n = n->m_next)
1030 1.1 cgd sballoc(sb, n);
1031 1.43 thorpej sballoc(sb, n);
1032 1.43 thorpej nlast = n;
1033 1.43 thorpej SBLINKRECORD(sb, m);
1034 1.43 thorpej
1035 1.43 thorpej sb->sb_mbtail = nlast;
1036 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendaddr");
1037 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 2");
1038 1.43 thorpej
1039 1.1 cgd return (1);
1040 1.1 cgd }
1041 1.1 cgd
1042 1.63 jonathan /*
1043 1.63 jonathan * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1044 1.63 jonathan * an mbuf chain.
1045 1.63 jonathan */
1046 1.70 perry static inline struct mbuf *
1047 1.81 yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1048 1.64 jonathan const struct sockaddr *asa)
1049 1.63 jonathan {
1050 1.63 jonathan struct mbuf *m;
1051 1.64 jonathan const int salen = asa->sa_len;
1052 1.63 jonathan
1053 1.91 ad KASSERT(solocked(sb->sb_so));
1054 1.91 ad
1055 1.63 jonathan /* only the first in each chain need be a pkthdr */
1056 1.115 christos m = m_gethdr(M_DONTWAIT, MT_SONAME);
1057 1.115 christos if (m == NULL)
1058 1.115 christos return NULL;
1059 1.63 jonathan MCLAIM(m, sb->sb_mowner);
1060 1.64 jonathan #ifdef notyet
1061 1.64 jonathan if (salen > MHLEN) {
1062 1.64 jonathan MEXTMALLOC(m, salen, M_NOWAIT);
1063 1.64 jonathan if ((m->m_flags & M_EXT) == 0) {
1064 1.64 jonathan m_free(m);
1065 1.115 christos return NULL;
1066 1.64 jonathan }
1067 1.64 jonathan }
1068 1.64 jonathan #else
1069 1.64 jonathan KASSERT(salen <= MHLEN);
1070 1.64 jonathan #endif
1071 1.64 jonathan m->m_len = salen;
1072 1.82 christos memcpy(mtod(m, void *), asa, salen);
1073 1.63 jonathan m->m_next = m0;
1074 1.64 jonathan m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1075 1.63 jonathan
1076 1.63 jonathan return m;
1077 1.63 jonathan }
1078 1.63 jonathan
1079 1.63 jonathan int
1080 1.63 jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1081 1.63 jonathan struct mbuf *m0, int sbprio)
1082 1.63 jonathan {
1083 1.63 jonathan struct mbuf *m, *n, *n0, *nlast;
1084 1.63 jonathan int error;
1085 1.63 jonathan
1086 1.91 ad KASSERT(solocked(sb->sb_so));
1087 1.91 ad
1088 1.63 jonathan /*
1089 1.63 jonathan * XXX sbprio reserved for encoding priority of this* request:
1090 1.63 jonathan * SB_PRIO_NONE --> honour normal sb limits
1091 1.63 jonathan * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1092 1.63 jonathan * take whole chain. Intended for large requests
1093 1.63 jonathan * that should be delivered atomically (all, or none).
1094 1.63 jonathan * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1095 1.63 jonathan * over normal socket limits, for messages indicating
1096 1.63 jonathan * buffer overflow in earlier normal/lower-priority messages
1097 1.63 jonathan * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1098 1.63 jonathan * Intended for kernel-generated messages only.
1099 1.63 jonathan * Up to generator to avoid total mbuf resource exhaustion.
1100 1.63 jonathan */
1101 1.63 jonathan (void)sbprio;
1102 1.63 jonathan
1103 1.63 jonathan if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1104 1.63 jonathan panic("sbappendaddrchain");
1105 1.63 jonathan
1106 1.114 martin #ifdef notyet
1107 1.63 jonathan space = sbspace(sb);
1108 1.66 perry
1109 1.66 perry /*
1110 1.63 jonathan * Enforce SB_PRIO_* limits as described above.
