uipc_socket2.c revision 1.133 1 1.133 christos /* $NetBSD: uipc_socket2.c,v 1.133 2018/11/04 16:30:29 christos Exp $ */
2 1.91 ad
3 1.91 ad /*-
4 1.91 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.91 ad * All rights reserved.
6 1.91 ad *
7 1.91 ad * Redistribution and use in source and binary forms, with or without
8 1.91 ad * modification, are permitted provided that the following conditions
9 1.91 ad * are met:
10 1.91 ad * 1. Redistributions of source code must retain the above copyright
11 1.91 ad * notice, this list of conditions and the following disclaimer.
12 1.91 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.91 ad * notice, this list of conditions and the following disclaimer in the
14 1.91 ad * documentation and/or other materials provided with the distribution.
15 1.91 ad *
16 1.91 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.91 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.91 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.91 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.91 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.91 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.91 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.91 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.91 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.91 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.91 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.91 ad */
28 1.9 cgd
29 1.1 cgd /*
30 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 1.7 mycroft * The Regents of the University of California. All rights reserved.
32 1.1 cgd *
33 1.1 cgd * Redistribution and use in source and binary forms, with or without
34 1.1 cgd * modification, are permitted provided that the following conditions
35 1.1 cgd * are met:
36 1.1 cgd * 1. Redistributions of source code must retain the above copyright
37 1.1 cgd * notice, this list of conditions and the following disclaimer.
38 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
39 1.1 cgd * notice, this list of conditions and the following disclaimer in the
40 1.1 cgd * documentation and/or other materials provided with the distribution.
41 1.54 agc * 3. Neither the name of the University nor the names of its contributors
42 1.1 cgd * may be used to endorse or promote products derived from this software
43 1.1 cgd * without specific prior written permission.
44 1.1 cgd *
45 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 cgd * SUCH DAMAGE.
56 1.1 cgd *
57 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 1.1 cgd */
59 1.42 lukem
60 1.42 lukem #include <sys/cdefs.h>
61 1.133 christos __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.133 2018/11/04 16:30:29 christos Exp $");
62 1.51 martin
63 1.122 pooka #ifdef _KERNEL_OPT
64 1.131 msaitoh #include "opt_ddb.h"
65 1.51 martin #include "opt_mbuftrace.h"
66 1.58 thorpej #include "opt_sb_max.h"
67 1.122 pooka #endif
68 1.1 cgd
69 1.5 mycroft #include <sys/param.h>
70 1.5 mycroft #include <sys/systm.h>
71 1.5 mycroft #include <sys/proc.h>
72 1.5 mycroft #include <sys/file.h>
73 1.5 mycroft #include <sys/buf.h>
74 1.5 mycroft #include <sys/mbuf.h>
75 1.5 mycroft #include <sys/protosw.h>
76 1.91 ad #include <sys/domain.h>
77 1.55 christos #include <sys/poll.h>
78 1.5 mycroft #include <sys/socket.h>
79 1.5 mycroft #include <sys/socketvar.h>
80 1.11 christos #include <sys/signalvar.h>
81 1.71 elad #include <sys/kauth.h>
82 1.91 ad #include <sys/pool.h>
83 1.98 pooka #include <sys/uidinfo.h>
84 1.1 cgd
85 1.131 msaitoh #ifdef DDB
86 1.131 msaitoh #include <sys/filedesc.h>
87 1.131 msaitoh #endif
88 1.131 msaitoh
89 1.1 cgd /*
90 1.91 ad * Primitive routines for operating on sockets and socket buffers.
91 1.91 ad *
92 1.116 rmind * Connection life-cycle:
93 1.116 rmind *
94 1.116 rmind * Normal sequence from the active (originating) side:
95 1.116 rmind *
96 1.116 rmind * - soisconnecting() is called during processing of connect() call,
97 1.116 rmind * - resulting in an eventual call to soisconnected() if/when the
98 1.116 rmind * connection is established.
99 1.116 rmind *
100 1.116 rmind * When the connection is torn down during processing of disconnect():
101 1.116 rmind *
102 1.116 rmind * - soisdisconnecting() is called and,
103 1.116 rmind * - soisdisconnected() is called when the connection to the peer
104 1.116 rmind * is totally severed.
105 1.116 rmind *
106 1.116 rmind * The semantics of these routines are such that connectionless protocols
107 1.116 rmind * can call soisconnected() and soisdisconnected() only, bypassing the
108 1.116 rmind * in-progress calls when setting up a ``connection'' takes no time.
109 1.116 rmind *
110 1.116 rmind * From the passive side, a socket is created with two queues of sockets:
111 1.116 rmind *
112 1.116 rmind * - so_q0 (0) for partial connections (i.e. connections in progress)
113 1.116 rmind * - so_q (1) for connections already made and awaiting user acceptance.
114 1.116 rmind *
115 1.116 rmind * As a protocol is preparing incoming connections, it creates a socket
116 1.116 rmind * structure queued on so_q0 by calling sonewconn(). When the connection
117 1.116 rmind * is established, soisconnected() is called, and transfers the
118 1.116 rmind * socket structure to so_q, making it available to accept().
119 1.116 rmind *
120 1.116 rmind * If a socket is closed with sockets on either so_q0 or so_q, these
121 1.116 rmind * sockets are dropped.
122 1.116 rmind *
123 1.91 ad * Locking rules and assumptions:
124 1.91 ad *
125 1.91 ad * o socket::so_lock can change on the fly. The low level routines used
126 1.91 ad * to lock sockets are aware of this. When so_lock is acquired, the
127 1.91 ad * routine locking must check to see if so_lock still points to the
128 1.91 ad * lock that was acquired. If so_lock has changed in the meantime, the
129 1.116 rmind * now irrelevant lock that was acquired must be dropped and the lock
130 1.91 ad * operation retried. Although not proven here, this is completely safe
131 1.91 ad * on a multiprocessor system, even with relaxed memory ordering, given
132 1.91 ad * the next two rules:
133 1.91 ad *
134 1.91 ad * o In order to mutate so_lock, the lock pointed to by the current value
135 1.91 ad * of so_lock must be held: i.e., the socket must be held locked by the
136 1.91 ad * changing thread. The thread must issue membar_exit() to prevent
137 1.91 ad * memory accesses being reordered, and can set so_lock to the desired
138 1.91 ad * value. If the lock pointed to by the new value of so_lock is not
139 1.91 ad * held by the changing thread, the socket must then be considered
140 1.91 ad * unlocked.
141 1.91 ad *
142 1.91 ad * o If so_lock is mutated, and the previous lock referred to by so_lock
143 1.91 ad * could still be visible to other threads in the system (e.g. via file
144 1.91 ad * descriptor or protocol-internal reference), then the old lock must
145 1.91 ad * remain valid until the socket and/or protocol control block has been
146 1.91 ad * torn down.
147 1.91 ad *
148 1.91 ad * o If a socket has a non-NULL so_head value (i.e. is in the process of
149 1.91 ad * connecting), then locking the socket must also lock the socket pointed
150 1.91 ad * to by so_head: their lock pointers must match.
151 1.91 ad *
152 1.91 ad * o If a socket has connections in progress (so_q, so_q0 not empty) then
153 1.91 ad * locking the socket must also lock the sockets attached to both queues.
154 1.91 ad * Again, their lock pointers must match.
155 1.91 ad *
156 1.116 rmind * o Beyond the initial lock assignment in socreate(), assigning locks to
157 1.91 ad * sockets is the responsibility of the individual protocols / protocol
158 1.91 ad * domains.
159 1.1 cgd */
160 1.1 cgd
161 1.116 rmind static pool_cache_t socket_cache;
162 1.116 rmind u_long sb_max = SB_MAX;/* maximum socket buffer size */
163 1.116 rmind static u_long sb_max_adj; /* adjusted sb_max */
164 1.1 cgd
165 1.7 mycroft void
166 1.37 lukem soisconnecting(struct socket *so)
167 1.1 cgd {
168 1.1 cgd
169 1.91 ad KASSERT(solocked(so));
170 1.91 ad
171 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
172 1.1 cgd so->so_state |= SS_ISCONNECTING;
173 1.1 cgd }
174 1.1 cgd
175 1.7 mycroft void
176 1.37 lukem soisconnected(struct socket *so)
177 1.1 cgd {
178 1.37 lukem struct socket *head;
179 1.1 cgd
180 1.37 lukem head = so->so_head;
181 1.91 ad
182 1.91 ad KASSERT(solocked(so));
183 1.91 ad KASSERT(head == NULL || solocked2(so, head));
184 1.91 ad
185 1.113 rmind so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
186 1.1 cgd so->so_state |= SS_ISCONNECTED;
187 1.97 tls if (head && so->so_onq == &head->so_q0) {
188 1.97 tls if ((so->so_options & SO_ACCEPTFILTER) == 0) {
189 1.116 rmind /*
190 1.116 rmind * Re-enqueue and wake up any waiters, e.g.
191 1.116 rmind * processes blocking on accept().
