Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.130
      1  1.130       roy /*	$NetBSD: uipc_socket2.c,v 1.130 2018/06/06 09:46:46 roy Exp $	*/
      2   1.91        ad 
      3   1.91        ad /*-
      4   1.91        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5   1.91        ad  * All rights reserved.
      6   1.91        ad  *
      7   1.91        ad  * Redistribution and use in source and binary forms, with or without
      8   1.91        ad  * modification, are permitted provided that the following conditions
      9   1.91        ad  * are met:
     10   1.91        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.91        ad  *    notice, this list of conditions and the following disclaimer.
     12   1.91        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.91        ad  *    notice, this list of conditions and the following disclaimer in the
     14   1.91        ad  *    documentation and/or other materials provided with the distribution.
     15   1.91        ad  *
     16   1.91        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17   1.91        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.91        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.91        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.91        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.91        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.91        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.91        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.91        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.91        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.91        ad  * POSSIBILITY OF SUCH DAMAGE.
     27   1.91        ad  */
     28    1.9       cgd 
     29    1.1       cgd /*
     30    1.7   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31    1.7   mycroft  *	The Regents of the University of California.  All rights reserved.
     32    1.1       cgd  *
     33    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     34    1.1       cgd  * modification, are permitted provided that the following conditions
     35    1.1       cgd  * are met:
     36    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     37    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     38    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     39    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     40    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     41   1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     42    1.1       cgd  *    may be used to endorse or promote products derived from this software
     43    1.1       cgd  *    without specific prior written permission.
     44    1.1       cgd  *
     45    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55    1.1       cgd  * SUCH DAMAGE.
     56    1.1       cgd  *
     57   1.23      fvdl  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58    1.1       cgd  */
     59   1.42     lukem 
     60   1.42     lukem #include <sys/cdefs.h>
     61  1.130       roy __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.130 2018/06/06 09:46:46 roy Exp $");
     62   1.51    martin 
     63  1.122     pooka #ifdef _KERNEL_OPT
     64   1.51    martin #include "opt_mbuftrace.h"
     65   1.58   thorpej #include "opt_sb_max.h"
     66  1.122     pooka #endif
     67    1.1       cgd 
     68    1.5   mycroft #include <sys/param.h>
     69    1.5   mycroft #include <sys/systm.h>
     70    1.5   mycroft #include <sys/proc.h>
     71    1.5   mycroft #include <sys/file.h>
     72    1.5   mycroft #include <sys/buf.h>
     73    1.5   mycroft #include <sys/mbuf.h>
     74    1.5   mycroft #include <sys/protosw.h>
     75   1.91        ad #include <sys/domain.h>
     76   1.55  christos #include <sys/poll.h>
     77    1.5   mycroft #include <sys/socket.h>
     78    1.5   mycroft #include <sys/socketvar.h>
     79   1.11  christos #include <sys/signalvar.h>
     80   1.71      elad #include <sys/kauth.h>
     81   1.91        ad #include <sys/pool.h>
     82   1.98     pooka #include <sys/uidinfo.h>
     83    1.1       cgd 
     84    1.1       cgd /*
     85   1.91        ad  * Primitive routines for operating on sockets and socket buffers.
     86   1.91        ad  *
     87  1.116     rmind  * Connection life-cycle:
     88  1.116     rmind  *
     89  1.116     rmind  *	Normal sequence from the active (originating) side:
     90  1.116     rmind  *
     91  1.116     rmind  *	- soisconnecting() is called during processing of connect() call,
     92  1.116     rmind  *	- resulting in an eventual call to soisconnected() if/when the
     93  1.116     rmind  *	  connection is established.
     94  1.116     rmind  *
     95  1.116     rmind  *	When the connection is torn down during processing of disconnect():
     96  1.116     rmind  *
     97  1.116     rmind  *	- soisdisconnecting() is called and,
     98  1.116     rmind  *	- soisdisconnected() is called when the connection to the peer
     99  1.116     rmind  *	  is totally severed.
    100  1.116     rmind  *
    101  1.116     rmind  *	The semantics of these routines are such that connectionless protocols
    102  1.116     rmind  *	can call soisconnected() and soisdisconnected() only, bypassing the
    103  1.116     rmind  *	in-progress calls when setting up a ``connection'' takes no time.
    104  1.116     rmind  *
    105  1.116     rmind  *	From the passive side, a socket is created with two queues of sockets:
    106  1.116     rmind  *
    107  1.116     rmind  *	- so_q0 (0) for partial connections (i.e. connections in progress)
    108  1.116     rmind  *	- so_q (1) for connections already made and awaiting user acceptance.
    109  1.116     rmind  *
    110  1.116     rmind  *	As a protocol is preparing incoming connections, it creates a socket
    111  1.116     rmind  *	structure queued on so_q0 by calling sonewconn().  When the connection
    112  1.116     rmind  *	is established, soisconnected() is called, and transfers the
    113  1.116     rmind  *	socket structure to so_q, making it available to accept().
    114  1.116     rmind  *
    115  1.116     rmind  *	If a socket is closed with sockets on either so_q0 or so_q, these
    116  1.116     rmind  *	sockets are dropped.
    117  1.116     rmind  *
    118   1.91        ad  * Locking rules and assumptions:
    119   1.91        ad  *
    120   1.91        ad  * o socket::so_lock can change on the fly.  The low level routines used
    121   1.91        ad  *   to lock sockets are aware of this.  When so_lock is acquired, the
    122   1.91        ad  *   routine locking must check to see if so_lock still points to the
    123   1.91        ad  *   lock that was acquired.  If so_lock has changed in the meantime, the
    124  1.116     rmind  *   now irrelevant lock that was acquired must be dropped and the lock
    125   1.91        ad  *   operation retried.  Although not proven here, this is completely safe
    126   1.91        ad  *   on a multiprocessor system, even with relaxed memory ordering, given
    127   1.91        ad  *   the next two rules:
    128   1.91        ad  *
    129   1.91        ad  * o In order to mutate so_lock, the lock pointed to by the current value
    130   1.91        ad  *   of so_lock must be held: i.e., the socket must be held locked by the
    131   1.91        ad  *   changing thread.  The thread must issue membar_exit() to prevent
    132   1.91        ad  *   memory accesses being reordered, and can set so_lock to the desired
    133   1.91        ad  *   value.  If the lock pointed to by the new value of so_lock is not
    134   1.91        ad  *   held by the changing thread, the socket must then be considered
    135   1.91        ad  *   unlocked.
    136   1.91        ad  *
    137   1.91        ad  * o If so_lock is mutated, and the previous lock referred to by so_lock
    138   1.91        ad  *   could still be visible to other threads in the system (e.g. via file
    139   1.91        ad  *   descriptor or protocol-internal reference), then the old lock must
    140   1.91        ad  *   remain valid until the socket and/or protocol control block has been
    141   1.91        ad  *   torn down.
    142   1.91        ad  *
    143   1.91        ad  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    144   1.91        ad  *   connecting), then locking the socket must also lock the socket pointed
    145   1.91        ad  *   to by so_head: their lock pointers must match.
    146   1.91        ad  *
    147   1.91        ad  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    148   1.91        ad  *   locking the socket must also lock the sockets attached to both queues.
    149   1.91        ad  *   Again, their lock pointers must match.
    150   1.91        ad  *
    151  1.116     rmind  * o Beyond the initial lock assignment in socreate(), assigning locks to
    152   1.91        ad  *   sockets is the responsibility of the individual protocols / protocol
    153   1.91        ad  *   domains.
    154    1.1       cgd  */
    155    1.1       cgd 
    156  1.116     rmind static pool_cache_t	socket_cache;
    157  1.116     rmind u_long			sb_max = SB_MAX;/* maximum socket buffer size */
    158  1.116     rmind static u_long		sb_max_adj;	/* adjusted sb_max */
    159    1.1       cgd 
    160    1.7   mycroft void
    161   1.37     lukem soisconnecting(struct socket *so)
    162    1.1       cgd {
    163    1.1       cgd 
    164   1.91        ad 	KASSERT(solocked(so));
    165   1.91        ad 
    166    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    167    1.1       cgd 	so->so_state |= SS_ISCONNECTING;
    168    1.1       cgd }
    169    1.1       cgd 
    170    1.7   mycroft void
    171   1.37     lukem soisconnected(struct socket *so)
    172    1.1       cgd {
    173   1.37     lukem 	struct socket	*head;
    174    1.1       cgd 
    175   1.37     lukem 	head = so->so_head;
    176   1.91        ad 
    177   1.91        ad 	KASSERT(solocked(so));
    178   1.91        ad 	KASSERT(head == NULL || solocked2(so, head));
    179   1.91        ad 
    180  1.113     rmind 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    181    1.1       cgd 	so->so_state |= SS_ISCONNECTED;
    182   1.97       tls 	if (head && so->so_onq == &head->so_q0) {
    183   1.97       tls 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    184  1.116     rmind 			/*
    185  1.116     rmind 			 * Re-enqueue and wake up any waiters, e.g.
    186  1.116     rmind 			 * processes blocking on accept().
