Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.134
      1  1.134      maxv /*	$NetBSD: uipc_socket2.c,v 1.134 2019/07/11 17:30:44 maxv Exp $	*/
      2   1.91        ad 
      3   1.91        ad /*-
      4   1.91        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5   1.91        ad  * All rights reserved.
      6   1.91        ad  *
      7   1.91        ad  * Redistribution and use in source and binary forms, with or without
      8   1.91        ad  * modification, are permitted provided that the following conditions
      9   1.91        ad  * are met:
     10   1.91        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.91        ad  *    notice, this list of conditions and the following disclaimer.
     12   1.91        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.91        ad  *    notice, this list of conditions and the following disclaimer in the
     14   1.91        ad  *    documentation and/or other materials provided with the distribution.
     15   1.91        ad  *
     16   1.91        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17   1.91        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.91        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.91        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.91        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.91        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.91        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.91        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.91        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.91        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.91        ad  * POSSIBILITY OF SUCH DAMAGE.
     27   1.91        ad  */
     28    1.9       cgd 
     29    1.1       cgd /*
     30    1.7   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31    1.7   mycroft  *	The Regents of the University of California.  All rights reserved.
     32    1.1       cgd  *
     33    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     34    1.1       cgd  * modification, are permitted provided that the following conditions
     35    1.1       cgd  * are met:
     36    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     37    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     38    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     39    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     40    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     41   1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     42    1.1       cgd  *    may be used to endorse or promote products derived from this software
     43    1.1       cgd  *    without specific prior written permission.
     44    1.1       cgd  *
     45    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55    1.1       cgd  * SUCH DAMAGE.
     56    1.1       cgd  *
     57   1.23      fvdl  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58    1.1       cgd  */
     59   1.42     lukem 
     60   1.42     lukem #include <sys/cdefs.h>
     61  1.134      maxv __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.134 2019/07/11 17:30:44 maxv Exp $");
     62   1.51    martin 
     63  1.122     pooka #ifdef _KERNEL_OPT
     64  1.131   msaitoh #include "opt_ddb.h"
     65   1.51    martin #include "opt_mbuftrace.h"
     66   1.58   thorpej #include "opt_sb_max.h"
     67  1.122     pooka #endif
     68    1.1       cgd 
     69    1.5   mycroft #include <sys/param.h>
     70    1.5   mycroft #include <sys/systm.h>
     71    1.5   mycroft #include <sys/proc.h>
     72    1.5   mycroft #include <sys/file.h>
     73    1.5   mycroft #include <sys/buf.h>
     74    1.5   mycroft #include <sys/mbuf.h>
     75    1.5   mycroft #include <sys/protosw.h>
     76   1.91        ad #include <sys/domain.h>
     77   1.55  christos #include <sys/poll.h>
     78    1.5   mycroft #include <sys/socket.h>
     79    1.5   mycroft #include <sys/socketvar.h>
     80   1.11  christos #include <sys/signalvar.h>
     81   1.71      elad #include <sys/kauth.h>
     82   1.91        ad #include <sys/pool.h>
     83   1.98     pooka #include <sys/uidinfo.h>
     84    1.1       cgd 
     85  1.131   msaitoh #ifdef DDB
     86  1.131   msaitoh #include <sys/filedesc.h>
     87  1.131   msaitoh #endif
     88  1.131   msaitoh 
     89    1.1       cgd /*
     90   1.91        ad  * Primitive routines for operating on sockets and socket buffers.
     91   1.91        ad  *
     92  1.116     rmind  * Connection life-cycle:
     93  1.116     rmind  *
     94  1.116     rmind  *	Normal sequence from the active (originating) side:
     95  1.116     rmind  *
     96  1.116     rmind  *	- soisconnecting() is called during processing of connect() call,
     97  1.116     rmind  *	- resulting in an eventual call to soisconnected() if/when the
     98  1.116     rmind  *	  connection is established.
     99  1.116     rmind  *
    100  1.116     rmind  *	When the connection is torn down during processing of disconnect():
    101  1.116     rmind  *
    102  1.116     rmind  *	- soisdisconnecting() is called and,
    103  1.116     rmind  *	- soisdisconnected() is called when the connection to the peer
    104  1.116     rmind  *	  is totally severed.
    105  1.116     rmind  *
    106  1.116     rmind  *	The semantics of these routines are such that connectionless protocols
    107  1.116     rmind  *	can call soisconnected() and soisdisconnected() only, bypassing the
    108  1.116     rmind  *	in-progress calls when setting up a ``connection'' takes no time.
    109  1.116     rmind  *
    110  1.116     rmind  *	From the passive side, a socket is created with two queues of sockets:
    111  1.116     rmind  *
    112  1.116     rmind  *	- so_q0 (0) for partial connections (i.e. connections in progress)
    113  1.116     rmind  *	- so_q (1) for connections already made and awaiting user acceptance.
    114  1.116     rmind  *
    115  1.116     rmind  *	As a protocol is preparing incoming connections, it creates a socket
    116  1.116     rmind  *	structure queued on so_q0 by calling sonewconn().  When the connection
    117  1.116     rmind  *	is established, soisconnected() is called, and transfers the
    118  1.116     rmind  *	socket structure to so_q, making it available to accept().
    119  1.116     rmind  *
    120  1.116     rmind  *	If a socket is closed with sockets on either so_q0 or so_q, these
    121  1.116     rmind  *	sockets are dropped.
    122  1.116     rmind  *
    123   1.91        ad  * Locking rules and assumptions:
    124   1.91        ad  *
    125   1.91        ad  * o socket::so_lock can change on the fly.  The low level routines used
    126   1.91        ad  *   to lock sockets are aware of this.  When so_lock is acquired, the
    127   1.91        ad  *   routine locking must check to see if so_lock still points to the
    128   1.91        ad  *   lock that was acquired.  If so_lock has changed in the meantime, the
    129  1.116     rmind  *   now irrelevant lock that was acquired must be dropped and the lock
    130   1.91        ad  *   operation retried.  Although not proven here, this is completely safe
    131   1.91        ad  *   on a multiprocessor system, even with relaxed memory ordering, given
    132   1.91        ad  *   the next two rules:
    133   1.91        ad  *
    134   1.91        ad  * o In order to mutate so_lock, the lock pointed to by the current value
    135   1.91        ad  *   of so_lock must be held: i.e., the socket must be held locked by the
    136   1.91        ad  *   changing thread.  The thread must issue membar_exit() to prevent
    137   1.91        ad  *   memory accesses being reordered, and can set so_lock to the desired
    138   1.91        ad  *   value.  If the lock pointed to by the new value of so_lock is not
    139   1.91        ad  *   held by the changing thread, the socket must then be considered
    140   1.91        ad  *   unlocked.
    141   1.91        ad  *
    142   1.91        ad  * o If so_lock is mutated, and the previous lock referred to by so_lock
    143   1.91        ad  *   could still be visible to other threads in the system (e.g. via file
    144   1.91        ad  *   descriptor or protocol-internal reference), then the old lock must
    145   1.91        ad  *   remain valid until the socket and/or protocol control block has been
    146   1.91        ad  *   torn down.
    147   1.91        ad  *
    148   1.91        ad  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    149   1.91        ad  *   connecting), then locking the socket must also lock the socket pointed
    150   1.91        ad  *   to by so_head: their lock pointers must match.
    151   1.91        ad  *
    152   1.91        ad  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    153   1.91        ad  *   locking the socket must also lock the sockets attached to both queues.
    154   1.91        ad  *   Again, their lock pointers must match.
    155   1.91        ad  *
    156  1.116     rmind  * o Beyond the initial lock assignment in socreate(), assigning locks to
    157   1.91        ad  *   sockets is the responsibility of the individual protocols / protocol
    158   1.91        ad  *   domains.
    159    1.1       cgd  */
    160    1.1       cgd 
    161  1.116     rmind static pool_cache_t	socket_cache;
    162  1.116     rmind u_long			sb_max = SB_MAX;/* maximum socket buffer size */
    163  1.116     rmind static u_long		sb_max_adj;	/* adjusted sb_max */
    164    1.1       cgd 
    165    1.7   mycroft void
    166   1.37     lukem soisconnecting(struct socket *so)
    167    1.1       cgd {
    168    1.1       cgd 
    169   1.91        ad 	KASSERT(solocked(so));
    170   1.91        ad 
    171    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    172    1.1       cgd 	so->so_state |= SS_ISCONNECTING;
    173    1.1       cgd }
    174    1.1       cgd 
    175    1.7   mycroft void
    176   1.37     lukem soisconnected(struct socket *so)
    177    1.1       cgd {
    178   1.37     lukem 	struct socket	*head;
    179    1.1       cgd 
    180   1.37     lukem 	head = so->so_head;
    181   1.91        ad 
    182   1.91        ad 	KASSERT(solocked(so));
    183   1.91        ad 	KASSERT(head == NULL || solocked2(so, head));
    184   1.91        ad 
    185  1.113     rmind 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    186    1.1       cgd 	so->so_state |= SS_ISCONNECTED;
    187   1.97       tls 	if (head && so->so_onq == &head->so_q0) {
    188   1.97       tls 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    189  1.116     rmind 			/*
    190  1.116     rmind 			 * Re-enqueue and wake up any waiters, e.g.
    191  1.116     rmind 			 * processes blocking on accept().
    192  1.116     rmind 			 */
    193   1.97       tls 			soqremque(so, 0);
    194   1.97       tls 			soqinsque(head, so, 1);
    195   1.97       tls 			sorwakeup(head);
    196   1.97       tls 			cv_broadcast(&head->so_cv);
    197   1.97       tls 		} else {
    198   1.97       tls 			so->so_upcall =
    199   1.97       tls 			    head->so_accf->so_accept_filter->accf_callback;
    200   1.97       tls 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    201   1.97       tls 			so->so_rcv.sb_flags |= SB_UPCALL;
    202   1.97       tls 			so->so_options &= ~SO_ACCEPTFILTER;
    203  1.104       tls 			(*so->so_upcall)(so, so->so_upcallarg,
    204  1.104       tls 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    205  1.101      yamt 		}
    206    1.1       cgd 	} else {
    207   1.91        ad 		cv_broadcast(&so->so_cv);
    208    1.1       cgd 		sorwakeup(so);
    209    1.1       cgd 		sowwakeup(so);
    210    1.1       cgd 	}
    211    1.1       cgd }
    212    1.1       cgd 
    213    1.7   mycroft void
    214   1.37     lukem soisdisconnecting(struct socket *so)
    215    1.1       cgd {
    216    1.1       cgd 
    217   1.91        ad 	KASSERT(solocked(so));
    218   1.91        ad 
    219    1.1       cgd 	so->so_state &= ~SS_ISCONNECTING;
    220    1.1       cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    221   1.91        ad 	cv_broadcast(&so->so_cv);
    222    1.1       cgd 	sowwakeup(so);
    223    1.1       cgd 	sorwakeup(so);
    224    1.1       cgd }
    225    1.1       cgd 
    226    1.7   mycroft void
    227   1.37     lukem soisdisconnected(struct socket *so)
    228    1.1       cgd {
    229    1.1       cgd 
    230   1.91        ad 	KASSERT(solocked(so));
    231   1.91        ad 
    232    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    233   1.27   mycroft 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    234   1.91        ad 	cv_broadcast(&so->so_cv);
    235    1.1       cgd 	sowwakeup(so);
    236    1.1       cgd 	sorwakeup(so);
    237    1.1       cgd }
    238    1.1       cgd 
    239   1.94        ad void
    240   1.94        ad soinit2(void)
    241   1.94        ad {
    242   1.94        ad 
    243   1.94        ad 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    244   1.94        ad 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    245   1.94        ad }
    246   1.94        ad 
    247    1.1       cgd /*
    248  1.116     rmind  * sonewconn: accept a new connection.
