Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.140
      1  1.140   thorpej /*	$NetBSD: uipc_socket2.c,v 1.140 2021/10/02 02:07:41 thorpej Exp $	*/
      2   1.91        ad 
      3   1.91        ad /*-
      4   1.91        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5   1.91        ad  * All rights reserved.
      6   1.91        ad  *
      7   1.91        ad  * Redistribution and use in source and binary forms, with or without
      8   1.91        ad  * modification, are permitted provided that the following conditions
      9   1.91        ad  * are met:
     10   1.91        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.91        ad  *    notice, this list of conditions and the following disclaimer.
     12   1.91        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.91        ad  *    notice, this list of conditions and the following disclaimer in the
     14   1.91        ad  *    documentation and/or other materials provided with the distribution.
     15   1.91        ad  *
     16   1.91        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17   1.91        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.91        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.91        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.91        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.91        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.91        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.91        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.91        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.91        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.91        ad  * POSSIBILITY OF SUCH DAMAGE.
     27   1.91        ad  */
     28    1.9       cgd 
     29    1.1       cgd /*
     30    1.7   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31    1.7   mycroft  *	The Regents of the University of California.  All rights reserved.
     32    1.1       cgd  *
     33    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     34    1.1       cgd  * modification, are permitted provided that the following conditions
     35    1.1       cgd  * are met:
     36    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     37    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     38    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     39    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     40    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     41   1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     42    1.1       cgd  *    may be used to endorse or promote products derived from this software
     43    1.1       cgd  *    without specific prior written permission.
     44    1.1       cgd  *
     45    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55    1.1       cgd  * SUCH DAMAGE.
     56    1.1       cgd  *
     57   1.23      fvdl  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58    1.1       cgd  */
     59   1.42     lukem 
     60   1.42     lukem #include <sys/cdefs.h>
     61  1.140   thorpej __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.140 2021/10/02 02:07:41 thorpej Exp $");
     62   1.51    martin 
     63  1.122     pooka #ifdef _KERNEL_OPT
     64  1.131   msaitoh #include "opt_ddb.h"
     65  1.139   msaitoh #include "opt_inet.h"
     66   1.51    martin #include "opt_mbuftrace.h"
     67   1.58   thorpej #include "opt_sb_max.h"
     68  1.122     pooka #endif
     69    1.1       cgd 
     70    1.5   mycroft #include <sys/param.h>
     71    1.5   mycroft #include <sys/systm.h>
     72    1.5   mycroft #include <sys/proc.h>
     73    1.5   mycroft #include <sys/file.h>
     74    1.5   mycroft #include <sys/buf.h>
     75    1.5   mycroft #include <sys/mbuf.h>
     76    1.5   mycroft #include <sys/protosw.h>
     77   1.91        ad #include <sys/domain.h>
     78   1.55  christos #include <sys/poll.h>
     79    1.5   mycroft #include <sys/socket.h>
     80    1.5   mycroft #include <sys/socketvar.h>
     81   1.11  christos #include <sys/signalvar.h>
     82   1.71      elad #include <sys/kauth.h>
     83   1.91        ad #include <sys/pool.h>
     84   1.98     pooka #include <sys/uidinfo.h>
     85    1.1       cgd 
     86  1.131   msaitoh #ifdef DDB
     87  1.131   msaitoh #include <sys/filedesc.h>
     88  1.131   msaitoh #endif
     89  1.131   msaitoh 
     90    1.1       cgd /*
     91   1.91        ad  * Primitive routines for operating on sockets and socket buffers.
     92   1.91        ad  *
     93  1.116     rmind  * Connection life-cycle:
     94  1.116     rmind  *
     95  1.116     rmind  *	Normal sequence from the active (originating) side:
     96  1.116     rmind  *
     97  1.116     rmind  *	- soisconnecting() is called during processing of connect() call,
     98  1.116     rmind  *	- resulting in an eventual call to soisconnected() if/when the
     99  1.116     rmind  *	  connection is established.
    100  1.116     rmind  *
    101  1.116     rmind  *	When the connection is torn down during processing of disconnect():
    102  1.116     rmind  *
    103  1.116     rmind  *	- soisdisconnecting() is called and,
    104  1.116     rmind  *	- soisdisconnected() is called when the connection to the peer
    105  1.116     rmind  *	  is totally severed.
    106  1.116     rmind  *
    107  1.116     rmind  *	The semantics of these routines are such that connectionless protocols
    108  1.116     rmind  *	can call soisconnected() and soisdisconnected() only, bypassing the
    109  1.116     rmind  *	in-progress calls when setting up a ``connection'' takes no time.
    110  1.116     rmind  *
    111  1.116     rmind  *	From the passive side, a socket is created with two queues of sockets:
    112  1.116     rmind  *
    113  1.116     rmind  *	- so_q0 (0) for partial connections (i.e. connections in progress)
    114  1.116     rmind  *	- so_q (1) for connections already made and awaiting user acceptance.
    115  1.116     rmind  *
    116  1.116     rmind  *	As a protocol is preparing incoming connections, it creates a socket
    117  1.116     rmind  *	structure queued on so_q0 by calling sonewconn().  When the connection
    118  1.116     rmind  *	is established, soisconnected() is called, and transfers the
    119  1.116     rmind  *	socket structure to so_q, making it available to accept().
    120  1.116     rmind  *
    121  1.116     rmind  *	If a socket is closed with sockets on either so_q0 or so_q, these
    122  1.116     rmind  *	sockets are dropped.
    123  1.116     rmind  *
    124   1.91        ad  * Locking rules and assumptions:
    125   1.91        ad  *
    126   1.91        ad  * o socket::so_lock can change on the fly.  The low level routines used
    127   1.91        ad  *   to lock sockets are aware of this.  When so_lock is acquired, the
    128   1.91        ad  *   routine locking must check to see if so_lock still points to the
    129   1.91        ad  *   lock that was acquired.  If so_lock has changed in the meantime, the
    130  1.116     rmind  *   now irrelevant lock that was acquired must be dropped and the lock
    131   1.91        ad  *   operation retried.  Although not proven here, this is completely safe
    132   1.91        ad  *   on a multiprocessor system, even with relaxed memory ordering, given
    133   1.91        ad  *   the next two rules:
    134   1.91        ad  *
    135   1.91        ad  * o In order to mutate so_lock, the lock pointed to by the current value
    136   1.91        ad  *   of so_lock must be held: i.e., the socket must be held locked by the
    137   1.91        ad  *   changing thread.  The thread must issue membar_exit() to prevent
    138   1.91        ad  *   memory accesses being reordered, and can set so_lock to the desired
    139   1.91        ad  *   value.  If the lock pointed to by the new value of so_lock is not
    140   1.91        ad  *   held by the changing thread, the socket must then be considered
    141   1.91        ad  *   unlocked.
    142   1.91        ad  *
    143   1.91        ad  * o If so_lock is mutated, and the previous lock referred to by so_lock
    144   1.91        ad  *   could still be visible to other threads in the system (e.g. via file
    145   1.91        ad  *   descriptor or protocol-internal reference), then the old lock must
    146   1.91        ad  *   remain valid until the socket and/or protocol control block has been
    147   1.91        ad  *   torn down.
    148   1.91        ad  *
    149   1.91        ad  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    150   1.91        ad  *   connecting), then locking the socket must also lock the socket pointed
    151   1.91        ad  *   to by so_head: their lock pointers must match.
    152   1.91        ad  *
    153   1.91        ad  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    154   1.91        ad  *   locking the socket must also lock the sockets attached to both queues.
    155   1.91        ad  *   Again, their lock pointers must match.
    156   1.91        ad  *
    157  1.116     rmind  * o Beyond the initial lock assignment in socreate(), assigning locks to
    158   1.91        ad  *   sockets is the responsibility of the individual protocols / protocol
    159   1.91        ad  *   domains.
    160    1.1       cgd  */
    161    1.1       cgd 
    162  1.116     rmind static pool_cache_t	socket_cache;
    163  1.116     rmind u_long			sb_max = SB_MAX;/* maximum socket buffer size */
    164  1.116     rmind static u_long		sb_max_adj;	/* adjusted sb_max */
    165    1.1       cgd 
    166    1.7   mycroft void
    167   1.37     lukem soisconnecting(struct socket *so)
    168    1.1       cgd {
    169    1.1       cgd 
    170   1.91        ad 	KASSERT(solocked(so));
    171   1.91        ad 
    172    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    173    1.1       cgd 	so->so_state |= SS_ISCONNECTING;
    174    1.1       cgd }
    175    1.1       cgd 
    176    1.7   mycroft void
    177   1.37     lukem soisconnected(struct socket *so)
    178    1.1       cgd {
    179   1.37     lukem 	struct socket	*head;
    180    1.1       cgd 
    181   1.37     lukem 	head = so->so_head;
    182   1.91        ad 
    183   1.91        ad 	KASSERT(solocked(so));
    184   1.91        ad 	KASSERT(head == NULL || solocked2(so, head));
    185   1.91        ad 
    186  1.113     rmind 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    187    1.1       cgd 	so->so_state |= SS_ISCONNECTED;
    188   1.97       tls 	if (head && so->so_onq == &head->so_q0) {
    189   1.97       tls 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    190  1.116     rmind 			/*
    191  1.116     rmind 			 * Re-enqueue and wake up any waiters, e.g.
    192  1.116     rmind 			 * processes blocking on accept().
    193  1.116     rmind 			 */
    194   1.97       tls 			soqremque(so, 0);
    195   1.97       tls 			soqinsque(head, so, 1);
    196   1.97       tls 			sorwakeup(head);
    197   1.97       tls 			cv_broadcast(&head->so_cv);
    198   1.97       tls 		} else {
    199   1.97       tls 			so->so_upcall =
    200   1.97       tls 			    head->so_accf->so_accept_filter->accf_callback;
    201   1.97       tls 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    202   1.97       tls 			so->so_rcv.sb_flags |= SB_UPCALL;
    203   1.97       tls 			so->so_options &= ~SO_ACCEPTFILTER;
    204  1.104       tls 			(*so->so_upcall)(so, so->so_upcallarg,
    205  1.104       tls 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    206  1.101      yamt 		}
    207    1.1       cgd 	} else {
    208   1.91        ad 		cv_broadcast(&so->so_cv);
    209    1.1       cgd 		sorwakeup(so);
    210    1.1       cgd 		sowwakeup(so);
    211    1.1       cgd 	}
    212    1.1       cgd }
    213    1.1       cgd 
    214    1.7   mycroft void
    215   1.37     lukem soisdisconnecting(struct socket *so)
    216    1.1       cgd {
    217    1.1       cgd 
    218   1.91        ad 	KASSERT(solocked(so));
    219   1.91        ad 
    220    1.1       cgd 	so->so_state &= ~SS_ISCONNECTING;
    221    1.1       cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    222   1.91        ad 	cv_broadcast(&so->so_cv);
    223    1.1       cgd 	sowwakeup(so);
    224    1.1       cgd 	sorwakeup(so);
    225    1.1       cgd }
    226    1.1       cgd 
    227    1.7   mycroft void
    228   1.37     lukem soisdisconnected(struct socket *so)
    229    1.1       cgd {
    230    1.1       cgd 
    231   1.91        ad 	KASSERT(solocked(so));
    232   1.91        ad 
    233    1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    234   1.27   mycroft 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    235   1.91        ad 	cv_broadcast(&so->so_cv);
    236    1.1       cgd 	sowwakeup(so);
    237    1.1       cgd 	sorwakeup(so);
    238    1.1       cgd }
    239    1.1       cgd 
    240   1.94        ad void
    241   1.94        ad soinit2(void)
    242   1.94        ad {
    243   1.94        ad 
    244   1.94        ad 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    245   1.94        ad 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    246   1.94        ad }
    247   1.94        ad 
    248    1.1       cgd /*
    249  1.116     rmind  * sonewconn: accept a new connection.