1111 1.63 jonathan */
1112 1.63 jonathan #endif
1113 1.63 jonathan
1114 1.63 jonathan n0 = NULL;
1115 1.63 jonathan nlast = NULL;
1116 1.63 jonathan for (m = m0; m; m = m->m_nextpkt) {
1117 1.63 jonathan struct mbuf *np;
1118 1.63 jonathan
1119 1.64 jonathan #ifdef MBUFTRACE
1120 1.65 jonathan m_claimm(m, sb->sb_mowner);
1121 1.64 jonathan #endif
1122 1.64 jonathan
1123 1.63 jonathan /* Prepend sockaddr to this record (m) of input chain m0 */
1124 1.64 jonathan n = m_prepend_sockaddr(sb, m, asa);
1125 1.63 jonathan if (n == NULL) {
1126 1.63 jonathan error = ENOBUFS;
1127 1.63 jonathan goto bad;
1128 1.63 jonathan }
1129 1.63 jonathan
1130 1.63 jonathan /* Append record (asa+m) to end of new chain n0 */
1131 1.63 jonathan if (n0 == NULL) {
1132 1.63 jonathan n0 = n;
1133 1.63 jonathan } else {
1134 1.63 jonathan nlast->m_nextpkt = n;
1135 1.63 jonathan }
1136 1.63 jonathan /* Keep track of last record on new chain */
1137 1.63 jonathan nlast = n;
1138 1.63 jonathan
1139 1.63 jonathan for (np = n; np; np = np->m_next)
1140 1.63 jonathan sballoc(sb, np);
1141 1.63 jonathan }
1142 1.63 jonathan
1143 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1144 1.64 jonathan
1145 1.63 jonathan /* Drop the entire chain of (asa+m) records onto the socket */
1146 1.63 jonathan SBLINKRECORDCHAIN(sb, n0, nlast);
1147 1.64 jonathan
1148 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1149 1.64 jonathan
1150 1.63 jonathan for (m = nlast; m->m_next; m = m->m_next)
1151 1.63 jonathan ;
1152 1.63 jonathan sb->sb_mbtail = m;
1153 1.64 jonathan SBLASTMBUFCHK(sb, "sbappendaddrchain");
1154 1.64 jonathan
1155 1.63 jonathan return (1);
1156 1.63 jonathan
1157 1.63 jonathan bad:
1158 1.64 jonathan /*
1159 1.64 jonathan * On error, free the prepended addreseses. For consistency
1160 1.64 jonathan * with sbappendaddr(), leave it to our caller to free
1161 1.64 jonathan * the input record chain passed to us as m0.
1162 1.64 jonathan */
1163 1.64 jonathan while ((n = n0) != NULL) {
1164 1.64 jonathan struct mbuf *np;
1165 1.64 jonathan
1166 1.64 jonathan /* Undo the sballoc() of this record */
1167 1.64 jonathan for (np = n; np; np = np->m_next)
1168 1.64 jonathan sbfree(sb, np);
1169 1.64 jonathan
1170 1.64 jonathan n0 = n->m_nextpkt; /* iterate at next prepended address */
1171 1.124 christos np = m_free(n); /* free prepended address (not data) */
1172 1.64 jonathan }
1173 1.114 martin return error;
1174 1.63 jonathan }
1175 1.63 jonathan
1176 1.63 jonathan
1177 1.7 mycroft int
1178 1.37 lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1179 1.1 cgd {
1180 1.43 thorpej struct mbuf *m, *mlast, *n;
1181 1.37 lukem int space;
1182 1.1 cgd
1183 1.91 ad KASSERT(solocked(sb->sb_so));
1184 1.91 ad
1185 1.37 lukem space = 0;
1186 1.115 christos if (control == NULL)
1187 1.1 cgd panic("sbappendcontrol");
1188 1.1 cgd for (m = control; ; m = m->m_next) {
1189 1.1 cgd space += m->m_len;
1190 1.49 matt MCLAIM(m, sb->sb_mowner);
1191 1.115 christos if (m->m_next == NULL)
1192 1.1 cgd break;
1193 1.1 cgd }
1194 1.1 cgd n = m; /* save pointer to last control buffer */
1195 1.49 matt for (m = m0; m; m = m->m_next) {
1196 1.49 matt MCLAIM(m, sb->sb_mowner);
1197 1.1 cgd space += m->m_len;
1198 1.49 matt }
1199 1.1 cgd if (space > sbspace(sb))
1200 1.1 cgd return (0);
1201 1.1 cgd n->m_next = m0; /* concatenate data to control */
1202 1.43 thorpej
1203 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1204 1.43 thorpej
1205 1.43 thorpej for (m = control; m->m_next != NULL; m = m->m_next)
1206 1.1 cgd sballoc(sb, m);
1207 1.43 thorpej sballoc(sb, m);
1208 1.43 thorpej mlast = m;
1209 1.43 thorpej SBLINKRECORD(sb, control);
1210 1.43 thorpej
1211 1.43 thorpej sb->sb_mbtail = mlast;
1212 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendcontrol");
1213 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1214 1.43 thorpej
1215 1.1 cgd return (1);
1216 1.1 cgd }
1217 1.1 cgd
1218 1.1 cgd /*
1219 1.1 cgd * Compress mbuf chain m into the socket
1220 1.1 cgd * buffer sb following mbuf n. If n
1221 1.1 cgd * is null, the buffer is presumed empty.