    249  1.116     rmind  *
    250  1.116     rmind  * When an attempt at a new connection is noted on a socket which accepts
    251  1.116     rmind  * connections, sonewconn(9) is called.  If the connection is possible
    252  1.116     rmind  * (subject to space constraints, etc) then we allocate a new structure,
    253  1.116     rmind  * properly linked into the data structure of the original socket.
    254  1.116     rmind  *
    255  1.116     rmind  * => If 'soready' is true, then socket will become ready for accept() i.e.
    256  1.116     rmind  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
    257  1.116     rmind  * => May be called from soft-interrupt context.
    258  1.116     rmind  * => Listening socket should be locked.
    259  1.116     rmind  * => Returns the new socket locked.
    260    1.1       cgd  */
    261    1.1       cgd struct socket *
    262  1.116     rmind sonewconn(struct socket *head, bool soready)
    263    1.1       cgd {
    264  1.116     rmind 	struct socket *so;
    265  1.116     rmind 	int soqueue, error;
    266   1.91        ad 
    267   1.91        ad 	KASSERT(solocked(head));
    268    1.1       cgd 
    269  1.116     rmind 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
    270  1.123       tls 		/*
    271  1.123       tls 		 * Listen queue overflow.  If there is an accept filter
    272  1.123       tls 		 * active, pass through the oldest cxn it's handling.
    273  1.123       tls 		 */
    274  1.123       tls 		if (head->so_accf == NULL) {
    275  1.123       tls 			return NULL;
    276  1.123       tls 		} else {
    277  1.123       tls 			struct socket *so2, *next;
    278  1.123       tls 
    279  1.123       tls 			/* Pass the oldest connection waiting in the
    280  1.123       tls 			   accept filter */
    281  1.123       tls 			for (so2 = TAILQ_FIRST(&head->so_q0);
    282  1.123       tls 			     so2 != NULL; so2 = next) {
    283  1.123       tls 				next = TAILQ_NEXT(so2, so_qe);
    284  1.123       tls 				if (so2->so_upcall == NULL) {
    285  1.123       tls 					continue;
    286  1.123       tls 				}
    287  1.123       tls 				so2->so_upcall = NULL;
    288  1.123       tls 				so2->so_upcallarg = NULL;
    289  1.123       tls 				so2->so_options &= ~SO_ACCEPTFILTER;
    290  1.123       tls 				so2->so_rcv.sb_flags &= ~SB_UPCALL;
    291  1.123       tls 				soisconnected(so2);
    292  1.123       tls 				break;
    293  1.123       tls 			}
    294  1.123       tls 
    295  1.123       tls 			/* If nothing was nudged out of the acept filter, bail
    296  1.123       tls 			 * out; otherwise proceed allocating the socket. */
    297  1.123       tls 			if (so2 == NULL) {
    298  1.123       tls 				return NULL;
    299  1.123       tls 			}
    300  1.123       tls 		}
    301  1.116     rmind 	}
    302  1.116     rmind 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
    303  1.116     rmind 		soready = false;
    304  1.116     rmind 	}
    305  1.116     rmind 	soqueue = soready ? 1 : 0;
    306  1.113     rmind 
    307  1.116     rmind 	if ((so = soget(false)) == NULL) {
    308  1.100    dyoung 		return NULL;
    309  1.116     rmind 	}
    310    1.1       cgd 	so->so_type = head->so_type;
    311  1.116     rmind 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
    312    1.1       cgd 	so->so_linger = head->so_linger;
    313    1.1       cgd 	so->so_state = head->so_state | SS_NOFDREF;
    314    1.1       cgd 	so->so_proto = head->so_proto;
    315    1.1       cgd 	so->so_timeo = head->so_timeo;
    316    1.1       cgd 	so->so_pgid = head->so_pgid;
    317   1.24      matt 	so->so_send = head->so_send;
    318   1.24      matt 	so->so_receive = head->so_receive;
    319   1.67  christos 	so->so_uidinfo = head->so_uidinfo;
    320   1.96      yamt 	so->so_cpid = head->so_cpid;
    321  1.119     rmind 
    322  1.119     rmind 	/*
    323  1.119     rmind 	 * Share the lock with the listening-socket, it may get unshared
    324  1.119     rmind 	 * once the connection is complete.
    325  1.119     rmind 	 */
    326  1.119     rmind 	mutex_obj_hold(head->so_lock);
    327  1.119     rmind 	so->so_lock = head->so_lock;
    328  1.119     rmind 
    329  1.119     rmind 	/*
    330  1.119     rmind 	 * Reserve the space for socket buffers.
    331  1.119     rmind 	 */
    332   1.49      matt #ifdef MBUFTRACE
    333   1.49      matt 	so->so_mowner = head->so_mowner;
    334   1.49      matt 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    335   1.49      matt 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    336   1.49      matt #endif
    337  1.119     rmind 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
    338  1.103  christos 		goto out;
    339  1.119     rmind 	}
    340   1.83       tls 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    341   1.83       tls 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    342   1.84       tls 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    343   1.84       tls 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    344  1.107  christos 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    345  1.107  christos 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    346  1.116     rmind 
    347  1.116     rmind 	/*
    348  1.119     rmind 	 * Finally, perform the protocol attach.  Note: a new socket
    349  1.119     rmind 	 * lock may be assigned at this point (if so, it will be held).
    350  1.116     rmind 	 */
    351  1.119     rmind 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
    352  1.116     rmind 	if (error) {
    353  1.103  christos out:
    354  1.119     rmind 		KASSERT(solocked(so));
    355  1.116     rmind 		KASSERT(so->so_accf == NULL);
    356   1.91        ad 		soput(so);
    357  1.116     rmind 
    358  1.116     rmind 		/* Note: the listening socket shall stay locked. */
    359  1.116     rmind 		KASSERT(solocked(head));
    360  1.100    dyoung 		return NULL;
    361    1.1       cgd 	}
    362  1.119     rmind 	KASSERT(solocked2(head, so));
    363  1.116     rmind 
    364  1.116     rmind 	/*
    365  1.117     rmind 	 * Insert into the queue.  If ready, update the connection status
    366  1.117     rmind 	 * and wake up any waiters, e.g. processes blocking on accept().
    367  1.116     rmind 	 */
    368  1.117     rmind 	soqinsque(head, so, soqueue);
    369  1.116     rmind 	if (soready) {
    370  1.116     rmind 		so->so_state |= SS_ISCONNECTED;
    371    1.1       cgd 		sorwakeup(head);
    372   1.91        ad 		cv_broadcast(&head->so_cv);
    373    1.1       cgd 	}
    374  1.100    dyoung 	return so;
    375    1.1       cgd }
    376    1.1       cgd 
    377   1.91        ad struct socket *
    378   1.91        ad soget(bool waitok)
    379   1.91        ad {
    380   1.91        ad 	struct socket *so;
    381   1.91        ad 
    382   1.94        ad 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    383   1.91        ad 	if (__predict_false(so == NULL))
    384   1.91        ad 		return (NULL);
    385   1.91        ad 	memset(so, 0, sizeof(*so));
    386   1.91        ad 	TAILQ_INIT(&so->so_q0);
    387   1.91        ad 	TAILQ_INIT(&so->so_q);
    388   1.91        ad 	cv_init(&so->so_cv, "socket");
    389   1.91        ad 	cv_init(&so->so_rcv.sb_cv, "netio");
    390   1.91        ad 	cv_init(&so->so_snd.sb_cv, "netio");
    391   1.91        ad 	selinit(&so->so_rcv.sb_sel);
    392   1.91        ad 	selinit(&so->so_snd.sb_sel);
    393   1.91        ad 	so->so_rcv.sb_so = so;
    394   1.91        ad 	so->so_snd.sb_so = so;
    395   1.91        ad 	return so;
    396   1.91        ad }
    397   1.91        ad 
    398   1.91        ad void
    399   1.91        ad soput(struct socket *so)
    400   1.91        ad {
    401   1.91        ad 
    402   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    403   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    404   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    405   1.91        ad 	seldestroy(&so->so_rcv.sb_sel);
    406   1.91        ad 	seldestroy(&so->so_snd.sb_sel);
    407   1.91        ad 	mutex_obj_free(so->so_lock);
    408   1.91        ad 	cv_destroy(&so->so_cv);
    409   1.91        ad 	cv_destroy(&so->so_rcv.sb_cv);
    410   1.91        ad 	cv_destroy(&so->so_snd.sb_cv);
    411   1.94        ad 	pool_cache_put(socket_cache, so);
    412   1.91        ad }
    413   1.91        ad 
    414  1.116     rmind /*
    415  1.116     rmind  * soqinsque: insert socket of a new connection into the specified
    416  1.116     rmind  * accept queue of the listening socket (head).
    417  1.116     rmind  *
    418  1.116     rmind  *	q = 0: queue of partial connections
    419  1.116     rmind  *	q = 1: queue of incoming connections
    420  1.116     rmind  */
    421    1.7   mycroft void
    422   1.37     lukem soqinsque(struct socket *head, struct socket *so, int q)
    423    1.1       cgd {
    424  1.116     rmind 	KASSERT(q == 0 || q == 1);
    425   1.91        ad 	KASSERT(solocked2(head, so));
    426  1.116     rmind 	KASSERT(so->so_onq == NULL);
    427  1.116     rmind 	KASSERT(so->so_head == NULL);
    428   1.22   thorpej 
    429    1.1       cgd 	so->so_head = head;
    430    1.1       cgd 	if (q == 0) {
    431    1.1       cgd 		head->so_q0len++;
    432   1.22   thorpej 		so->so_onq = &head->so_q0;
    433    1.1       cgd 	} else {
    434    1.1       cgd 		head->so_qlen++;
    435   1.22   thorpej 		so->so_onq = &head->so_q;
    436    1.1       cgd 	}
    437   1.22   thorpej 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    438    1.1       cgd }
    439    1.1       cgd 
    440  1.116     rmind /*
    441  1.116     rmind  * soqremque: remove socket from the specified queue.
    442  1.116     rmind  *
    443  1.116     rmind  * => Returns true if socket was removed from the specified queue.