    250  1.116     rmind  *
    251  1.116     rmind  * When an attempt at a new connection is noted on a socket which accepts
    252  1.116     rmind  * connections, sonewconn(9) is called.  If the connection is possible
    253  1.116     rmind  * (subject to space constraints, etc) then we allocate a new structure,
    254  1.116     rmind  * properly linked into the data structure of the original socket.
    255  1.116     rmind  *
    256  1.116     rmind  * => If 'soready' is true, then socket will become ready for accept() i.e.
    257  1.116     rmind  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
    258  1.116     rmind  * => May be called from soft-interrupt context.
    259  1.116     rmind  * => Listening socket should be locked.
    260  1.116     rmind  * => Returns the new socket locked.
    261    1.1       cgd  */
    262    1.1       cgd struct socket *
    263  1.116     rmind sonewconn(struct socket *head, bool soready)
    264    1.1       cgd {
    265  1.116     rmind 	struct socket *so;
    266  1.116     rmind 	int soqueue, error;
    267   1.91        ad 
    268   1.91        ad 	KASSERT(solocked(head));
    269    1.1       cgd 
    270  1.116     rmind 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
    271  1.123       tls 		/*
    272  1.123       tls 		 * Listen queue overflow.  If there is an accept filter
    273  1.123       tls 		 * active, pass through the oldest cxn it's handling.
    274  1.123       tls 		 */
    275  1.123       tls 		if (head->so_accf == NULL) {
    276  1.123       tls 			return NULL;
    277  1.123       tls 		} else {
    278  1.123       tls 			struct socket *so2, *next;
    279  1.123       tls 
    280  1.123       tls 			/* Pass the oldest connection waiting in the
    281  1.123       tls 			   accept filter */
    282  1.123       tls 			for (so2 = TAILQ_FIRST(&head->so_q0);
    283  1.123       tls 			     so2 != NULL; so2 = next) {
    284  1.123       tls 				next = TAILQ_NEXT(so2, so_qe);
    285  1.123       tls 				if (so2->so_upcall == NULL) {
    286  1.123       tls 					continue;
    287  1.123       tls 				}
    288  1.123       tls 				so2->so_upcall = NULL;
    289  1.123       tls 				so2->so_upcallarg = NULL;
    290  1.123       tls 				so2->so_options &= ~SO_ACCEPTFILTER;
    291  1.123       tls 				so2->so_rcv.sb_flags &= ~SB_UPCALL;
    292  1.123       tls 				soisconnected(so2);
    293  1.123       tls 				break;
    294  1.123       tls 			}
    295  1.123       tls 
    296  1.123       tls 			/* If nothing was nudged out of the acept filter, bail
    297  1.123       tls 			 * out; otherwise proceed allocating the socket. */
    298  1.123       tls 			if (so2 == NULL) {
    299  1.123       tls 				return NULL;
    300  1.123       tls 			}
    301  1.123       tls 		}
    302  1.116     rmind 	}
    303  1.116     rmind 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
    304  1.116     rmind 		soready = false;
    305  1.116     rmind 	}
    306  1.116     rmind 	soqueue = soready ? 1 : 0;
    307  1.113     rmind 
    308  1.116     rmind 	if ((so = soget(false)) == NULL) {
    309  1.100    dyoung 		return NULL;
    310  1.116     rmind 	}
    311    1.1       cgd 	so->so_type = head->so_type;
    312  1.116     rmind 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
    313    1.1       cgd 	so->so_linger = head->so_linger;
    314    1.1       cgd 	so->so_state = head->so_state | SS_NOFDREF;
    315    1.1       cgd 	so->so_proto = head->so_proto;
    316    1.1       cgd 	so->so_timeo = head->so_timeo;
    317    1.1       cgd 	so->so_pgid = head->so_pgid;
    318   1.24      matt 	so->so_send = head->so_send;
    319   1.24      matt 	so->so_receive = head->so_receive;
    320   1.67  christos 	so->so_uidinfo = head->so_uidinfo;
    321  1.138  christos 	so->so_egid = head->so_egid;
    322   1.96      yamt 	so->so_cpid = head->so_cpid;
    323  1.119     rmind 
    324  1.119     rmind 	/*
    325  1.119     rmind 	 * Share the lock with the listening-socket, it may get unshared
    326  1.119     rmind 	 * once the connection is complete.
    327  1.119     rmind 	 */
    328  1.119     rmind 	mutex_obj_hold(head->so_lock);
    329  1.119     rmind 	so->so_lock = head->so_lock;
    330  1.119     rmind 
    331  1.119     rmind 	/*
    332  1.119     rmind 	 * Reserve the space for socket buffers.
    333  1.119     rmind 	 */
    334   1.49      matt #ifdef MBUFTRACE
    335   1.49      matt 	so->so_mowner = head->so_mowner;
    336   1.49      matt 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    337   1.49      matt 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    338   1.49      matt #endif
    339  1.119     rmind 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
    340  1.103  christos 		goto out;
    341  1.119     rmind 	}
    342   1.83       tls 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    343   1.83       tls 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    344   1.84       tls 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    345   1.84       tls 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    346  1.107  christos 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    347  1.107  christos 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    348  1.116     rmind 
    349  1.116     rmind 	/*
    350  1.119     rmind 	 * Finally, perform the protocol attach.  Note: a new socket
    351  1.119     rmind 	 * lock may be assigned at this point (if so, it will be held).
    352  1.116     rmind 	 */
    353  1.119     rmind 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
    354  1.116     rmind 	if (error) {
    355  1.103  christos out:
    356  1.119     rmind 		KASSERT(solocked(so));
    357  1.116     rmind 		KASSERT(so->so_accf == NULL);
    358   1.91        ad 		soput(so);
    359  1.116     rmind 
    360  1.116     rmind 		/* Note: the listening socket shall stay locked. */
    361  1.116     rmind 		KASSERT(solocked(head));
    362  1.100    dyoung 		return NULL;
    363    1.1       cgd 	}
    364  1.119     rmind 	KASSERT(solocked2(head, so));
    365  1.116     rmind 
    366  1.116     rmind 	/*
    367  1.117     rmind 	 * Insert into the queue.  If ready, update the connection status
    368  1.117     rmind 	 * and wake up any waiters, e.g. processes blocking on accept().
    369  1.116     rmind 	 */
    370  1.117     rmind 	soqinsque(head, so, soqueue);
    371  1.116     rmind 	if (soready) {
    372  1.116     rmind 		so->so_state |= SS_ISCONNECTED;
    373    1.1       cgd 		sorwakeup(head);
    374   1.91        ad 		cv_broadcast(&head->so_cv);
    375    1.1       cgd 	}
    376  1.100    dyoung 	return so;
    377    1.1       cgd }
    378    1.1       cgd 
    379   1.91        ad struct socket *
    380   1.91        ad soget(bool waitok)
    381   1.91        ad {
    382   1.91        ad 	struct socket *so;
    383   1.91        ad 
    384   1.94        ad 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    385   1.91        ad 	if (__predict_false(so == NULL))
    386   1.91        ad 		return (NULL);
    387   1.91        ad 	memset(so, 0, sizeof(*so));
    388   1.91        ad 	TAILQ_INIT(&so->so_q0);
    389   1.91        ad 	TAILQ_INIT(&so->so_q);
    390   1.91        ad 	cv_init(&so->so_cv, "socket");
    391   1.91        ad 	cv_init(&so->so_rcv.sb_cv, "netio");
    392   1.91        ad 	cv_init(&so->so_snd.sb_cv, "netio");
    393   1.91        ad 	selinit(&so->so_rcv.sb_sel);
    394   1.91        ad 	selinit(&so->so_snd.sb_sel);
    395   1.91        ad 	so->so_rcv.sb_so = so;
    396   1.91        ad 	so->so_snd.sb_so = so;
    397   1.91        ad 	return so;
    398   1.91        ad }
    399   1.91        ad 
    400   1.91        ad void
    401   1.91        ad soput(struct socket *so)
    402   1.91        ad {
    403   1.91        ad 
    404   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    405   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    406   1.91        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    407   1.91        ad 	seldestroy(&so->so_rcv.sb_sel);
    408   1.91        ad 	seldestroy(&so->so_snd.sb_sel);
    409   1.91        ad 	mutex_obj_free(so->so_lock);
    410   1.91        ad 	cv_destroy(&so->so_cv);
    411   1.91        ad 	cv_destroy(&so->so_rcv.sb_cv);
    412   1.91        ad 	cv_destroy(&so->so_snd.sb_cv);
    413   1.94        ad 	pool_cache_put(socket_cache, so);
    414   1.91        ad }
    415   1.91        ad 
    416  1.116     rmind /*
    417  1.116     rmind  * soqinsque: insert socket of a new connection into the specified
    418  1.116     rmind  * accept queue of the listening socket (head).
    419  1.116     rmind  *
    420  1.116     rmind  *	q = 0: queue of partial connections
    421  1.116     rmind  *	q = 1: queue of incoming connections
    422  1.116     rmind  */
    423    1.7   mycroft void
    424   1.37     lukem soqinsque(struct socket *head, struct socket *so, int q)
    425    1.1       cgd {
    426  1.116     rmind 	KASSERT(q == 0 || q == 1);
    427   1.91        ad 	KASSERT(solocked2(head, so));
    428  1.116     rmind 	KASSERT(so->so_onq == NULL);
    429  1.116     rmind 	KASSERT(so->so_head == NULL);
    430   1.22   thorpej 
    431    1.1       cgd 	so->so_head = head;
    432    1.1       cgd 	if (q == 0) {
    433    1.1       cgd 		head->so_q0len++;
    434   1.22   thorpej 		so->so_onq = &head->so_q0;
    435    1.1       cgd 	} else {
    436    1.1       cgd 		head->so_qlen++;
    437   1.22   thorpej 		so->so_onq = &head->so_q;
    438    1.1       cgd 	}
    439   1.22   thorpej 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    440    1.1       cgd }
    441    1.1       cgd 
    442  1.116     rmind /*
    443  1.116     rmind  * soqremque: remove socket from the specified queue.