192 1.116 rmind */
193 1.97 tls soqremque(so, 0);
194 1.97 tls soqinsque(head, so, 1);
195 1.97 tls sorwakeup(head);
196 1.97 tls cv_broadcast(&head->so_cv);
197 1.97 tls } else {
198 1.97 tls so->so_upcall =
199 1.97 tls head->so_accf->so_accept_filter->accf_callback;
200 1.97 tls so->so_upcallarg = head->so_accf->so_accept_filter_arg;
201 1.97 tls so->so_rcv.sb_flags |= SB_UPCALL;
202 1.97 tls so->so_options &= ~SO_ACCEPTFILTER;
203 1.104 tls (*so->so_upcall)(so, so->so_upcallarg,
204 1.104 tls POLLIN|POLLRDNORM, M_DONTWAIT);
205 1.101 yamt }
206 1.1 cgd } else {
207 1.91 ad cv_broadcast(&so->so_cv);
208 1.1 cgd sorwakeup(so);
209 1.1 cgd sowwakeup(so);
210 1.1 cgd }
211 1.1 cgd }
212 1.1 cgd
213 1.7 mycroft void
214 1.37 lukem soisdisconnecting(struct socket *so)
215 1.1 cgd {
216 1.1 cgd
217 1.91 ad KASSERT(solocked(so));
218 1.91 ad
219 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
220 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
221 1.91 ad cv_broadcast(&so->so_cv);
222 1.1 cgd sowwakeup(so);
223 1.1 cgd sorwakeup(so);
224 1.1 cgd }
225 1.1 cgd
226 1.7 mycroft void
227 1.37 lukem soisdisconnected(struct socket *so)
228 1.1 cgd {
229 1.1 cgd
230 1.91 ad KASSERT(solocked(so));
231 1.91 ad
232 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
233 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
234 1.91 ad cv_broadcast(&so->so_cv);
235 1.1 cgd sowwakeup(so);
236 1.1 cgd sorwakeup(so);
237 1.1 cgd }
238 1.1 cgd
239 1.94 ad void
240 1.94 ad soinit2(void)
241 1.94 ad {
242 1.94 ad
243 1.94 ad socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
244 1.94 ad "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
245 1.94 ad }
246 1.94 ad
247 1.1 cgd /*
248 1.116 rmind * sonewconn: accept a new connection.
249 1.116 rmind *
250 1.116 rmind * When an attempt at a new connection is noted on a socket which accepts
251 1.116 rmind * connections, sonewconn(9) is called. If the connection is possible
252 1.116 rmind * (subject to space constraints, etc) then we allocate a new structure,
253 1.116 rmind * properly linked into the data structure of the original socket.
254 1.116 rmind *
255 1.116 rmind * => If 'soready' is true, then socket will become ready for accept() i.e.
256 1.116 rmind * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
257 1.116 rmind * => May be called from soft-interrupt context.
258 1.116 rmind * => Listening socket should be locked.
259 1.116 rmind * => Returns the new socket locked.
260 1.1 cgd */
261 1.1 cgd struct socket *
262 1.116 rmind sonewconn(struct socket *head, bool soready)
263 1.1 cgd {
264 1.116 rmind struct socket *so;
265 1.116 rmind int soqueue, error;
266 1.91 ad
267 1.91 ad KASSERT(solocked(head));
268 1.1 cgd
269 1.116 rmind if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
270 1.123 tls /*
271 1.123 tls * Listen queue overflow. If there is an accept filter
272 1.123 tls * active, pass through the oldest cxn it's handling.
273 1.123 tls */
274 1.123 tls if (head->so_accf == NULL) {
275 1.123 tls return NULL;
276 1.123 tls } else {
277 1.123 tls struct socket *so2, *next;
278 1.123 tls
279 1.123 tls /* Pass the oldest connection waiting in the
280 1.123 tls accept filter */
281 1.123 tls for (so2 = TAILQ_FIRST(&head->so_q0);
282 1.123 tls so2 != NULL; so2 = next) {
283 1.123 tls next = TAILQ_NEXT(so2, so_qe);
284 1.123 tls if (so2->so_upcall == NULL) {
285 1.123 tls continue;
286 1.123 tls }
287 1.123 tls so2->so_upcall = NULL;
288 1.123 tls so2->so_upcallarg = NULL;
289 1.123 tls so2->so_options &= ~SO_ACCEPTFILTER;
290 1.123 tls so2->so_rcv.sb_flags &= ~SB_UPCALL;
291 1.123 tls soisconnected(so2);
292 1.123 tls break;
293 1.123 tls }
294 1.123 tls
295 1.123 tls /* If nothing was nudged out of the acept filter, bail
296 1.123 tls * out; otherwise proceed allocating the socket. */
297 1.123 tls if (so2 == NULL) {
298 1.123 tls return NULL;
299 1.123 tls }
300 1.123 tls }
301 1.116 rmind }
302 1.116 rmind if ((head->so_options & SO_ACCEPTFILTER) != 0) {
303 1.116 rmind soready = false;
304 1.116 rmind }
305 1.116 rmind soqueue = soready ? 1 : 0;
306 1.113 rmind
307 1.116 rmind if ((so = soget(false)) == NULL) {
308 1.100 dyoung return NULL;
309 1.116 rmind }
310 1.1 cgd so->so_type = head->so_type;
311 1.116 rmind so->so_options = head->so_options & ~SO_ACCEPTCONN;
312 1.1 cgd so->so_linger = head->so_linger;
313 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
314 1.1 cgd so->so_proto = head->so_proto;
315 1.1 cgd so->so_timeo = head->so_timeo;
316 1.1 cgd so->so_pgid = head->so_pgid;
317 1.24 matt so->so_send = head->so_send;
318 1.24 matt so->so_receive = head->so_receive;
319 1.67 christos so->so_uidinfo = head->so_uidinfo;
320 1.96 yamt so->so_cpid = head->so_cpid;
321 1.119 rmind
322 1.119 rmind /*
323 1.119 rmind * Share the lock with the listening-socket, it may get unshared
324 1.119 rmind * once the connection is complete.
325 1.119 rmind */
326 1.119 rmind mutex_obj_hold(head->so_lock);
327 1.119 rmind so->so_lock = head->so_lock;
328 1.119 rmind
329 1.119 rmind /*
330 1.119 rmind * Reserve the space for socket buffers.
331 1.119 rmind */
332 1.49 matt #ifdef MBUFTRACE
333 1.49 matt so->so_mowner = head->so_mowner;
334 1.49 matt so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
335 1.49 matt so->so_snd.sb_mowner = head->so_snd.sb_mowner;
336 1.49 matt #endif
337 1.119 rmind if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
338 1.103 christos goto out;
339 1.119 rmind }
340 1.83 tls so->so_snd.sb_lowat = head->so_snd.sb_lowat;
341 1.83 tls so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
342 1.84 tls so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
343 1.84 tls so->so_snd.sb_timeo = head->so_snd.sb_timeo;
344 1.107 christos so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
345 1.107 christos so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
346 1.116 rmind
347 1.116 rmind /*
348 1.119 rmind * Finally, perform the protocol attach. Note: a new socket
349 1.119 rmind * lock may be assigned at this point (if so, it will be held).
350 1.116 rmind */
351 1.119 rmind error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
352 1.116 rmind if (error) {
353 1.103 christos out:
354 1.119 rmind KASSERT(solocked(so));
355 1.116 rmind KASSERT(so->so_accf == NULL);
356 1.91 ad soput(so);
357 1.116 rmind
358 1.116 rmind /* Note: the listening socket shall stay locked. */
359 1.116 rmind KASSERT(solocked(head));
360 1.100 dyoung return NULL;
361 1.1 cgd }
362 1.119 rmind KASSERT(solocked2(head, so));
363 1.116 rmind
364 1.116 rmind /*
365 1.117 rmind * Insert into the queue. If ready, update the connection status
366 1.117 rmind * and wake up any waiters, e.g. processes blocking on accept().
367 1.116 rmind */
368 1.117 rmind soqinsque(head, so, soqueue);
369 1.116 rmind if (soready) {
370 1.116 rmind so->so_state |= SS_ISCONNECTED;
371 1.1 cgd sorwakeup(head);
372 1.91 ad cv_broadcast(&head->so_cv);
373 1.1 cgd }
374 1.100 dyoung return so;
375 1.1 cgd }
376 1.1 cgd
377 1.91 ad struct socket *
378 1.91 ad soget(bool waitok)
379 1.91 ad {
380 1.91 ad struct socket *so;
381 1.91 ad
382 1.94 ad so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
383 1.91 ad if (__predict_false(so == NULL))
384 1.91 ad return (NULL);
385 1.91 ad memset(so, 0, sizeof(*so));
386 1.91 ad TAILQ_INIT(&so->so_q0);
387 1.91 ad TAILQ_INIT(&so->so_q);
388 1.91 ad cv_init(&so->so_cv, "socket");
389 1.91 ad cv_init(&so->so_rcv.sb_cv, "netio");
390 1.91 ad cv_init(&so->so_snd.sb_cv, "netio");
391 1.91 ad selinit(&so->so_rcv.sb_sel);
392 1.91 ad selinit(&so->so_snd.sb_sel);
393 1.91 ad so->so_rcv.sb_so = so;
394 1.91 ad so->so_snd.sb_so = so;
395 1.91 ad return so;
396 1.91 ad }
397 1.91 ad
398 1.91 ad void
399 1.91 ad soput(struct socket *so)
400 1.91 ad {
401 1.91 ad
402 1.91 ad KASSERT(!cv_has_waiters(&so->so_cv));
403 1.91 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
404 1.91 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
405 1.91 ad seldestroy(&so->so_rcv.sb_sel);
406 1.91 ad seldestroy(&so->so_snd.sb_sel);
407 1.91 ad mutex_obj_free(so->so_lock);
408 1.91 ad cv_destroy(&so->so_cv);
409 1.91 ad cv_destroy(&so->so_rcv.sb_cv);
410 1.91 ad cv_destroy(&so->so_snd.sb_cv);
411 1.94 ad pool_cache_put(socket_cache, so);
412 1.91 ad }
413 1.91 ad
414 1.116 rmind /*
415 1.116 rmind * soqinsque: insert socket of a new connection into the specified
416 1.116 rmind * accept queue of the listening socket (head).
417 1.116 rmind *
418 1.116 rmind * q = 0: queue of partial connections
419 1.116 rmind * q = 1: queue of incoming connections
420 1.116 rmind */
421 1.7 mycroft void
422 1.37 lukem soqinsque(struct socket *head, struct socket *so, int q)
423 1.1 cgd {
424 1.116 rmind KASSERT(q == 0 || q == 1);
425 1.91 ad KASSERT(solocked2(head, so));
426 1.116 rmind KASSERT(so->so_onq == NULL);
427 1.116 rmind KASSERT(so->so_head == NULL);
428 1.22 thorpej
429 1.1 cgd so->so_head = head;
430 1.1 cgd if (q == 0) {
431 1.1 cgd head->so_q0len++;
432 1.22 thorpej so->so_onq = &head->so_q0;
433 1.1 cgd } else {
434 1.1 cgd head->so_qlen++;
435 1.22 thorpej so->so_onq = &head->so_q;
436 1.1 cgd }
437 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
438 1.1 cgd }
439 1.1 cgd
440 1.116 rmind /*
441 1.116 rmind * soqremque: remove socket from the specified queue.