    444  1.116     rmind  * => False if socket was not removed (because it was in other queue).
    445  1.116     rmind  */
    446  1.116     rmind bool
    447   1.37     lukem soqremque(struct socket *so, int q)
    448    1.1       cgd {
    449  1.116     rmind 	struct socket *head = so->so_head;
    450    1.1       cgd 
    451  1.116     rmind 	KASSERT(q == 0 || q == 1);
    452  1.116     rmind 	KASSERT(solocked(so));
    453  1.116     rmind 	KASSERT(so->so_onq != NULL);
    454  1.116     rmind 	KASSERT(head != NULL);
    455   1.91        ad 
    456   1.22   thorpej 	if (q == 0) {
    457   1.22   thorpej 		if (so->so_onq != &head->so_q0)
    458  1.116     rmind 			return false;
    459    1.1       cgd 		head->so_q0len--;
    460    1.1       cgd 	} else {
    461   1.22   thorpej 		if (so->so_onq != &head->so_q)
    462  1.116     rmind 			return false;
    463    1.1       cgd 		head->so_qlen--;
    464    1.1       cgd 	}
    465   1.91        ad 	KASSERT(solocked2(so, head));
    466   1.22   thorpej 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    467   1.22   thorpej 	so->so_onq = NULL;
    468   1.22   thorpej 	so->so_head = NULL;
    469  1.116     rmind 	return true;
    470    1.1       cgd }
    471    1.1       cgd 
    472    1.1       cgd /*
    473  1.116     rmind  * socantsendmore: indicates that no more data will be sent on the
    474    1.1       cgd  * socket; it would normally be applied to a socket when the user
    475    1.1       cgd  * informs the system that no more data is to be sent, by the protocol
    476  1.120       rtr  * code (in case pr_shutdown()).
    477    1.1       cgd  */
    478    1.4    andrew void
    479   1.37     lukem socantsendmore(struct socket *so)
    480    1.1       cgd {
    481   1.91        ad 	KASSERT(solocked(so));
    482   1.91        ad 
    483    1.1       cgd 	so->so_state |= SS_CANTSENDMORE;
    484    1.1       cgd 	sowwakeup(so);
    485    1.1       cgd }
    486    1.1       cgd 
    487  1.116     rmind /*
    488  1.116     rmind  * socantrcvmore(): indicates that no more data will be received and
    489  1.116     rmind  * will normally be applied to the socket by a protocol when it detects
    490  1.116     rmind  * that the peer will send no more data.  Data queued for reading in
    491  1.116     rmind  * the socket may yet be read.
    492  1.116     rmind  */
    493    1.4    andrew void
    494   1.37     lukem socantrcvmore(struct socket *so)
    495    1.1       cgd {
    496   1.91        ad 	KASSERT(solocked(so));
    497   1.91        ad 
    498    1.1       cgd 	so->so_state |= SS_CANTRCVMORE;
    499    1.1       cgd 	sorwakeup(so);
    500    1.1       cgd }
    501    1.1       cgd 
    502    1.1       cgd /*
    503  1.128       roy  * soroverflow(): indicates that data was attempted to be sent
    504  1.128       roy  * but the receiving buffer overflowed.
    505  1.128       roy  */
    506  1.128       roy void
    507  1.128       roy soroverflow(struct socket *so)
    508  1.128       roy {
    509  1.128       roy 	KASSERT(solocked(so));
    510  1.128       roy 
    511  1.128       roy 	so->so_rcv.sb_overflowed++;
    512  1.133  christos 	if (so->so_options & SO_RERROR)  {
    513  1.133  christos 		so->so_rerror = ENOBUFS;
    514  1.133  christos 		sorwakeup(so);
    515  1.133  christos 	}
    516  1.128       roy }
    517  1.128       roy 
    518  1.128       roy /*
    519    1.1       cgd  * Wait for data to arrive at/drain from a socket buffer.
    520    1.1       cgd  */
    521    1.7   mycroft int
    522   1.37     lukem sbwait(struct sockbuf *sb)
    523    1.1       cgd {
    524   1.91        ad 	struct socket *so;
    525   1.91        ad 	kmutex_t *lock;
    526   1.91        ad 	int error;
    527    1.1       cgd 
    528   1.91        ad 	so = sb->sb_so;
    529    1.1       cgd 
    530   1.91        ad 	KASSERT(solocked(so));
    531    1.1       cgd 
    532   1.91        ad 	sb->sb_flags |= SB_NOTIFY;
    533   1.91        ad 	lock = so->so_lock;
    534   1.91        ad 	if ((sb->sb_flags & SB_NOINTR) != 0)
    535   1.91        ad 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    536   1.91        ad 	else
    537   1.91        ad 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    538   1.91        ad 	if (__predict_false(lock != so->so_lock))
    539   1.91        ad 		solockretry(so, lock);
    540   1.91        ad 	return error;
    541    1.1       cgd }
    542    1.1       cgd 
    543    1.1       cgd /*
    544    1.1       cgd  * Wakeup processes waiting on a socket buffer.
    545    1.1       cgd  * Do asynchronous notification via SIGIO
    546   1.39      manu  * if the socket buffer has the SB_ASYNC flag set.
    547    1.1       cgd  */
    548    1.7   mycroft void
    549   1.55  christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
    550    1.1       cgd {
    551   1.90     rmind 	int band;
    552   1.90     rmind 
    553   1.91        ad 	KASSERT(solocked(so));
    554   1.91        ad 	KASSERT(sb->sb_so == so);
    555   1.91        ad 
    556   1.90     rmind 	if (code == POLL_IN)
    557   1.90     rmind 		band = POLLIN|POLLRDNORM;
    558   1.90     rmind 	else
    559   1.90     rmind 		band = POLLOUT|POLLWRNORM;
    560   1.91        ad 	sb->sb_flags &= ~SB_NOTIFY;
    561   1.91        ad 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    562   1.91        ad 	cv_broadcast(&sb->sb_cv);
    563   1.90     rmind 	if (sb->sb_flags & SB_ASYNC)
    564   1.57  christos 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    565   1.24      matt 	if (sb->sb_flags & SB_UPCALL)
    566  1.104       tls 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    567    1.1       cgd }
    568    1.1       cgd 
    569    1.1       cgd /*
    570   1.95        ad  * Reset a socket's lock pointer.  Wake all threads waiting on the
    571   1.95        ad  * socket's condition variables so that they can restart their waits
    572   1.95        ad  * using the new lock.  The existing lock must be held.
    573   1.95        ad  */
    574   1.95        ad void
    575   1.95        ad solockreset(struct socket *so, kmutex_t *lock)
    576   1.95        ad {
    577   1.95        ad 
    578   1.95        ad 	KASSERT(solocked(so));
    579   1.95        ad 
    580   1.95        ad 	so->so_lock = lock;
    581   1.95        ad 	cv_broadcast(&so->so_snd.sb_cv);
    582   1.95        ad 	cv_broadcast(&so->so_rcv.sb_cv);
    583   1.95        ad 	cv_broadcast(&so->so_cv);
    584   1.95        ad }
    585   1.95        ad 
    586   1.95        ad /*
    587    1.1       cgd  * Socket buffer (struct sockbuf) utility routines.
    588    1.1       cgd  *
    589    1.1       cgd  * Each socket contains two socket buffers: one for sending data and
    590    1.1       cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    591    1.1       cgd  * information about the number of mbufs and amount of data in the
    592   1.13   mycroft  * queue, and other fields allowing poll() statements and notification
    593    1.1       cgd  * on data availability to be implemented.
    594    1.1       cgd  *
    595    1.1       cgd  * Data stored in a socket buffer is maintained as a list of records.
    596    1.1       cgd  * Each record is a list of mbufs chained together with the m_next
    597    1.1       cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    598    1.1       cgd  * level routine soreceive() expects the following conventions to be
    599    1.1       cgd  * observed when placing information in the receive buffer:
    600    1.1       cgd  *
    601    1.1       cgd  * 1. If the protocol requires each message be preceded by the sender's
    602    1.1       cgd  *    name, then a record containing that name must be present before
    603    1.1       cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    604    1.1       cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    605    1.1       cgd  *    just additional data associated with the message), and there are
    606    1.1       cgd  *    ``rights'' to be received, then a record containing this data
    607   1.10   mycroft  *    should be present (mbuf's must be of type MT_CONTROL).
    608    1.1       cgd  * 3. If a name or rights record exists, then it must be followed by
    609    1.1       cgd  *    a data record, perhaps of zero length.
    610    1.1       cgd  *
    611    1.1       cgd  * Before using a new socket structure it is first necessary to reserve
    612    1.1       cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    613    1.1       cgd  * some of the available buffer space in the system buffer pool for the
    614    1.1       cgd  * socket (currently, it does nothing but enforce limits).  The space
    615    1.1       cgd  * should be released by calling sbrelease() when the socket is destroyed.
    616    1.1       cgd  */
    617    1.1       cgd 
    618    1.7   mycroft int
    619   1.58   thorpej sb_max_set(u_long new_sbmax)
    620   1.58   thorpej {
    621   1.58   thorpej 	int s;
    622   1.58   thorpej 
    623   1.58   thorpej 	if (new_sbmax < (16 * 1024))
    624   1.58   thorpej 		return (EINVAL);
    625   1.58   thorpej 
    626   1.58   thorpej 	s = splsoftnet();
    627   1.58   thorpej 	sb_max = new_sbmax;
    628   1.58   thorpej 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    629   1.58   thorpej 	splx(s);
    630   1.58   thorpej 
    631   1.58   thorpej 	return (0);
    632   1.58   thorpej }
    633   1.58   thorpej 
    634   1.58   thorpej int
    635   1.37     lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    636    1.1       cgd {
    637  1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    638   1.91        ad 
    639   1.74  christos 	/*
    640   1.74  christos 	 * there's at least one application (a configure script of screen)
    641   1.74  christos 	 * which expects a fifo is writable even if it has "some" bytes
    642   1.74  christos 	 * in its buffer.
    643   1.74  christos 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    644   1.74  christos 	 *
    645   1.74  christos 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    646   1.74  christos 	 * we expect it's large enough for such applications.
    647   1.74  christos 	 */
    648   1.74  christos 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    649   1.74  christos 	u_long  hiwat = lowat + PIPE_BUF;
    650    1.1       cgd 
    651   1.74  christos 	if (sndcc < hiwat)
    652   1.74  christos 		sndcc = hiwat;
    653   1.59  christos 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    654    1.1       cgd 		goto bad;
    655   1.59  christos 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    656    1.1       cgd 		goto bad2;
    657    1.1       cgd 	if (so->so_rcv.sb_lowat == 0)
    658    1.1       cgd 		so->so_rcv.sb_lowat = 1;
    659    1.1       cgd 	if (so->so_snd.sb_lowat == 0)
    660   1.74  christos 		so->so_snd.sb_lowat = lowat;
    661    1.1       cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    662    1.1       cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    663    1.1       cgd 	return (0);
    664   1.37     lukem  bad2:
    665   1.59  christos 	sbrelease(&so->so_snd, so);
    666   1.37     lukem  bad:
    667    1.1       cgd 	return (ENOBUFS);
    668    1.1       cgd }
    669    1.1       cgd 
    670    1.1       cgd /*
    671    1.1       cgd  * Allot mbufs to a sockbuf.