    444  1.116     rmind  *
    445  1.116     rmind  * => Returns true if socket was removed from the specified queue.
    446  1.116     rmind  * => False if socket was not removed (because it was in other queue).
    447  1.116     rmind  */
    448  1.116     rmind bool
    449   1.37     lukem soqremque(struct socket *so, int q)
    450    1.1       cgd {
    451  1.116     rmind 	struct socket *head = so->so_head;
    452    1.1       cgd 
    453  1.116     rmind 	KASSERT(q == 0 || q == 1);
    454  1.116     rmind 	KASSERT(solocked(so));
    455  1.116     rmind 	KASSERT(so->so_onq != NULL);
    456  1.116     rmind 	KASSERT(head != NULL);
    457   1.91        ad 
    458   1.22   thorpej 	if (q == 0) {
    459   1.22   thorpej 		if (so->so_onq != &head->so_q0)
    460  1.116     rmind 			return false;
    461    1.1       cgd 		head->so_q0len--;
    462    1.1       cgd 	} else {
    463   1.22   thorpej 		if (so->so_onq != &head->so_q)
    464  1.116     rmind 			return false;
    465    1.1       cgd 		head->so_qlen--;
    466    1.1       cgd 	}
    467   1.91        ad 	KASSERT(solocked2(so, head));
    468   1.22   thorpej 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    469   1.22   thorpej 	so->so_onq = NULL;
    470   1.22   thorpej 	so->so_head = NULL;
    471  1.116     rmind 	return true;
    472    1.1       cgd }
    473    1.1       cgd 
    474    1.1       cgd /*
    475  1.116     rmind  * socantsendmore: indicates that no more data will be sent on the
    476    1.1       cgd  * socket; it would normally be applied to a socket when the user
    477    1.1       cgd  * informs the system that no more data is to be sent, by the protocol
    478  1.120       rtr  * code (in case pr_shutdown()).
    479    1.1       cgd  */
    480    1.4    andrew void
    481   1.37     lukem socantsendmore(struct socket *so)
    482    1.1       cgd {
    483   1.91        ad 	KASSERT(solocked(so));
    484   1.91        ad 
    485    1.1       cgd 	so->so_state |= SS_CANTSENDMORE;
    486    1.1       cgd 	sowwakeup(so);
    487    1.1       cgd }
    488    1.1       cgd 
    489  1.116     rmind /*
    490  1.116     rmind  * socantrcvmore(): indicates that no more data will be received and
    491  1.116     rmind  * will normally be applied to the socket by a protocol when it detects
    492  1.116     rmind  * that the peer will send no more data.  Data queued for reading in
    493  1.116     rmind  * the socket may yet be read.
    494  1.116     rmind  */
    495    1.4    andrew void
    496   1.37     lukem socantrcvmore(struct socket *so)
    497    1.1       cgd {
    498   1.91        ad 	KASSERT(solocked(so));
    499   1.91        ad 
    500    1.1       cgd 	so->so_state |= SS_CANTRCVMORE;
    501    1.1       cgd 	sorwakeup(so);
    502    1.1       cgd }
    503    1.1       cgd 
    504    1.1       cgd /*
    505  1.128       roy  * soroverflow(): indicates that data was attempted to be sent
    506  1.128       roy  * but the receiving buffer overflowed.
    507  1.128       roy  */
    508  1.128       roy void
    509  1.128       roy soroverflow(struct socket *so)
    510  1.128       roy {
    511  1.128       roy 	KASSERT(solocked(so));
    512  1.128       roy 
    513  1.128       roy 	so->so_rcv.sb_overflowed++;
    514  1.133  christos 	if (so->so_options & SO_RERROR)  {
    515  1.133  christos 		so->so_rerror = ENOBUFS;
    516  1.133  christos 		sorwakeup(so);
    517  1.133  christos 	}
    518  1.128       roy }
    519  1.128       roy 
    520  1.128       roy /*
    521    1.1       cgd  * Wait for data to arrive at/drain from a socket buffer.
    522    1.1       cgd  */
    523    1.7   mycroft int
    524   1.37     lukem sbwait(struct sockbuf *sb)
    525    1.1       cgd {
    526   1.91        ad 	struct socket *so;
    527   1.91        ad 	kmutex_t *lock;
    528   1.91        ad 	int error;
    529    1.1       cgd 
    530   1.91        ad 	so = sb->sb_so;
    531    1.1       cgd 
    532   1.91        ad 	KASSERT(solocked(so));
    533    1.1       cgd 
    534   1.91        ad 	sb->sb_flags |= SB_NOTIFY;
    535   1.91        ad 	lock = so->so_lock;
    536   1.91        ad 	if ((sb->sb_flags & SB_NOINTR) != 0)
    537   1.91        ad 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    538   1.91        ad 	else
    539   1.91        ad 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    540   1.91        ad 	if (__predict_false(lock != so->so_lock))
    541   1.91        ad 		solockretry(so, lock);
    542   1.91        ad 	return error;
    543    1.1       cgd }
    544    1.1       cgd 
    545    1.1       cgd /*
    546    1.1       cgd  * Wakeup processes waiting on a socket buffer.
    547    1.1       cgd  * Do asynchronous notification via SIGIO
    548   1.39      manu  * if the socket buffer has the SB_ASYNC flag set.
    549    1.1       cgd  */
    550    1.7   mycroft void
    551   1.55  christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
    552    1.1       cgd {
    553   1.90     rmind 	int band;
    554   1.90     rmind 
    555   1.91        ad 	KASSERT(solocked(so));
    556   1.91        ad 	KASSERT(sb->sb_so == so);
    557   1.91        ad 
    558  1.140   thorpej 	switch (code) {
    559  1.140   thorpej 	case POLL_IN:
    560   1.90     rmind 		band = POLLIN|POLLRDNORM;
    561  1.140   thorpej 		break;
    562  1.140   thorpej 
    563  1.140   thorpej 	case POLL_OUT:
    564   1.90     rmind 		band = POLLOUT|POLLWRNORM;
    565  1.140   thorpej 		break;
    566  1.140   thorpej 
    567  1.140   thorpej 	case POLL_HUP:
    568  1.140   thorpej 		band = POLLHUP;
    569  1.140   thorpej 		break;
    570  1.140   thorpej 
    571  1.140   thorpej 	default:
    572  1.140   thorpej 		band = 0;
    573  1.140   thorpej #ifdef DIAGNOSTIC
    574  1.140   thorpej 		printf("bad siginfo code %d in socket notification.\n", code);
    575  1.140   thorpej #endif
    576  1.140   thorpej 		break;
    577  1.140   thorpej 	}
    578  1.140   thorpej 
    579   1.91        ad 	sb->sb_flags &= ~SB_NOTIFY;
    580   1.91        ad 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    581   1.91        ad 	cv_broadcast(&sb->sb_cv);
    582   1.90     rmind 	if (sb->sb_flags & SB_ASYNC)
    583   1.57  christos 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    584   1.24      matt 	if (sb->sb_flags & SB_UPCALL)
    585  1.104       tls 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    586    1.1       cgd }
    587    1.1       cgd 
    588    1.1       cgd /*
    589   1.95        ad  * Reset a socket's lock pointer.  Wake all threads waiting on the
    590   1.95        ad  * socket's condition variables so that they can restart their waits
    591   1.95        ad  * using the new lock.  The existing lock must be held.
    592   1.95        ad  */
    593   1.95        ad void
    594   1.95        ad solockreset(struct socket *so, kmutex_t *lock)
    595   1.95        ad {
    596   1.95        ad 
    597   1.95        ad 	KASSERT(solocked(so));
    598   1.95        ad 
    599   1.95        ad 	so->so_lock = lock;
    600   1.95        ad 	cv_broadcast(&so->so_snd.sb_cv);
    601   1.95        ad 	cv_broadcast(&so->so_rcv.sb_cv);
    602   1.95        ad 	cv_broadcast(&so->so_cv);
    603   1.95        ad }
    604   1.95        ad 
    605   1.95        ad /*
    606    1.1       cgd  * Socket buffer (struct sockbuf) utility routines.
    607    1.1       cgd  *
    608    1.1       cgd  * Each socket contains two socket buffers: one for sending data and
    609    1.1       cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    610    1.1       cgd  * information about the number of mbufs and amount of data in the
    611   1.13   mycroft  * queue, and other fields allowing poll() statements and notification
    612    1.1       cgd  * on data availability to be implemented.
    613    1.1       cgd  *
    614    1.1       cgd  * Data stored in a socket buffer is maintained as a list of records.
    615    1.1       cgd  * Each record is a list of mbufs chained together with the m_next
    616    1.1       cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    617    1.1       cgd  * level routine soreceive() expects the following conventions to be
    618    1.1       cgd  * observed when placing information in the receive buffer:
    619    1.1       cgd  *
    620    1.1       cgd  * 1. If the protocol requires each message be preceded by the sender's
    621    1.1       cgd  *    name, then a record containing that name must be present before
    622    1.1       cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    623    1.1       cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    624    1.1       cgd  *    just additional data associated with the message), and there are
    625    1.1       cgd  *    ``rights'' to be received, then a record containing this data
    626   1.10   mycroft  *    should be present (mbuf's must be of type MT_CONTROL).
    627    1.1       cgd  * 3. If a name or rights record exists, then it must be followed by
    628    1.1       cgd  *    a data record, perhaps of zero length.
    629    1.1       cgd  *
    630    1.1       cgd  * Before using a new socket structure it is first necessary to reserve
    631    1.1       cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    632    1.1       cgd  * some of the available buffer space in the system buffer pool for the
    633    1.1       cgd  * socket (currently, it does nothing but enforce limits).  The space
    634    1.1       cgd  * should be released by calling sbrelease() when the socket is destroyed.