442 1.116 rmind *
443 1.116 rmind * => Returns true if socket was removed from the specified queue.
444 1.116 rmind * => False if socket was not removed (because it was in other queue).
445 1.116 rmind */
446 1.116 rmind bool
447 1.37 lukem soqremque(struct socket *so, int q)
448 1.1 cgd {
449 1.116 rmind struct socket *head = so->so_head;
450 1.1 cgd
451 1.116 rmind KASSERT(q == 0 || q == 1);
452 1.116 rmind KASSERT(solocked(so));
453 1.116 rmind KASSERT(so->so_onq != NULL);
454 1.116 rmind KASSERT(head != NULL);
455 1.91 ad
456 1.22 thorpej if (q == 0) {
457 1.22 thorpej if (so->so_onq != &head->so_q0)
458 1.116 rmind return false;
459 1.1 cgd head->so_q0len--;
460 1.1 cgd } else {
461 1.22 thorpej if (so->so_onq != &head->so_q)
462 1.116 rmind return false;
463 1.1 cgd head->so_qlen--;
464 1.1 cgd }
465 1.91 ad KASSERT(solocked2(so, head));
466 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe);
467 1.22 thorpej so->so_onq = NULL;
468 1.22 thorpej so->so_head = NULL;
469 1.116 rmind return true;
470 1.1 cgd }
471 1.1 cgd
472 1.1 cgd /*
473 1.116 rmind * socantsendmore: indicates that no more data will be sent on the
474 1.1 cgd * socket; it would normally be applied to a socket when the user
475 1.1 cgd * informs the system that no more data is to be sent, by the protocol
476 1.120 rtr * code (in case pr_shutdown()).
477 1.1 cgd */
478 1.4 andrew void
479 1.37 lukem socantsendmore(struct socket *so)
480 1.1 cgd {
481 1.91 ad KASSERT(solocked(so));
482 1.91 ad
483 1.1 cgd so->so_state |= SS_CANTSENDMORE;
484 1.1 cgd sowwakeup(so);
485 1.1 cgd }
486 1.1 cgd
487 1.116 rmind /*
488 1.116 rmind * socantrcvmore(): indicates that no more data will be received and
489 1.116 rmind * will normally be applied to the socket by a protocol when it detects
490 1.116 rmind * that the peer will send no more data. Data queued for reading in
491 1.116 rmind * the socket may yet be read.
492 1.116 rmind */
493 1.4 andrew void
494 1.37 lukem socantrcvmore(struct socket *so)
495 1.1 cgd {
496 1.91 ad KASSERT(solocked(so));
497 1.91 ad
498 1.1 cgd so->so_state |= SS_CANTRCVMORE;
499 1.1 cgd sorwakeup(so);
500 1.1 cgd }
501 1.1 cgd
502 1.1 cgd /*
503 1.128 roy * soroverflow(): indicates that data was attempted to be sent
504 1.128 roy * but the receiving buffer overflowed.
505 1.128 roy */
506 1.128 roy void
507 1.128 roy soroverflow(struct socket *so)
508 1.128 roy {
509 1.128 roy KASSERT(solocked(so));
510 1.128 roy
511 1.128 roy so->so_rcv.sb_overflowed++;
512 1.133 christos if (so->so_options & SO_RERROR) {
513 1.133 christos so->so_rerror = ENOBUFS;
514 1.133 christos sorwakeup(so);
515 1.133 christos }
516 1.128 roy }
517 1.128 roy
518 1.128 roy /*
519 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
520 1.1 cgd */
521 1.7 mycroft int
522 1.37 lukem sbwait(struct sockbuf *sb)
523 1.1 cgd {
524 1.91 ad struct socket *so;
525 1.91 ad kmutex_t *lock;
526 1.91 ad int error;
527 1.1 cgd
528 1.91 ad so = sb->sb_so;
529 1.1 cgd
530 1.91 ad KASSERT(solocked(so));
531 1.1 cgd
532 1.91 ad sb->sb_flags |= SB_NOTIFY;
533 1.91 ad lock = so->so_lock;
534 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0)
535 1.91 ad error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
536 1.91 ad else
537 1.91 ad error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
538 1.91 ad if (__predict_false(lock != so->so_lock))
539 1.91 ad solockretry(so, lock);
540 1.91 ad return error;
541 1.1 cgd }
542 1.1 cgd
543 1.1 cgd /*
544 1.1 cgd * Wakeup processes waiting on a socket buffer.
545 1.1 cgd * Do asynchronous notification via SIGIO
546 1.39 manu * if the socket buffer has the SB_ASYNC flag set.
547 1.1 cgd */
548 1.7 mycroft void
549 1.55 christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
550 1.1 cgd {
551 1.90 rmind int band;
552 1.90 rmind
553 1.91 ad KASSERT(solocked(so));
554 1.91 ad KASSERT(sb->sb_so == so);
555 1.91 ad
556 1.90 rmind if (code == POLL_IN)
557 1.90 rmind band = POLLIN|POLLRDNORM;
558 1.90 rmind else
559 1.90 rmind band = POLLOUT|POLLWRNORM;
560 1.91 ad sb->sb_flags &= ~SB_NOTIFY;
561 1.91 ad selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
562 1.91 ad cv_broadcast(&sb->sb_cv);
563 1.90 rmind if (sb->sb_flags & SB_ASYNC)
564 1.57 christos fownsignal(so->so_pgid, SIGIO, code, band, so);
565 1.24 matt if (sb->sb_flags & SB_UPCALL)
566 1.104 tls (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
567 1.1 cgd }
568 1.1 cgd
569 1.1 cgd /*
570 1.95 ad * Reset a socket's lock pointer. Wake all threads waiting on the
571 1.95 ad * socket's condition variables so that they can restart their waits
572 1.95 ad * using the new lock. The existing lock must be held.
573 1.95 ad */
574 1.95 ad void
575 1.95 ad solockreset(struct socket *so, kmutex_t *lock)
576 1.95 ad {
577 1.95 ad
578 1.95 ad KASSERT(solocked(so));
579 1.95 ad
580 1.95 ad so->so_lock = lock;
581 1.95 ad cv_broadcast(&so->so_snd.sb_cv);
582 1.95 ad cv_broadcast(&so->so_rcv.sb_cv);
583 1.95 ad cv_broadcast(&so->so_cv);
584 1.95 ad }
585 1.95 ad
586 1.95 ad /*
587 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
588 1.1 cgd *
589 1.1 cgd * Each socket contains two socket buffers: one for sending data and
590 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
591 1.1 cgd * information about the number of mbufs and amount of data in the
592 1.13 mycroft * queue, and other fields allowing poll() statements and notification
593 1.1 cgd * on data availability to be implemented.
594 1.1 cgd *
595 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
596 1.1 cgd * Each record is a list of mbufs chained together with the m_next
597 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
598 1.1 cgd * level routine soreceive() expects the following conventions to be
599 1.1 cgd * observed when placing information in the receive buffer:
600 1.1 cgd *
601 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
602 1.1 cgd * name, then a record containing that name must be present before
603 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
604 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
605 1.1 cgd * just additional data associated with the message), and there are
606 1.1 cgd * ``rights'' to be received, then a record containing this data
607 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL).
608 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
609 1.1 cgd * a data record, perhaps of zero length.
610 1.1 cgd *
611 1.1 cgd * Before using a new socket structure it is first necessary to reserve
612 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
613 1.1 cgd * some of the available buffer space in the system buffer pool for the
614 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
615 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
616 1.1 cgd */
617 1.1 cgd
618 1.7 mycroft int
619 1.58 thorpej sb_max_set(u_long new_sbmax)
620 1.58 thorpej {
621 1.58 thorpej int s;
622 1.58 thorpej
623 1.58 thorpej if (new_sbmax < (16 * 1024))
624 1.58 thorpej return (EINVAL);
625 1.58 thorpej
626 1.58 thorpej s = splsoftnet();
627 1.58 thorpej sb_max = new_sbmax;
628 1.58 thorpej sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
629 1.58 thorpej splx(s);
630 1.58 thorpej
631 1.58 thorpej return (0);
632 1.58 thorpej }
633 1.58 thorpej
634 1.58 thorpej int
635 1.37 lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
636 1.1 cgd {
637 1.116 rmind KASSERT(so->so_pcb == NULL || solocked(so));
638 1.91 ad
639 1.74 christos /*
640 1.74 christos * there's at least one application (a configure script of screen)
641 1.74 christos * which expects a fifo is writable even if it has "some" bytes
642 1.74 christos * in its buffer.
643 1.74 christos * so we want to make sure (hiwat - lowat) >= (some bytes).
644 1.74 christos *
645 1.74 christos * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
646 1.74 christos * we expect it's large enough for such applications.
647 1.74 christos */
648 1.74 christos u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
649 1.74 christos u_long hiwat = lowat + PIPE_BUF;
650 1.1 cgd
651 1.74 christos if (sndcc < hiwat)
652 1.74 christos sndcc = hiwat;
653 1.59 christos if (sbreserve(&so->so_snd, sndcc, so) == 0)
654 1.1 cgd goto bad;
655 1.59 christos if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
656 1.1 cgd goto bad2;
657 1.1 cgd if (so->so_rcv.sb_lowat == 0)
658 1.1 cgd so->so_rcv.sb_lowat = 1;
659 1.1 cgd if (so->so_snd.sb_lowat == 0)
660 1.74 christos so->so_snd.sb_lowat = lowat;
661 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
662 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
663 1.1 cgd return (0);
664 1.37 lukem bad2:
665 1.59 christos sbrelease(&so->so_snd, so);
666 1.37 lukem bad:
667 1.1 cgd return (ENOBUFS);
668 1.1 cgd }
669 1.1 cgd
670 1.1 cgd /*
671 1.1 cgd * Allot mbufs to a sockbuf.