    187  1.116     rmind 			 */
    188   1.97       tls 			soqremque(so, 0);
    189   1.97       tls 			soqinsque(head, so, 1);
    190   1.97       tls 			sorwakeup(head);
    191   1.97       tls 			cv_broadcast(&head->so_cv);
    192   1.97       tls 		} else {
    193   1.97       tls 			so->so_upcall =
    194   1.97       tls 			    head->so_accf->so_accept_filter->accf_callback;
    195   1.97       tls 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    196   1.97       tls 			so->so_rcv.sb_flags |= SB_UPCALL;
    197   1.97       tls 			so->so_options &= ~SO_ACCEPTFILTER;
    198  1.104       tls 			(*so->so_upcall)(so, so->so_upcallarg,
    199  1.104       tls 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    200  1.101      yamt 		}
    201    1.1       cgd 	} else {
    202   1.91        ad 		cv_broadcast(&so->so_cv);
    203    1.1       cgd 		sorwakeup(so);
    204    1.1       cgd 		sowwakeup(so);
    205    1.1       cgd 	}
    206    1.1       cgd }
    207    1.1       cgd 
    208    1.7   mycroft void
    209   1.37     lukem soisdisconnecting(struct socket *so)
    210    1.1       cgd {
    211    1.1       cgd 
    212   1.91        ad 	KASSERT(solocked(so));
    213   1.91        ad 
    214    1.1       cgd 	so->so_state &= ~SS_ISCONNECTING;
    215    1.1       cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    216   1.91        ad 	cv_broadcast(&so->so_cv);
    217    1.1       cgd 	sowwakeup(so);
    218    1.1       cgd 	sorwakeup(so);
    219    1.1       cgd }
    220    1.1       cgd 
    221    1.7   mycroft void
    222   1.37     lukem soisdisconnected(struct socket *so)
    223    1.1       cgd {
    224    1.1       cgd 
    225   1.91        ad 	KASSERT(solocked(so));
    226   1.91        ad 
    227    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    228   1.27   mycroft 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    229   1.91        ad 	cv_broadcast(&so->so_cv);
    230    1.1       cgd 	sowwakeup(so);
    231    1.1       cgd 	sorwakeup(so);
    232    1.1       cgd }
    233    1.1       cgd 
    234   1.94        ad void
    235   1.94        ad soinit2(void)
    236   1.94        ad {
    237   1.94        ad 
    238   1.94        ad 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    239   1.94        ad 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    240   1.94        ad }
    241   1.94        ad 
    242    1.1       cgd /*
    243  1.116     rmind  * sonewconn: accept a new connection.
    244  1.116     rmind  *
    245  1.116     rmind  * When an attempt at a new connection is noted on a socket which accepts
    246  1.116     rmind  * connections, sonewconn(9) is called.  If the connection is possible
    247  1.116     rmind  * (subject to space constraints, etc) then we allocate a new structure,
    248  1.116     rmind  * properly linked into the data structure of the original socket.
    249  1.116     rmind  *
    250  1.116     rmind  * => If 'soready' is true, then socket will become ready for accept() i.e.
    251  1.116     rmind  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
    252  1.116     rmind  * => May be called from soft-interrupt context.
    253  1.116     rmind  * => Listening socket should be locked.
    254  1.116     rmind  * => Returns the new socket locked.
    255    1.1       cgd  */
    256    1.1       cgd struct socket *
    257  1.116     rmind sonewconn(struct socket *head, bool soready)
    258    1.1       cgd {
    259  1.116     rmind 	struct socket *so;
    260  1.116     rmind 	int soqueue, error;
    261   1.91        ad 
    262   1.91        ad 	KASSERT(solocked(head));
    263    1.1       cgd 
    264  1.116     rmind 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
    265  1.123       tls 		/*
    266  1.123       tls 		 * Listen queue overflow.  If there is an accept filter
    267  1.123       tls 		 * active, pass through the oldest cxn it's handling.
    268  1.123       tls 		 */
    269  1.123       tls 		if (head->so_accf == NULL) {
    270  1.123       tls 			return NULL;
    271  1.123       tls 		} else {
    272  1.123       tls 			struct socket *so2, *next;
    273  1.123       tls 
    274  1.123       tls 			/* Pass the oldest connection waiting in the
    275  1.123       tls 			   accept filter */
    276  1.123       tls 			for (so2 = TAILQ_FIRST(&head->so_q0);
    277  1.123       tls 			     so2 != NULL; so2 = next) {
    278  1.123       tls 				next = TAILQ_NEXT(so2, so_qe);
    279  1.123       tls 				if (so2->so_upcall == NULL) {
    280  1.123       tls 					continue;
    281  1.123       tls 				}
    282  1.123       tls 				so2->so_upcall = NULL;
    283  1.123       tls 				so2->so_upcallarg = NULL;
    284  1.123       tls 				so2->so_options &= ~SO_ACCEPTFILTER;
    285  1.123       tls 				so2->so_rcv.sb_flags &= ~SB_UPCALL;
    286  1.123       tls 				soisconnected(so2);
    287  1.123       tls 				break;
    288  1.123       tls 			}
    289  1.123       tls 
    290  1.123       tls 			/* If nothing was nudged out of the acept filter, bail
    291  1.123       tls 			 * out; otherwise proceed allocating the socket. */
    292  1.123       tls 			if (so2 == NULL) {
    293  1.123       tls 				return NULL;
    294  1.123       tls 			}
    295  1.123       tls 		}
    296  1.116     rmind 	}
    297  1.116     rmind 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
    298  1.116     rmind 		soready = false;
    299  1.116     rmind 	}
    300  1.116     rmind 	soqueue = soready ? 1 : 0;
    301  1.113     rmind 
    302  1.116     rmind 	if ((so = soget(false)) == NULL) {
    303  1.100    dyoung 		return NULL;
    304  1.116     rmind 	}
    305    1.1       cgd 	so->so_type = head->so_type;
    306  1.116     rmind 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
    307    1.1       cgd 	so->so_linger = head->so_linger;
    308    1.1       cgd 	so->so_state = head->so_state | SS_NOFDREF;
    309    1.1       cgd 	so->so_proto = head->so_proto;
    310    1.1       cgd 	so->so_timeo = head->so_timeo;
    311    1.1       cgd 	so->so_pgid = head->so_pgid;
    312   1.24      matt 	so->so_send = head->so_send;
    313   1.24      matt 	so->so_receive = head->so_receive;
    314   1.67  christos 	so->so_uidinfo = head->so_uidinfo;
    315   1.96      yamt 	so->so_cpid = head->so_cpid;
    316  1.119     rmind 
    317  1.119     rmind 	/*
    318  1.119     rmind 	 * Share the lock with the listening-socket, it may get unshared
    319  1.119     rmind 	 * once the connection is complete.
    320  1.119     rmind 	 */
    321  1.119     rmind 	mutex_obj_hold(head->so_lock);
    322  1.119     rmind 	so->so_lock = head->so_lock;
    323  1.119     rmind 
    324  1.119     rmind 	/*
    325  1.119     rmind 	 * Reserve the space for socket buffers.
    326  1.119     rmind 	 */
    327   1.49      matt #ifdef MBUFTRACE
    328   1.49      matt 	so->so_mowner = head->so_mowner;
    329   1.49      matt 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    330   1.49      matt 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    331   1.49      matt #endif
    332  1.119     rmind 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
    333  1.103  christos 		goto out;
    334  1.119     rmind 	}
    335   1.83       tls 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    336   1.83       tls 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    337   1.84       tls 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    338   1.84       tls 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    339  1.107  christos 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    340  1.107  christos 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    341  1.116     rmind 
    342  1.116     rmind 	/*
    343  1.119     rmind 	 * Finally, perform the protocol attach.  Note: a new socket
    344  1.119     rmind 	 * lock may be assigned at this point (if so, it will be held).
    345  1.116     rmind 	 */
    346  1.119     rmind 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
    347  1.116     rmind 	if (error) {
    348  1.103  christos out:
    349  1.119     rmind 		KASSERT(solocked(so));
    350  1.116     rmind 		KASSERT(so->so_accf == NULL);
    351   1.91        ad 		soput(so);
    352  1.116     rmind 
    353  1.116     rmind 		/* Note: the listening socket shall stay locked. */
    354  1.116     rmind 		KASSERT(solocked(head));
    355  1.100    dyoung 		return NULL;
    356    1.1       cgd 	}
    357  1.119     rmind 	KASSERT(solocked2(head, so));
    358  1.116     rmind 
    359  1.116     rmind 	/*
    360  1.117     rmind 	 * Insert into the queue.  If ready, update the connection status
    361  1.117     rmind 	 * and wake up any waiters, e.g. processes blocking on accept().
    362  1.116     rmind 	 */
    363  1.117     rmind 	soqinsque(head, so, soqueue);
    364  1.116     rmind 	if (soready) {
    365  1.116     rmind 		so->so_state |= SS_ISCONNECTED;
    366    1.1       cgd 		sorwakeup(head);
    367   1.91        ad 		cv_broadcast(&head->so_cv);
    368    1.1       cgd 	}
    369  1.100    dyoung 	return so;
    370    1.1       cgd }
    371    1.1       cgd 
    372   1.91        ad struct socket *
    373   1.91        ad soget(bool waitok)
    374   1.91        ad {
    375   1.91        ad 	struct socket *so;
    376   1.91        ad 
    377   1.94        ad 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    378   1.91        ad 	if (__predict_false(so == NULL))
    379   1.91        ad 		return (NULL);
    380   1.91        ad 	memset(so, 0, sizeof(*so));
    381   1.91        ad 	TAILQ_INIT(&so->so_q0);
    382   1.91        ad 	TAILQ_INIT(&so->so_q);
    383   1.91        ad 	cv_init(&so->so_cv, "socket");
    384   1.91        ad 	cv_init(&so->so_rcv.sb_cv, "netio");
    385   1.91        ad 	cv_init(&so->so_snd.sb_cv, "netio");
    386   1.91        ad 	selinit(&so->so_rcv.sb_sel);
    387   1.91        ad 	selinit(&so->so_snd.sb_sel);
    388   1.91        ad 	so->so_rcv.sb_so = so;
    389   1.91        ad 	so->so_snd.sb_so = so;
    390   1.91        ad 	return so;
    391   1.91        ad }
    392   1.91        ad 
    393   1.91        ad void
    394   1.91        ad soput(struct socket *so)
    395   1.91        ad {
    396   1.91        ad 
    397   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    398   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    399   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    400   1.91        ad 	seldestroy(&so->so_rcv.sb_sel);
    401   1.91        ad 	seldestroy(&so->so_snd.sb_sel);
    402   1.91        ad 	mutex_obj_free(so->so_lock);
    403   1.91        ad 	cv_destroy(&so->so_cv);
    404   1.91        ad 	cv_destroy(&so->so_rcv.sb_cv);
    405   1.91        ad 	cv_destroy(&so->so_snd.sb_cv);
    406   1.94        ad 	pool_cache_put(socket_cache, so);
    407   1.91        ad }
    408   1.91        ad 
    409  1.116     rmind /*
    410  1.116     rmind  * soqinsque: insert socket of a new connection into the specified
    411  1.116     rmind  * accept queue of the listening socket (head).