    635    1.1       cgd  */
    636    1.1       cgd 
    637    1.7   mycroft int
    638   1.58   thorpej sb_max_set(u_long new_sbmax)
    639   1.58   thorpej {
    640   1.58   thorpej 	int s;
    641   1.58   thorpej 
    642   1.58   thorpej 	if (new_sbmax < (16 * 1024))
    643   1.58   thorpej 		return (EINVAL);
    644   1.58   thorpej 
    645   1.58   thorpej 	s = splsoftnet();
    646   1.58   thorpej 	sb_max = new_sbmax;
    647   1.58   thorpej 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    648   1.58   thorpej 	splx(s);
    649   1.58   thorpej 
    650   1.58   thorpej 	return (0);
    651   1.58   thorpej }
    652   1.58   thorpej 
    653   1.58   thorpej int
    654   1.37     lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    655    1.1       cgd {
    656  1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    657   1.91        ad 
    658   1.74  christos 	/*
    659   1.74  christos 	 * there's at least one application (a configure script of screen)
    660   1.74  christos 	 * which expects a fifo is writable even if it has "some" bytes
    661   1.74  christos 	 * in its buffer.
    662   1.74  christos 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    663   1.74  christos 	 *
    664   1.74  christos 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    665   1.74  christos 	 * we expect it's large enough for such applications.
    666   1.74  christos 	 */
    667   1.74  christos 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    668   1.74  christos 	u_long  hiwat = lowat + PIPE_BUF;
    669    1.1       cgd 
    670   1.74  christos 	if (sndcc < hiwat)
    671   1.74  christos 		sndcc = hiwat;
    672   1.59  christos 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    673    1.1       cgd 		goto bad;
    674   1.59  christos 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    675    1.1       cgd 		goto bad2;
    676    1.1       cgd 	if (so->so_rcv.sb_lowat == 0)
    677    1.1       cgd 		so->so_rcv.sb_lowat = 1;
    678    1.1       cgd 	if (so->so_snd.sb_lowat == 0)
    679   1.74  christos 		so->so_snd.sb_lowat = lowat;
    680    1.1       cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    681    1.1       cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    682    1.1       cgd 	return (0);
    683   1.37     lukem  bad2:
    684   1.59  christos 	sbrelease(&so->so_snd, so);
    685   1.37     lukem  bad:
    686    1.1       cgd 	return (ENOBUFS);
    687    1.1       cgd }
    688    1.1       cgd 
    689    1.1       cgd /*
    690    1.1       cgd  * Allot mbufs to a sockbuf.
    691    1.1       cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    692    1.1       cgd  * if buffering efficiency is near the normal case.
    693    1.1       cgd  */
    694    1.7   mycroft int
    695   1.59  christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    696    1.1       cgd {
    697   1.75        ad 	struct lwp *l = curlwp; /* XXX */
    698   1.62  christos 	rlim_t maxcc;
    699   1.67  christos 	struct uidinfo *uidinfo;
    700    1.1       cgd 
    701  1.116     rmind 	KASSERT(so->so_pcb == NULL || solocked(so));
    702   1.91        ad 	KASSERT(sb->sb_so == so);
    703   1.91        ad 	KASSERT(sb_max_adj != 0);
    704   1.91        ad 
    705   1.58   thorpej 	if (cc == 0 || cc > sb_max_adj)
    706    1.1       cgd 		return (0);
    707   1.93  christos 
    708  1.105      elad 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    709   1.93  christos 
    710   1.93  christos 	uidinfo = so->so_uidinfo;
    711   1.67  christos 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    712   1.62  christos 		return 0;
    713  1.132  riastrad 	sb->sb_mbmax = uimin(cc * 2, sb_max);
    714    1.1       cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    715    1.1       cgd 		sb->sb_lowat = sb->sb_hiwat;
    716  1.131   msaitoh 
    717    1.1       cgd 	return (1);
    718    1.1       cgd }
    719    1.1       cgd 
    720    1.1       cgd /*
    721   1.91        ad  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    722   1.91        ad  * that the socket is held locked here: see sorflush().
    723    1.1       cgd  */
    724    1.7   mycroft void
    725   1.59  christos sbrelease(struct sockbuf *sb, struct socket *so)
    726    1.1       cgd {
    727    1.1       cgd 
    728   1.91        ad 	KASSERT(sb->sb_so == so);
    729   1.91        ad 
    730    1.1       cgd 	sbflush(sb);
    731   1.87      yamt 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    732   1.59  christos 	sb->sb_mbmax = 0;
    733    1.1       cgd }
    734    1.1       cgd 
    735    1.1       cgd /*
    736    1.1       cgd  * Routines to add and remove
    737    1.1       cgd  * data from an mbuf queue.
    738    1.1       cgd  *
    739    1.1       cgd  * The routines sbappend() or sbappendrecord() are normally called to
    740    1.1       cgd  * append new mbufs to a socket buffer, after checking that adequate
    741    1.1       cgd  * space is available, comparing the function sbspace() with the amount
    742    1.1       cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    743    1.1       cgd  * that data supplied is treated as the beginning of a new record.
    744    1.1       cgd  * To place a sender's address, optional access rights, and data in a
    745    1.1       cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    746    1.1       cgd  * access rights and data in a socket receive buffer, sbappendrights()
    747    1.1       cgd  * should be used.  In either case, the new data begins a new record.
    748    1.1       cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    749    1.1       cgd  * for the caller that there will be enough space to store the data.
    750    1.1       cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    751    1.1       cgd  * to store additional information in.
    752    1.1       cgd  *
    753    1.1       cgd  * Reliable protocols may use the socket send buffer to hold data
    754    1.1       cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    755  1.129      maxv  * send buffer in a protocol with m_copym for output to a peer,
    756    1.1       cgd  * and then removing the data from the socket buffer with sbdrop()
    757    1.1       cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    758    1.1       cgd  */
    759    1.1       cgd 
    760   1.43   thorpej #ifdef SOCKBUF_DEBUG
    761   1.43   thorpej void
    762   1.43   thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
    763   1.43   thorpej {
    764   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    765   1.43   thorpej 
    766   1.91        ad 	KASSERT(solocked(sb->sb_so));
    767   1.91        ad 
    768   1.43   thorpej 	while (m && m->m_nextpkt)
    769   1.43   thorpej 		m = m->m_nextpkt;
    770   1.43   thorpej 
    771   1.43   thorpej 	if (m != sb->sb_lastrecord) {
    772   1.43   thorpej 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    773   1.43   thorpej 		    sb->sb_mb, sb->sb_lastrecord, m);
    774   1.43   thorpej 		printf("packet chain:\n");
    775   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    776   1.43   thorpej 			printf("\t%p\n", m);
    777   1.47    provos 		panic("sblastrecordchk from %s", where);
    778   1.43   thorpej 	}
    779   1.43   thorpej }
    780   1.43   thorpej 
    781   1.43   thorpej void
    782   1.43   thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
    783   1.43   thorpej {
    784   1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    785   1.43   thorpej 	struct mbuf *n;
    786   1.43   thorpej 
    787   1.91        ad 	KASSERT(solocked(sb->sb_so));
    788   1.91        ad 
    789   1.43   thorpej 	while (m && m->m_nextpkt)
    790   1.43   thorpej 		m = m->m_nextpkt;
    791   1.43   thorpej 
    792   1.43   thorpej 	while (m && m->m_next)
    793   1.43   thorpej 		m = m->m_next;
    794   1.43   thorpej 
    795   1.43   thorpej 	if (m != sb->sb_mbtail) {
    796   1.43   thorpej 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    797   1.43   thorpej 		    sb->sb_mb, sb->sb_mbtail, m);
    798   1.43   thorpej 		printf("packet tree:\n");
    799   1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    800   1.43   thorpej 			printf("\t");
    801   1.43   thorpej 			for (n = m; n != NULL; n = n->m_next)
    802   1.43   thorpej 				printf("%p ", n);
    803   1.43   thorpej 			printf("\n");
    804   1.43   thorpej 		}
    805   1.43   thorpej 		panic("sblastmbufchk from %s", where);
    806   1.43   thorpej 	}
    807   1.43   thorpej }
    808   1.43   thorpej #endif /* SOCKBUF_DEBUG */
    809   1.43   thorpej 
    810   1.63  jonathan /*
    811   1.63  jonathan  * Link a chain of records onto a socket buffer
    812   1.63  jonathan  */
    813   1.63  jonathan #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    814   1.43   thorpej do {									\
    815   1.43   thorpej 	if ((sb)->sb_lastrecord != NULL)				\
    816   1.43   thorpej 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    817   1.43   thorpej 	else								\
    818   1.43   thorpej 		(sb)->sb_mb = (m0);					\
    819   1.63  jonathan 	(sb)->sb_lastrecord = (mlast);					\
    820   1.43   thorpej } while (/*CONSTCOND*/0)
    821   1.43   thorpej 
    822   1.63  jonathan 
    823   1.63  jonathan #define	SBLINKRECORD(sb, m0)						\
    824   1.63  jonathan     SBLINKRECORDCHAIN(sb, m0, m0)
    825   1.63  jonathan 
    826    1.1       cgd /*
    827    1.1       cgd  * Append mbuf chain m to the last record in the
    828    1.1       cgd  * socket buffer sb.  The additional space associated
    829    1.1       cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    830    1.1       cgd  * discarded and mbufs are compacted where possible.
    831    1.1       cgd  */
    832    1.7   mycroft void
    833   1.37     lukem sbappend(struct sockbuf *sb, struct mbuf *m)
    834    1.1       cgd {
    835   1.37     lukem 	struct mbuf	*n;
    836    1.1       cgd 
    837   1.91        ad 	KASSERT(solocked(sb->sb_so));
    838   1.91        ad 
    839  1.115  christos 	if (m == NULL)
    840    1.1       cgd 		return;
    841   1.43   thorpej 
    842   1.49      matt #ifdef MBUFTRACE
    843   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    844   1.49      matt #endif
    845   1.49      matt 
    846   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 1");
    847   1.43   thorpej 
    848   1.43   thorpej 	if ((n = sb->sb_lastrecord) != NULL) {
    849   1.43   thorpej 		/*
    850   1.43   thorpej 		 * XXX Would like to simply use sb_mbtail here, but
    851   1.43   thorpej 		 * XXX I need to verify that I won't miss an EOR that
    852   1.43   thorpej 		 * XXX way.
    853   1.43   thorpej 		 */
    854    1.1       cgd 		do {
    855    1.1       cgd 			if (n->m_flags & M_EOR) {
    856    1.1       cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    857    1.1       cgd 				return;
    858    1.1       cgd 			}
    859    1.1       cgd 		} while (n->m_next && (n = n->m_next));
    860   1.43   thorpej 	} else {
    861   1.43   thorpej 		/*
    862   1.43   thorpej 		 * If this is the first record in the socket buffer, it's
    863   1.43   thorpej 		 * also the last record.