672 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
673 1.1 cgd * if buffering efficiency is near the normal case.
674 1.1 cgd */
675 1.7 mycroft int
676 1.59 christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
677 1.1 cgd {
678 1.75 ad struct lwp *l = curlwp; /* XXX */
679 1.62 christos rlim_t maxcc;
680 1.67 christos struct uidinfo *uidinfo;
681 1.1 cgd
682 1.116 rmind KASSERT(so->so_pcb == NULL || solocked(so));
683 1.91 ad KASSERT(sb->sb_so == so);
684 1.91 ad KASSERT(sb_max_adj != 0);
685 1.91 ad
686 1.58 thorpej if (cc == 0 || cc > sb_max_adj)
687 1.1 cgd return (0);
688 1.93 christos
689 1.105 elad maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
690 1.93 christos
691 1.93 christos uidinfo = so->so_uidinfo;
692 1.67 christos if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
693 1.62 christos return 0;
694 1.132 riastrad sb->sb_mbmax = uimin(cc * 2, sb_max);
695 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
696 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
697 1.131 msaitoh
698 1.1 cgd return (1);
699 1.1 cgd }
700 1.1 cgd
701 1.1 cgd /*
702 1.91 ad * Free mbufs held by a socket, and reserved mbuf space. We do not assert
703 1.91 ad * that the socket is held locked here: see sorflush().
704 1.1 cgd */
705 1.7 mycroft void
706 1.59 christos sbrelease(struct sockbuf *sb, struct socket *so)
707 1.1 cgd {
708 1.1 cgd
709 1.91 ad KASSERT(sb->sb_so == so);
710 1.91 ad
711 1.1 cgd sbflush(sb);
712 1.87 yamt (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
713 1.59 christos sb->sb_mbmax = 0;
714 1.1 cgd }
715 1.1 cgd
716 1.1 cgd /*
717 1.1 cgd * Routines to add and remove
718 1.1 cgd * data from an mbuf queue.
719 1.1 cgd *
720 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
721 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
722 1.1 cgd * space is available, comparing the function sbspace() with the amount
723 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
724 1.1 cgd * that data supplied is treated as the beginning of a new record.
725 1.1 cgd * To place a sender's address, optional access rights, and data in a
726 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
727 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
728 1.1 cgd * should be used. In either case, the new data begins a new record.
729 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
730 1.1 cgd * for the caller that there will be enough space to store the data.
731 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
732 1.1 cgd * to store additional information in.
733 1.1 cgd *
734 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
735 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
736 1.129 maxv * send buffer in a protocol with m_copym for output to a peer,
737 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
738 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
739 1.1 cgd */
740 1.1 cgd
741 1.43 thorpej #ifdef SOCKBUF_DEBUG
742 1.43 thorpej void
743 1.43 thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
744 1.43 thorpej {
745 1.43 thorpej struct mbuf *m = sb->sb_mb;
746 1.43 thorpej
747 1.91 ad KASSERT(solocked(sb->sb_so));
748 1.91 ad
749 1.43 thorpej while (m && m->m_nextpkt)
750 1.43 thorpej m = m->m_nextpkt;
751 1.43 thorpej
752 1.43 thorpej if (m != sb->sb_lastrecord) {
753 1.43 thorpej printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
754 1.43 thorpej sb->sb_mb, sb->sb_lastrecord, m);
755 1.43 thorpej printf("packet chain:\n");
756 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
757 1.43 thorpej printf("\t%p\n", m);
758 1.47 provos panic("sblastrecordchk from %s", where);
759 1.43 thorpej }
760 1.43 thorpej }
761 1.43 thorpej
762 1.43 thorpej void
763 1.43 thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
764 1.43 thorpej {
765 1.43 thorpej struct mbuf *m = sb->sb_mb;
766 1.43 thorpej struct mbuf *n;
767 1.43 thorpej
768 1.91 ad KASSERT(solocked(sb->sb_so));
769 1.91 ad
770 1.43 thorpej while (m && m->m_nextpkt)
771 1.43 thorpej m = m->m_nextpkt;
772 1.43 thorpej
773 1.43 thorpej while (m && m->m_next)
774 1.43 thorpej m = m->m_next;
775 1.43 thorpej
776 1.43 thorpej if (m != sb->sb_mbtail) {
777 1.43 thorpej printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
778 1.43 thorpej sb->sb_mb, sb->sb_mbtail, m);
779 1.43 thorpej printf("packet tree:\n");
780 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
781 1.43 thorpej printf("\t");
782 1.43 thorpej for (n = m; n != NULL; n = n->m_next)
783 1.43 thorpej printf("%p ", n);
784 1.43 thorpej printf("\n");
785 1.43 thorpej }
786 1.43 thorpej panic("sblastmbufchk from %s", where);
787 1.43 thorpej }
788 1.43 thorpej }
789 1.43 thorpej #endif /* SOCKBUF_DEBUG */
790 1.43 thorpej
791 1.63 jonathan /*
792 1.63 jonathan * Link a chain of records onto a socket buffer
793 1.63 jonathan */
794 1.63 jonathan #define SBLINKRECORDCHAIN(sb, m0, mlast) \
795 1.43 thorpej do { \
796 1.43 thorpej if ((sb)->sb_lastrecord != NULL) \
797 1.43 thorpej (sb)->sb_lastrecord->m_nextpkt = (m0); \
798 1.43 thorpej else \
799 1.43 thorpej (sb)->sb_mb = (m0); \
800 1.63 jonathan (sb)->sb_lastrecord = (mlast); \
801 1.43 thorpej } while (/*CONSTCOND*/0)
802 1.43 thorpej
803 1.63 jonathan
804 1.63 jonathan #define SBLINKRECORD(sb, m0) \
805 1.63 jonathan SBLINKRECORDCHAIN(sb, m0, m0)
806 1.63 jonathan
807 1.1 cgd /*
808 1.1 cgd * Append mbuf chain m to the last record in the
809 1.1 cgd * socket buffer sb. The additional space associated
810 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
811 1.1 cgd * discarded and mbufs are compacted where possible.
812 1.1 cgd */
813 1.7 mycroft void
814 1.37 lukem sbappend(struct sockbuf *sb, struct mbuf *m)
815 1.1 cgd {
816 1.37 lukem struct mbuf *n;
817 1.1 cgd
818 1.91 ad KASSERT(solocked(sb->sb_so));
819 1.91 ad
820 1.115 christos if (m == NULL)
821 1.1 cgd return;
822 1.43 thorpej
823 1.49 matt #ifdef MBUFTRACE
824 1.65 jonathan m_claimm(m, sb->sb_mowner);
825 1.49 matt #endif
826 1.49 matt
827 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 1");
828 1.43 thorpej
829 1.43 thorpej if ((n = sb->sb_lastrecord) != NULL) {
830 1.43 thorpej /*
831 1.43 thorpej * XXX Would like to simply use sb_mbtail here, but
832 1.43 thorpej * XXX I need to verify that I won't miss an EOR that
833 1.43 thorpej * XXX way.
834 1.43 thorpej */
835 1.1 cgd do {
836 1.1 cgd if (n->m_flags & M_EOR) {
837 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
838 1.1 cgd return;
839 1.1 cgd }
840 1.1 cgd } while (n->m_next && (n = n->m_next));
841 1.43 thorpej } else {
842 1.43 thorpej /*
843 1.43 thorpej * If this is the first record in the socket buffer, it's
844 1.43 thorpej * also the last record.
845 1.43 thorpej */
846 1.43 thorpej sb->sb_lastrecord = m;
847 1.1 cgd }
848 1.1 cgd sbcompress(sb, m, n);
849 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 2");
850 1.43 thorpej }
851 1.43 thorpej
852 1.43 thorpej /*
853 1.43 thorpej * This version of sbappend() should only be used when the caller
854 1.43 thorpej * absolutely knows that there will never be more than one record
855 1.43 thorpej * in the socket buffer, that is, a stream protocol (such as TCP).
856 1.43 thorpej */
857 1.43 thorpej void
858 1.44 thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
859 1.43 thorpej {
860 1.43 thorpej
861 1.91 ad KASSERT(solocked(sb->sb_so));
862 1.43 thorpej KDASSERT(m->m_nextpkt == NULL);
863 1.43 thorpej KASSERT(sb->sb_mb == sb->sb_lastrecord);
864 1.43 thorpej
865 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
866 1.43 thorpej
867 1.49 matt #ifdef MBUFTRACE
868 1.65 jonathan m_claimm(m, sb->sb_mowner);
869 1.49 matt #endif
870 1.49 matt
871 1.43 thorpej sbcompress(sb, m, sb->sb_mbtail);
872 1.43 thorpej
873 1.43 thorpej sb->sb_lastrecord = sb->sb_mb;
874 1.43 thorpej SBLASTRECORDCHK(sb, __func__);
875 1.1 cgd }
876 1.1 cgd
877 1.1 cgd #ifdef SOCKBUF_DEBUG
878 1.7 mycroft void
879 1.37 lukem sbcheck(struct sockbuf *sb)
880 1.1 cgd {
881 1.91 ad struct mbuf *m, *m2;
882 1.43 thorpej u_long len, mbcnt;
883 1.1 cgd
884 1.91 ad KASSERT(solocked(sb->sb_so));
885 1.91 ad
886 1.37 lukem len = 0;
887 1.37 lukem mbcnt = 0;
888 1.91 ad for (m = sb->sb_mb; m; m = m->m_nextpkt) {
889 1.91 ad for (m2 = m; m2 != NULL; m2 = m2->m_next) {
890 1.91 ad len += m2->m_len;
891 1.91 ad mbcnt += MSIZE;
892 1.91 ad if (m2->m_flags & M_EXT)
893 1.91 ad mbcnt += m2->m_ext.ext_size;
894 1.91 ad if (m2->m_nextpkt != NULL)
895 1.91 ad panic("sbcheck nextpkt");
896 1.91 ad }
897 1.1 cgd }
898 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
899 1.43 thorpej printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
900 1.1 cgd mbcnt, sb->sb_mbcnt);
901 1.1 cgd panic("sbcheck");
902 1.1 cgd }
903 1.1 cgd }
904 1.1 cgd #endif
905 1.1 cgd
906 1.1 cgd /*
907 1.1 cgd * As above, except the mbuf chain
908 1.1 cgd * begins a new record.