    672    1.1       cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    673    1.1       cgd  * if buffering efficiency is near the normal case.
    674    1.1       cgd  */
    675    1.7   mycroft int
    676   1.59  christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    677    1.1       cgd {
    678   1.75        ad 	struct lwp *l = curlwp; /* XXX */
    679   1.62  christos 	rlim_t maxcc;
    680   1.67  christos 	struct uidinfo *uidinfo;
    681    1.1       cgd 
    682  1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    683   1.91        ad 	KASSERT(sb->sb_so == so);
    684   1.91        ad 	KASSERT(sb_max_adj != 0);
    685   1.91        ad 
    686   1.58   thorpej 	if (cc == 0 || cc > sb_max_adj)
    687    1.1       cgd 		return (0);
    688   1.93  christos 
    689  1.105      elad 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    690   1.93  christos 
    691   1.93  christos 	uidinfo = so->so_uidinfo;
    692   1.67  christos 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    693   1.62  christos 		return 0;
    694  1.132  riastrad 	sb->sb_mbmax = uimin(cc * 2, sb_max);
    695    1.1       cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    696    1.1       cgd 		sb->sb_lowat = sb->sb_hiwat;
    697  1.131   msaitoh 
    698    1.1       cgd 	return (1);
    699    1.1       cgd }
    700    1.1       cgd 
    701    1.1       cgd /*
    702   1.91        ad  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    703   1.91        ad  * that the socket is held locked here: see sorflush().
    704    1.1       cgd  */
    705    1.7   mycroft void
    706   1.59  christos sbrelease(struct sockbuf *sb, struct socket *so)
    707    1.1       cgd {
    708    1.1       cgd 
    709   1.91        ad 	KASSERT(sb->sb_so == so);
    710   1.91        ad 
    711    1.1       cgd 	sbflush(sb);
    712   1.87      yamt 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    713   1.59  christos 	sb->sb_mbmax = 0;
    714    1.1       cgd }
    715    1.1       cgd 
    716    1.1       cgd /*
    717    1.1       cgd  * Routines to add and remove
    718    1.1       cgd  * data from an mbuf queue.
    719    1.1       cgd  *
    720    1.1       cgd  * The routines sbappend() or sbappendrecord() are normally called to
    721    1.1       cgd  * append new mbufs to a socket buffer, after checking that adequate
    722    1.1       cgd  * space is available, comparing the function sbspace() with the amount
    723    1.1       cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    724    1.1       cgd  * that data supplied is treated as the beginning of a new record.
    725    1.1       cgd  * To place a sender's address, optional access rights, and data in a
    726    1.1       cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    727    1.1       cgd  * access rights and data in a socket receive buffer, sbappendrights()
    728    1.1       cgd  * should be used.  In either case, the new data begins a new record.
    729    1.1       cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    730    1.1       cgd  * for the caller that there will be enough space to store the data.
    731    1.1       cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    732    1.1       cgd  * to store additional information in.
    733    1.1       cgd  *
    734    1.1       cgd  * Reliable protocols may use the socket send buffer to hold data
    735    1.1       cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    736  1.129      maxv  * send buffer in a protocol with m_copym for output to a peer,
    737    1.1       cgd  * and then removing the data from the socket buffer with sbdrop()
    738    1.1       cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    739    1.1       cgd  */
    740    1.1       cgd 
    741   1.43   thorpej #ifdef SOCKBUF_DEBUG
    742   1.43   thorpej void
    743   1.43   thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
    744   1.43   thorpej {
    745   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    746   1.43   thorpej 
    747   1.91        ad 	KASSERT(solocked(sb->sb_so));
    748   1.91        ad 
    749   1.43   thorpej 	while (m && m->m_nextpkt)
    750   1.43   thorpej 		m = m->m_nextpkt;
    751   1.43   thorpej 
    752   1.43   thorpej 	if (m != sb->sb_lastrecord) {
    753   1.43   thorpej 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    754   1.43   thorpej 		    sb->sb_mb, sb->sb_lastrecord, m);
    755   1.43   thorpej 		printf("packet chain:\n");
    756   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    757   1.43   thorpej 			printf("\t%p\n", m);
    758   1.47    provos 		panic("sblastrecordchk from %s", where);
    759   1.43   thorpej 	}
    760   1.43   thorpej }
    761   1.43   thorpej 
    762   1.43   thorpej void
    763   1.43   thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
    764   1.43   thorpej {
    765   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    766   1.43   thorpej 	struct mbuf *n;
    767   1.43   thorpej 
    768   1.91        ad 	KASSERT(solocked(sb->sb_so));
    769   1.91        ad 
    770   1.43   thorpej 	while (m && m->m_nextpkt)
    771   1.43   thorpej 		m = m->m_nextpkt;
    772   1.43   thorpej 
    773   1.43   thorpej 	while (m && m->m_next)
    774   1.43   thorpej 		m = m->m_next;
    775   1.43   thorpej 
    776   1.43   thorpej 	if (m != sb->sb_mbtail) {
    777   1.43   thorpej 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    778   1.43   thorpej 		    sb->sb_mb, sb->sb_mbtail, m);
    779   1.43   thorpej 		printf("packet tree:\n");
    780   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    781   1.43   thorpej 			printf("\t");
    782   1.43   thorpej 			for (n = m; n != NULL; n = n->m_next)
    783   1.43   thorpej 				printf("%p ", n);
    784   1.43   thorpej 			printf("\n");
    785   1.43   thorpej 		}
    786   1.43   thorpej 		panic("sblastmbufchk from %s", where);
    787   1.43   thorpej 	}
    788   1.43   thorpej }
    789   1.43   thorpej #endif /* SOCKBUF_DEBUG */
    790   1.43   thorpej 
    791   1.63  jonathan /*
    792   1.63  jonathan  * Link a chain of records onto a socket buffer
    793   1.63  jonathan  */
    794   1.63  jonathan #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    795   1.43   thorpej do {									\
    796   1.43   thorpej 	if ((sb)->sb_lastrecord != NULL)				\
    797   1.43   thorpej 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    798   1.43   thorpej 	else								\
    799   1.43   thorpej 		(sb)->sb_mb = (m0);					\
    800   1.63  jonathan 	(sb)->sb_lastrecord = (mlast);					\
    801   1.43   thorpej } while (/*CONSTCOND*/0)
    802   1.43   thorpej 
    803   1.63  jonathan 
    804   1.63  jonathan #define	SBLINKRECORD(sb, m0)						\
    805   1.63  jonathan     SBLINKRECORDCHAIN(sb, m0, m0)
    806   1.63  jonathan 
    807    1.1       cgd /*
    808    1.1       cgd  * Append mbuf chain m to the last record in the
    809    1.1       cgd  * socket buffer sb.  The additional space associated
    810    1.1       cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    811    1.1       cgd  * discarded and mbufs are compacted where possible.
    812    1.1       cgd  */
    813    1.7   mycroft void
    814   1.37     lukem sbappend(struct sockbuf *sb, struct mbuf *m)
    815    1.1       cgd {
    816   1.37     lukem 	struct mbuf	*n;
    817    1.1       cgd 
    818   1.91        ad 	KASSERT(solocked(sb->sb_so));
    819   1.91        ad 
    820  1.115  christos 	if (m == NULL)
    821    1.1       cgd 		return;
    822   1.43   thorpej 
    823   1.49      matt #ifdef MBUFTRACE
    824   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    825   1.49      matt #endif
    826   1.49      matt 
    827   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 1");
    828   1.43   thorpej 
    829   1.43   thorpej 	if ((n = sb->sb_lastrecord) != NULL) {
    830   1.43   thorpej 		/*
    831   1.43   thorpej 		 * XXX Would like to simply use sb_mbtail here, but
    832   1.43   thorpej 		 * XXX I need to verify that I won't miss an EOR that
    833   1.43   thorpej 		 * XXX way.
    834   1.43   thorpej 		 */
    835    1.1       cgd 		do {
    836    1.1       cgd 			if (n->m_flags & M_EOR) {
    837    1.1       cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    838    1.1       cgd 				return;
    839    1.1       cgd 			}
    840    1.1       cgd 		} while (n->m_next && (n = n->m_next));
    841   1.43   thorpej 	} else {
    842   1.43   thorpej 		/*
    843   1.43   thorpej 		 * If this is the first record in the socket buffer, it's
    844   1.43   thorpej 		 * also the last record.
    845   1.43   thorpej 		 */
    846   1.43   thorpej 		sb->sb_lastrecord = m;
    847    1.1       cgd 	}
    848    1.1       cgd 	sbcompress(sb, m, n);
    849   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 2");
    850   1.43   thorpej }
    851   1.43   thorpej 
    852   1.43   thorpej /*
    853   1.43   thorpej  * This version of sbappend() should only be used when the caller
    854   1.43   thorpej  * absolutely knows that there will never be more than one record
    855   1.43   thorpej  * in the socket buffer, that is, a stream protocol (such as TCP).
    856   1.43   thorpej  */
    857   1.43   thorpej void
    858   1.44   thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
    859   1.43   thorpej {
    860   1.43   thorpej 
    861   1.91        ad 	KASSERT(solocked(sb->sb_so));
    862   1.43   thorpej 	KDASSERT(m->m_nextpkt == NULL);
    863   1.43   thorpej 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    864   1.43   thorpej 
    865   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
    866   1.43   thorpej 
    867   1.49      matt #ifdef MBUFTRACE
    868   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    869   1.49      matt #endif
    870   1.49      matt 
    871   1.43   thorpej 	sbcompress(sb, m, sb->sb_mbtail);
    872   1.43   thorpej 
    873   1.43   thorpej 	sb->sb_lastrecord = sb->sb_mb;
    874   1.43   thorpej 	SBLASTRECORDCHK(sb, __func__);
    875    1.1       cgd }
    876    1.1       cgd 
    877    1.1       cgd #ifdef SOCKBUF_DEBUG
    878    1.7   mycroft void
    879   1.37     lukem sbcheck(struct sockbuf *sb)
    880    1.1       cgd {
    881   1.91        ad 	struct mbuf	*m, *m2;
    882   1.43   thorpej 	u_long		len, mbcnt;
    883    1.1       cgd 
    884   1.91        ad 	KASSERT(solocked(sb->sb_so));
    885   1.91        ad 
    886   1.37     lukem 	len = 0;
    887   1.37     lukem 	mbcnt = 0;
    888   1.91        ad 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    889   1.91        ad 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    890   1.91        ad 			len += m2->m_len;
    891   1.91        ad 			mbcnt += MSIZE;
    892   1.91        ad 			if (m2->m_flags & M_EXT)
    893   1.91        ad 				mbcnt += m2->m_ext.ext_size;
    894   1.91        ad 			if (m2->m_nextpkt != NULL)
    895   1.91        ad 				panic("sbcheck nextpkt");
    896   1.91        ad 		}
    897    1.1       cgd 	}
    898    1.1       cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    899   1.43   thorpej 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    900    1.1       cgd 		    mbcnt, sb->sb_mbcnt);
    901    1.1       cgd 		panic("sbcheck");
    902    1.1       cgd 	}
    903    1.1       cgd }
    904    1.1       cgd #endif
    905    1.1       cgd 
    906    1.1       cgd /*
    907    1.1       cgd  * As above, except the mbuf chain
    908    1.1       cgd  * begins a new record.