1222 1.1 cgd */
1223 1.7 mycroft void
1224 1.37 lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1225 1.1 cgd {
1226 1.37 lukem int eor;
1227 1.37 lukem struct mbuf *o;
1228 1.1 cgd
1229 1.91 ad KASSERT(solocked(sb->sb_so));
1230 1.91 ad
1231 1.37 lukem eor = 0;
1232 1.1 cgd while (m) {
1233 1.1 cgd eor |= m->m_flags & M_EOR;
1234 1.1 cgd if (m->m_len == 0 &&
1235 1.1 cgd (eor == 0 ||
1236 1.1 cgd (((o = m->m_next) || (o = n)) &&
1237 1.1 cgd o->m_type == m->m_type))) {
1238 1.46 thorpej if (sb->sb_lastrecord == m)
1239 1.46 thorpej sb->sb_lastrecord = m->m_next;
1240 1.1 cgd m = m_free(m);
1241 1.1 cgd continue;
1242 1.1 cgd }
1243 1.40 thorpej if (n && (n->m_flags & M_EOR) == 0 &&
1244 1.40 thorpej /* M_TRAILINGSPACE() checks buffer writeability */
1245 1.40 thorpej m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1246 1.40 thorpej m->m_len <= M_TRAILINGSPACE(n) &&
1247 1.40 thorpej n->m_type == m->m_type) {
1248 1.82 christos memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1249 1.1 cgd (unsigned)m->m_len);
1250 1.1 cgd n->m_len += m->m_len;
1251 1.1 cgd sb->sb_cc += m->m_len;
1252 1.1 cgd m = m_free(m);
1253 1.1 cgd continue;
1254 1.1 cgd }
1255 1.1 cgd if (n)
1256 1.1 cgd n->m_next = m;
1257 1.1 cgd else
1258 1.1 cgd sb->sb_mb = m;
1259 1.43 thorpej sb->sb_mbtail = m;
1260 1.1 cgd sballoc(sb, m);
1261 1.1 cgd n = m;
1262 1.1 cgd m->m_flags &= ~M_EOR;
1263 1.1 cgd m = m->m_next;
1264 1.1 cgd n->m_next = 0;
1265 1.1 cgd }
1266 1.1 cgd if (eor) {
1267 1.1 cgd if (n)
1268 1.1 cgd n->m_flags |= eor;
1269 1.1 cgd else
1270 1.15 christos printf("semi-panic: sbcompress\n");
1271 1.1 cgd }
1272 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
1273 1.1 cgd }
1274 1.1 cgd
1275 1.1 cgd /*
1276 1.1 cgd * Free all mbufs in a sockbuf.
1277 1.1 cgd * Check that all resources are reclaimed.
1278 1.1 cgd */
1279 1.7 mycroft void
1280 1.37 lukem sbflush(struct sockbuf *sb)
1281 1.1 cgd {
1282 1.1 cgd
1283 1.91 ad KASSERT(solocked(sb->sb_so));
1284 1.43 thorpej KASSERT((sb->sb_flags & SB_LOCK) == 0);
1285 1.43 thorpej
1286 1.1 cgd while (sb->sb_mbcnt)
1287 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
1288 1.43 thorpej
1289 1.43 thorpej KASSERT(sb->sb_cc == 0);
1290 1.43 thorpej KASSERT(sb->sb_mb == NULL);
1291 1.43 thorpej KASSERT(sb->sb_mbtail == NULL);
1292 1.43 thorpej KASSERT(sb->sb_lastrecord == NULL);
1293 1.1 cgd }
1294 1.1 cgd
1295 1.1 cgd /*
1296 1.1 cgd * Drop data from (the front of) a sockbuf.