909 1.1 cgd */
910 1.7 mycroft void
911 1.37 lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
912 1.1 cgd {
913 1.37 lukem struct mbuf *m;
914 1.1 cgd
915 1.91 ad KASSERT(solocked(sb->sb_so));
916 1.91 ad
917 1.115 christos if (m0 == NULL)
918 1.1 cgd return;
919 1.43 thorpej
920 1.49 matt #ifdef MBUFTRACE
921 1.65 jonathan m_claimm(m0, sb->sb_mowner);
922 1.49 matt #endif
923 1.1 cgd /*
924 1.1 cgd * Put the first mbuf on the queue.
925 1.1 cgd * Note this permits zero length records.
926 1.1 cgd */
927 1.1 cgd sballoc(sb, m0);
928 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 1");
929 1.43 thorpej SBLINKRECORD(sb, m0);
930 1.1 cgd m = m0->m_next;
931 1.1 cgd m0->m_next = 0;
932 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
933 1.1 cgd m0->m_flags &= ~M_EOR;
934 1.1 cgd m->m_flags |= M_EOR;
935 1.1 cgd }
936 1.1 cgd sbcompress(sb, m, m0);
937 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 2");
938 1.1 cgd }
939 1.1 cgd
940 1.1 cgd /*
941 1.1 cgd * As above except that OOB data
942 1.1 cgd * is inserted at the beginning of the sockbuf,
943 1.1 cgd * but after any other OOB data.
944 1.1 cgd */
945 1.7 mycroft void
946 1.37 lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
947 1.1 cgd {
948 1.37 lukem struct mbuf *m, **mp;
949 1.1 cgd
950 1.91 ad KASSERT(solocked(sb->sb_so));
951 1.91 ad
952 1.115 christos if (m0 == NULL)
953 1.1 cgd return;
954 1.43 thorpej
955 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 1");
956 1.43 thorpej
957 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
958 1.1 cgd again:
959 1.1 cgd switch (m->m_type) {
960 1.1 cgd
961 1.1 cgd case MT_OOBDATA:
962 1.1 cgd continue; /* WANT next train */
963 1.1 cgd
964 1.1 cgd case MT_CONTROL:
965 1.11 christos if ((m = m->m_next) != NULL)
966 1.1 cgd goto again; /* inspect THIS train further */
967 1.1 cgd }
968 1.1 cgd break;
969 1.1 cgd }
970 1.1 cgd /*
971 1.1 cgd * Put the first mbuf on the queue.
972 1.1 cgd * Note this permits zero length records.
973 1.1 cgd */
974 1.1 cgd sballoc(sb, m0);
975 1.1 cgd m0->m_nextpkt = *mp;
976 1.43 thorpej if (*mp == NULL) {
977 1.43 thorpej /* m0 is actually the new tail */
978 1.43 thorpej sb->sb_lastrecord = m0;
979 1.43 thorpej }
980 1.1 cgd *mp = m0;
981 1.1 cgd m = m0->m_next;
982 1.1 cgd m0->m_next = 0;
983 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
984 1.1 cgd m0->m_flags &= ~M_EOR;
985 1.1 cgd m->m_flags |= M_EOR;
986 1.1 cgd }
987 1.1 cgd sbcompress(sb, m, m0);
988 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 2");
989 1.1 cgd }
990 1.1 cgd
991 1.1 cgd /*
992 1.1 cgd * Append address and data, and optionally, control (ancillary) data
993 1.1 cgd * to the receive queue of a socket. If present,
994 1.1 cgd * m0 must include a packet header with total length.
995 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
996 1.1 cgd */
997 1.7 mycroft int
998 1.61 matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
999 1.37 lukem struct mbuf *control)
1000 1.1 cgd {
1001 1.43 thorpej struct mbuf *m, *n, *nlast;
1002 1.50 fvdl int space, len;
1003 1.1 cgd
1004 1.91 ad KASSERT(solocked(sb->sb_so));
1005 1.91 ad
1006 1.37 lukem space = asa->sa_len;
1007 1.37 lukem
1008 1.49 matt if (m0 != NULL) {
1009 1.49 matt if ((m0->m_flags & M_PKTHDR) == 0)
1010 1.49 matt panic("sbappendaddr");
1011 1.1 cgd space += m0->m_pkthdr.len;
1012 1.49 matt #ifdef MBUFTRACE
1013 1.65 jonathan m_claimm(m0, sb->sb_mowner);
1014 1.49 matt #endif
1015 1.49 matt }
1016 1.1 cgd for (n = control; n; n = n->m_next) {
1017 1.1 cgd space += n->m_len;
1018 1.49 matt MCLAIM(n, sb->sb_mowner);
1019 1.115 christos if (n->m_next == NULL) /* keep pointer to last control buf */
1020 1.1 cgd break;
1021 1.1 cgd }
1022 1.1 cgd if (space > sbspace(sb))
1023 1.1 cgd return (0);
1024 1.115 christos m = m_get(M_DONTWAIT, MT_SONAME);
1025 1.115 christos if (m == NULL)
1026 1.1 cgd return (0);
1027 1.49 matt MCLAIM(m, sb->sb_mowner);
1028 1.50 fvdl /*
1029 1.50 fvdl * XXX avoid 'comparison always true' warning which isn't easily
1030 1.50 fvdl * avoided.
1031 1.50 fvdl */
1032 1.50 fvdl len = asa->sa_len;
1033 1.50 fvdl if (len > MLEN) {
1034 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1035 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
1036 1.20 thorpej m_free(m);
1037 1.20 thorpej return (0);
1038 1.20 thorpej }
1039 1.20 thorpej }
1040 1.1 cgd m->m_len = asa->sa_len;
1041 1.82 christos memcpy(mtod(m, void *), asa, asa->sa_len);
1042 1.1 cgd if (n)
1043 1.1 cgd n->m_next = m0; /* concatenate data to control */
1044 1.1 cgd else
1045 1.1 cgd control = m0;
1046 1.1 cgd m->m_next = control;
1047 1.43 thorpej
1048 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 1");
1049 1.43 thorpej
1050 1.43 thorpej for (n = m; n->m_next != NULL; n = n->m_next)
1051 1.1 cgd sballoc(sb, n);
1052 1.43 thorpej sballoc(sb, n);
1053 1.43 thorpej nlast = n;
1054 1.43 thorpej SBLINKRECORD(sb, m);
1055 1.43 thorpej
1056 1.43 thorpej sb->sb_mbtail = nlast;
1057 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendaddr");
1058 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 2");
1059 1.43 thorpej
1060 1.1 cgd return (1);
1061 1.1 cgd }
1062 1.1 cgd
1063 1.63 jonathan /*
1064 1.63 jonathan * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1065 1.63 jonathan * an mbuf chain.
1066 1.63 jonathan */
1067 1.70 perry static inline struct mbuf *
1068 1.81 yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1069 1.64 jonathan const struct sockaddr *asa)
1070 1.63 jonathan {
1071 1.63 jonathan struct mbuf *m;
1072 1.64 jonathan const int salen = asa->sa_len;
1073 1.63 jonathan
1074 1.91 ad KASSERT(solocked(sb->sb_so));
1075 1.91 ad
1076 1.63 jonathan /* only the first in each chain need be a pkthdr */
1077 1.115 christos m = m_gethdr(M_DONTWAIT, MT_SONAME);
1078 1.115 christos if (m == NULL)
1079 1.115 christos return NULL;
1080 1.63 jonathan MCLAIM(m, sb->sb_mowner);
1081 1.64 jonathan #ifdef notyet
1082 1.64 jonathan if (salen > MHLEN) {
1083 1.64 jonathan MEXTMALLOC(m, salen, M_NOWAIT);
1084 1.64 jonathan if ((m->m_flags & M_EXT) == 0) {
1085 1.64 jonathan m_free(m);
1086 1.115 christos return NULL;
1087 1.64 jonathan }
1088 1.64 jonathan }
1089 1.64 jonathan #else
1090 1.64 jonathan KASSERT(salen <= MHLEN);
1091 1.64 jonathan #endif
1092 1.64 jonathan m->m_len = salen;
1093 1.82 christos memcpy(mtod(m, void *), asa, salen);
1094 1.63 jonathan m->m_next = m0;
1095 1.64 jonathan m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1096 1.63 jonathan
1097 1.63 jonathan return m;
1098 1.63 jonathan }
1099 1.63 jonathan
1100 1.63 jonathan int
1101 1.63 jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1102 1.63 jonathan struct mbuf *m0, int sbprio)
1103 1.63 jonathan {
1104 1.63 jonathan struct mbuf *m, *n, *n0, *nlast;
1105 1.63 jonathan int error;
1106 1.63 jonathan
1107 1.91 ad KASSERT(solocked(sb->sb_so));
1108 1.91 ad
1109 1.63 jonathan /*
1110 1.63 jonathan * XXX sbprio reserved for encoding priority of this* request:
1111 1.63 jonathan * SB_PRIO_NONE --> honour normal sb limits
1112 1.63 jonathan * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1113 1.63 jonathan * take whole chain. Intended for large requests
1114 1.63 jonathan * that should be delivered atomically (all, or none).