    909    1.1       cgd  */
    910    1.7   mycroft void
    911   1.37     lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    912    1.1       cgd {
    913   1.37     lukem 	struct mbuf	*m;
    914    1.1       cgd 
    915   1.91        ad 	KASSERT(solocked(sb->sb_so));
    916   1.91        ad 
    917  1.115  christos 	if (m0 == NULL)
    918    1.1       cgd 		return;
    919   1.43   thorpej 
    920   1.49      matt #ifdef MBUFTRACE
    921   1.65  jonathan 	m_claimm(m0, sb->sb_mowner);
    922   1.49      matt #endif
    923    1.1       cgd 	/*
    924    1.1       cgd 	 * Put the first mbuf on the queue.
    925    1.1       cgd 	 * Note this permits zero length records.
    926    1.1       cgd 	 */
    927    1.1       cgd 	sballoc(sb, m0);
    928   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    929   1.43   thorpej 	SBLINKRECORD(sb, m0);
    930    1.1       cgd 	m = m0->m_next;
    931    1.1       cgd 	m0->m_next = 0;
    932    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    933    1.1       cgd 		m0->m_flags &= ~M_EOR;
    934    1.1       cgd 		m->m_flags |= M_EOR;
    935    1.1       cgd 	}
    936    1.1       cgd 	sbcompress(sb, m, m0);
    937   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    938    1.1       cgd }
    939    1.1       cgd 
    940    1.1       cgd /*
    941    1.1       cgd  * As above except that OOB data
    942    1.1       cgd  * is inserted at the beginning of the sockbuf,
    943    1.1       cgd  * but after any other OOB data.
    944    1.1       cgd  */
    945    1.7   mycroft void
    946   1.37     lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    947    1.1       cgd {
    948   1.37     lukem 	struct mbuf	*m, **mp;
    949    1.1       cgd 
    950   1.91        ad 	KASSERT(solocked(sb->sb_so));
    951   1.91        ad 
    952  1.115  christos 	if (m0 == NULL)
    953    1.1       cgd 		return;
    954   1.43   thorpej 
    955   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    956   1.43   thorpej 
    957   1.11  christos 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    958    1.1       cgd 	    again:
    959    1.1       cgd 		switch (m->m_type) {
    960    1.1       cgd 
    961    1.1       cgd 		case MT_OOBDATA:
    962    1.1       cgd 			continue;		/* WANT next train */
    963    1.1       cgd 
    964    1.1       cgd 		case MT_CONTROL:
    965   1.11  christos 			if ((m = m->m_next) != NULL)
    966    1.1       cgd 				goto again;	/* inspect THIS train further */
    967    1.1       cgd 		}
    968    1.1       cgd 		break;
    969    1.1       cgd 	}
    970    1.1       cgd 	/*
    971    1.1       cgd 	 * Put the first mbuf on the queue.
    972    1.1       cgd 	 * Note this permits zero length records.
    973    1.1       cgd 	 */
    974    1.1       cgd 	sballoc(sb, m0);
    975    1.1       cgd 	m0->m_nextpkt = *mp;
    976   1.43   thorpej 	if (*mp == NULL) {
    977   1.43   thorpej 		/* m0 is actually the new tail */
    978   1.43   thorpej 		sb->sb_lastrecord = m0;
    979   1.43   thorpej 	}
    980    1.1       cgd 	*mp = m0;
    981    1.1       cgd 	m = m0->m_next;
    982    1.1       cgd 	m0->m_next = 0;
    983    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    984    1.1       cgd 		m0->m_flags &= ~M_EOR;
    985    1.1       cgd 		m->m_flags |= M_EOR;
    986    1.1       cgd 	}
    987    1.1       cgd 	sbcompress(sb, m, m0);
    988   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    989    1.1       cgd }
    990    1.1       cgd 
    991    1.1       cgd /*
    992    1.1       cgd  * Append address and data, and optionally, control (ancillary) data
    993    1.1       cgd  * to the receive queue of a socket.  If present,
    994    1.1       cgd  * m0 must include a packet header with total length.
    995    1.1       cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
    996    1.1       cgd  */
    997    1.7   mycroft int
    998   1.61      matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    999   1.37     lukem 	struct mbuf *control)
   1000    1.1       cgd {
   1001   1.43   thorpej 	struct mbuf	*m, *n, *nlast;
   1002   1.50      fvdl 	int		space, len;
   1003    1.1       cgd 
   1004   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1005   1.91        ad 
   1006   1.37     lukem 	space = asa->sa_len;
   1007   1.37     lukem 
   1008   1.49      matt 	if (m0 != NULL) {
   1009   1.49      matt 		if ((m0->m_flags & M_PKTHDR) == 0)
   1010   1.49      matt 			panic("sbappendaddr");
   1011    1.1       cgd 		space += m0->m_pkthdr.len;
   1012   1.49      matt #ifdef MBUFTRACE
   1013   1.65  jonathan 		m_claimm(m0, sb->sb_mowner);
   1014   1.49      matt #endif
   1015   1.49      matt 	}
   1016    1.1       cgd 	for (n = control; n; n = n->m_next) {
   1017    1.1       cgd 		space += n->m_len;
   1018   1.49      matt 		MCLAIM(n, sb->sb_mowner);
   1019  1.115  christos 		if (n->m_next == NULL)	/* keep pointer to last control buf */
   1020    1.1       cgd 			break;
   1021    1.1       cgd 	}
   1022    1.1       cgd 	if (space > sbspace(sb))
   1023    1.1       cgd 		return (0);
   1024  1.115  christos 	m = m_get(M_DONTWAIT, MT_SONAME);
   1025  1.115  christos 	if (m == NULL)
   1026    1.1       cgd 		return (0);
   1027   1.49      matt 	MCLAIM(m, sb->sb_mowner);
   1028   1.50      fvdl 	/*
   1029   1.50      fvdl 	 * XXX avoid 'comparison always true' warning which isn't easily
   1030   1.50      fvdl 	 * avoided.
   1031   1.50      fvdl 	 */
   1032   1.50      fvdl 	len = asa->sa_len;
   1033   1.50      fvdl 	if (len > MLEN) {
   1034   1.20   thorpej 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
   1035   1.20   thorpej 		if ((m->m_flags & M_EXT) == 0) {
   1036   1.20   thorpej 			m_free(m);
   1037   1.20   thorpej 			return (0);
   1038   1.20   thorpej 		}
   1039   1.20   thorpej 	}
   1040    1.1       cgd 	m->m_len = asa->sa_len;
   1041   1.82  christos 	memcpy(mtod(m, void *), asa, asa->sa_len);
   1042    1.1       cgd 	if (n)
   1043    1.1       cgd 		n->m_next = m0;		/* concatenate data to control */
   1044    1.1       cgd 	else
   1045    1.1       cgd 		control = m0;
   1046    1.1       cgd 	m->m_next = control;
   1047   1.43   thorpej 
   1048   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
   1049   1.43   thorpej 
   1050   1.43   thorpej 	for (n = m; n->m_next != NULL; n = n->m_next)
   1051    1.1       cgd 		sballoc(sb, n);
   1052   1.43   thorpej 	sballoc(sb, n);
   1053   1.43   thorpej 	nlast = n;
   1054   1.43   thorpej 	SBLINKRECORD(sb, m);
   1055   1.43   thorpej 
   1056   1.43   thorpej 	sb->sb_mbtail = nlast;
   1057   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendaddr");
   1058   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
   1059   1.43   thorpej 
   1060    1.1       cgd 	return (1);
   1061    1.1       cgd }
   1062    1.1       cgd 
   1063   1.63  jonathan /*
   1064   1.63  jonathan  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
   1065   1.63  jonathan  * an mbuf chain.
   1066   1.63  jonathan  */
   1067   1.70     perry static inline struct mbuf *
   1068   1.81      yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
   1069   1.64  jonathan 		   const struct sockaddr *asa)
   1070   1.63  jonathan {
   1071   1.63  jonathan 	struct mbuf *m;
   1072   1.64  jonathan 	const int salen = asa->sa_len;
   1073   1.63  jonathan 
   1074   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1075   1.91        ad 
   1076   1.63  jonathan 	/* only the first in each chain need be a pkthdr */
   1077  1.115  christos 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
   1078  1.115  christos 	if (m == NULL)
   1079  1.115  christos 		return NULL;
   1080   1.63  jonathan 	MCLAIM(m, sb->sb_mowner);
   1081   1.64  jonathan #ifdef notyet
   1082   1.64  jonathan 	if (salen > MHLEN) {
   1083   1.64  jonathan 		MEXTMALLOC(m, salen, M_NOWAIT);
   1084   1.64  jonathan 		if ((m->m_flags & M_EXT) == 0) {
   1085   1.64  jonathan 			m_free(m);
   1086  1.115  christos 			return NULL;
   1087   1.64  jonathan 		}
   1088   1.64  jonathan 	}
   1089   1.64  jonathan #else
   1090   1.64  jonathan 	KASSERT(salen <= MHLEN);
   1091   1.64  jonathan #endif
   1092   1.64  jonathan 	m->m_len = salen;
   1093   1.82  christos 	memcpy(mtod(m, void *), asa, salen);
   1094   1.63  jonathan 	m->m_next = m0;
   1095   1.64  jonathan 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1096   1.63  jonathan 
   1097   1.63  jonathan 	return m;
   1098   1.63  jonathan }
   1099   1.63  jonathan 
   1100   1.63  jonathan int
   1101   1.63  jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1102   1.63  jonathan 		  struct mbuf *m0, int sbprio)
   1103   1.63  jonathan {
   1104   1.63  jonathan 	struct mbuf *m, *n, *n0, *nlast;
   1105   1.63  jonathan 	int error;
   1106   1.63  jonathan 
   1107   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1108   1.91        ad 
   1109   1.63  jonathan 	/*
   1110   1.63  jonathan 	 * XXX sbprio reserved for encoding priority of this* request:
   1111   1.63  jonathan 	 *  SB_PRIO_NONE --> honour normal sb limits
   1112   1.63  jonathan 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1113   1.63  jonathan 	 *	take whole chain. Intended for large requests
   1114   1.63  jonathan 	 *      that should be delivered atomically (all, or none).