    412  1.116     rmind  *
    413  1.116     rmind  *	q = 0: queue of partial connections
    414  1.116     rmind  *	q = 1: queue of incoming connections
    415  1.116     rmind  */
    416    1.7   mycroft void
    417   1.37     lukem soqinsque(struct socket *head, struct socket *so, int q)
    418    1.1       cgd {
    419  1.116     rmind 	KASSERT(q == 0 || q == 1);
    420   1.91        ad 	KASSERT(solocked2(head, so));
    421  1.116     rmind 	KASSERT(so->so_onq == NULL);
    422  1.116     rmind 	KASSERT(so->so_head == NULL);
    423   1.22   thorpej 
    424    1.1       cgd 	so->so_head = head;
    425    1.1       cgd 	if (q == 0) {
    426    1.1       cgd 		head->so_q0len++;
    427   1.22   thorpej 		so->so_onq = &head->so_q0;
    428    1.1       cgd 	} else {
    429    1.1       cgd 		head->so_qlen++;
    430   1.22   thorpej 		so->so_onq = &head->so_q;
    431    1.1       cgd 	}
    432   1.22   thorpej 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    433    1.1       cgd }
    434    1.1       cgd 
    435  1.116     rmind /*
    436  1.116     rmind  * soqremque: remove socket from the specified queue.
    437  1.116     rmind  *
    438  1.116     rmind  * => Returns true if socket was removed from the specified queue.
    439  1.116     rmind  * => False if socket was not removed (because it was in other queue).
    440  1.116     rmind  */
    441  1.116     rmind bool
    442   1.37     lukem soqremque(struct socket *so, int q)
    443    1.1       cgd {
    444  1.116     rmind 	struct socket *head = so->so_head;
    445    1.1       cgd 
    446  1.116     rmind 	KASSERT(q == 0 || q == 1);
    447  1.116     rmind 	KASSERT(solocked(so));
    448  1.116     rmind 	KASSERT(so->so_onq != NULL);
    449  1.116     rmind 	KASSERT(head != NULL);
    450   1.91        ad 
    451   1.22   thorpej 	if (q == 0) {
    452   1.22   thorpej 		if (so->so_onq != &head->so_q0)
    453  1.116     rmind 			return false;
    454    1.1       cgd 		head->so_q0len--;
    455    1.1       cgd 	} else {
    456   1.22   thorpej 		if (so->so_onq != &head->so_q)
    457  1.116     rmind 			return false;
    458    1.1       cgd 		head->so_qlen--;
    459    1.1       cgd 	}
    460   1.91        ad 	KASSERT(solocked2(so, head));
    461   1.22   thorpej 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    462   1.22   thorpej 	so->so_onq = NULL;
    463   1.22   thorpej 	so->so_head = NULL;
    464  1.116     rmind 	return true;
    465    1.1       cgd }
    466    1.1       cgd 
    467    1.1       cgd /*
    468  1.116     rmind  * socantsendmore: indicates that no more data will be sent on the
    469    1.1       cgd  * socket; it would normally be applied to a socket when the user
    470    1.1       cgd  * informs the system that no more data is to be sent, by the protocol
    471  1.120       rtr  * code (in case pr_shutdown()).
    472    1.1       cgd  */
    473    1.4    andrew void
    474   1.37     lukem socantsendmore(struct socket *so)
    475    1.1       cgd {
    476   1.91        ad 	KASSERT(solocked(so));
    477   1.91        ad 
    478    1.1       cgd 	so->so_state |= SS_CANTSENDMORE;
    479    1.1       cgd 	sowwakeup(so);
    480    1.1       cgd }
    481    1.1       cgd 
    482  1.116     rmind /*
    483  1.116     rmind  * socantrcvmore(): indicates that no more data will be received and
    484  1.116     rmind  * will normally be applied to the socket by a protocol when it detects
    485  1.116     rmind  * that the peer will send no more data.  Data queued for reading in
    486  1.116     rmind  * the socket may yet be read.
    487  1.116     rmind  */
    488    1.4    andrew void
    489   1.37     lukem socantrcvmore(struct socket *so)
    490    1.1       cgd {
    491   1.91        ad 	KASSERT(solocked(so));
    492   1.91        ad 
    493    1.1       cgd 	so->so_state |= SS_CANTRCVMORE;
    494    1.1       cgd 	sorwakeup(so);
    495    1.1       cgd }
    496    1.1       cgd 
    497    1.1       cgd /*
    498  1.128       roy  * soroverflow(): indicates that data was attempted to be sent
    499  1.128       roy  * but the receiving buffer overflowed.
    500  1.128       roy  */
    501  1.128       roy void
    502  1.128       roy soroverflow(struct socket *so)
    503  1.128       roy {
    504  1.128       roy 	KASSERT(solocked(so));
    505  1.128       roy 
    506  1.128       roy 	so->so_rcv.sb_overflowed++;
    507  1.130       roy 	so->so_rerror = ENOBUFS;
    508  1.128       roy 	sorwakeup(so);
    509  1.128       roy }
    510  1.128       roy 
    511  1.128       roy /*
    512    1.1       cgd  * Wait for data to arrive at/drain from a socket buffer.
    513    1.1       cgd  */
    514    1.7   mycroft int
    515   1.37     lukem sbwait(struct sockbuf *sb)
    516    1.1       cgd {
    517   1.91        ad 	struct socket *so;
    518   1.91        ad 	kmutex_t *lock;
    519   1.91        ad 	int error;
    520    1.1       cgd 
    521   1.91        ad 	so = sb->sb_so;
    522    1.1       cgd 
    523   1.91        ad 	KASSERT(solocked(so));
    524    1.1       cgd 
    525   1.91        ad 	sb->sb_flags |= SB_NOTIFY;
    526   1.91        ad 	lock = so->so_lock;
    527   1.91        ad 	if ((sb->sb_flags & SB_NOINTR) != 0)
    528   1.91        ad 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    529   1.91        ad 	else
    530   1.91        ad 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    531   1.91        ad 	if (__predict_false(lock != so->so_lock))
    532   1.91        ad 		solockretry(so, lock);
    533   1.91        ad 	return error;
    534    1.1       cgd }
    535    1.1       cgd 
    536    1.1       cgd /*
    537    1.1       cgd  * Wakeup processes waiting on a socket buffer.
    538    1.1       cgd  * Do asynchronous notification via SIGIO
    539   1.39      manu  * if the socket buffer has the SB_ASYNC flag set.
    540    1.1       cgd  */
    541    1.7   mycroft void
    542   1.55  christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
    543    1.1       cgd {
    544   1.90     rmind 	int band;
    545   1.90     rmind 
    546   1.91        ad 	KASSERT(solocked(so));
    547   1.91        ad 	KASSERT(sb->sb_so == so);
    548   1.91        ad 
    549   1.90     rmind 	if (code == POLL_IN)
    550   1.90     rmind 		band = POLLIN|POLLRDNORM;
    551   1.90     rmind 	else
    552   1.90     rmind 		band = POLLOUT|POLLWRNORM;
    553   1.91        ad 	sb->sb_flags &= ~SB_NOTIFY;
    554   1.91        ad 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    555   1.91        ad 	cv_broadcast(&sb->sb_cv);
    556   1.90     rmind 	if (sb->sb_flags & SB_ASYNC)
    557   1.57  christos 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    558   1.24      matt 	if (sb->sb_flags & SB_UPCALL)
    559  1.104       tls 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    560    1.1       cgd }
    561    1.1       cgd 
    562    1.1       cgd /*
    563   1.95        ad  * Reset a socket's lock pointer.  Wake all threads waiting on the
    564   1.95        ad  * socket's condition variables so that they can restart their waits
    565   1.95        ad  * using the new lock.  The existing lock must be held.
    566   1.95        ad  */
    567   1.95        ad void
    568   1.95        ad solockreset(struct socket *so, kmutex_t *lock)
    569   1.95        ad {
    570   1.95        ad 
    571   1.95        ad 	KASSERT(solocked(so));
    572   1.95        ad 
    573   1.95        ad 	so->so_lock = lock;
    574   1.95        ad 	cv_broadcast(&so->so_snd.sb_cv);
    575   1.95        ad 	cv_broadcast(&so->so_rcv.sb_cv);
    576   1.95        ad 	cv_broadcast(&so->so_cv);
    577   1.95        ad }
    578   1.95        ad 
    579   1.95        ad /*
    580    1.1       cgd  * Socket buffer (struct sockbuf) utility routines.