1115 1.63 jonathan * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1116 1.63 jonathan * over normal socket limits, for messages indicating
1117 1.63 jonathan * buffer overflow in earlier normal/lower-priority messages
1118 1.63 jonathan * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1119 1.63 jonathan * Intended for kernel-generated messages only.
1120 1.63 jonathan * Up to generator to avoid total mbuf resource exhaustion.
1121 1.63 jonathan */
1122 1.63 jonathan (void)sbprio;
1123 1.63 jonathan
1124 1.63 jonathan if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1125 1.63 jonathan panic("sbappendaddrchain");
1126 1.63 jonathan
1127 1.114 martin #ifdef notyet
1128 1.63 jonathan space = sbspace(sb);
1129 1.66 perry
1130 1.66 perry /*
1131 1.63 jonathan * Enforce SB_PRIO_* limits as described above.
1132 1.63 jonathan */
1133 1.63 jonathan #endif
1134 1.63 jonathan
1135 1.63 jonathan n0 = NULL;
1136 1.63 jonathan nlast = NULL;
1137 1.63 jonathan for (m = m0; m; m = m->m_nextpkt) {
1138 1.63 jonathan struct mbuf *np;
1139 1.63 jonathan
1140 1.64 jonathan #ifdef MBUFTRACE
1141 1.65 jonathan m_claimm(m, sb->sb_mowner);
1142 1.64 jonathan #endif
1143 1.64 jonathan
1144 1.63 jonathan /* Prepend sockaddr to this record (m) of input chain m0 */
1145 1.64 jonathan n = m_prepend_sockaddr(sb, m, asa);
1146 1.63 jonathan if (n == NULL) {
1147 1.63 jonathan error = ENOBUFS;
1148 1.63 jonathan goto bad;
1149 1.63 jonathan }
1150 1.63 jonathan
1151 1.63 jonathan /* Append record (asa+m) to end of new chain n0 */
1152 1.63 jonathan if (n0 == NULL) {
1153 1.63 jonathan n0 = n;
1154 1.63 jonathan } else {
1155 1.63 jonathan nlast->m_nextpkt = n;
1156 1.63 jonathan }
1157 1.63 jonathan /* Keep track of last record on new chain */
1158 1.63 jonathan nlast = n;
1159 1.63 jonathan
1160 1.63 jonathan for (np = n; np; np = np->m_next)
1161 1.63 jonathan sballoc(sb, np);
1162 1.63 jonathan }
1163 1.63 jonathan
1164 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1165 1.64 jonathan
1166 1.63 jonathan /* Drop the entire chain of (asa+m) records onto the socket */
1167 1.63 jonathan SBLINKRECORDCHAIN(sb, n0, nlast);
1168 1.64 jonathan
1169 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1170 1.64 jonathan
1171 1.63 jonathan for (m = nlast; m->m_next; m = m->m_next)
1172 1.63 jonathan ;
1173 1.63 jonathan sb->sb_mbtail = m;
1174 1.64 jonathan SBLASTMBUFCHK(sb, "sbappendaddrchain");
1175 1.64 jonathan
1176 1.63 jonathan return (1);
1177 1.63 jonathan
1178 1.63 jonathan bad:
1179 1.64 jonathan /*
1180 1.64 jonathan * On error, free the prepended addreseses. For consistency
1181 1.64 jonathan * with sbappendaddr(), leave it to our caller to free
1182 1.64 jonathan * the input record chain passed to us as m0.
1183 1.64 jonathan */
1184 1.64 jonathan while ((n = n0) != NULL) {
1185 1.64 jonathan struct mbuf *np;
1186 1.64 jonathan
1187 1.64 jonathan /* Undo the sballoc() of this record */
1188 1.64 jonathan for (np = n; np; np = np->m_next)
1189 1.64 jonathan sbfree(sb, np);
1190 1.64 jonathan
1191 1.64 jonathan n0 = n->m_nextpkt; /* iterate at next prepended address */
1192 1.124 christos np = m_free(n); /* free prepended address (not data) */
1193 1.64 jonathan }
1194 1.114 martin return error;
1195 1.63 jonathan }
1196 1.63 jonathan
1197 1.63 jonathan
1198 1.7 mycroft int
1199 1.37 lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1200 1.1 cgd {
1201 1.43 thorpej struct mbuf *m, *mlast, *n;
1202 1.37 lukem int space;
1203 1.1 cgd
1204 1.91 ad KASSERT(solocked(sb->sb_so));
1205 1.91 ad
1206 1.37 lukem space = 0;
1207 1.115 christos if (control == NULL)
1208 1.1 cgd panic("sbappendcontrol");
1209 1.1 cgd for (m = control; ; m = m->m_next) {
1210 1.1 cgd space += m->m_len;
1211 1.49 matt MCLAIM(m, sb->sb_mowner);
1212 1.115 christos if (m->m_next == NULL)
1213 1.1 cgd break;
1214 1.1 cgd }
1215 1.1 cgd n = m; /* save pointer to last control buffer */
1216 1.49 matt for (m = m0; m; m = m->m_next) {
1217 1.49 matt MCLAIM(m, sb->sb_mowner);
1218 1.1 cgd space += m->m_len;
1219 1.49 matt }
1220 1.1 cgd if (space > sbspace(sb))
1221 1.1 cgd return (0);
1222 1.1 cgd n->m_next = m0; /* concatenate data to control */
1223 1.43 thorpej
1224 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1225 1.43 thorpej
1226 1.43 thorpej for (m = control; m->m_next != NULL; m = m->m_next)
1227 1.1 cgd sballoc(sb, m);
1228 1.43 thorpej sballoc(sb, m);
1229 1.43 thorpej mlast = m;
1230 1.43 thorpej SBLINKRECORD(sb, control);
1231 1.43 thorpej
1232 1.43 thorpej sb->sb_mbtail = mlast;
1233 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendcontrol");
1234 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1235 1.43 thorpej
1236 1.1 cgd return (1);
1237 1.1 cgd }
1238 1.1 cgd
1239 1.1 cgd /*
1240 1.1 cgd * Compress mbuf chain m into the socket
1241 1.1 cgd * buffer sb following mbuf n. If n
1242 1.1 cgd * is null, the buffer is presumed empty.
1243 1.1 cgd */
1244 1.7 mycroft void
1245 1.37 lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1246 1.1 cgd {
1247 1.37 lukem int eor;
1248 1.37 lukem struct mbuf *o;
1249 1.1 cgd
1250 1.91 ad KASSERT(solocked(sb->sb_so));
1251 1.91 ad
1252 1.37 lukem eor = 0;
1253 1.1 cgd while (m) {
1254 1.1 cgd eor |= m->m_flags & M_EOR;
1255 1.1 cgd if (m->m_len == 0 &&
1256 1.1 cgd (eor == 0 ||
1257 1.1 cgd (((o = m->m_next) || (o = n)) &&
1258 1.1 cgd o->m_type == m->m_type))) {
1259 1.46 thorpej if (sb->sb_lastrecord == m)
1260 1.46 thorpej sb->sb_lastrecord = m->m_next;
1261 1.1 cgd m = m_free(m);
1262 1.1 cgd continue;
1263 1.1 cgd }
1264 1.40 thorpej if (n && (n->m_flags & M_EOR) == 0 &&
1265 1.40 thorpej /* M_TRAILINGSPACE() checks buffer writeability */
1266 1.40 thorpej m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1267 1.40 thorpej m->m_len <= M_TRAILINGSPACE(n) &&
1268 1.40 thorpej n->m_type == m->m_type) {
1269 1.82 christos memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1270 1.1 cgd (unsigned)m->m_len);
1271 1.1 cgd n->m_len += m->m_len;
1272 1.1 cgd sb->sb_cc += m->m_len;
1273 1.1 cgd m = m_free(m);
1274 1.1 cgd continue;
1275 1.1 cgd }
1276 1.1 cgd if (n)
1277 1.1 cgd n->m_next = m;
1278 1.1 cgd else
1279 1.1 cgd sb->sb_mb = m;
1280 1.43 thorpej sb->sb_mbtail = m;
1281 1.1 cgd sballoc(sb, m);
1282 1.1 cgd n = m;
1283 1.1 cgd m->m_flags &= ~M_EOR;
1284 1.1 cgd m = m->m_next;
1285 1.1 cgd n->m_next = 0;
1286 1.1 cgd }
1287 1.1 cgd if (eor) {
1288 1.1 cgd if (n)
1289 1.1 cgd n->m_flags |= eor;
1290 1.1 cgd else
1291 1.15 christos printf("semi-panic: sbcompress\n");
1292 1.1 cgd }
1293 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
1294 1.1 cgd }
1295 1.1 cgd
1296 1.1 cgd /*
1297 1.1 cgd * Free all mbufs in a sockbuf.
1298 1.1 cgd * Check that all resources are reclaimed.
1299 1.1 cgd */
1300 1.7 mycroft void
1301 1.37 lukem sbflush(struct sockbuf *sb)
1302 1.1 cgd {
1303 1.1 cgd
1304 1.91 ad KASSERT(solocked(sb->sb_so));
1305 1.43 thorpej KASSERT((sb->sb_flags & SB_LOCK) == 0);
1306 1.43 thorpej
1307 1.1 cgd while (sb->sb_mbcnt)
1308 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
1309 1.43 thorpej
1310 1.43 thorpej KASSERT(sb->sb_cc == 0);
1311 1.43 thorpej KASSERT(sb->sb_mb == NULL);
1312 1.43 thorpej KASSERT(sb->sb_mbtail == NULL);
1313 1.43 thorpej KASSERT(sb->sb_lastrecord == NULL);
1314 1.1 cgd }
1315 1.1 cgd
1316 1.1 cgd /*
1317 1.1 cgd * Drop data from (the front of) a sockbuf.