    864   1.43   thorpej 		 */
    865   1.43   thorpej 		sb->sb_lastrecord = m;
    866    1.1       cgd 	}
    867    1.1       cgd 	sbcompress(sb, m, n);
    868   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 2");
    869   1.43   thorpej }
    870   1.43   thorpej 
    871   1.43   thorpej /*
    872   1.43   thorpej  * This version of sbappend() should only be used when the caller
    873   1.43   thorpej  * absolutely knows that there will never be more than one record
    874   1.43   thorpej  * in the socket buffer, that is, a stream protocol (such as TCP).
    875   1.43   thorpej  */
    876   1.43   thorpej void
    877   1.44   thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
    878   1.43   thorpej {
    879   1.43   thorpej 
    880   1.91        ad 	KASSERT(solocked(sb->sb_so));
    881   1.43   thorpej 	KDASSERT(m->m_nextpkt == NULL);
    882   1.43   thorpej 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    883   1.43   thorpej 
    884   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
    885   1.43   thorpej 
    886   1.49      matt #ifdef MBUFTRACE
    887   1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    888   1.49      matt #endif
    889   1.49      matt 
    890   1.43   thorpej 	sbcompress(sb, m, sb->sb_mbtail);
    891   1.43   thorpej 
    892   1.43   thorpej 	sb->sb_lastrecord = sb->sb_mb;
    893   1.43   thorpej 	SBLASTRECORDCHK(sb, __func__);
    894    1.1       cgd }
    895    1.1       cgd 
    896    1.1       cgd #ifdef SOCKBUF_DEBUG
    897    1.7   mycroft void
    898   1.37     lukem sbcheck(struct sockbuf *sb)
    899    1.1       cgd {
    900   1.91        ad 	struct mbuf	*m, *m2;
    901   1.43   thorpej 	u_long		len, mbcnt;
    902    1.1       cgd 
    903   1.91        ad 	KASSERT(solocked(sb->sb_so));
    904   1.91        ad 
    905   1.37     lukem 	len = 0;
    906   1.37     lukem 	mbcnt = 0;
    907   1.91        ad 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    908   1.91        ad 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    909   1.91        ad 			len += m2->m_len;
    910   1.91        ad 			mbcnt += MSIZE;
    911   1.91        ad 			if (m2->m_flags & M_EXT)
    912   1.91        ad 				mbcnt += m2->m_ext.ext_size;
    913   1.91        ad 			if (m2->m_nextpkt != NULL)
    914   1.91        ad 				panic("sbcheck nextpkt");
    915   1.91        ad 		}
    916    1.1       cgd 	}
    917    1.1       cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    918   1.43   thorpej 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    919    1.1       cgd 		    mbcnt, sb->sb_mbcnt);
    920    1.1       cgd 		panic("sbcheck");
    921    1.1       cgd 	}
    922    1.1       cgd }
    923    1.1       cgd #endif
    924    1.1       cgd 
    925    1.1       cgd /*
    926    1.1       cgd  * As above, except the mbuf chain
    927    1.1       cgd  * begins a new record.
    928    1.1       cgd  */
    929    1.7   mycroft void
    930   1.37     lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    931    1.1       cgd {
    932   1.37     lukem 	struct mbuf	*m;
    933    1.1       cgd 
    934   1.91        ad 	KASSERT(solocked(sb->sb_so));
    935   1.91        ad 
    936  1.115  christos 	if (m0 == NULL)
    937    1.1       cgd 		return;
    938   1.43   thorpej 
    939   1.49      matt #ifdef MBUFTRACE
    940   1.65  jonathan 	m_claimm(m0, sb->sb_mowner);
    941   1.49      matt #endif
    942    1.1       cgd 	/*
    943    1.1       cgd 	 * Put the first mbuf on the queue.
    944    1.1       cgd 	 * Note this permits zero length records.
    945    1.1       cgd 	 */
    946    1.1       cgd 	sballoc(sb, m0);
    947   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    948   1.43   thorpej 	SBLINKRECORD(sb, m0);
    949    1.1       cgd 	m = m0->m_next;
    950    1.1       cgd 	m0->m_next = 0;
    951    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    952    1.1       cgd 		m0->m_flags &= ~M_EOR;
    953    1.1       cgd 		m->m_flags |= M_EOR;
    954    1.1       cgd 	}
    955    1.1       cgd 	sbcompress(sb, m, m0);
    956   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    957    1.1       cgd }
    958    1.1       cgd 
    959    1.1       cgd /*
    960    1.1       cgd  * As above except that OOB data
    961    1.1       cgd  * is inserted at the beginning of the sockbuf,
    962    1.1       cgd  * but after any other OOB data.
    963    1.1       cgd  */
    964    1.7   mycroft void
    965   1.37     lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    966    1.1       cgd {
    967   1.37     lukem 	struct mbuf	*m, **mp;
    968    1.1       cgd 
    969   1.91        ad 	KASSERT(solocked(sb->sb_so));
    970   1.91        ad 
    971  1.115  christos 	if (m0 == NULL)
    972    1.1       cgd 		return;
    973   1.43   thorpej 
    974   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    975   1.43   thorpej 
    976   1.11  christos 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    977    1.1       cgd 	    again:
    978    1.1       cgd 		switch (m->m_type) {
    979    1.1       cgd 
    980    1.1       cgd 		case MT_OOBDATA:
    981    1.1       cgd 			continue;		/* WANT next train */
    982    1.1       cgd 
    983    1.1       cgd 		case MT_CONTROL:
    984   1.11  christos 			if ((m = m->m_next) != NULL)
    985    1.1       cgd 				goto again;	/* inspect THIS train further */
    986    1.1       cgd 		}
    987    1.1       cgd 		break;
    988    1.1       cgd 	}
    989    1.1       cgd 	/*
    990    1.1       cgd 	 * Put the first mbuf on the queue.
    991    1.1       cgd 	 * Note this permits zero length records.
    992    1.1       cgd 	 */
    993    1.1       cgd 	sballoc(sb, m0);
    994    1.1       cgd 	m0->m_nextpkt = *mp;
    995   1.43   thorpej 	if (*mp == NULL) {
    996   1.43   thorpej 		/* m0 is actually the new tail */
    997   1.43   thorpej 		sb->sb_lastrecord = m0;
    998   1.43   thorpej 	}
    999    1.1       cgd 	*mp = m0;
   1000    1.1       cgd 	m = m0->m_next;
   1001    1.1       cgd 	m0->m_next = 0;
   1002    1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
   1003    1.1       cgd 		m0->m_flags &= ~M_EOR;
   1004    1.1       cgd 		m->m_flags |= M_EOR;
   1005    1.1       cgd 	}
   1006    1.1       cgd 	sbcompress(sb, m, m0);
   1007   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
   1008    1.1       cgd }
   1009    1.1       cgd 
   1010    1.1       cgd /*
   1011    1.1       cgd  * Append address and data, and optionally, control (ancillary) data
   1012    1.1       cgd  * to the receive queue of a socket.  If present,
   1013    1.1       cgd  * m0 must include a packet header with total length.
   1014    1.1       cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
   1015    1.1       cgd  */
   1016    1.7   mycroft int
   1017   1.61      matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
   1018   1.37     lukem 	struct mbuf *control)
   1019    1.1       cgd {
   1020   1.43   thorpej 	struct mbuf	*m, *n, *nlast;
   1021   1.50      fvdl 	int		space, len;
   1022    1.1       cgd 
   1023   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1024   1.91        ad 
   1025   1.37     lukem 	space = asa->sa_len;
   1026   1.37     lukem 
   1027   1.49      matt 	if (m0 != NULL) {
   1028   1.49      matt 		if ((m0->m_flags & M_PKTHDR) == 0)
   1029   1.49      matt 			panic("sbappendaddr");
   1030    1.1       cgd 		space += m0->m_pkthdr.len;
   1031   1.49      matt #ifdef MBUFTRACE
   1032   1.65  jonathan 		m_claimm(m0, sb->sb_mowner);
   1033   1.49      matt #endif
   1034   1.49      matt 	}
   1035    1.1       cgd 	for (n = control; n; n = n->m_next) {
   1036    1.1       cgd 		space += n->m_len;
   1037   1.49      matt 		MCLAIM(n, sb->sb_mowner);
   1038  1.115  christos 		if (n->m_next == NULL)	/* keep pointer to last control buf */
   1039    1.1       cgd 			break;
   1040    1.1       cgd 	}
   1041    1.1       cgd 	if (space > sbspace(sb))
   1042    1.1       cgd 		return (0);
   1043  1.115  christos 	m = m_get(M_DONTWAIT, MT_SONAME);
   1044  1.115  christos 	if (m == NULL)
   1045    1.1       cgd 		return (0);
   1046   1.49      matt 	MCLAIM(m, sb->sb_mowner);
   1047   1.50      fvdl 	/*
   1048   1.50      fvdl 	 * XXX avoid 'comparison always true' warning which isn't easily
   1049   1.50      fvdl 	 * avoided.
   1050   1.50      fvdl 	 */
   1051   1.50      fvdl 	len = asa->sa_len;
   1052   1.50      fvdl 	if (len > MLEN) {
   1053   1.20   thorpej 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
   1054   1.20   thorpej 		if ((m->m_flags & M_EXT) == 0) {
   1055   1.20   thorpej 			m_free(m);
   1056   1.20   thorpej 			return (0);
   1057   1.20   thorpej 		}
   1058   1.20   thorpej 	}
   1059    1.1       cgd 	m->m_len = asa->sa_len;
   1060   1.82  christos 	memcpy(mtod(m, void *), asa, asa->sa_len);
   1061    1.1       cgd 	if (n)
   1062    1.1       cgd 		n->m_next = m0;		/* concatenate data to control */
   1063    1.1       cgd 	else
   1064    1.1       cgd 		control = m0;
   1065    1.1       cgd 	m->m_next = control;
   1066   1.43   thorpej 
   1067   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
   1068   1.43   thorpej 
   1069   1.43   thorpej 	for (n = m; n->m_next != NULL; n = n->m_next)
   1070    1.1       cgd 		sballoc(sb, n);
   1071   1.43   thorpej 	sballoc(sb, n);
   1072   1.43   thorpej 	nlast = n;
   1073   1.43   thorpej 	SBLINKRECORD(sb, m);
   1074   1.43   thorpej 
   1075   1.43   thorpej 	sb->sb_mbtail = nlast;
   1076   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendaddr");
   1077   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
   1078   1.43   thorpej 
   1079    1.1       cgd 	return (1);
   1080    1.1       cgd }
   1081    1.1       cgd 
   1082   1.63  jonathan /*
   1083   1.63  jonathan  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
   1084   1.63  jonathan  * an mbuf chain.