   1115   1.63  jonathan 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1116   1.63  jonathan 	 *       over normal socket limits, for messages indicating
   1117   1.63  jonathan 	 *       buffer overflow in earlier normal/lower-priority messages
   1118   1.63  jonathan 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1119   1.63  jonathan 	 *       Intended for  kernel-generated messages only.
   1120   1.63  jonathan 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1121   1.63  jonathan 	 */
   1122   1.63  jonathan 	(void)sbprio;
   1123   1.63  jonathan 
   1124   1.63  jonathan 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1125   1.63  jonathan 		panic("sbappendaddrchain");
   1126   1.63  jonathan 
   1127  1.114    martin #ifdef notyet
   1128   1.63  jonathan 	space = sbspace(sb);
   1129   1.66     perry 
   1130   1.66     perry 	/*
   1131   1.63  jonathan 	 * Enforce SB_PRIO_* limits as described above.
   1132   1.63  jonathan 	 */
   1133   1.63  jonathan #endif
   1134   1.63  jonathan 
   1135   1.63  jonathan 	n0 = NULL;
   1136   1.63  jonathan 	nlast = NULL;
   1137   1.63  jonathan 	for (m = m0; m; m = m->m_nextpkt) {
   1138   1.63  jonathan 		struct mbuf *np;
   1139   1.63  jonathan 
   1140   1.64  jonathan #ifdef MBUFTRACE
   1141   1.65  jonathan 		m_claimm(m, sb->sb_mowner);
   1142   1.64  jonathan #endif
   1143   1.64  jonathan 
   1144   1.63  jonathan 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1145   1.64  jonathan 	  	n = m_prepend_sockaddr(sb, m, asa);
   1146   1.63  jonathan 		if (n == NULL) {
   1147   1.63  jonathan 			error = ENOBUFS;
   1148   1.63  jonathan 			goto bad;
   1149   1.63  jonathan 		}
   1150   1.63  jonathan 
   1151   1.63  jonathan 		/* Append record (asa+m) to end of new chain n0 */
   1152   1.63  jonathan 		if (n0 == NULL) {
   1153   1.63  jonathan 			n0 = n;
   1154   1.63  jonathan 		} else {
   1155   1.63  jonathan 			nlast->m_nextpkt = n;
   1156   1.63  jonathan 		}
   1157   1.63  jonathan 		/* Keep track of last record on new chain */
   1158   1.63  jonathan 		nlast = n;
   1159   1.63  jonathan 
   1160   1.63  jonathan 		for (np = n; np; np = np->m_next)
   1161   1.63  jonathan 			sballoc(sb, np);
   1162   1.63  jonathan 	}
   1163   1.63  jonathan 
   1164   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1165   1.64  jonathan 
   1166   1.63  jonathan 	/* Drop the entire chain of (asa+m) records onto the socket */
   1167   1.63  jonathan 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1168   1.64  jonathan 
   1169   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1170   1.64  jonathan 
   1171   1.63  jonathan 	for (m = nlast; m->m_next; m = m->m_next)
   1172   1.63  jonathan 		;
   1173   1.63  jonathan 	sb->sb_mbtail = m;
   1174   1.64  jonathan 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1175   1.64  jonathan 
   1176   1.63  jonathan 	return (1);
   1177   1.63  jonathan 
   1178   1.63  jonathan bad:
   1179   1.64  jonathan 	/*
   1180   1.64  jonathan 	 * On error, free the prepended addreseses. For consistency
   1181   1.64  jonathan 	 * with sbappendaddr(), leave it to our caller to free
   1182   1.64  jonathan 	 * the input record chain passed to us as m0.
   1183   1.64  jonathan 	 */
   1184   1.64  jonathan 	while ((n = n0) != NULL) {
   1185   1.64  jonathan 	  	struct mbuf *np;
   1186   1.64  jonathan 
   1187   1.64  jonathan 		/* Undo the sballoc() of this record */
   1188   1.64  jonathan 		for (np = n; np; np = np->m_next)
   1189   1.64  jonathan 			sbfree(sb, np);
   1190   1.64  jonathan 
   1191   1.64  jonathan 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1192  1.124  christos 		np = m_free(n);		/* free prepended address (not data) */
   1193   1.64  jonathan 	}
   1194  1.114    martin 	return error;
   1195   1.63  jonathan }
   1196   1.63  jonathan 
   1197   1.63  jonathan 
   1198    1.7   mycroft int
   1199   1.37     lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1200    1.1       cgd {
   1201   1.43   thorpej 	struct mbuf	*m, *mlast, *n;
   1202   1.37     lukem 	int		space;
   1203    1.1       cgd 
   1204   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1205   1.91        ad 
   1206   1.37     lukem 	space = 0;
   1207  1.115  christos 	if (control == NULL)
   1208    1.1       cgd 		panic("sbappendcontrol");
   1209    1.1       cgd 	for (m = control; ; m = m->m_next) {
   1210    1.1       cgd 		space += m->m_len;
   1211   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1212  1.115  christos 		if (m->m_next == NULL)
   1213    1.1       cgd 			break;
   1214    1.1       cgd 	}
   1215    1.1       cgd 	n = m;			/* save pointer to last control buffer */
   1216   1.49      matt 	for (m = m0; m; m = m->m_next) {
   1217   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1218    1.1       cgd 		space += m->m_len;
   1219   1.49      matt 	}
   1220    1.1       cgd 	if (space > sbspace(sb))
   1221    1.1       cgd 		return (0);
   1222    1.1       cgd 	n->m_next = m0;			/* concatenate data to control */
   1223   1.43   thorpej 
   1224   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1225   1.43   thorpej 
   1226   1.43   thorpej 	for (m = control; m->m_next != NULL; m = m->m_next)
   1227    1.1       cgd 		sballoc(sb, m);
   1228   1.43   thorpej 	sballoc(sb, m);
   1229   1.43   thorpej 	mlast = m;
   1230   1.43   thorpej 	SBLINKRECORD(sb, control);
   1231   1.43   thorpej 
   1232   1.43   thorpej 	sb->sb_mbtail = mlast;
   1233   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1234   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1235   1.43   thorpej 
   1236    1.1       cgd 	return (1);
   1237    1.1       cgd }
   1238    1.1       cgd 
   1239    1.1       cgd /*
   1240    1.1       cgd  * Compress mbuf chain m into the socket
   1241    1.1       cgd  * buffer sb following mbuf n.  If n
   1242    1.1       cgd  * is null, the buffer is presumed empty.
   1243    1.1       cgd  */
   1244    1.7   mycroft void
   1245   1.37     lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1246    1.1       cgd {
   1247   1.37     lukem 	int		eor;
   1248   1.37     lukem 	struct mbuf	*o;
   1249    1.1       cgd 
   1250   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1251   1.91        ad 
   1252   1.37     lukem 	eor = 0;
   1253    1.1       cgd 	while (m) {
   1254    1.1       cgd 		eor |= m->m_flags & M_EOR;
   1255    1.1       cgd 		if (m->m_len == 0 &&
   1256    1.1       cgd 		    (eor == 0 ||
   1257    1.1       cgd 		     (((o = m->m_next) || (o = n)) &&
   1258    1.1       cgd 		      o->m_type == m->m_type))) {
   1259   1.46   thorpej 			if (sb->sb_lastrecord == m)
   1260   1.46   thorpej 				sb->sb_lastrecord = m->m_next;
   1261    1.1       cgd 			m = m_free(m);
   1262    1.1       cgd 			continue;
   1263    1.1       cgd 		}
   1264   1.40   thorpej 		if (n && (n->m_flags & M_EOR) == 0 &&
   1265   1.40   thorpej 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1266   1.40   thorpej 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1267   1.40   thorpej 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1268   1.40   thorpej 		    n->m_type == m->m_type) {
   1269   1.82  christos 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1270    1.1       cgd 			    (unsigned)m->m_len);
   1271    1.1       cgd 			n->m_len += m->m_len;
   1272    1.1       cgd 			sb->sb_cc += m->m_len;
   1273    1.1       cgd 			m = m_free(m);
   1274    1.1       cgd 			continue;
   1275    1.1       cgd 		}
   1276    1.1       cgd 		if (n)
   1277    1.1       cgd 			n->m_next = m;
   1278    1.1       cgd 		else
   1279    1.1       cgd 			sb->sb_mb = m;
   1280   1.43   thorpej 		sb->sb_mbtail = m;
   1281    1.1       cgd 		sballoc(sb, m);
   1282    1.1       cgd 		n = m;
   1283    1.1       cgd 		m->m_flags &= ~M_EOR;
   1284    1.1       cgd 		m = m->m_next;
   1285    1.1       cgd 		n->m_next = 0;
   1286    1.1       cgd 	}
   1287    1.1       cgd 	if (eor) {
   1288    1.1       cgd 		if (n)
   1289    1.1       cgd 			n->m_flags |= eor;
   1290    1.1       cgd 		else
   1291   1.15  christos 			printf("semi-panic: sbcompress\n");
   1292    1.1       cgd 	}
   1293   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
   1294    1.1       cgd }
   1295    1.1       cgd 
   1296    1.1       cgd /*
   1297    1.1       cgd  * Free all mbufs in a sockbuf.
   1298    1.1       cgd  * Check that all resources are reclaimed.
   1299    1.1       cgd  */
   1300    1.7   mycroft void
   1301   1.37     lukem sbflush(struct sockbuf *sb)
   1302    1.1       cgd {
   1303    1.1       cgd 
   1304   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1305   1.43   thorpej 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1306   1.43   thorpej 
   1307    1.1       cgd 	while (sb->sb_mbcnt)
   1308    1.1       cgd 		sbdrop(sb, (int)sb->sb_cc);
   1309   1.43   thorpej 
   1310   1.43   thorpej 	KASSERT(sb->sb_cc == 0);
   1311   1.43   thorpej 	KASSERT(sb->sb_mb == NULL);
   1312   1.43   thorpej 	KASSERT(sb->sb_mbtail == NULL);
   1313   1.43   thorpej 	KASSERT(sb->sb_lastrecord == NULL);
   1314    1.1       cgd }
   1315    1.1       cgd 
   1316    1.1       cgd /*
   1317    1.1       cgd  * Drop data from (the front of) a sockbuf.