1318 1.1 cgd */
1319 1.7 mycroft void
1320 1.37 lukem sbdrop(struct sockbuf *sb, int len)
1321 1.1 cgd {
1322 1.124 christos struct mbuf *m, *next;
1323 1.1 cgd
1324 1.91 ad KASSERT(solocked(sb->sb_so));
1325 1.91 ad
1326 1.115 christos next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1327 1.1 cgd while (len > 0) {
1328 1.115 christos if (m == NULL) {
1329 1.115 christos if (next == NULL)
1330 1.112 matt panic("sbdrop(%p,%d): cc=%lu",
1331 1.112 matt sb, len, sb->sb_cc);
1332 1.1 cgd m = next;
1333 1.1 cgd next = m->m_nextpkt;
1334 1.1 cgd continue;
1335 1.1 cgd }
1336 1.1 cgd if (m->m_len > len) {
1337 1.1 cgd m->m_len -= len;
1338 1.1 cgd m->m_data += len;
1339 1.1 cgd sb->sb_cc -= len;
1340 1.1 cgd break;
1341 1.1 cgd }
1342 1.1 cgd len -= m->m_len;
1343 1.1 cgd sbfree(sb, m);
1344 1.124 christos m = m_free(m);
1345 1.1 cgd }
1346 1.1 cgd while (m && m->m_len == 0) {
1347 1.1 cgd sbfree(sb, m);
1348 1.124 christos m = m_free(m);
1349 1.1 cgd }
1350 1.1 cgd if (m) {
1351 1.1 cgd sb->sb_mb = m;
1352 1.1 cgd m->m_nextpkt = next;
1353 1.1 cgd } else
1354 1.1 cgd sb->sb_mb = next;
1355 1.43 thorpej /*
1356 1.45 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second part
1357 1.43 thorpej * makes sure sb_lastrecord is up-to-date if we dropped
1358 1.43 thorpej * part of the last record.
1359 1.43 thorpej */
1360 1.43 thorpej m = sb->sb_mb;
1361 1.43 thorpej if (m == NULL) {
1362 1.43 thorpej sb->sb_mbtail = NULL;
1363 1.43 thorpej sb->sb_lastrecord = NULL;
1364 1.43 thorpej } else if (m->m_nextpkt == NULL)
1365 1.43 thorpej sb->sb_lastrecord = m;
1366 1.1 cgd }
1367 1.1 cgd
1368 1.1 cgd /*
1369 1.1 cgd * Drop a record off the front of a sockbuf
1370 1.1 cgd * and move the next record to the front.
1371 1.1 cgd */
1372 1.7 mycroft void
1373 1.37 lukem sbdroprecord(struct sockbuf *sb)
1374 1.1 cgd {
1375 1.37 lukem struct mbuf *m, *mn;
1376 1.1 cgd
1377 1.91 ad KASSERT(solocked(sb->sb_so));
1378 1.91 ad
1379 1.1 cgd m = sb->sb_mb;
1380 1.1 cgd if (m) {
1381 1.1 cgd sb->sb_mb = m->m_nextpkt;
1382 1.1 cgd do {
1383 1.1 cgd sbfree(sb, m);
1384 1.124 christos mn = m_free(m);
1385 1.11 christos } while ((m = mn) != NULL);
1386 1.1 cgd }
1387 1.45 thorpej SB_EMPTY_FIXUP(sb);
1388 1.19 thorpej }
1389 1.19 thorpej
1390 1.19 thorpej /*
1391 1.19 thorpej * Create a "control" mbuf containing the specified data
1392 1.19 thorpej * with the specified type for presentation on a socket buffer.
1393 1.19 thorpej */
1394 1.19 thorpej struct mbuf *
1395 1.111 christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1396 1.19 thorpej {
1397 1.37 lukem struct cmsghdr *cp;
1398 1.37 lukem struct mbuf *m;
1399 1.111 christos int space = CMSG_SPACE(size);
1400 1.19 thorpej
1401 1.111 christos if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1402 1.111 christos printf("%s: message too large %d\n", __func__, space);
1403 1.30 itojun return NULL;
1404 1.30 itojun }
1405 1.30 itojun
1406 1.111 christos if ((m = m_get(flags, MT_CONTROL)) == NULL)
1407 1.111 christos return NULL;
1408 1.111 christos if (space > MLEN) {
1409 1.111 christos if (space > MCLBYTES)
1410 1.111 christos MEXTMALLOC(m, space, M_WAITOK);
1411 1.111 christos else
1412 1.111 christos MCLGET(m, flags);
1413 1.30 itojun if ((m->m_flags & M_EXT) == 0) {
1414 1.30 itojun m_free(m);
1415 1.30 itojun return NULL;
1416 1.30 itojun }
1417 1.30 itojun }
1418 1.19 thorpej cp = mtod(m, struct cmsghdr *);
1419 1.111 christos *p = CMSG_DATA(cp);
1420 1.111 christos m->m_len = space;
1421 1.35 itojun cp->cmsg_len = CMSG_LEN(size);
1422 1.19 thorpej cp->cmsg_level = level;
1423 1.19 thorpej cp->cmsg_type = type;
1424 1.111 christos return m;
1425 1.111 christos }
1426 1.111 christos
1427 1.111 christos struct mbuf *
1428 1.111 christos sbcreatecontrol(void *p, int size, int type, int level)
1429 1.111 christos {
1430 1.111 christos struct mbuf *m;
1431 1.111 christos void *v;
1432 1.111 christos
1433 1.111 christos m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1434 1.111 christos if (m == NULL)
1435 1.111 christos return NULL;
1436 1.111 christos memcpy(v, p, size);
1437 1.111 christos return m;
1438 1.1 cgd }
1439 1.91 ad
1440 1.91 ad void
1441 1.91 ad solockretry(struct socket *so, kmutex_t *lock)
1442 1.91 ad {
1443 1.91 ad
1444 1.91 ad while (lock != so->so_lock) {
1445 1.91 ad mutex_exit(lock);
1446 1.91 ad lock = so->so_lock;
1447 1.91 ad mutex_enter(lock);
1448 1.91 ad }
1449 1.91 ad }
1450 1.91 ad
1451 1.91 ad bool
1452 1.127 christos solocked(const struct socket *so)
1453 1.91 ad {
1454 1.91 ad
1455 1.91 ad return mutex_owned(so->so_lock);
1456 1.91 ad }
1457 1.91 ad
1458 1.91 ad bool
1459 1.127 christos solocked2(const struct socket *so1, const struct socket *so2)
1460 1.91 ad {
1461 1.127 christos const kmutex_t *lock;
1462 1.91 ad
1463 1.91 ad lock = so1->so_lock;
1464 1.91 ad if (lock != so2->so_lock)
1465 1.91 ad return false;
1466 1.91 ad return mutex_owned(lock);
1467 1.91 ad }
1468 1.91 ad
1469 1.91 ad /*
1470 1.116 rmind * sosetlock: assign a default lock to a new socket.
1471 1.91 ad */
1472 1.91 ad void
1473 1.91 ad sosetlock(struct socket *so)
1474 1.91 ad {
1475 1.116 rmind if (so->so_lock == NULL) {
1476 1.116 rmind kmutex_t *lock = softnet_lock;
1477 1.91 ad
1478 1.91 ad so->so_lock = lock;
1479 1.91 ad mutex_obj_hold(lock);
1480 1.91 ad mutex_enter(lock);
1481 1.91 ad }
1482 1.91 ad KASSERT(solocked(so));
1483 1.91 ad }
1484 1.91 ad
1485 1.91 ad /*
1486 1.91 ad * Set lock on sockbuf sb; sleep if lock is already held.
1487 1.91 ad * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1488 1.91 ad * Returns error without lock if sleep is interrupted.