   1085   1.63  jonathan  */
   1086   1.70     perry static inline struct mbuf *
   1087   1.81      yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
   1088   1.64  jonathan 		   const struct sockaddr *asa)
   1089   1.63  jonathan {
   1090   1.63  jonathan 	struct mbuf *m;
   1091   1.64  jonathan 	const int salen = asa->sa_len;
   1092   1.63  jonathan 
   1093   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1094   1.91        ad 
   1095   1.63  jonathan 	/* only the first in each chain need be a pkthdr */
   1096  1.115  christos 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
   1097  1.115  christos 	if (m == NULL)
   1098  1.115  christos 		return NULL;
   1099   1.63  jonathan 	MCLAIM(m, sb->sb_mowner);
   1100   1.64  jonathan #ifdef notyet
   1101   1.64  jonathan 	if (salen > MHLEN) {
   1102   1.64  jonathan 		MEXTMALLOC(m, salen, M_NOWAIT);
   1103   1.64  jonathan 		if ((m->m_flags & M_EXT) == 0) {
   1104   1.64  jonathan 			m_free(m);
   1105  1.115  christos 			return NULL;
   1106   1.64  jonathan 		}
   1107   1.64  jonathan 	}
   1108   1.64  jonathan #else
   1109   1.64  jonathan 	KASSERT(salen <= MHLEN);
   1110   1.64  jonathan #endif
   1111   1.64  jonathan 	m->m_len = salen;
   1112   1.82  christos 	memcpy(mtod(m, void *), asa, salen);
   1113   1.63  jonathan 	m->m_next = m0;
   1114   1.64  jonathan 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1115   1.63  jonathan 
   1116   1.63  jonathan 	return m;
   1117   1.63  jonathan }
   1118   1.63  jonathan 
   1119   1.63  jonathan int
   1120   1.63  jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1121   1.63  jonathan 		  struct mbuf *m0, int sbprio)
   1122   1.63  jonathan {
   1123   1.63  jonathan 	struct mbuf *m, *n, *n0, *nlast;
   1124   1.63  jonathan 	int error;
   1125   1.63  jonathan 
   1126   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1127   1.91        ad 
   1128   1.63  jonathan 	/*
   1129   1.63  jonathan 	 * XXX sbprio reserved for encoding priority of this* request:
   1130   1.63  jonathan 	 *  SB_PRIO_NONE --> honour normal sb limits
   1131   1.63  jonathan 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1132   1.63  jonathan 	 *	take whole chain. Intended for large requests
   1133   1.63  jonathan 	 *      that should be delivered atomically (all, or none).
   1134   1.63  jonathan 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1135   1.63  jonathan 	 *       over normal socket limits, for messages indicating
   1136   1.63  jonathan 	 *       buffer overflow in earlier normal/lower-priority messages
   1137   1.63  jonathan 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1138   1.63  jonathan 	 *       Intended for  kernel-generated messages only.
   1139   1.63  jonathan 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1140   1.63  jonathan 	 */
   1141   1.63  jonathan 	(void)sbprio;
   1142   1.63  jonathan 
   1143   1.63  jonathan 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1144   1.63  jonathan 		panic("sbappendaddrchain");
   1145   1.63  jonathan 
   1146  1.114    martin #ifdef notyet
   1147   1.63  jonathan 	space = sbspace(sb);
   1148   1.66     perry 
   1149   1.66     perry 	/*
   1150   1.63  jonathan 	 * Enforce SB_PRIO_* limits as described above.
   1151   1.63  jonathan 	 */
   1152   1.63  jonathan #endif
   1153   1.63  jonathan 
   1154   1.63  jonathan 	n0 = NULL;
   1155   1.63  jonathan 	nlast = NULL;
   1156   1.63  jonathan 	for (m = m0; m; m = m->m_nextpkt) {
   1157   1.63  jonathan 		struct mbuf *np;
   1158   1.63  jonathan 
   1159   1.64  jonathan #ifdef MBUFTRACE
   1160   1.65  jonathan 		m_claimm(m, sb->sb_mowner);
   1161   1.64  jonathan #endif
   1162   1.64  jonathan 
   1163   1.63  jonathan 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1164   1.64  jonathan 	  	n = m_prepend_sockaddr(sb, m, asa);
   1165   1.63  jonathan 		if (n == NULL) {
   1166   1.63  jonathan 			error = ENOBUFS;
   1167   1.63  jonathan 			goto bad;
   1168   1.63  jonathan 		}
   1169   1.63  jonathan 
   1170   1.63  jonathan 		/* Append record (asa+m) to end of new chain n0 */
   1171   1.63  jonathan 		if (n0 == NULL) {
   1172   1.63  jonathan 			n0 = n;
   1173   1.63  jonathan 		} else {
   1174   1.63  jonathan 			nlast->m_nextpkt = n;
   1175   1.63  jonathan 		}
   1176   1.63  jonathan 		/* Keep track of last record on new chain */
   1177   1.63  jonathan 		nlast = n;
   1178   1.63  jonathan 
   1179   1.63  jonathan 		for (np = n; np; np = np->m_next)
   1180   1.63  jonathan 			sballoc(sb, np);
   1181   1.63  jonathan 	}
   1182   1.63  jonathan 
   1183   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1184   1.64  jonathan 
   1185   1.63  jonathan 	/* Drop the entire chain of (asa+m) records onto the socket */
   1186   1.63  jonathan 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1187   1.64  jonathan 
   1188   1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1189   1.64  jonathan 
   1190   1.63  jonathan 	for (m = nlast; m->m_next; m = m->m_next)
   1191   1.63  jonathan 		;
   1192   1.63  jonathan 	sb->sb_mbtail = m;
   1193   1.64  jonathan 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1194   1.64  jonathan 
   1195   1.63  jonathan 	return (1);
   1196   1.63  jonathan 
   1197   1.63  jonathan bad:
   1198   1.64  jonathan 	/*
   1199   1.64  jonathan 	 * On error, free the prepended addreseses. For consistency
   1200   1.64  jonathan 	 * with sbappendaddr(), leave it to our caller to free
   1201   1.64  jonathan 	 * the input record chain passed to us as m0.
   1202   1.64  jonathan 	 */
   1203   1.64  jonathan 	while ((n = n0) != NULL) {
   1204   1.64  jonathan 	  	struct mbuf *np;
   1205   1.64  jonathan 
   1206   1.64  jonathan 		/* Undo the sballoc() of this record */
   1207   1.64  jonathan 		for (np = n; np; np = np->m_next)
   1208   1.64  jonathan 			sbfree(sb, np);
   1209   1.64  jonathan 
   1210   1.64  jonathan 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1211  1.124  christos 		np = m_free(n);		/* free prepended address (not data) */
   1212   1.64  jonathan 	}
   1213  1.114    martin 	return error;
   1214   1.63  jonathan }
   1215   1.63  jonathan 
   1216   1.63  jonathan 
   1217    1.7   mycroft int
   1218   1.37     lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1219    1.1       cgd {
   1220   1.43   thorpej 	struct mbuf	*m, *mlast, *n;
   1221   1.37     lukem 	int		space;
   1222    1.1       cgd 
   1223   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1224   1.91        ad 
   1225   1.37     lukem 	space = 0;
   1226  1.115  christos 	if (control == NULL)
   1227    1.1       cgd 		panic("sbappendcontrol");
   1228    1.1       cgd 	for (m = control; ; m = m->m_next) {
   1229    1.1       cgd 		space += m->m_len;
   1230   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1231  1.115  christos 		if (m->m_next == NULL)
   1232    1.1       cgd 			break;
   1233    1.1       cgd 	}
   1234    1.1       cgd 	n = m;			/* save pointer to last control buffer */
   1235   1.49      matt 	for (m = m0; m; m = m->m_next) {
   1236   1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1237    1.1       cgd 		space += m->m_len;
   1238   1.49      matt 	}
   1239    1.1       cgd 	if (space > sbspace(sb))
   1240    1.1       cgd 		return (0);
   1241    1.1       cgd 	n->m_next = m0;			/* concatenate data to control */
   1242   1.43   thorpej 
   1243   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1244   1.43   thorpej 
   1245   1.43   thorpej 	for (m = control; m->m_next != NULL; m = m->m_next)
   1246    1.1       cgd 		sballoc(sb, m);
   1247   1.43   thorpej 	sballoc(sb, m);
   1248   1.43   thorpej 	mlast = m;
   1249   1.43   thorpej 	SBLINKRECORD(sb, control);
   1250   1.43   thorpej 
   1251   1.43   thorpej 	sb->sb_mbtail = mlast;
   1252   1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1253   1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1254   1.43   thorpej 
   1255    1.1       cgd 	return (1);
   1256    1.1       cgd }
   1257    1.1       cgd 
   1258    1.1       cgd /*
   1259    1.1       cgd  * Compress mbuf chain m into the socket
   1260    1.1       cgd  * buffer sb following mbuf n.  If n
   1261    1.1       cgd  * is null, the buffer is presumed empty.
   1262    1.1       cgd  */
   1263    1.7   mycroft void
   1264   1.37     lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1265    1.1       cgd {
   1266   1.37     lukem 	int		eor;
   1267   1.37     lukem 	struct mbuf	*o;
   1268    1.1       cgd 
   1269   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1270   1.91        ad 
   1271   1.37     lukem 	eor = 0;
   1272    1.1       cgd 	while (m) {
   1273    1.1       cgd 		eor |= m->m_flags & M_EOR;
   1274    1.1       cgd 		if (m->m_len == 0 &&
   1275    1.1       cgd 		    (eor == 0 ||
   1276    1.1       cgd 		     (((o = m->m_next) || (o = n)) &&
   1277    1.1       cgd 		      o->m_type == m->m_type))) {
   1278   1.46   thorpej 			if (sb->sb_lastrecord == m)
   1279   1.46   thorpej 				sb->sb_lastrecord = m->m_next;
   1280    1.1       cgd 			m = m_free(m);
   1281    1.1       cgd 			continue;
   1282    1.1       cgd 		}
   1283   1.40   thorpej 		if (n && (n->m_flags & M_EOR) == 0 &&
   1284   1.40   thorpej 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1285   1.40   thorpej 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1286   1.40   thorpej 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1287   1.40   thorpej 		    n->m_type == m->m_type) {
   1288   1.82  christos 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1289    1.1       cgd 			    (unsigned)m->m_len);
   1290    1.1       cgd 			n->m_len += m->m_len;
   1291    1.1       cgd 			sb->sb_cc += m->m_len;
   1292    1.1       cgd 			m = m_free(m);
   1293    1.1       cgd 			continue;
   1294    1.1       cgd 		}
   1295    1.1       cgd 		if (n)
   1296    1.1       cgd 			n->m_next = m;
   1297    1.1       cgd 		else
   1298    1.1       cgd 			sb->sb_mb = m;
   1299   1.43   thorpej 		sb->sb_mbtail = m;
   1300    1.1       cgd 		sballoc(sb, m);
   1301    1.1       cgd 		n = m;
   1302    1.1       cgd 		m->m_flags &= ~M_EOR;
   1303    1.1       cgd 		m = m->m_next;
   1304    1.1       cgd 		n->m_next = 0;
   1305    1.1       cgd 	}
   1306    1.1       cgd 	if (eor) {
   1307    1.1       cgd 		if (n)
   1308    1.1       cgd 			n->m_flags |= eor;
   1309    1.1       cgd 		else
   1310   1.15  christos 			printf("semi-panic: sbcompress\n");
   1311    1.1       cgd 	}
   1312   1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
   1313    1.1       cgd }
   1314    1.1       cgd 
   1315    1.1       cgd /*
   1316    1.1       cgd  * Free all mbufs in a sockbuf.