   1318    1.1       cgd  */
   1319    1.7   mycroft void
   1320   1.37     lukem sbdrop(struct sockbuf *sb, int len)
   1321    1.1       cgd {
   1322  1.124  christos 	struct mbuf	*m, *next;
   1323    1.1       cgd 
   1324   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1325   1.91        ad 
   1326  1.115  christos 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
   1327    1.1       cgd 	while (len > 0) {
   1328  1.115  christos 		if (m == NULL) {
   1329  1.115  christos 			if (next == NULL)
   1330  1.112      matt 				panic("sbdrop(%p,%d): cc=%lu",
   1331  1.112      matt 				    sb, len, sb->sb_cc);
   1332    1.1       cgd 			m = next;
   1333    1.1       cgd 			next = m->m_nextpkt;
   1334    1.1       cgd 			continue;
   1335    1.1       cgd 		}
   1336    1.1       cgd 		if (m->m_len > len) {
   1337    1.1       cgd 			m->m_len -= len;
   1338    1.1       cgd 			m->m_data += len;
   1339    1.1       cgd 			sb->sb_cc -= len;
   1340    1.1       cgd 			break;
   1341    1.1       cgd 		}
   1342    1.1       cgd 		len -= m->m_len;
   1343    1.1       cgd 		sbfree(sb, m);
   1344  1.124  christos 		m = m_free(m);
   1345    1.1       cgd 	}
   1346    1.1       cgd 	while (m && m->m_len == 0) {
   1347    1.1       cgd 		sbfree(sb, m);
   1348  1.124  christos 		m = m_free(m);
   1349    1.1       cgd 	}
   1350    1.1       cgd 	if (m) {
   1351    1.1       cgd 		sb->sb_mb = m;
   1352    1.1       cgd 		m->m_nextpkt = next;
   1353    1.1       cgd 	} else
   1354    1.1       cgd 		sb->sb_mb = next;
   1355   1.43   thorpej 	/*
   1356   1.45   thorpej 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1357   1.43   thorpej 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1358   1.43   thorpej 	 * part of the last record.
   1359   1.43   thorpej 	 */
   1360   1.43   thorpej 	m = sb->sb_mb;
   1361   1.43   thorpej 	if (m == NULL) {
   1362   1.43   thorpej 		sb->sb_mbtail = NULL;
   1363   1.43   thorpej 		sb->sb_lastrecord = NULL;
   1364   1.43   thorpej 	} else if (m->m_nextpkt == NULL)
   1365   1.43   thorpej 		sb->sb_lastrecord = m;
   1366    1.1       cgd }
   1367    1.1       cgd 
   1368    1.1       cgd /*
   1369    1.1       cgd  * Drop a record off the front of a sockbuf
   1370    1.1       cgd  * and move the next record to the front.
   1371    1.1       cgd  */
   1372    1.7   mycroft void
   1373   1.37     lukem sbdroprecord(struct sockbuf *sb)
   1374    1.1       cgd {
   1375   1.37     lukem 	struct mbuf	*m, *mn;
   1376    1.1       cgd 
   1377   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1378   1.91        ad 
   1379    1.1       cgd 	m = sb->sb_mb;
   1380    1.1       cgd 	if (m) {
   1381    1.1       cgd 		sb->sb_mb = m->m_nextpkt;
   1382    1.1       cgd 		do {
   1383    1.1       cgd 			sbfree(sb, m);
   1384  1.124  christos 			mn = m_free(m);
   1385   1.11  christos 		} while ((m = mn) != NULL);
   1386    1.1       cgd 	}
   1387   1.45   thorpej 	SB_EMPTY_FIXUP(sb);
   1388   1.19   thorpej }
   1389   1.19   thorpej 
   1390   1.19   thorpej /*
   1391   1.19   thorpej  * Create a "control" mbuf containing the specified data
   1392   1.19   thorpej  * with the specified type for presentation on a socket buffer.
   1393   1.19   thorpej  */
   1394   1.19   thorpej struct mbuf *
   1395  1.111  christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1396   1.19   thorpej {
   1397   1.37     lukem 	struct cmsghdr	*cp;
   1398   1.37     lukem 	struct mbuf	*m;
   1399  1.111  christos 	int space = CMSG_SPACE(size);
   1400   1.19   thorpej 
   1401  1.111  christos 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1402  1.111  christos 		printf("%s: message too large %d\n", __func__, space);
   1403   1.30    itojun 		return NULL;
   1404   1.30    itojun 	}
   1405   1.30    itojun 
   1406  1.111  christos 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1407  1.111  christos 		return NULL;
   1408  1.111  christos 	if (space > MLEN) {
   1409  1.111  christos 		if (space > MCLBYTES)
   1410  1.111  christos 			MEXTMALLOC(m, space, M_WAITOK);
   1411  1.111  christos 		else
   1412  1.111  christos 			MCLGET(m, flags);
   1413   1.30    itojun 		if ((m->m_flags & M_EXT) == 0) {
   1414   1.30    itojun 			m_free(m);
   1415   1.30    itojun 			return NULL;
   1416   1.30    itojun 		}
   1417   1.30    itojun 	}
   1418   1.19   thorpej 	cp = mtod(m, struct cmsghdr *);
   1419  1.111  christos 	*p = CMSG_DATA(cp);
   1420  1.111  christos 	m->m_len = space;
   1421   1.35    itojun 	cp->cmsg_len = CMSG_LEN(size);
   1422   1.19   thorpej 	cp->cmsg_level = level;
   1423   1.19   thorpej 	cp->cmsg_type = type;
   1424  1.134      maxv 
   1425  1.134      maxv 	memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
   1426  1.134      maxv 	memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
   1427  1.134      maxv 
   1428  1.111  christos 	return m;
   1429  1.111  christos }
   1430  1.111  christos 
   1431  1.111  christos struct mbuf *
   1432  1.111  christos sbcreatecontrol(void *p, int size, int type, int level)
   1433  1.111  christos {
   1434  1.111  christos 	struct mbuf *m;
   1435  1.111  christos 	void *v;
   1436  1.111  christos 
   1437  1.111  christos 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1438  1.111  christos 	if (m == NULL)
   1439  1.111  christos 		return NULL;
   1440  1.111  christos 	memcpy(v, p, size);
   1441  1.111  christos 	return m;
   1442    1.1       cgd }
   1443   1.91        ad 
   1444   1.91        ad void
   1445   1.91        ad solockretry(struct socket *so, kmutex_t *lock)
   1446   1.91        ad {
   1447   1.91        ad 
   1448   1.91        ad 	while (lock != so->so_lock) {
   1449   1.91        ad 		mutex_exit(lock);
   1450   1.91        ad 		lock = so->so_lock;
   1451   1.91        ad 		mutex_enter(lock);
   1452   1.91        ad 	}
   1453   1.91        ad }
   1454   1.91        ad 
   1455   1.91        ad bool
   1456  1.127  christos solocked(const struct socket *so)
   1457   1.91        ad {
   1458   1.91        ad 
   1459   1.91        ad 	return mutex_owned(so->so_lock);
   1460   1.91        ad }
   1461   1.91        ad 
   1462   1.91        ad bool
   1463  1.127  christos solocked2(const struct socket *so1, const struct socket *so2)
   1464   1.91        ad {
   1465  1.127  christos 	const kmutex_t *lock;
   1466   1.91        ad 
   1467   1.91        ad 	lock = so1->so_lock;
   1468   1.91        ad 	if (lock != so2->so_lock)
   1469   1.91        ad 		return false;
   1470   1.91        ad 	return mutex_owned(lock);
   1471   1.91        ad }
   1472   1.91        ad 
   1473   1.91        ad /*
   1474  1.116     rmind  * sosetlock: assign a default lock to a new socket.
   1475   1.91        ad  */
   1476   1.91        ad void
   1477   1.91        ad sosetlock(struct socket *so)
   1478   1.91        ad {
   1479  1.116     rmind 	if (so->so_lock == NULL) {
   1480  1.116     rmind 		kmutex_t *lock = softnet_lock;
   1481   1.91        ad 
   1482   1.91        ad 		so->so_lock = lock;
   1483   1.91        ad 		mutex_obj_hold(lock);
   1484   1.91        ad 		mutex_enter(lock);
   1485   1.91        ad 	}
   1486   1.91        ad 	KASSERT(solocked(so));
   1487   1.91        ad }
   1488   1.91        ad 
   1489   1.91        ad /*
   1490   1.91        ad  * Set lock on sockbuf sb; sleep if lock is already held.
   1491   1.91        ad  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1492   1.91        ad  * Returns error without lock if sleep is interrupted.