1297 1.1 cgd */
1298 1.7 mycroft void
1299 1.37 lukem sbdrop(struct sockbuf *sb, int len)
1300 1.1 cgd {
1301 1.124 christos struct mbuf *m, *next;
1302 1.1 cgd
1303 1.91 ad KASSERT(solocked(sb->sb_so));
1304 1.91 ad
1305 1.115 christos next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1306 1.1 cgd while (len > 0) {
1307 1.115 christos if (m == NULL) {
1308 1.115 christos if (next == NULL)
1309 1.112 matt panic("sbdrop(%p,%d): cc=%lu",
1310 1.112 matt sb, len, sb->sb_cc);
1311 1.1 cgd m = next;
1312 1.1 cgd next = m->m_nextpkt;
1313 1.1 cgd continue;
1314 1.1 cgd }
1315 1.1 cgd if (m->m_len > len) {
1316 1.1 cgd m->m_len -= len;
1317 1.1 cgd m->m_data += len;
1318 1.1 cgd sb->sb_cc -= len;
1319 1.1 cgd break;
1320 1.1 cgd }
1321 1.1 cgd len -= m->m_len;
1322 1.1 cgd sbfree(sb, m);
1323 1.124 christos m = m_free(m);
1324 1.1 cgd }
1325 1.1 cgd while (m && m->m_len == 0) {
1326 1.1 cgd sbfree(sb, m);
1327 1.124 christos m = m_free(m);
1328 1.1 cgd }
1329 1.1 cgd if (m) {
1330 1.1 cgd sb->sb_mb = m;
1331 1.1 cgd m->m_nextpkt = next;
1332 1.1 cgd } else
1333 1.1 cgd sb->sb_mb = next;
1334 1.43 thorpej /*
1335 1.45 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second part
1336 1.43 thorpej * makes sure sb_lastrecord is up-to-date if we dropped
1337 1.43 thorpej * part of the last record.
1338 1.43 thorpej */
1339 1.43 thorpej m = sb->sb_mb;
1340 1.43 thorpej if (m == NULL) {
1341 1.43 thorpej sb->sb_mbtail = NULL;
1342 1.43 thorpej sb->sb_lastrecord = NULL;
1343 1.43 thorpej } else if (m->m_nextpkt == NULL)
1344 1.43 thorpej sb->sb_lastrecord = m;
1345 1.1 cgd }
1346 1.1 cgd
1347 1.1 cgd /*
1348 1.1 cgd * Drop a record off the front of a sockbuf
1349 1.1 cgd * and move the next record to the front.
1350 1.1 cgd */
1351 1.7 mycroft void
1352 1.37 lukem sbdroprecord(struct sockbuf *sb)
1353 1.1 cgd {
1354 1.37 lukem struct mbuf *m, *mn;
1355 1.1 cgd
1356 1.91 ad KASSERT(solocked(sb->sb_so));
1357 1.91 ad
1358 1.1 cgd m = sb->sb_mb;
1359 1.1 cgd if (m) {
1360 1.1 cgd sb->sb_mb = m->m_nextpkt;
1361 1.1 cgd do {
1362 1.1 cgd sbfree(sb, m);
1363 1.124 christos mn = m_free(m);
1364 1.11 christos } while ((m = mn) != NULL);
1365 1.1 cgd }
1366 1.45 thorpej SB_EMPTY_FIXUP(sb);
1367 1.19 thorpej }
1368 1.19 thorpej
1369 1.19 thorpej /*
1370 1.19 thorpej * Create a "control" mbuf containing the specified data
1371 1.19 thorpej * with the specified type for presentation on a socket buffer.