    581    1.1       cgd  *
    582    1.1       cgd  * Each socket contains two socket buffers: one for sending data and
    583    1.1       cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    584    1.1       cgd  * information about the number of mbufs and amount of data in the
    585   1.13   mycroft  * queue, and other fields allowing poll() statements and notification
    586    1.1       cgd  * on data availability to be implemented.
    587    1.1       cgd  *
    588    1.1       cgd  * Data stored in a socket buffer is maintained as a list of records.
    589    1.1       cgd  * Each record is a list of mbufs chained together with the m_next
    590    1.1       cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    591    1.1       cgd  * level routine soreceive() expects the following conventions to be
    592    1.1       cgd  * observed when placing information in the receive buffer:
    593    1.1       cgd  *
    594    1.1       cgd  * 1. If the protocol requires each message be preceded by the sender's
    595    1.1       cgd  *    name, then a record containing that name must be present before
    596    1.1       cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    597    1.1       cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    598    1.1       cgd  *    just additional data associated with the message), and there are
    599    1.1       cgd  *    ``rights'' to be received, then a record containing this data
    600   1.10   mycroft  *    should be present (mbuf's must be of type MT_CONTROL).
    601    1.1       cgd  * 3. If a name or rights record exists, then it must be followed by
    602    1.1       cgd  *    a data record, perhaps of zero length.
    603    1.1       cgd  *
    604    1.1       cgd  * Before using a new socket structure it is first necessary to reserve
    605    1.1       cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    606    1.1       cgd  * some of the available buffer space in the system buffer pool for the
    607    1.1       cgd  * socket (currently, it does nothing but enforce limits).  The space
    608    1.1       cgd  * should be released by calling sbrelease() when the socket is destroyed.
    609    1.1       cgd  */
    610    1.1       cgd 
    611    1.7   mycroft int
    612   1.58   thorpej sb_max_set(u_long new_sbmax)
    613   1.58   thorpej {
    614   1.58   thorpej 	int s;
    615   1.58   thorpej 
    616   1.58   thorpej 	if (new_sbmax < (16 * 1024))
    617   1.58   thorpej 		return (EINVAL);
    618   1.58   thorpej 
    619   1.58   thorpej 	s = splsoftnet();
    620   1.58   thorpej 	sb_max = new_sbmax;
    621   1.58   thorpej 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    622   1.58   thorpej 	splx(s);
    623   1.58   thorpej 
    624   1.58   thorpej 	return (0);
    625   1.58   thorpej }
    626   1.58   thorpej 
    627   1.58   thorpej int
    628   1.37     lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    629    1.1       cgd {
    630  1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    631   1.91        ad 
    632   1.74  christos 	/*
    633   1.74  christos 	 * there's at least one application (a configure script of screen)
    634   1.74  christos 	 * which expects a fifo is writable even if it has "some" bytes
    635   1.74  christos 	 * in its buffer.
    636   1.74  christos 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    637   1.74  christos 	 *
    638   1.74  christos 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    639   1.74  christos 	 * we expect it's large enough for such applications.
    640   1.74  christos 	 */
    641   1.74  christos 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    642   1.74  christos 	u_long  hiwat = lowat + PIPE_BUF;
    643    1.1       cgd 
    644   1.74  christos 	if (sndcc < hiwat)
    645   1.74  christos 		sndcc = hiwat;
    646   1.59  christos 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    647    1.1       cgd 		goto bad;
    648   1.59  christos 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    649    1.1       cgd 		goto bad2;
    650    1.1       cgd 	if (so->so_rcv.sb_lowat == 0)
    651    1.1       cgd 		so->so_rcv.sb_lowat = 1;
    652    1.1       cgd 	if (so->so_snd.sb_lowat == 0)
    653   1.74  christos 		so->so_snd.sb_lowat = lowat;
    654    1.1       cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    655    1.1       cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    656    1.1       cgd 	return (0);
    657   1.37     lukem  bad2:
    658   1.59  christos 	sbrelease(&so->so_snd, so);
    659   1.37     lukem  bad:
    660    1.1       cgd 	return (ENOBUFS);
    661    1.1       cgd }
    662    1.1       cgd 
    663    1.1       cgd /*
    664    1.1       cgd  * Allot mbufs to a sockbuf.
    665    1.1       cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    666    1.1       cgd  * if buffering efficiency is near the normal case.
    667    1.1       cgd  */
    668    1.7   mycroft int
    669   1.59  christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    670    1.1       cgd {
    671   1.75        ad 	struct lwp *l = curlwp; /* XXX */
    672   1.62  christos 	rlim_t maxcc;
    673   1.67  christos 	struct uidinfo *uidinfo;
    674    1.1       cgd 
    675  1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    676   1.91        ad 	KASSERT(sb->sb_so == so);
    677   1.91        ad 	KASSERT(sb_max_adj != 0);
    678   1.91        ad 
    679   1.58   thorpej 	if (cc == 0 || cc > sb_max_adj)
    680    1.1       cgd 		return (0);
    681   1.93  christos 
    682  1.105      elad 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    683   1.93  christos 
    684   1.93  christos 	uidinfo = so->so_uidinfo;
    685   1.67  christos 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    686   1.62  christos 		return 0;
    687    1.1       cgd 	sb->sb_mbmax = min(cc * 2, sb_max);
    688    1.1       cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    689    1.1       cgd 		sb->sb_lowat = sb->sb_hiwat;
    690    1.1       cgd 	return (1);
    691    1.1       cgd }
    692    1.1       cgd 
    693    1.1       cgd /*
    694   1.91        ad  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    695   1.91        ad  * that the socket is held locked here: see sorflush().
    696    1.1       cgd  */
    697    1.7   mycroft void
    698   1.59  christos sbrelease(struct sockbuf *sb, struct socket *so)
    699    1.1       cgd {
    700    1.1       cgd 
    701   1.91        ad 	KASSERT(sb->sb_so == so);
    702   1.91        ad 
    703    1.1       cgd 	sbflush(sb);
    704   1.87      yamt 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    705   1.59  christos 	sb->sb_mbmax = 0;
    706    1.1       cgd }
    707    1.1       cgd 
    708    1.1       cgd /*
    709    1.1       cgd  * Routines to add and remove
    710    1.1       cgd  * data from an mbuf queue.
    711    1.1       cgd  *
    712    1.1       cgd  * The routines sbappend() or sbappendrecord() are normally called to
    713    1.1       cgd  * append new mbufs to a socket buffer, after checking that adequate
    714    1.1       cgd  * space is available, comparing the function sbspace() with the amount
    715    1.1       cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    716    1.1       cgd  * that data supplied is treated as the beginning of a new record.
    717    1.1       cgd  * To place a sender's address, optional access rights, and data in a
    718    1.1       cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    719    1.1       cgd  * access rights and data in a socket receive buffer, sbappendrights()
    720    1.1       cgd  * should be used.  In either case, the new data begins a new record.
    721    1.1       cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    722    1.1       cgd  * for the caller that there will be enough space to store the data.
    723    1.1       cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    724    1.1       cgd  * to store additional information in.
    725    1.1       cgd  *
    726    1.1       cgd  * Reliable protocols may use the socket send buffer to hold data
    727    1.1       cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    728  1.129      maxv  * send buffer in a protocol with m_copym for output to a peer,
    729    1.1       cgd  * and then removing the data from the socket buffer with sbdrop()
    730    1.1       cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    731    1.1       cgd  */
    732    1.1       cgd 
    733   1.43   thorpej #ifdef SOCKBUF_DEBUG
    734   1.43   thorpej void
    735   1.43   thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
    736   1.43   thorpej {
    737   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    738   1.43   thorpej 
    739   1.91        ad 	KASSERT(solocked(sb->sb_so));
    740   1.91        ad 
    741   1.43   thorpej 	while (m && m->m_nextpkt)
    742   1.43   thorpej 		m = m->m_nextpkt;
    743   1.43   thorpej 
    744   1.43   thorpej 	if (m != sb->sb_lastrecord) {
    745   1.43   thorpej 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    746   1.43   thorpej 		    sb->sb_mb, sb->sb_lastrecord, m);
    747   1.43   thorpej 		printf("packet chain:\n");
    748   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    749   1.43   thorpej 			printf("\t%p\n", m);
    750   1.47    provos 		panic("sblastrecordchk from %s", where);
    751   1.43   thorpej 	}
    752   1.43   thorpej }
    753   1.43   thorpej 
    754   1.43   thorpej void
    755   1.43   thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
    756   1.43   thorpej {
    757   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    758   1.43   thorpej 	struct mbuf *n;
    759   1.43   thorpej 
    760   1.91        ad 	KASSERT(solocked(sb->sb_so));
    761   1.91        ad 
    762   1.43   thorpej 	while (m && m->m_nextpkt)
    763   1.43   thorpej 		m = m->m_nextpkt;
    764   1.43   thorpej 
    765   1.43   thorpej 	while (m && m->m_next)
    766   1.43   thorpej 		m = m->m_next;
    767   1.43   thorpej 
    768   1.43   thorpej 	if (m != sb->sb_mbtail) {
    769   1.43   thorpej 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    770   1.43   thorpej 		    sb->sb_mb, sb->sb_mbtail, m);
    771   1.43   thorpej 		printf("packet tree:\n");
    772   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    773   1.43   thorpej 			printf("\t");
    774   1.43   thorpej 			for (n = m; n != NULL; n = n->m_next)
    775   1.43   thorpej 				printf("%p ", n);
    776   1.43   thorpej 			printf("\n");
    777   1.43   thorpej 		}
    778   1.43   thorpej 		panic("sblastmbufchk from %s", where);
    779   1.43   thorpej 	}
    780   1.43   thorpej }
    781   1.43   thorpej #endif /* SOCKBUF_DEBUG */
    782   1.43   thorpej 
    783   1.63  jonathan /*
    784   1.63  jonathan  * Link a chain of records onto a socket buffer
    785   1.63  jonathan  */
    786   1.63  jonathan #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    787   1.43   thorpej do {									\
    788   1.43   thorpej 	if ((sb)->sb_lastrecord != NULL)				\
    789   1.43   thorpej 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    790   1.43   thorpej 	else								\
    791   1.43   thorpej 		(sb)->sb_mb = (m0);					\
    792   1.63  jonathan 	(sb)->sb_lastrecord = (mlast);					\
    793   1.43   thorpej } while (/*CONSTCOND*/0)
    794   1.43   thorpej 
    795   1.63  jonathan 
    796   1.63  jonathan #define	SBLINKRECORD(sb, m0)						\
    797   1.63  jonathan     SBLINKRECORDCHAIN(sb, m0, m0)
    798   1.63  jonathan 
    799    1.1       cgd /*
    800    1.1       cgd  * Append mbuf chain m to the last record in the
    801    1.1       cgd  * socket buffer sb.  The additional space associated
    802    1.1       cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    803    1.1       cgd  * discarded and mbufs are compacted where possible.