   1493   1.91        ad  */
   1494   1.91        ad int
   1495   1.91        ad sblock(struct sockbuf *sb, int wf)
   1496   1.91        ad {
   1497   1.91        ad 	struct socket *so;
   1498   1.91        ad 	kmutex_t *lock;
   1499   1.91        ad 	int error;
   1500   1.91        ad 
   1501   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1502   1.91        ad 
   1503   1.91        ad 	for (;;) {
   1504   1.91        ad 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1505   1.91        ad 			sb->sb_flags |= SB_LOCK;
   1506   1.91        ad 			return 0;
   1507   1.91        ad 		}
   1508   1.91        ad 		if (wf != M_WAITOK)
   1509   1.91        ad 			return EWOULDBLOCK;
   1510   1.91        ad 		so = sb->sb_so;
   1511   1.91        ad 		lock = so->so_lock;
   1512   1.91        ad 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1513   1.91        ad 			cv_wait(&so->so_cv, lock);
   1514   1.91        ad 			error = 0;
   1515   1.91        ad 		} else
   1516   1.91        ad 			error = cv_wait_sig(&so->so_cv, lock);
   1517   1.91        ad 		if (__predict_false(lock != so->so_lock))
   1518   1.91        ad 			solockretry(so, lock);
   1519   1.91        ad 		if (error != 0)
   1520   1.91        ad 			return error;
   1521   1.91        ad 	}
   1522   1.91        ad }
   1523   1.91        ad 
   1524   1.91        ad void
   1525   1.91        ad sbunlock(struct sockbuf *sb)
   1526   1.91        ad {
   1527   1.91        ad 	struct socket *so;
   1528   1.91        ad 
   1529   1.91        ad 	so = sb->sb_so;
   1530   1.91        ad 
   1531   1.91        ad 	KASSERT(solocked(so));
   1532   1.91        ad 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1533   1.91        ad 
   1534   1.91        ad 	sb->sb_flags &= ~SB_LOCK;
   1535   1.91        ad 	cv_broadcast(&so->so_cv);
   1536   1.91        ad }
   1537   1.91        ad 
   1538   1.91        ad int
   1539  1.121      matt sowait(struct socket *so, bool catch_p, int timo)
   1540   1.91        ad {
   1541   1.91        ad 	kmutex_t *lock;
   1542   1.91        ad 	int error;
   1543   1.91        ad 
   1544   1.91        ad 	KASSERT(solocked(so));
   1545  1.121      matt 	KASSERT(catch_p || timo != 0);
   1546   1.91        ad 
   1547   1.91        ad 	lock = so->so_lock;
   1548  1.121      matt 	if (catch_p)
   1549  1.101      yamt 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1550  1.101      yamt 	else
   1551  1.101      yamt 		error = cv_timedwait(&so->so_cv, lock, timo);
   1552   1.91        ad 	if (__predict_false(lock != so->so_lock))
   1553   1.91        ad 		solockretry(so, lock);
   1554   1.91        ad 	return error;
   1555   1.91        ad }
   1556  1.131   msaitoh 
   1557  1.131   msaitoh #ifdef DDB
   1558  1.131   msaitoh 
   1559  1.131   msaitoh /*
   1560  1.131   msaitoh  * Currently, sofindproc() is used only from DDB. It could be used from others
   1561  1.131   msaitoh  * by using db_mutex_enter()
   1562  1.131   msaitoh  */
   1563  1.131   msaitoh 
   1564  1.131   msaitoh static inline int
   1565  1.131   msaitoh db_mutex_enter(kmutex_t *mtx)
   1566  1.131   msaitoh {
   1567  1.131   msaitoh 	extern int db_active;
   1568  1.131   msaitoh 	int rv;
   1569  1.131   msaitoh 
   1570  1.131   msaitoh 	if (!db_active) {
   1571  1.131   msaitoh 		mutex_enter(mtx);
   1572  1.131   msaitoh 		rv = 1;
   1573  1.131   msaitoh 	} else
   1574  1.131   msaitoh 		rv = mutex_tryenter(mtx);
   1575  1.131   msaitoh 
   1576  1.131   msaitoh 	return rv;
   1577  1.131   msaitoh }
   1578  1.131   msaitoh 
   1579  1.131   msaitoh int
   1580  1.131   msaitoh sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
   1581  1.131   msaitoh {
   1582  1.131   msaitoh 	proc_t *p;
   1583  1.131   msaitoh 	filedesc_t *fdp;
   1584  1.131   msaitoh 	fdtab_t *dt;
   1585  1.131   msaitoh 	fdfile_t *ff;
   1586  1.131   msaitoh 	file_t *fp = NULL;
   1587  1.131   msaitoh 	int found = 0;
   1588  1.131   msaitoh 	int i, t;
   1589  1.131   msaitoh 
   1590  1.131   msaitoh 	if (so == NULL)
   1591  1.131   msaitoh 		return 0;
   1592  1.131   msaitoh 
   1593  1.131   msaitoh 	t = db_mutex_enter(proc_lock);
   1594  1.131   msaitoh 	if (!t) {
   1595  1.131   msaitoh 		pr("could not acquire proc_lock mutex\n");
   1596  1.131   msaitoh 		return 0;
   1597  1.131   msaitoh 	}
   1598  1.131   msaitoh 	PROCLIST_FOREACH(p, &allproc) {
   1599  1.131   msaitoh 		if (p->p_stat == SIDL)
   1600  1.131   msaitoh 			continue;
   1601  1.131   msaitoh 		fdp = p->p_fd;
   1602  1.131   msaitoh 		t = db_mutex_enter(&fdp->fd_lock);
   1603  1.131   msaitoh 		if (!t) {
   1604  1.131   msaitoh 			pr("could not acquire fd_lock mutex\n");
   1605  1.131   msaitoh 			continue;
   1606  1.131   msaitoh 		}
   1607  1.131   msaitoh 		dt = fdp->fd_dt;
   1608  1.131   msaitoh 		for (i = 0; i < dt->dt_nfiles; i++) {
   1609  1.131   msaitoh 			ff = dt->dt_ff[i];
   1610  1.131   msaitoh 			if (ff == NULL)
   1611  1.131   msaitoh 				continue;
   1612  1.131   msaitoh 
   1613  1.131   msaitoh 			fp = ff->ff_file;
   1614  1.131   msaitoh 			if (fp == NULL)
   1615  1.131   msaitoh 				continue;
   1616  1.131   msaitoh 
   1617  1.131   msaitoh 			t = db_mutex_enter(&fp->f_lock);
   1618  1.131   msaitoh 			if (!t) {
   1619  1.131   msaitoh 				pr("could not acquire f_lock mutex\n");
   1620  1.131   msaitoh 				continue;
   1621  1.131   msaitoh 			}
   1622  1.131   msaitoh 			if ((struct socket *)fp->f_data != so) {
   1623  1.131   msaitoh 				mutex_exit(&fp->f_lock);
   1624  1.131   msaitoh 				continue;
   1625  1.131   msaitoh 			}
   1626  1.131   msaitoh 			found++;
   1627  1.131   msaitoh 			if (pr)
   1628  1.131   msaitoh 				pr("socket %p: owner %s(pid=%d)\n",
   1629  1.131   msaitoh 				    so, p->p_comm, p->p_pid);
   1630  1.131   msaitoh 			mutex_exit(&fp->f_lock);
   1631  1.131   msaitoh 			if (all == 0)
   1632  1.131   msaitoh 				break;
   1633  1.131   msaitoh 		}
   1634  1.131   msaitoh 		mutex_exit(&fdp->fd_lock);
   1635  1.131   msaitoh 		if (all == 0 && found != 0)
   1636  1.131   msaitoh 			break;
   1637  1.131   msaitoh 	}
   1638  1.131   msaitoh 	mutex_exit(proc_lock);
   1639  1.131   msaitoh 
   1640  1.131   msaitoh 	return found;
   1641  1.131   msaitoh }
   1642  1.131   msaitoh 
   1643  1.131   msaitoh void
   1644  1.131   msaitoh socket_print(const char *modif, void (*pr)(const char *, ...))
   1645  1.131   msaitoh {
   1646  1.131   msaitoh 	file_t *fp;
   1647  1.131   msaitoh 	struct socket *so;
   1648  1.131   msaitoh 	struct sockbuf *sb_snd, *sb_rcv;
   1649  1.131   msaitoh 	struct mbuf *m_rec, *m;
   1650  1.131   msaitoh 	bool opt_v = false;
   1651  1.131   msaitoh 	bool opt_m = false;
   1652  1.131   msaitoh 	bool opt_a = false;
   1653  1.131   msaitoh 	bool opt_p = false;
   1654  1.131   msaitoh 	int nrecs, nmbufs;
   1655  1.131   msaitoh 	char ch;
   1656  1.131   msaitoh 	const char *family;
   1657  1.131   msaitoh 
   1658  1.131   msaitoh 	while ( (ch = *(modif++)) != '\0') {
   1659  1.131   msaitoh 		switch (ch) {
   1660  1.131   msaitoh 		case 'v':
   1661  1.131   msaitoh 			opt_v = true;
   1662  1.131   msaitoh 			break;
   1663  1.131   msaitoh 		case 'm':
   1664  1.131   msaitoh 			opt_m = true;
   1665  1.131   msaitoh 			break;
   1666  1.131   msaitoh 		case 'a':
   1667  1.131   msaitoh 			opt_a = true;
   1668  1.131   msaitoh 			break;
   1669  1.131   msaitoh 		case 'p':
   1670  1.131   msaitoh 			opt_p = true;
   1671  1.131   msaitoh 			break;
   1672  1.131   msaitoh 		}
   1673  1.131   msaitoh 	}
   1674  1.131   msaitoh 	if (opt_v == false && pr)
   1675  1.131   msaitoh 		(pr)("Ignore empty sockets. use /v to print all.\n");
   1676  1.131   msaitoh 	if (opt_p == true && pr)
   1677  1.131   msaitoh 		(pr)("Don't search owner process.\n");
   1678  1.131   msaitoh 
   1679  1.131   msaitoh 	LIST_FOREACH(fp, &filehead, f_list) {
   1680  1.131   msaitoh 		if (fp->f_type != DTYPE_SOCKET)
   1681  1.131   msaitoh 			continue;
   1682  1.131   msaitoh 		so = (struct socket *)fp->f_data;
   1683  1.131   msaitoh 		if (so == NULL)
   1684  1.131   msaitoh 			continue;
   1685  1.131   msaitoh 
   1686  1.131   msaitoh 		if (so->so_proto->pr_domain->dom_family == AF_INET)
   1687  1.131   msaitoh 			family = "INET";
   1688  1.131   msaitoh #ifdef INET6
   1689  1.131   msaitoh 		else if (so->so_proto->pr_domain->dom_family == AF_INET6)
   1690  1.131   msaitoh 			family = "INET6";
   1691  1.131   msaitoh #endif
   1692  1.131   msaitoh 		else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
   1693  1.131   msaitoh 			family = "KEY";
   1694  1.131   msaitoh 		else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
   1695  1.131   msaitoh 			family = "ROUTE";
   1696  1.131   msaitoh 		else
   1697  1.131   msaitoh 			continue;
   1698  1.131   msaitoh 
   1699  1.131   msaitoh 		sb_snd = &so->so_snd;
   1700  1.131   msaitoh 		sb_rcv = &so->so_rcv;
   1701  1.131   msaitoh 
   1702  1.131   msaitoh 		if (opt_v != true &&
   1703  1.131   msaitoh 		    sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
   1704  1.131   msaitoh 			continue;
   1705  1.131   msaitoh 
   1706  1.131   msaitoh 		pr("---SOCKET %p: type %s\n", so, family);
   1707  1.131   msaitoh 		if (opt_p != true)
   1708  1.131   msaitoh 			sofindproc(so, opt_a == true ? 1 : 0, pr);
   1709  1.131   msaitoh 		pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
   1710  1.131   msaitoh 		pr("Send Buffer mbufs:\n");
   1711  1.131   msaitoh 		m_rec = m = sb_snd->sb_mb;
   1712  1.131   msaitoh 		nrecs = 0;
   1713  1.131   msaitoh 		nmbufs = 0;
   1714  1.131   msaitoh 		while (m_rec) {
   1715  1.131   msaitoh 			nrecs++;
   1716  1.131   msaitoh 			if (opt_m == true)
   1717  1.131   msaitoh 				pr(" mbuf chain %p\n", m_rec);
   1718  1.131   msaitoh 			while (m) {
   1719  1.131   msaitoh 				nmbufs++;
   1720  1.131   msaitoh 				m = m->m_next;
   1721  1.131   msaitoh 			}
   1722  1.131   msaitoh 			m_rec = m = m_rec->m_nextpkt;
   1723  1.131   msaitoh 		}
   1724  1.131   msaitoh 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
   1725  1.131   msaitoh 
   1726  1.131   msaitoh 		pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
   1727  1.131   msaitoh 		pr("Recv Buffer mbufs:\n");
   1728  1.131   msaitoh 		m_rec = m = sb_rcv->sb_mb;
   1729  1.131   msaitoh 		nrecs = 0;
   1730  1.131   msaitoh 		nmbufs = 0;
   1731  1.131   msaitoh 		while (m_rec) {
   1732  1.131   msaitoh 			nrecs++;
   1733  1.131   msaitoh 			if (opt_m == true)
   1734  1.131   msaitoh 				pr(" mbuf chain %p\n", m_rec);
   1735  1.131   msaitoh 			while (m) {
   1736  1.131   msaitoh 				nmbufs++;
   1737  1.131   msaitoh 				m = m->m_next;
   1738  1.131   msaitoh 			}
   1739  1.131   msaitoh 			m_rec = m = m_rec->m_nextpkt;
   1740  1.131   msaitoh 		}
   1741  1.131   msaitoh 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
   1742  1.131   msaitoh 	}
   1743  1.131   msaitoh }
   1744  1.131   msaitoh #endif /* DDB */
   1745