1372 1.19 thorpej */
1373 1.19 thorpej struct mbuf *
1374 1.111 christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1375 1.19 thorpej {
1376 1.37 lukem struct cmsghdr *cp;
1377 1.37 lukem struct mbuf *m;
1378 1.111 christos int space = CMSG_SPACE(size);
1379 1.19 thorpej
1380 1.111 christos if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1381 1.111 christos printf("%s: message too large %d\n", __func__, space);
1382 1.30 itojun return NULL;
1383 1.30 itojun }
1384 1.30 itojun
1385 1.111 christos if ((m = m_get(flags, MT_CONTROL)) == NULL)
1386 1.111 christos return NULL;
1387 1.111 christos if (space > MLEN) {
1388 1.111 christos if (space > MCLBYTES)
1389 1.111 christos MEXTMALLOC(m, space, M_WAITOK);
1390 1.111 christos else
1391 1.111 christos MCLGET(m, flags);
1392 1.30 itojun if ((m->m_flags & M_EXT) == 0) {
1393 1.30 itojun m_free(m);
1394 1.30 itojun return NULL;
1395 1.30 itojun }
1396 1.30 itojun }
1397 1.19 thorpej cp = mtod(m, struct cmsghdr *);
1398 1.111 christos *p = CMSG_DATA(cp);
1399 1.111 christos m->m_len = space;
1400 1.35 itojun cp->cmsg_len = CMSG_LEN(size);
1401 1.19 thorpej cp->cmsg_level = level;
1402 1.19 thorpej cp->cmsg_type = type;
1403 1.111 christos return m;
1404 1.111 christos }
1405 1.111 christos
1406 1.111 christos struct mbuf *
1407 1.111 christos sbcreatecontrol(void *p, int size, int type, int level)
1408 1.111 christos {
1409 1.111 christos struct mbuf *m;
1410 1.111 christos void *v;
1411 1.111 christos
1412 1.111 christos m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1413 1.111 christos if (m == NULL)
1414 1.111 christos return NULL;
1415 1.111 christos memcpy(v, p, size);
1416 1.111 christos return m;
1417 1.1 cgd }
1418 1.91 ad
1419 1.91 ad void
1420 1.91 ad solockretry(struct socket *so, kmutex_t *lock)
1421 1.91 ad {
1422 1.91 ad
1423 1.91 ad while (lock != so->so_lock) {
1424 1.91 ad mutex_exit(lock);
1425 1.91 ad lock = so->so_lock;
1426 1.91 ad mutex_enter(lock);
1427 1.91 ad }
1428 1.91 ad }
1429 1.91 ad
1430 1.91 ad bool
1431 1.91 ad solocked(struct socket *so)
1432 1.91 ad {
1433 1.91 ad
1434 1.91 ad return mutex_owned(so->so_lock);
1435 1.91 ad }
1436 1.91 ad
1437 1.91 ad bool
1438 1.91 ad solocked2(struct socket *so1, struct socket *so2)
1439 1.91 ad {
1440 1.91 ad kmutex_t *lock;
1441 1.91 ad
1442 1.91 ad lock = so1->so_lock;
1443 1.91 ad if (lock != so2->so_lock)
1444 1.91 ad return false;
1445 1.91 ad return mutex_owned(lock);
1446 1.91 ad }
1447 1.91 ad
1448 1.91 ad /*
1449 1.116 rmind * sosetlock: assign a default lock to a new socket.
1450 1.91 ad */
1451 1.91 ad void
1452 1.91 ad sosetlock(struct socket *so)
1453 1.91 ad {
1454 1.116 rmind if (so->so_lock == NULL) {
1455 1.116 rmind kmutex_t *lock = softnet_lock;
1456 1.91 ad
1457 1.91 ad so->so_lock = lock;
1458 1.91 ad mutex_obj_hold(lock);
1459 1.91 ad mutex_enter(lock);
1460 1.91 ad }
1461 1.91 ad KASSERT(solocked(so));
1462 1.91 ad }
1463 1.91 ad
1464 1.91 ad /*
1465 1.91 ad * Set lock on sockbuf sb; sleep if lock is already held.
1466 1.91 ad * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1467 1.91 ad * Returns error without lock if sleep is interrupted.