    804    1.1       cgd  */
    805    1.7   mycroft void
    806   1.37     lukem sbappend(struct sockbuf *sb, struct mbuf *m)
    807    1.1       cgd {
    808   1.37     lukem 	struct mbuf	*n;
    809    1.1       cgd 
    810   1.91        ad 	KASSERT(solocked(sb->sb_so));
    811   1.91        ad 
    812  1.115  christos 	if (m == NULL)
    813    1.1       cgd 		return;
    814   1.43   thorpej 
    815   1.49      matt #ifdef MBUFTRACE
    816   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    817   1.49      matt #endif
    818   1.49      matt 
    819   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 1");
    820   1.43   thorpej 
    821   1.43   thorpej 	if ((n = sb->sb_lastrecord) != NULL) {
    822   1.43   thorpej 		/*
    823   1.43   thorpej 		 * XXX Would like to simply use sb_mbtail here, but
    824   1.43   thorpej 		 * XXX I need to verify that I won't miss an EOR that
    825   1.43   thorpej 		 * XXX way.
    826   1.43   thorpej 		 */
    827    1.1       cgd 		do {
    828    1.1       cgd 			if (n->m_flags & M_EOR) {
    829    1.1       cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    830    1.1       cgd 				return;
    831    1.1       cgd 			}
    832    1.1       cgd 		} while (n->m_next && (n = n->m_next));
    833   1.43   thorpej 	} else {
    834   1.43   thorpej 		/*
    835   1.43   thorpej 		 * If this is the first record in the socket buffer, it's
    836   1.43   thorpej 		 * also the last record.
    837   1.43   thorpej 		 */
    838   1.43   thorpej 		sb->sb_lastrecord = m;
    839    1.1       cgd 	}
    840    1.1       cgd 	sbcompress(sb, m, n);
    841   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 2");
    842   1.43   thorpej }
    843   1.43   thorpej 
    844   1.43   thorpej /*
    845   1.43   thorpej  * This version of sbappend() should only be used when the caller
    846   1.43   thorpej  * absolutely knows that there will never be more than one record
    847   1.43   thorpej  * in the socket buffer, that is, a stream protocol (such as TCP).
    848   1.43   thorpej  */
    849   1.43   thorpej void
    850   1.44   thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
    851   1.43   thorpej {
    852   1.43   thorpej 
    853   1.91        ad 	KASSERT(solocked(sb->sb_so));
    854   1.43   thorpej 	KDASSERT(m->m_nextpkt == NULL);
    855   1.43   thorpej 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    856   1.43   thorpej 
    857   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
    858   1.43   thorpej 
    859   1.49      matt #ifdef MBUFTRACE
    860   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    861   1.49      matt #endif
    862   1.49      matt 
    863   1.43   thorpej 	sbcompress(sb, m, sb->sb_mbtail);
    864   1.43   thorpej 
    865   1.43   thorpej 	sb->sb_lastrecord = sb->sb_mb;
    866   1.43   thorpej 	SBLASTRECORDCHK(sb, __func__);
    867    1.1       cgd }
    868    1.1       cgd 
    869    1.1       cgd #ifdef SOCKBUF_DEBUG
    870    1.7   mycroft void
    871   1.37     lukem sbcheck(struct sockbuf *sb)
    872    1.1       cgd {
    873   1.91        ad 	struct mbuf	*m, *m2;
    874   1.43   thorpej 	u_long		len, mbcnt;
    875    1.1       cgd 
    876   1.91        ad 	KASSERT(solocked(sb->sb_so));
    877   1.91        ad 
    878   1.37     lukem 	len = 0;
    879   1.37     lukem 	mbcnt = 0;
    880   1.91        ad 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    881   1.91        ad 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    882   1.91        ad 			len += m2->m_len;
    883   1.91        ad 			mbcnt += MSIZE;
    884   1.91        ad 			if (m2->m_flags & M_EXT)
    885   1.91        ad 				mbcnt += m2->m_ext.ext_size;
    886   1.91        ad 			if (m2->m_nextpkt != NULL)
    887   1.91        ad 				panic("sbcheck nextpkt");
    888   1.91        ad 		}
    889    1.1       cgd 	}
    890    1.1       cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    891   1.43   thorpej 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    892    1.1       cgd 		    mbcnt, sb->sb_mbcnt);
    893    1.1       cgd 		panic("sbcheck");
    894    1.1       cgd 	}
    895    1.1       cgd }
    896    1.1       cgd #endif
    897    1.1       cgd 
    898    1.1       cgd /*
    899    1.1       cgd  * As above, except the mbuf chain
    900    1.1       cgd  * begins a new record.
    901    1.1       cgd  */
    902    1.7   mycroft void
    903   1.37     lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    904    1.1       cgd {
    905   1.37     lukem 	struct mbuf	*m;
    906    1.1       cgd 
    907   1.91        ad 	KASSERT(solocked(sb->sb_so));
    908   1.91        ad 
    909  1.115  christos 	if (m0 == NULL)
    910    1.1       cgd 		return;
    911   1.43   thorpej 
    912   1.49      matt #ifdef MBUFTRACE
    913   1.65  jonathan 	m_claimm(m0, sb->sb_mowner);
    914   1.49      matt #endif
    915    1.1       cgd 	/*
    916    1.1       cgd 	 * Put the first mbuf on the queue.
    917    1.1       cgd 	 * Note this permits zero length records.
    918    1.1       cgd 	 */
    919    1.1       cgd 	sballoc(sb, m0);
    920   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    921   1.43   thorpej 	SBLINKRECORD(sb, m0);
    922    1.1       cgd 	m = m0->m_next;
    923    1.1       cgd 	m0->m_next = 0;
    924    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    925    1.1       cgd 		m0->m_flags &= ~M_EOR;
    926    1.1       cgd 		m->m_flags |= M_EOR;
    927    1.1       cgd 	}
    928    1.1       cgd 	sbcompress(sb, m, m0);
    929   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    930    1.1       cgd }
    931    1.1       cgd 
    932    1.1       cgd /*
    933    1.1       cgd  * As above except that OOB data
    934    1.1       cgd  * is inserted at the beginning of the sockbuf,
    935    1.1       cgd  * but after any other OOB data.
    936    1.1       cgd  */
    937    1.7   mycroft void
    938   1.37     lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    939    1.1       cgd {
    940   1.37     lukem 	struct mbuf	*m, **mp;
    941    1.1       cgd 
    942   1.91        ad 	KASSERT(solocked(sb->sb_so));
    943   1.91        ad 
    944  1.115  christos 	if (m0 == NULL)
    945    1.1       cgd 		return;
    946   1.43   thorpej 
    947   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    948   1.43   thorpej 
    949   1.11  christos 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    950    1.1       cgd 	    again:
    951    1.1       cgd 		switch (m->m_type) {
    952    1.1       cgd 
    953    1.1       cgd 		case MT_OOBDATA:
    954    1.1       cgd 			continue;		/* WANT next train */
    955    1.1       cgd 
    956    1.1       cgd 		case MT_CONTROL:
    957   1.11  christos 			if ((m = m->m_next) != NULL)
    958    1.1       cgd 				goto again;	/* inspect THIS train further */
    959    1.1       cgd 		}
    960    1.1       cgd 		break;
    961    1.1       cgd 	}
    962    1.1       cgd 	/*
    963    1.1       cgd 	 * Put the first mbuf on the queue.
    964    1.1       cgd 	 * Note this permits zero length records.