   1317    1.1       cgd  * Check that all resources are reclaimed.
   1318    1.1       cgd  */
   1319    1.7   mycroft void
   1320   1.37     lukem sbflush(struct sockbuf *sb)
   1321    1.1       cgd {
   1322    1.1       cgd 
   1323   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1324   1.43   thorpej 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1325   1.43   thorpej 
   1326    1.1       cgd 	while (sb->sb_mbcnt)
   1327    1.1       cgd 		sbdrop(sb, (int)sb->sb_cc);
   1328   1.43   thorpej 
   1329   1.43   thorpej 	KASSERT(sb->sb_cc == 0);
   1330   1.43   thorpej 	KASSERT(sb->sb_mb == NULL);
   1331   1.43   thorpej 	KASSERT(sb->sb_mbtail == NULL);
   1332   1.43   thorpej 	KASSERT(sb->sb_lastrecord == NULL);
   1333    1.1       cgd }
   1334    1.1       cgd 
   1335    1.1       cgd /*
   1336    1.1       cgd  * Drop data from (the front of) a sockbuf.
   1337    1.1       cgd  */
   1338    1.7   mycroft void
   1339   1.37     lukem sbdrop(struct sockbuf *sb, int len)
   1340    1.1       cgd {
   1341  1.124  christos 	struct mbuf	*m, *next;
   1342    1.1       cgd 
   1343   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1344   1.91        ad 
   1345  1.115  christos 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
   1346    1.1       cgd 	while (len > 0) {
   1347  1.115  christos 		if (m == NULL) {
   1348  1.115  christos 			if (next == NULL)
   1349  1.112      matt 				panic("sbdrop(%p,%d): cc=%lu",
   1350  1.112      matt 				    sb, len, sb->sb_cc);
   1351    1.1       cgd 			m = next;
   1352    1.1       cgd 			next = m->m_nextpkt;
   1353    1.1       cgd 			continue;
   1354    1.1       cgd 		}
   1355    1.1       cgd 		if (m->m_len > len) {
   1356    1.1       cgd 			m->m_len -= len;
   1357    1.1       cgd 			m->m_data += len;
   1358    1.1       cgd 			sb->sb_cc -= len;
   1359    1.1       cgd 			break;
   1360    1.1       cgd 		}
   1361    1.1       cgd 		len -= m->m_len;
   1362    1.1       cgd 		sbfree(sb, m);
   1363  1.124  christos 		m = m_free(m);
   1364    1.1       cgd 	}
   1365    1.1       cgd 	while (m && m->m_len == 0) {
   1366    1.1       cgd 		sbfree(sb, m);
   1367  1.124  christos 		m = m_free(m);
   1368    1.1       cgd 	}
   1369    1.1       cgd 	if (m) {
   1370    1.1       cgd 		sb->sb_mb = m;
   1371    1.1       cgd 		m->m_nextpkt = next;
   1372    1.1       cgd 	} else
   1373    1.1       cgd 		sb->sb_mb = next;
   1374   1.43   thorpej 	/*
   1375   1.45   thorpej 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1376   1.43   thorpej 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1377   1.43   thorpej 	 * part of the last record.
   1378   1.43   thorpej 	 */
   1379   1.43   thorpej 	m = sb->sb_mb;
   1380   1.43   thorpej 	if (m == NULL) {
   1381   1.43   thorpej 		sb->sb_mbtail = NULL;
   1382   1.43   thorpej 		sb->sb_lastrecord = NULL;
   1383   1.43   thorpej 	} else if (m->m_nextpkt == NULL)
   1384   1.43   thorpej 		sb->sb_lastrecord = m;
   1385    1.1       cgd }
   1386    1.1       cgd 
   1387    1.1       cgd /*
   1388    1.1       cgd  * Drop a record off the front of a sockbuf
   1389    1.1       cgd  * and move the next record to the front.
   1390    1.1       cgd  */
   1391    1.7   mycroft void
   1392   1.37     lukem sbdroprecord(struct sockbuf *sb)
   1393    1.1       cgd {
   1394   1.37     lukem 	struct mbuf	*m, *mn;
   1395    1.1       cgd 
   1396   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1397   1.91        ad 
   1398    1.1       cgd 	m = sb->sb_mb;
   1399    1.1       cgd 	if (m) {
   1400    1.1       cgd 		sb->sb_mb = m->m_nextpkt;
   1401    1.1       cgd 		do {
   1402    1.1       cgd 			sbfree(sb, m);
   1403  1.124  christos 			mn = m_free(m);
   1404   1.11  christos 		} while ((m = mn) != NULL);
   1405    1.1       cgd 	}
   1406   1.45   thorpej 	SB_EMPTY_FIXUP(sb);
   1407   1.19   thorpej }
   1408   1.19   thorpej 
   1409   1.19   thorpej /*
   1410   1.19   thorpej  * Create a "control" mbuf containing the specified data
   1411   1.19   thorpej  * with the specified type for presentation on a socket buffer.
   1412   1.19   thorpej  */
   1413   1.19   thorpej struct mbuf *
   1414  1.111  christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1415   1.19   thorpej {
   1416   1.37     lukem 	struct cmsghdr	*cp;
   1417   1.37     lukem 	struct mbuf	*m;
   1418  1.111  christos 	int space = CMSG_SPACE(size);
   1419   1.19   thorpej 
   1420  1.111  christos 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1421  1.111  christos 		printf("%s: message too large %d\n", __func__, space);
   1422   1.30    itojun 		return NULL;
   1423   1.30    itojun 	}
   1424   1.30    itojun 
   1425  1.111  christos 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1426  1.111  christos 		return NULL;
   1427  1.111  christos 	if (space > MLEN) {
   1428  1.111  christos 		if (space > MCLBYTES)
   1429  1.111  christos 			MEXTMALLOC(m, space, M_WAITOK);
   1430  1.111  christos 		else
   1431  1.111  christos 			MCLGET(m, flags);
   1432   1.30    itojun 		if ((m->m_flags & M_EXT) == 0) {
   1433   1.30    itojun 			m_free(m);
   1434   1.30    itojun 			return NULL;
   1435   1.30    itojun 		}
   1436   1.30    itojun 	}
   1437   1.19   thorpej 	cp = mtod(m, struct cmsghdr *);
   1438  1.111  christos 	*p = CMSG_DATA(cp);
   1439  1.111  christos 	m->m_len = space;
   1440   1.35    itojun 	cp->cmsg_len = CMSG_LEN(size);
   1441   1.19   thorpej 	cp->cmsg_level = level;
   1442   1.19   thorpej 	cp->cmsg_type = type;
   1443  1.134      maxv 
   1444  1.134      maxv 	memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
   1445  1.134      maxv 	memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
   1446  1.134      maxv 
   1447  1.111  christos 	return m;
   1448  1.111  christos }
   1449  1.111  christos 
   1450  1.111  christos struct mbuf *
   1451  1.111  christos sbcreatecontrol(void *p, int size, int type, int level)
   1452  1.111  christos {
   1453  1.111  christos 	struct mbuf *m;
   1454  1.111  christos 	void *v;
   1455  1.111  christos 
   1456  1.111  christos 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1457  1.111  christos 	if (m == NULL)
   1458  1.111  christos 		return NULL;
   1459  1.111  christos 	memcpy(v, p, size);
   1460  1.111  christos 	return m;
   1461    1.1       cgd }
   1462   1.91        ad 
   1463   1.91        ad void
   1464   1.91        ad solockretry(struct socket *so, kmutex_t *lock)
   1465   1.91        ad {
   1466   1.91        ad 
   1467   1.91        ad 	while (lock != so->so_lock) {
   1468   1.91        ad 		mutex_exit(lock);
   1469   1.91        ad 		lock = so->so_lock;
   1470   1.91        ad 		mutex_enter(lock);
   1471   1.91        ad 	}
   1472   1.91        ad }
   1473   1.91        ad 
   1474   1.91        ad bool
   1475  1.127  christos solocked(const struct socket *so)
   1476   1.91        ad {
   1477   1.91        ad 
   1478   1.91        ad 	return mutex_owned(so->so_lock);
   1479   1.91        ad }
   1480   1.91        ad 
   1481   1.91        ad bool
   1482  1.127  christos solocked2(const struct socket *so1, const struct socket *so2)
   1483   1.91        ad {
   1484  1.127  christos 	const kmutex_t *lock;
   1485   1.91        ad 
   1486   1.91        ad 	lock = so1->so_lock;
   1487   1.91        ad 	if (lock != so2->so_lock)
   1488   1.91        ad 		return false;
   1489   1.91        ad 	return mutex_owned(lock);
   1490   1.91        ad }
   1491   1.91        ad 
   1492   1.91        ad /*
   1493  1.116     rmind  * sosetlock: assign a default lock to a new socket.
   1494   1.91        ad  */
   1495   1.91        ad void
   1496   1.91        ad sosetlock(struct socket *so)
   1497   1.91        ad {
   1498  1.116     rmind 	if (so->so_lock == NULL) {
   1499  1.116     rmind 		kmutex_t *lock = softnet_lock;
   1500   1.91        ad 
   1501   1.91        ad 		so->so_lock = lock;
   1502   1.91        ad 		mutex_obj_hold(lock);
   1503   1.91        ad 		mutex_enter(lock);
   1504   1.91        ad 	}
   1505   1.91        ad 	KASSERT(solocked(so));
   1506   1.91        ad }
   1507   1.91        ad 
   1508   1.91        ad /*
   1509   1.91        ad  * Set lock on sockbuf sb; sleep if lock is already held.
   1510   1.91        ad  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1511   1.91        ad  * Returns error without lock if sleep is interrupted.