1468 1.91 ad */
1469 1.91 ad int
1470 1.91 ad sblock(struct sockbuf *sb, int wf)
1471 1.91 ad {
1472 1.91 ad struct socket *so;
1473 1.91 ad kmutex_t *lock;
1474 1.91 ad int error;
1475 1.91 ad
1476 1.91 ad KASSERT(solocked(sb->sb_so));
1477 1.91 ad
1478 1.91 ad for (;;) {
1479 1.91 ad if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1480 1.91 ad sb->sb_flags |= SB_LOCK;
1481 1.91 ad return 0;
1482 1.91 ad }
1483 1.91 ad if (wf != M_WAITOK)
1484 1.91 ad return EWOULDBLOCK;
1485 1.91 ad so = sb->sb_so;
1486 1.91 ad lock = so->so_lock;
1487 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0) {
1488 1.91 ad cv_wait(&so->so_cv, lock);
1489 1.91 ad error = 0;
1490 1.91 ad } else
1491 1.91 ad error = cv_wait_sig(&so->so_cv, lock);
1492 1.91 ad if (__predict_false(lock != so->so_lock))
1493 1.91 ad solockretry(so, lock);
1494 1.91 ad if (error != 0)
1495 1.91 ad return error;
1496 1.91 ad }
1497 1.91 ad }
1498 1.91 ad
1499 1.91 ad void
1500 1.91 ad sbunlock(struct sockbuf *sb)
1501 1.91 ad {
1502 1.91 ad struct socket *so;
1503 1.91 ad
1504 1.91 ad so = sb->sb_so;
1505 1.91 ad
1506 1.91 ad KASSERT(solocked(so));
1507 1.91 ad KASSERT((sb->sb_flags & SB_LOCK) != 0);
1508 1.91 ad
1509 1.91 ad sb->sb_flags &= ~SB_LOCK;
1510 1.91 ad cv_broadcast(&so->so_cv);
1511 1.91 ad }
1512 1.91 ad
1513 1.91 ad int
1514 1.121 matt sowait(struct socket *so, bool catch_p, int timo)
1515 1.91 ad {
1516 1.91 ad kmutex_t *lock;
1517 1.91 ad int error;
1518 1.91 ad
1519 1.91 ad KASSERT(solocked(so));
1520 1.121 matt KASSERT(catch_p || timo != 0);
1521 1.91 ad
1522 1.91 ad lock = so->so_lock;
1523 1.121 matt if (catch_p)
1524 1.101 yamt error = cv_timedwait_sig(&so->so_cv, lock, timo);
1525 1.101 yamt else
1526 1.101 yamt error = cv_timedwait(&so->so_cv, lock, timo);
1527 1.91 ad if (__predict_false(lock != so->so_lock))
1528 1.91 ad solockretry(so, lock);
1529 1.91 ad return error;
1530 1.91 ad }
1531 1.125 christos
1532 1.125 christos #ifdef COMPAT_50
1533 1.125 christos #include <compat/sys/time.h>
1534 1.125 christos #include <compat/sys/socket.h>
1535 1.125 christos #endif
1536 1.125 christos
1537 1.125 christos struct mbuf **
1538 1.125 christos sbsavetimestamp(int opt, struct mbuf *m, struct mbuf **mp)
1539 1.125 christos {
1540 1.125 christos struct timeval tv;
1541 1.125 christos microtime(&tv);
1542 1.125 christos
1543 1.125 christos #ifdef SO_OTIMESTAMP
1544 1.125 christos if (opt & SO_OTIMESTAMP) {
1545 1.125 christos struct timeval50 tv50;
1546 1.125 christos
1547 1.125 christos timeval_to_timeval50(&tv, &tv50);
1548 1.125 christos *mp = sbcreatecontrol(&tv50, sizeof(tv50),
1549 1.125 christos SCM_OTIMESTAMP, SOL_SOCKET);
1550 1.125 christos if (*mp)
1551 1.125 christos mp = &(*mp)->m_next;
1552 1.125 christos } else
1553 1.125 christos #endif
1554 1.125 christos
1555 1.125 christos if (opt & SO_TIMESTAMP) {
1556 1.125 christos *mp = sbcreatecontrol(&tv, sizeof(tv),
1557 1.125 christos SCM_TIMESTAMP, SOL_SOCKET);
1558 1.125 christos if (*mp)
1559 1.125 christos mp = &(*mp)->m_next;
1560 1.125 christos }
1561 1.125 christos return mp;
1562 1.125 christos }
1563