    965    1.1       cgd 	 */
    966    1.1       cgd 	sballoc(sb, m0);
    967    1.1       cgd 	m0->m_nextpkt = *mp;
    968   1.43   thorpej 	if (*mp == NULL) {
    969   1.43   thorpej 		/* m0 is actually the new tail */
    970   1.43   thorpej 		sb->sb_lastrecord = m0;
    971   1.43   thorpej 	}
    972    1.1       cgd 	*mp = m0;
    973    1.1       cgd 	m = m0->m_next;
    974    1.1       cgd 	m0->m_next = 0;
    975    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    976    1.1       cgd 		m0->m_flags &= ~M_EOR;
    977    1.1       cgd 		m->m_flags |= M_EOR;
    978    1.1       cgd 	}
    979    1.1       cgd 	sbcompress(sb, m, m0);
    980   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    981    1.1       cgd }
    982    1.1       cgd 
    983    1.1       cgd /*
    984    1.1       cgd  * Append address and data, and optionally, control (ancillary) data
    985    1.1       cgd  * to the receive queue of a socket.  If present,
    986    1.1       cgd  * m0 must include a packet header with total length.
    987    1.1       cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
    988    1.1       cgd  */
    989    1.7   mycroft int
    990   1.61      matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    991   1.37     lukem 	struct mbuf *control)
    992    1.1       cgd {
    993   1.43   thorpej 	struct mbuf	*m, *n, *nlast;
    994   1.50      fvdl 	int		space, len;
    995    1.1       cgd 
    996   1.91        ad 	KASSERT(solocked(sb->sb_so));
    997   1.91        ad 
    998   1.37     lukem 	space = asa->sa_len;
    999   1.37     lukem 
   1000   1.49      matt 	if (m0 != NULL) {
   1001   1.49      matt 		if ((m0->m_flags & M_PKTHDR) == 0)
   1002   1.49      matt 			panic("sbappendaddr");
   1003    1.1       cgd 		space += m0->m_pkthdr.len;
   1004   1.49      matt #ifdef MBUFTRACE
   1005   1.65  jonathan 		m_claimm(m0, sb->sb_mowner);
   1006   1.49      matt #endif
   1007   1.49      matt 	}
   1008    1.1       cgd 	for (n = control; n; n = n->m_next) {
   1009    1.1       cgd 		space += n->m_len;
   1010   1.49      matt 		MCLAIM(n, sb->sb_mowner);
   1011  1.115  christos 		if (n->m_next == NULL)	/* keep pointer to last control buf */
   1012    1.1       cgd 			break;
   1013    1.1       cgd 	}
   1014    1.1       cgd 	if (space > sbspace(sb))
   1015    1.1       cgd 		return (0);
   1016  1.115  christos 	m = m_get(M_DONTWAIT, MT_SONAME);
   1017  1.115  christos 	if (m == NULL)
   1018    1.1       cgd 		return (0);
   1019   1.49      matt 	MCLAIM(m, sb->sb_mowner);
   1020   1.50      fvdl 	/*
   1021   1.50      fvdl 	 * XXX avoid 'comparison always true' warning which isn't easily
   1022   1.50      fvdl 	 * avoided.
   1023   1.50      fvdl 	 */
   1024   1.50      fvdl 	len = asa->sa_len;
   1025   1.50      fvdl 	if (len > MLEN) {
   1026   1.20   thorpej 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
   1027   1.20   thorpej 		if ((m->m_flags & M_EXT) == 0) {
   1028   1.20   thorpej 			m_free(m);
   1029   1.20   thorpej 			return (0);
   1030   1.20   thorpej 		}
   1031   1.20   thorpej 	}
   1032    1.1       cgd 	m->m_len = asa->sa_len;
   1033   1.82  christos 	memcpy(mtod(m, void *), asa, asa->sa_len);
   1034    1.1       cgd 	if (n)
   1035    1.1       cgd 		n->m_next = m0;		/* concatenate data to control */
   1036    1.1       cgd 	else
   1037    1.1       cgd 		control = m0;
   1038    1.1       cgd 	m->m_next = control;
   1039   1.43   thorpej 
   1040   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
   1041   1.43   thorpej 
   1042   1.43   thorpej 	for (n = m; n->m_next != NULL; n = n->m_next)
   1043    1.1       cgd 		sballoc(sb, n);
   1044   1.43   thorpej 	sballoc(sb, n);
   1045   1.43   thorpej 	nlast = n;
   1046   1.43   thorpej 	SBLINKRECORD(sb, m);
   1047   1.43   thorpej 
   1048   1.43   thorpej 	sb->sb_mbtail = nlast;
   1049   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendaddr");
   1050   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
   1051   1.43   thorpej 
   1052    1.1       cgd 	return (1);
   1053    1.1       cgd }
   1054    1.1       cgd 
   1055   1.63  jonathan /*
   1056   1.63  jonathan  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
   1057   1.63  jonathan  * an mbuf chain.
   1058   1.63  jonathan  */
   1059   1.70     perry static inline struct mbuf *
   1060   1.81      yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
   1061   1.64  jonathan 		   const struct sockaddr *asa)
   1062   1.63  jonathan {
   1063   1.63  jonathan 	struct mbuf *m;
   1064   1.64  jonathan 	const int salen = asa->sa_len;
   1065   1.63  jonathan 
   1066   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1067   1.91        ad 
   1068   1.63  jonathan 	/* only the first in each chain need be a pkthdr */
   1069  1.115  christos 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
   1070  1.115  christos 	if (m == NULL)
   1071  1.115  christos 		return NULL;
   1072   1.63  jonathan 	MCLAIM(m, sb->sb_mowner);
   1073   1.64  jonathan #ifdef notyet
   1074   1.64  jonathan 	if (salen > MHLEN) {
   1075   1.64  jonathan 		MEXTMALLOC(m, salen, M_NOWAIT);
   1076   1.64  jonathan 		if ((m->m_flags & M_EXT) == 0) {
   1077   1.64  jonathan 			m_free(m);
   1078  1.115  christos 			return NULL;
   1079   1.64  jonathan 		}
   1080   1.64  jonathan 	}
   1081   1.64  jonathan #else
   1082   1.64  jonathan 	KASSERT(salen <= MHLEN);
   1083   1.64  jonathan #endif
   1084   1.64  jonathan 	m->m_len = salen;
   1085   1.82  christos 	memcpy(mtod(m, void *), asa, salen);
   1086   1.63  jonathan 	m->m_next = m0;
   1087   1.64  jonathan 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1088   1.63  jonathan 
   1089   1.63  jonathan 	return m;
   1090   1.63  jonathan }
   1091   1.63  jonathan 
   1092   1.63  jonathan int
   1093   1.63  jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1094   1.63  jonathan 		  struct mbuf *m0, int sbprio)
   1095   1.63  jonathan {
   1096   1.63  jonathan 	struct mbuf *m, *n, *n0, *nlast;
   1097   1.63  jonathan 	int error;
   1098   1.63  jonathan 
   1099   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1100   1.91        ad 
   1101   1.63  jonathan 	/*
   1102   1.63  jonathan 	 * XXX sbprio reserved for encoding priority of this* request:
   1103   1.63  jonathan 	 *  SB_PRIO_NONE --> honour normal sb limits
   1104   1.63  jonathan 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1105   1.63  jonathan 	 *	take whole chain. Intended for large requests
   1106   1.63  jonathan 	 *      that should be delivered atomically (all, or none).
   1107   1.63  jonathan 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1108   1.63  jonathan 	 *       over normal socket limits, for messages indicating
   1109   1.63  jonathan 	 *       buffer overflow in earlier normal/lower-priority messages
   1110   1.63  jonathan 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1111   1.63  jonathan 	 *       Intended for  kernel-generated messages only.
   1112   1.63  jonathan 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1113   1.63  jonathan 	 */
   1114   1.63  jonathan 	(void)sbprio;
   1115   1.63  jonathan 
   1116   1.63  jonathan 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1117   1.63  jonathan 		panic("sbappendaddrchain");
   1118   1.63  jonathan 
   1119  1.114    martin #ifdef notyet
   1120   1.63  jonathan 	space = sbspace(sb);
   1121   1.66     perry 
   1122   1.66     perry 	/*
   1123   1.63  jonathan 	 * Enforce SB_PRIO_* limits as described above.
   1124   1.63  jonathan 	 */
   1125   1.63  jonathan #endif
   1126   1.63  jonathan 
   1127   1.63  jonathan 	n0 = NULL;
   1128   1.63  jonathan 	nlast = NULL;
   1129   1.63  jonathan 	for (m = m0; m; m = m->m_nextpkt) {
   1130   1.63  jonathan 		struct mbuf *np;
   1131   1.63  jonathan 
   1132   1.64  jonathan #ifdef MBUFTRACE
   1133   1.65  jonathan 		m_claimm(m, sb->sb_mowner);
   1134   1.64  jonathan #endif
   1135   1.64  jonathan 
   1136   1.63  jonathan 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1137   1.64  jonathan 	  	n = m_prepend_sockaddr(sb, m, asa);
   1138   1.63  jonathan 		if (n == NULL) {
   1139   1.63  jonathan 			error = ENOBUFS;
   1140   1.63  jonathan 			goto bad;
   1141   1.63  jonathan 		}
   1142   1.63  jonathan 
   1143   1.63  jonathan 		/* Append record (asa+m) to end of new chain n0 */
   1144   1.63  jonathan 		if (n0 == NULL) {
   1145   1.63  jonathan 			n0 = n;
   1146   1.63  jonathan 		} else {
   1147   1.63  jonathan 			nlast->m_nextpkt = n;
   1148   1.63  jonathan 		}
   1149   1.63  jonathan 		/* Keep track of last record on new chain */
   1150   1.63  jonathan 		nlast = n;
   1151   1.63  jonathan 
   1152   1.63  jonathan 		for (np = n; np; np = np->m_next)
   1153   1.63  jonathan 			sballoc(sb, np);
   1154   1.63  jonathan 	}
   1155   1.63  jonathan 
   1156   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1157   1.64  jonathan 
   1158   1.63  jonathan 	/* Drop the entire chain of (asa+m) records onto the socket */
   1159   1.63  jonathan 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1160   1.64  jonathan 
   1161   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1162   1.64  jonathan 
   1163   1.63  jonathan 	for (m = nlast; m->m_next; m = m->m_next)
   1164   1.63  jonathan 		;
   1165   1.63  jonathan 	sb->sb_mbtail = m;
   1166   1.64  jonathan 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1167   1.64  jonathan 
   1168   1.63  jonathan 	return (1);
   1169   1.63  jonathan 
   1170   1.63  jonathan bad:
   1171   1.64  jonathan 	/*
   1172   1.64  jonathan 	 * On error, free the prepended addreseses. For consistency
   1173   1.64  jonathan 	 * with sbappendaddr(), leave it to our caller to free
   1174   1.64  jonathan 	 * the input record chain passed to us as m0.