1489 1.91 ad */
1490 1.91 ad int
1491 1.91 ad sblock(struct sockbuf *sb, int wf)
1492 1.91 ad {
1493 1.91 ad struct socket *so;
1494 1.91 ad kmutex_t *lock;
1495 1.91 ad int error;
1496 1.91 ad
1497 1.91 ad KASSERT(solocked(sb->sb_so));
1498 1.91 ad
1499 1.91 ad for (;;) {
1500 1.91 ad if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1501 1.91 ad sb->sb_flags |= SB_LOCK;
1502 1.91 ad return 0;
1503 1.91 ad }
1504 1.91 ad if (wf != M_WAITOK)
1505 1.91 ad return EWOULDBLOCK;
1506 1.91 ad so = sb->sb_so;
1507 1.91 ad lock = so->so_lock;
1508 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0) {
1509 1.91 ad cv_wait(&so->so_cv, lock);
1510 1.91 ad error = 0;
1511 1.91 ad } else
1512 1.91 ad error = cv_wait_sig(&so->so_cv, lock);
1513 1.91 ad if (__predict_false(lock != so->so_lock))
1514 1.91 ad solockretry(so, lock);
1515 1.91 ad if (error != 0)
1516 1.91 ad return error;
1517 1.91 ad }
1518 1.91 ad }
1519 1.91 ad
1520 1.91 ad void
1521 1.91 ad sbunlock(struct sockbuf *sb)
1522 1.91 ad {
1523 1.91 ad struct socket *so;
1524 1.91 ad
1525 1.91 ad so = sb->sb_so;
1526 1.91 ad
1527 1.91 ad KASSERT(solocked(so));
1528 1.91 ad KASSERT((sb->sb_flags & SB_LOCK) != 0);
1529 1.91 ad
1530 1.91 ad sb->sb_flags &= ~SB_LOCK;
1531 1.91 ad cv_broadcast(&so->so_cv);
1532 1.91 ad }
1533 1.91 ad
1534 1.91 ad int
1535 1.121 matt sowait(struct socket *so, bool catch_p, int timo)
1536 1.91 ad {
1537 1.91 ad kmutex_t *lock;
1538 1.91 ad int error;
1539 1.91 ad
1540 1.91 ad KASSERT(solocked(so));
1541 1.121 matt KASSERT(catch_p || timo != 0);
1542 1.91 ad
1543 1.91 ad lock = so->so_lock;
1544 1.121 matt if (catch_p)
1545 1.101 yamt error = cv_timedwait_sig(&so->so_cv, lock, timo);
1546 1.101 yamt else
1547 1.101 yamt error = cv_timedwait(&so->so_cv, lock, timo);
1548 1.91 ad if (__predict_false(lock != so->so_lock))
1549 1.91 ad solockretry(so, lock);
1550 1.91 ad return error;
1551 1.91 ad }
1552 1.131 msaitoh
1553 1.131 msaitoh #ifdef DDB
1554 1.131 msaitoh
1555 1.131 msaitoh /*
1556 1.131 msaitoh * Currently, sofindproc() is used only from DDB. It could be used from others
1557 1.131 msaitoh * by using db_mutex_enter()
1558 1.131 msaitoh */
1559 1.131 msaitoh
1560 1.131 msaitoh static inline int
1561 1.131 msaitoh db_mutex_enter(kmutex_t *mtx)
1562 1.131 msaitoh {
1563 1.131 msaitoh extern int db_active;
1564 1.131 msaitoh int rv;
1565 1.131 msaitoh
1566 1.131 msaitoh if (!db_active) {
1567 1.131 msaitoh mutex_enter(mtx);
1568 1.131 msaitoh rv = 1;
1569 1.131 msaitoh } else
1570 1.131 msaitoh rv = mutex_tryenter(mtx);
1571 1.131 msaitoh
1572 1.131 msaitoh return rv;
1573 1.131 msaitoh }
1574 1.131 msaitoh
1575 1.131 msaitoh int
1576 1.131 msaitoh sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1577 1.131 msaitoh {
1578 1.131 msaitoh proc_t *p;
1579 1.131 msaitoh filedesc_t *fdp;
1580 1.131 msaitoh fdtab_t *dt;
1581 1.131 msaitoh fdfile_t *ff;
1582 1.131 msaitoh file_t *fp = NULL;
1583 1.131 msaitoh int found = 0;
1584 1.131 msaitoh int i, t;
1585 1.131 msaitoh
1586 1.131 msaitoh if (so == NULL)
1587 1.131 msaitoh return 0;
1588 1.131 msaitoh
1589 1.131 msaitoh t = db_mutex_enter(proc_lock);
1590 1.131 msaitoh if (!t) {
1591 1.131 msaitoh pr("could not acquire proc_lock mutex\n");
1592 1.131 msaitoh return 0;
1593 1.131 msaitoh }
1594 1.131 msaitoh PROCLIST_FOREACH(p, &allproc) {
1595 1.131 msaitoh if (p->p_stat == SIDL)
1596 1.131 msaitoh continue;
1597 1.131 msaitoh fdp = p->p_fd;
1598 1.131 msaitoh t = db_mutex_enter(&fdp->fd_lock);
1599 1.131 msaitoh if (!t) {
1600 1.131 msaitoh pr("could not acquire fd_lock mutex\n");
1601 1.131 msaitoh continue;
1602 1.131 msaitoh }
1603 1.131 msaitoh dt = fdp->fd_dt;
1604 1.131 msaitoh for (i = 0; i < dt->dt_nfiles; i++) {
1605 1.131 msaitoh ff = dt->dt_ff[i];
1606 1.131 msaitoh if (ff == NULL)
1607 1.131 msaitoh continue;
1608 1.131 msaitoh
1609 1.131 msaitoh fp = ff->ff_file;
1610 1.131 msaitoh if (fp == NULL)
1611 1.131 msaitoh continue;
1612 1.131 msaitoh
1613 1.131 msaitoh t = db_mutex_enter(&fp->f_lock);
1614 1.131 msaitoh if (!t) {
1615 1.131 msaitoh pr("could not acquire f_lock mutex\n");
1616 1.131 msaitoh continue;
1617 1.131 msaitoh }
1618 1.131 msaitoh if ((struct socket *)fp->f_data != so) {
1619 1.131 msaitoh mutex_exit(&fp->f_lock);
1620 1.131 msaitoh continue;
1621 1.131 msaitoh }
1622 1.131 msaitoh found++;
1623 1.131 msaitoh if (pr)
1624 1.131 msaitoh pr("socket %p: owner %s(pid=%d)\n",
1625 1.131 msaitoh so, p->p_comm, p->p_pid);
1626 1.131 msaitoh mutex_exit(&fp->f_lock);
1627 1.131 msaitoh if (all == 0)
1628 1.131 msaitoh break;
1629 1.131 msaitoh }
1630 1.131 msaitoh mutex_exit(&fdp->fd_lock);
1631 1.131 msaitoh if (all == 0 && found != 0)
1632 1.131 msaitoh break;
1633 1.131 msaitoh }
1634 1.131 msaitoh mutex_exit(proc_lock);
1635 1.131 msaitoh
1636 1.131 msaitoh return found;
1637 1.131 msaitoh }
1638 1.131 msaitoh
1639 1.131 msaitoh void
1640 1.131 msaitoh socket_print(const char *modif, void (*pr)(const char *, ...))
1641 1.131 msaitoh {
1642 1.131 msaitoh file_t *fp;
1643 1.131 msaitoh struct socket *so;
1644 1.131 msaitoh struct sockbuf *sb_snd, *sb_rcv;
1645 1.131 msaitoh struct mbuf *m_rec, *m;
1646 1.131 msaitoh bool opt_v = false;
1647 1.131 msaitoh bool opt_m = false;
1648 1.131 msaitoh bool opt_a = false;
1649 1.131 msaitoh bool opt_p = false;
1650 1.131 msaitoh int nrecs, nmbufs;
1651 1.131 msaitoh char ch;
1652 1.131 msaitoh const char *family;
1653 1.131 msaitoh
1654 1.131 msaitoh while ( (ch = *(modif++)) != '\0') {
1655 1.131 msaitoh switch (ch) {
1656 1.131 msaitoh case 'v':
1657 1.131 msaitoh opt_v = true;
1658 1.131 msaitoh break;
1659 1.131 msaitoh case 'm':
1660 1.131 msaitoh opt_m = true;
1661 1.131 msaitoh break;
1662 1.131 msaitoh case 'a':
1663 1.131 msaitoh opt_a = true;
1664 1.131 msaitoh break;
1665 1.131 msaitoh case 'p':
1666 1.131 msaitoh opt_p = true;
1667 1.131 msaitoh break;
1668 1.131 msaitoh }
1669 1.131 msaitoh }
1670 1.131 msaitoh if (opt_v == false && pr)
1671 1.131 msaitoh (pr)("Ignore empty sockets. use /v to print all.\n");
1672 1.131 msaitoh if (opt_p == true && pr)
1673 1.131 msaitoh (pr)("Don't search owner process.\n");
1674 1.131 msaitoh
1675 1.131 msaitoh LIST_FOREACH(fp, &filehead, f_list) {
1676 1.131 msaitoh if (fp->f_type != DTYPE_SOCKET)
1677 1.131 msaitoh continue;
1678 1.131 msaitoh so = (struct socket *)fp->f_data;
1679 1.131 msaitoh if (so == NULL)
1680 1.131 msaitoh continue;
1681 1.131 msaitoh
1682 1.131 msaitoh if (so->so_proto->pr_domain->dom_family == AF_INET)
1683 1.131 msaitoh family = "INET";
1684 1.131 msaitoh #ifdef INET6
1685 1.131 msaitoh else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1686 1.131 msaitoh family = "INET6";
1687 1.131 msaitoh #endif
1688 1.131 msaitoh else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1689 1.131 msaitoh family = "KEY";
1690 1.131 msaitoh else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1691 1.131 msaitoh family = "ROUTE";
1692 1.131 msaitoh else
1693 1.131 msaitoh continue;
1694 1.131 msaitoh
1695 1.131 msaitoh sb_snd = &so->so_snd;
1696 1.131 msaitoh sb_rcv = &so->so_rcv;
1697 1.131 msaitoh
1698 1.131 msaitoh if (opt_v != true &&
1699 1.131 msaitoh sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1700 1.131 msaitoh continue;
1701 1.131 msaitoh
1702 1.131 msaitoh pr("---SOCKET %p: type %s\n", so, family);
1703 1.131 msaitoh if (opt_p != true)
1704 1.131 msaitoh sofindproc(so, opt_a == true ? 1 : 0, pr);
1705 1.131 msaitoh pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1706 1.131 msaitoh pr("Send Buffer mbufs:\n");
1707 1.131 msaitoh m_rec = m = sb_snd->sb_mb;
1708 1.131 msaitoh nrecs = 0;
1709 1.131 msaitoh nmbufs = 0;
1710 1.131 msaitoh while (m_rec) {
1711 1.131 msaitoh nrecs++;
1712 1.131 msaitoh if (opt_m == true)
1713 1.131 msaitoh pr(" mbuf chain %p\n", m_rec);
1714 1.131 msaitoh while (m) {
1715 1.131 msaitoh nmbufs++;
1716 1.131 msaitoh m = m->m_next;
1717 1.131 msaitoh }
1718 1.131 msaitoh m_rec = m = m_rec->m_nextpkt;
1719 1.131 msaitoh }
1720 1.131 msaitoh pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1721 1.131 msaitoh
1722 1.131 msaitoh pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1723 1.131 msaitoh pr("Recv Buffer mbufs:\n");
1724 1.131 msaitoh m_rec = m = sb_rcv->sb_mb;
1725 1.131 msaitoh nrecs = 0;
1726 1.131 msaitoh nmbufs = 0;
1727 1.131 msaitoh while (m_rec) {
1728 1.131 msaitoh nrecs++;
1729 1.131 msaitoh if (opt_m == true)
1730 1.131 msaitoh pr(" mbuf chain %p\n", m_rec);
1731 1.131 msaitoh while (m) {
1732 1.131 msaitoh nmbufs++;
1733 1.131 msaitoh m = m->m_next;
1734 1.131 msaitoh }
1735 1.131 msaitoh m_rec = m = m_rec->m_nextpkt;
1736 1.131 msaitoh }
1737 1.131 msaitoh pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1738 1.131 msaitoh }
1739 1.131 msaitoh }
1740 1.131 msaitoh #endif /* DDB */
1741