   1175   1.64  jonathan 	 */
   1176   1.64  jonathan 	while ((n = n0) != NULL) {
   1177   1.64  jonathan 	  	struct mbuf *np;
   1178   1.64  jonathan 
   1179   1.64  jonathan 		/* Undo the sballoc() of this record */
   1180   1.64  jonathan 		for (np = n; np; np = np->m_next)
   1181   1.64  jonathan 			sbfree(sb, np);
   1182   1.64  jonathan 
   1183   1.64  jonathan 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1184  1.124  christos 		np = m_free(n);		/* free prepended address (not data) */
   1185   1.64  jonathan 	}
   1186  1.114    martin 	return error;
   1187   1.63  jonathan }
   1188   1.63  jonathan 
   1189   1.63  jonathan 
   1190    1.7   mycroft int
   1191   1.37     lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1192    1.1       cgd {
   1193   1.43   thorpej 	struct mbuf	*m, *mlast, *n;
   1194   1.37     lukem 	int		space;
   1195    1.1       cgd 
   1196   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1197   1.91        ad 
   1198   1.37     lukem 	space = 0;
   1199  1.115  christos 	if (control == NULL)
   1200    1.1       cgd 		panic("sbappendcontrol");
   1201    1.1       cgd 	for (m = control; ; m = m->m_next) {
   1202    1.1       cgd 		space += m->m_len;
   1203   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1204  1.115  christos 		if (m->m_next == NULL)
   1205    1.1       cgd 			break;
   1206    1.1       cgd 	}
   1207    1.1       cgd 	n = m;			/* save pointer to last control buffer */
   1208   1.49      matt 	for (m = m0; m; m = m->m_next) {
   1209   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1210    1.1       cgd 		space += m->m_len;
   1211   1.49      matt 	}
   1212    1.1       cgd 	if (space > sbspace(sb))
   1213    1.1       cgd 		return (0);
   1214    1.1       cgd 	n->m_next = m0;			/* concatenate data to control */
   1215   1.43   thorpej 
   1216   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1217   1.43   thorpej 
   1218   1.43   thorpej 	for (m = control; m->m_next != NULL; m = m->m_next)
   1219    1.1       cgd 		sballoc(sb, m);
   1220   1.43   thorpej 	sballoc(sb, m);
   1221   1.43   thorpej 	mlast = m;
   1222   1.43   thorpej 	SBLINKRECORD(sb, control);
   1223   1.43   thorpej 
   1224   1.43   thorpej 	sb->sb_mbtail = mlast;
   1225   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1226   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1227   1.43   thorpej 
   1228    1.1       cgd 	return (1);
   1229    1.1       cgd }
   1230    1.1       cgd 
   1231    1.1       cgd /*
   1232    1.1       cgd  * Compress mbuf chain m into the socket
   1233    1.1       cgd  * buffer sb following mbuf n.  If n
   1234    1.1       cgd  * is null, the buffer is presumed empty.
   1235    1.1       cgd  */
   1236    1.7   mycroft void
   1237   1.37     lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1238    1.1       cgd {
   1239   1.37     lukem 	int		eor;
   1240   1.37     lukem 	struct mbuf	*o;
   1241    1.1       cgd 
   1242   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1243   1.91        ad 
   1244   1.37     lukem 	eor = 0;
   1245    1.1       cgd 	while (m) {
   1246    1.1       cgd 		eor |= m->m_flags & M_EOR;
   1247    1.1       cgd 		if (m->m_len == 0 &&
   1248    1.1       cgd 		    (eor == 0 ||
   1249    1.1       cgd 		     (((o = m->m_next) || (o = n)) &&
   1250    1.1       cgd 		      o->m_type == m->m_type))) {
   1251   1.46   thorpej 			if (sb->sb_lastrecord == m)
   1252   1.46   thorpej 				sb->sb_lastrecord = m->m_next;
   1253    1.1       cgd 			m = m_free(m);
   1254    1.1       cgd 			continue;
   1255    1.1       cgd 		}
   1256   1.40   thorpej 		if (n && (n->m_flags & M_EOR) == 0 &&
   1257   1.40   thorpej 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1258   1.40   thorpej 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1259   1.40   thorpej 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1260   1.40   thorpej 		    n->m_type == m->m_type) {
   1261   1.82  christos 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1262    1.1       cgd 			    (unsigned)m->m_len);
   1263    1.1       cgd 			n->m_len += m->m_len;
   1264    1.1       cgd 			sb->sb_cc += m->m_len;
   1265    1.1       cgd 			m = m_free(m);
   1266    1.1       cgd 			continue;
   1267    1.1       cgd 		}
   1268    1.1       cgd 		if (n)
   1269    1.1       cgd 			n->m_next = m;
   1270    1.1       cgd 		else
   1271    1.1       cgd 			sb->sb_mb = m;
   1272   1.43   thorpej 		sb->sb_mbtail = m;
   1273    1.1       cgd 		sballoc(sb, m);
   1274    1.1       cgd 		n = m;
   1275    1.1       cgd 		m->m_flags &= ~M_EOR;
   1276    1.1       cgd 		m = m->m_next;
   1277    1.1       cgd 		n->m_next = 0;
   1278    1.1       cgd 	}
   1279    1.1       cgd 	if (eor) {
   1280    1.1       cgd 		if (n)
   1281    1.1       cgd 			n->m_flags |= eor;
   1282    1.1       cgd 		else
   1283   1.15  christos 			printf("semi-panic: sbcompress\n");
   1284    1.1       cgd 	}
   1285   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
   1286    1.1       cgd }
   1287    1.1       cgd 
   1288    1.1       cgd /*
   1289    1.1       cgd  * Free all mbufs in a sockbuf.
   1290    1.1       cgd  * Check that all resources are reclaimed.
   1291    1.1       cgd  */
   1292    1.7   mycroft void
   1293   1.37     lukem sbflush(struct sockbuf *sb)
   1294    1.1       cgd {
   1295    1.1       cgd 
   1296   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1297   1.43   thorpej 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1298   1.43   thorpej 
   1299    1.1       cgd 	while (sb->sb_mbcnt)
   1300    1.1       cgd 		sbdrop(sb, (int)sb->sb_cc);
   1301   1.43   thorpej 
   1302   1.43   thorpej 	KASSERT(sb->sb_cc == 0);
   1303   1.43   thorpej 	KASSERT(sb->sb_mb == NULL);
   1304   1.43   thorpej 	KASSERT(sb->sb_mbtail == NULL);
   1305   1.43   thorpej 	KASSERT(sb->sb_lastrecord == NULL);
   1306    1.1       cgd }
   1307    1.1       cgd 
   1308    1.1       cgd /*
   1309    1.1       cgd  * Drop data from (the front of) a sockbuf.
   1310    1.1       cgd  */
   1311    1.7   mycroft void
   1312   1.37     lukem sbdrop(struct sockbuf *sb, int len)
   1313    1.1       cgd {
   1314  1.124  christos 	struct mbuf	*m, *next;
   1315    1.1       cgd 
   1316   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1317   1.91        ad 
   1318  1.115  christos 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
   1319    1.1       cgd 	while (len > 0) {
   1320  1.115  christos 		if (m == NULL) {
   1321  1.115  christos 			if (next == NULL)
   1322  1.112      matt 				panic("sbdrop(%p,%d): cc=%lu",
   1323  1.112      matt 				    sb, len, sb->sb_cc);
   1324    1.1       cgd 			m = next;
   1325    1.1       cgd 			next = m->m_nextpkt;
   1326    1.1       cgd 			continue;
   1327    1.1       cgd 		}
   1328    1.1       cgd 		if (m->m_len > len) {
   1329    1.1       cgd 			m->m_len -= len;
   1330    1.1       cgd 			m->m_data += len;
   1331    1.1       cgd 			sb->sb_cc -= len;
   1332    1.1       cgd 			break;
   1333    1.1       cgd 		}
   1334    1.1       cgd 		len -= m->m_len;
   1335    1.1       cgd 		sbfree(sb, m);
   1336  1.124  christos 		m = m_free(m);
   1337    1.1       cgd 	}
   1338    1.1       cgd 	while (m && m->m_len == 0) {
   1339    1.1       cgd 		sbfree(sb, m);
   1340  1.124  christos 		m = m_free(m);
   1341    1.1       cgd 	}
   1342    1.1       cgd 	if (m) {
   1343    1.1       cgd 		sb->sb_mb = m;
   1344    1.1       cgd 		m->m_nextpkt = next;
   1345    1.1       cgd 	} else
   1346    1.1       cgd 		sb->sb_mb = next;
   1347   1.43   thorpej 	/*
   1348   1.45   thorpej 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1349   1.43   thorpej 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1350   1.43   thorpej 	 * part of the last record.
   1351   1.43   thorpej 	 */
   1352   1.43   thorpej 	m = sb->sb_mb;
   1353   1.43   thorpej 	if (m == NULL) {
   1354   1.43   thorpej 		sb->sb_mbtail = NULL;
   1355   1.43   thorpej 		sb->sb_lastrecord = NULL;
   1356   1.43   thorpej 	} else if (m->m_nextpkt == NULL)
   1357   1.43   thorpej 		sb->sb_lastrecord = m;
   1358    1.1       cgd }
   1359    1.1       cgd 
   1360    1.1       cgd /*
   1361    1.1       cgd  * Drop a record off the front of a sockbuf
   1362    1.1       cgd  * and move the next record to the front.
   1363    1.1       cgd  */
   1364    1.7   mycroft void
   1365   1.37     lukem sbdroprecord(struct sockbuf *sb)
   1366    1.1       cgd {
   1367   1.37     lukem 	struct mbuf	*m, *mn;
   1368    1.1       cgd 
   1369   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1370   1.91        ad 
   1371    1.1       cgd 	m = sb->sb_mb;
   1372    1.1       cgd 	if (m) {
   1373    1.1       cgd 		sb->sb_mb = m->m_nextpkt;
   1374    1.1       cgd 		do {
   1375    1.1       cgd 			sbfree(sb, m);
   1376  1.124  christos 			mn = m_free(m);
   1377   1.11  christos 		} while ((m = mn) != NULL);
   1378    1.1       cgd 	}
   1379   1.45   thorpej 	SB_EMPTY_FIXUP(sb);
   1380   1.19   thorpej }
   1381   1.19   thorpej 
   1382   1.19   thorpej /*
   1383   1.19   thorpej  * Create a "control" mbuf containing the specified data
   1384   1.19   thorpej  * with the specified type for presentation on a socket buffer.
   1385   1.19   thorpej  */
   1386   1.19   thorpej struct mbuf *
   1387  1.111  christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1388   1.19   thorpej {
   1389   1.37     lukem 	struct cmsghdr	*cp;
   1390   1.37     lukem 	struct mbuf	*m;
   1391  1.111  christos 	int space = CMSG_SPACE(size);
   1392   1.19   thorpej 
   1393  1.111  christos 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1394  1.111  christos 		printf("%s: message too large %d\n", __func__, space);
   1395   1.30    itojun 		return NULL;
   1396   1.30    itojun 	}
   1397   1.30    itojun 
   1398  1.111  christos 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1399  1.111  christos 		return NULL;
   1400  1.111  christos 	if (space > MLEN) {
   1401  1.111  christos 		if (space > MCLBYTES)
   1402  1.111  christos 			MEXTMALLOC(m, space, M_WAITOK);
   1403  1.111  christos 		else
   1404  1.111  christos 			MCLGET(m, flags);
   1405   1.30    itojun 		if ((m->m_flags & M_EXT) == 0) {
   1406   1.30    itojun 			m_free(m);
   1407   1.30    itojun 			return NULL;
   1408   1.30    itojun 		}
   1409   1.30    itojun 	}
   1410   1.19   thorpej 	cp = mtod(m, struct cmsghdr *);
   1411  1.111  christos 	*p = CMSG_DATA(cp);
   1412  1.111  christos 	m->m_len = space;
   1413   1.35    itojun 	cp->cmsg_len = CMSG_LEN(size);
   1414   1.19   thorpej 	cp->cmsg_level = level;
   1415   1.19   thorpej 	cp->cmsg_type = type;
   1416  1.111  christos 	return m;
   1417  1.111  christos }
   1418  1.111  christos 
   1419  1.111  christos struct mbuf *
   1420  1.111  christos sbcreatecontrol(void *p, int size, int type, int level)
   1421  1.111  christos {
   1422  1.111  christos 	struct mbuf *m;
   1423  1.111  christos 	void *v;
   1424  1.111  christos 
   1425  1.111  christos 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1426  1.111  christos 	if (m == NULL)
   1427  1.111  christos 		return NULL;
   1428  1.111  christos 	memcpy(v, p, size);
   1429  1.111  christos 	return m;
   1430    1.1       cgd }
   1431   1.91        ad 
   1432   1.91        ad void
   1433   1.91        ad solockretry(struct socket *so, kmutex_t *lock)
   1434   1.91        ad {
   1435   1.91        ad 
   1436   1.91        ad 	while (lock != so->so_lock) {
   1437   1.91        ad 		mutex_exit(lock);
   1438   1.91        ad 		lock = so->so_lock;
   1439   1.91        ad 		mutex_enter(lock);
   1440   1.91        ad 	}
   1441   1.91        ad }
   1442   1.91        ad 
   1443   1.91        ad bool
   1444  1.127  christos solocked(const struct socket *so)
   1445   1.91        ad {
   1446   1.91        ad 
   1447   1.91        ad 	return mutex_owned(so->so_lock);
   1448   1.91        ad }
   1449   1.91        ad 
   1450   1.91        ad bool
   1451  1.127  christos solocked2(const struct socket *so1, const struct socket *so2)
   1452   1.91        ad {
   1453  1.127  christos 	const kmutex_t *lock;
   1454   1.91        ad 
   1455   1.91        ad 	lock = so1->so_lock;
   1456   1.91        ad 	if (lock != so2->so_lock)
   1457   1.91        ad 		return false;
   1458   1.91        ad 	return mutex_owned(lock);
   1459   1.91        ad }
   1460   1.91        ad 
   1461   1.91        ad /*
   1462  1.116     rmind  * sosetlock: assign a default lock to a new socket.
   1463   1.91        ad  */
   1464   1.91        ad void
   1465   1.91        ad sosetlock(struct socket *so)
   1466   1.91        ad {
   1467  1.116     rmind 	if (so->so_lock == NULL) {
   1468  1.116     rmind 		kmutex_t *lock = softnet_lock;
   1469   1.91        ad 
   1470   1.91        ad 		so->so_lock = lock;
   1471   1.91        ad 		mutex_obj_hold(lock);
   1472   1.91        ad 		mutex_enter(lock);
   1473   1.91        ad 	}
   1474   1.91        ad 	KASSERT(solocked(so));
   1475   1.91        ad }
   1476   1.91        ad 
   1477   1.91        ad /*
   1478   1.91        ad  * Set lock on sockbuf sb; sleep if lock is already held.
   1479   1.91        ad  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1480   1.91        ad  * Returns error without lock if sleep is interrupted.
   1481   1.91        ad  */
   1482   1.91        ad int
   1483   1.91        ad sblock(struct sockbuf *sb, int wf)
   1484   1.91        ad {
   1485   1.91        ad 	struct socket *so;
   1486   1.91        ad 	kmutex_t *lock;
   1487   1.91        ad 	int error;
   1488   1.91        ad 
   1489   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1490   1.91        ad 
   1491   1.91        ad 	for (;;) {
   1492   1.91        ad 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1493   1.91        ad 			sb->sb_flags |= SB_LOCK;
   1494   1.91        ad 			return 0;
   1495   1.91        ad 		}
   1496   1.91        ad 		if (wf != M_WAITOK)
   1497   1.91        ad 			return EWOULDBLOCK;
   1498   1.91        ad 		so = sb->sb_so;
   1499   1.91        ad 		lock = so->so_lock;
   1500   1.91        ad 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1501   1.91        ad 			cv_wait(&so->so_cv, lock);
   1502   1.91        ad 			error = 0;
   1503   1.91        ad 		} else
   1504   1.91        ad 			error = cv_wait_sig(&so->so_cv, lock);
   1505   1.91        ad 		if (__predict_false(lock != so->so_lock))
   1506   1.91        ad 			solockretry(so, lock);
   1507   1.91        ad 		if (error != 0)
   1508   1.91        ad 			return error;
   1509   1.91        ad 	}
   1510   1.91        ad }
   1511   1.91        ad 
   1512   1.91        ad void
   1513   1.91        ad sbunlock(struct sockbuf *sb)
   1514   1.91        ad {
   1515   1.91        ad 	struct socket *so;
   1516   1.91        ad 
   1517   1.91        ad 	so = sb->sb_so;
   1518   1.91        ad 
   1519   1.91        ad 	KASSERT(solocked(so));
   1520   1.91        ad 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1521   1.91        ad 
   1522   1.91        ad 	sb->sb_flags &= ~SB_LOCK;
   1523   1.91        ad 	cv_broadcast(&so->so_cv);
   1524   1.91        ad }
   1525   1.91        ad 
   1526   1.91        ad int
   1527  1.121      matt sowait(struct socket *so, bool catch_p, int timo)
   1528   1.91        ad {
   1529   1.91        ad 	kmutex_t *lock;
   1530   1.91        ad 	int error;
   1531   1.91        ad 
   1532   1.91        ad 	KASSERT(solocked(so));
   1533  1.121      matt 	KASSERT(catch_p || timo != 0);
   1534   1.91        ad 
   1535   1.91        ad 	lock = so->so_lock;
   1536  1.121      matt 	if (catch_p)
   1537  1.101      yamt 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1538  1.101      yamt 	else
   1539  1.101      yamt 		error = cv_timedwait(&so->so_cv, lock, timo);
   1540   1.91        ad 	if (__predict_false(lock != so->so_lock))
   1541   1.91        ad 		solockretry(so, lock);
   1542   1.91        ad 	return error;
   1543   1.91        ad }
   1544