   1512   1.91        ad  */
   1513   1.91        ad int
   1514   1.91        ad sblock(struct sockbuf *sb, int wf)
   1515   1.91        ad {
   1516   1.91        ad 	struct socket *so;
   1517   1.91        ad 	kmutex_t *lock;
   1518   1.91        ad 	int error;
   1519   1.91        ad 
   1520   1.91        ad 	KASSERT(solocked(sb->sb_so));
   1521   1.91        ad 
   1522   1.91        ad 	for (;;) {
   1523   1.91        ad 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1524   1.91        ad 			sb->sb_flags |= SB_LOCK;
   1525   1.91        ad 			return 0;
   1526   1.91        ad 		}
   1527   1.91        ad 		if (wf != M_WAITOK)
   1528   1.91        ad 			return EWOULDBLOCK;
   1529   1.91        ad 		so = sb->sb_so;
   1530   1.91        ad 		lock = so->so_lock;
   1531   1.91        ad 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1532   1.91        ad 			cv_wait(&so->so_cv, lock);
   1533   1.91        ad 			error = 0;
   1534   1.91        ad 		} else
   1535   1.91        ad 			error = cv_wait_sig(&so->so_cv, lock);
   1536   1.91        ad 		if (__predict_false(lock != so->so_lock))
   1537   1.91        ad 			solockretry(so, lock);
   1538   1.91        ad 		if (error != 0)
   1539   1.91        ad 			return error;
   1540   1.91        ad 	}
   1541   1.91        ad }
   1542   1.91        ad 
   1543   1.91        ad void
   1544   1.91        ad sbunlock(struct sockbuf *sb)
   1545   1.91        ad {
   1546   1.91        ad 	struct socket *so;
   1547   1.91        ad 
   1548   1.91        ad 	so = sb->sb_so;
   1549   1.91        ad 
   1550   1.91        ad 	KASSERT(solocked(so));
   1551   1.91        ad 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1552   1.91        ad 
   1553   1.91        ad 	sb->sb_flags &= ~SB_LOCK;
   1554   1.91        ad 	cv_broadcast(&so->so_cv);
   1555   1.91        ad }
   1556   1.91        ad 
   1557   1.91        ad int
   1558  1.121      matt sowait(struct socket *so, bool catch_p, int timo)
   1559   1.91        ad {
   1560   1.91        ad 	kmutex_t *lock;
   1561   1.91        ad 	int error;
   1562   1.91        ad 
   1563   1.91        ad 	KASSERT(solocked(so));
   1564  1.121      matt 	KASSERT(catch_p || timo != 0);
   1565   1.91        ad 
   1566   1.91        ad 	lock = so->so_lock;
   1567  1.121      matt 	if (catch_p)
   1568  1.101      yamt 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1569  1.101      yamt 	else
   1570  1.101      yamt 		error = cv_timedwait(&so->so_cv, lock, timo);
   1571   1.91        ad 	if (__predict_false(lock != so->so_lock))
   1572   1.91        ad 		solockretry(so, lock);
   1573   1.91        ad 	return error;
   1574   1.91        ad }
   1575  1.131   msaitoh 
   1576  1.131   msaitoh #ifdef DDB
   1577  1.131   msaitoh 
   1578  1.131   msaitoh /*
   1579  1.131   msaitoh  * Currently, sofindproc() is used only from DDB. It could be used from others
   1580  1.131   msaitoh  * by using db_mutex_enter()
   1581  1.131   msaitoh  */
   1582  1.131   msaitoh 
   1583  1.131   msaitoh static inline int
   1584  1.131   msaitoh db_mutex_enter(kmutex_t *mtx)
   1585  1.131   msaitoh {
   1586  1.131   msaitoh 	extern int db_active;
   1587  1.131   msaitoh 	int rv;
   1588  1.131   msaitoh 
   1589  1.131   msaitoh 	if (!db_active) {
   1590  1.131   msaitoh 		mutex_enter(mtx);
   1591  1.131   msaitoh 		rv = 1;
   1592  1.131   msaitoh 	} else
   1593  1.131   msaitoh 		rv = mutex_tryenter(mtx);
   1594  1.131   msaitoh 
   1595  1.131   msaitoh 	return rv;
   1596  1.131   msaitoh }
   1597  1.131   msaitoh 
   1598  1.131   msaitoh int
   1599  1.131   msaitoh sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
   1600  1.131   msaitoh {
   1601  1.131   msaitoh 	proc_t *p;
   1602  1.131   msaitoh 	filedesc_t *fdp;
   1603  1.131   msaitoh 	fdtab_t *dt;
   1604  1.131   msaitoh 	fdfile_t *ff;
   1605  1.131   msaitoh 	file_t *fp = NULL;
   1606  1.131   msaitoh 	int found = 0;
   1607  1.131   msaitoh 	int i, t;
   1608  1.131   msaitoh 
   1609  1.131   msaitoh 	if (so == NULL)
   1610  1.131   msaitoh 		return 0;
   1611  1.131   msaitoh 
   1612  1.137        ad 	t = db_mutex_enter(&proc_lock);
   1613  1.131   msaitoh 	if (!t) {
   1614  1.131   msaitoh 		pr("could not acquire proc_lock mutex\n");
   1615  1.131   msaitoh 		return 0;
   1616  1.131   msaitoh 	}
   1617  1.131   msaitoh 	PROCLIST_FOREACH(p, &allproc) {
   1618  1.131   msaitoh 		if (p->p_stat == SIDL)
   1619  1.131   msaitoh 			continue;
   1620  1.131   msaitoh 		fdp = p->p_fd;
   1621  1.131   msaitoh 		t = db_mutex_enter(&fdp->fd_lock);
   1622  1.131   msaitoh 		if (!t) {
   1623  1.131   msaitoh 			pr("could not acquire fd_lock mutex\n");
   1624  1.131   msaitoh 			continue;
   1625  1.131   msaitoh 		}
   1626  1.135  riastrad 		dt = atomic_load_consume(&fdp->fd_dt);
   1627  1.131   msaitoh 		for (i = 0; i < dt->dt_nfiles; i++) {
   1628  1.131   msaitoh 			ff = dt->dt_ff[i];
   1629  1.131   msaitoh 			if (ff == NULL)
   1630  1.131   msaitoh 				continue;
   1631  1.131   msaitoh 
   1632  1.136  riastrad 			fp = atomic_load_consume(&ff->ff_file);
   1633  1.131   msaitoh 			if (fp == NULL)
   1634  1.131   msaitoh 				continue;
   1635  1.131   msaitoh 
   1636  1.131   msaitoh 			t = db_mutex_enter(&fp->f_lock);
   1637  1.131   msaitoh 			if (!t) {
   1638  1.131   msaitoh 				pr("could not acquire f_lock mutex\n");
   1639  1.131   msaitoh 				continue;
   1640  1.131   msaitoh 			}
   1641  1.131   msaitoh 			if ((struct socket *)fp->f_data != so) {
   1642  1.131   msaitoh 				mutex_exit(&fp->f_lock);
   1643  1.131   msaitoh 				continue;
   1644  1.131   msaitoh 			}
   1645  1.131   msaitoh 			found++;
   1646  1.131   msaitoh 			if (pr)
   1647  1.131   msaitoh 				pr("socket %p: owner %s(pid=%d)\n",
   1648  1.131   msaitoh 				    so, p->p_comm, p->p_pid);
   1649  1.131   msaitoh 			mutex_exit(&fp->f_lock);
   1650  1.131   msaitoh 			if (all == 0)
   1651  1.131   msaitoh 				break;
   1652  1.131   msaitoh 		}
   1653  1.131   msaitoh 		mutex_exit(&fdp->fd_lock);
   1654  1.131   msaitoh 		if (all == 0 && found != 0)
   1655  1.131   msaitoh 			break;
   1656  1.131   msaitoh 	}
   1657  1.137        ad 	mutex_exit(&proc_lock);
   1658  1.131   msaitoh 
   1659  1.131   msaitoh 	return found;
   1660  1.131   msaitoh }
   1661  1.131   msaitoh 
   1662  1.131   msaitoh void
   1663  1.131   msaitoh socket_print(const char *modif, void (*pr)(const char *, ...))
   1664  1.131   msaitoh {
   1665  1.131   msaitoh 	file_t *fp;
   1666  1.131   msaitoh 	struct socket *so;
   1667  1.131   msaitoh 	struct sockbuf *sb_snd, *sb_rcv;
   1668  1.131   msaitoh 	struct mbuf *m_rec, *m;
   1669  1.131   msaitoh 	bool opt_v = false;
   1670  1.131   msaitoh 	bool opt_m = false;
   1671  1.131   msaitoh 	bool opt_a = false;
   1672  1.131   msaitoh 	bool opt_p = false;
   1673  1.131   msaitoh 	int nrecs, nmbufs;
   1674  1.131   msaitoh 	char ch;
   1675  1.131   msaitoh 	const char *family;
   1676  1.131   msaitoh 
   1677  1.131   msaitoh 	while ( (ch = *(modif++)) != '\0') {
   1678  1.131   msaitoh 		switch (ch) {
   1679  1.131   msaitoh 		case 'v':
   1680  1.131   msaitoh 			opt_v = true;
   1681  1.131   msaitoh 			break;
   1682  1.131   msaitoh 		case 'm':
   1683  1.131   msaitoh 			opt_m = true;
   1684  1.131   msaitoh 			break;
   1685  1.131   msaitoh 		case 'a':
   1686  1.131   msaitoh 			opt_a = true;
   1687  1.131   msaitoh 			break;
   1688  1.131   msaitoh 		case 'p':
   1689  1.131   msaitoh 			opt_p = true;
   1690  1.131   msaitoh 			break;
   1691  1.131   msaitoh 		}
   1692  1.131   msaitoh 	}
   1693  1.131   msaitoh 	if (opt_v == false && pr)
   1694  1.131   msaitoh 		(pr)("Ignore empty sockets. use /v to print all.\n");
   1695  1.131   msaitoh 	if (opt_p == true && pr)
   1696  1.131   msaitoh 		(pr)("Don't search owner process.\n");
   1697  1.131   msaitoh 
   1698  1.131   msaitoh 	LIST_FOREACH(fp, &filehead, f_list) {
   1699  1.131   msaitoh 		if (fp->f_type != DTYPE_SOCKET)
   1700  1.131   msaitoh 			continue;
   1701  1.131   msaitoh 		so = (struct socket *)fp->f_data;
   1702  1.131   msaitoh 		if (so == NULL)
   1703  1.131   msaitoh 			continue;
   1704  1.131   msaitoh 
   1705  1.131   msaitoh 		if (so->so_proto->pr_domain->dom_family == AF_INET)
   1706  1.131   msaitoh 			family = "INET";
   1707  1.131   msaitoh #ifdef INET6
   1708  1.131   msaitoh 		else if (so->so_proto->pr_domain->dom_family == AF_INET6)
   1709  1.131   msaitoh 			family = "INET6";
   1710  1.131   msaitoh #endif
   1711  1.131   msaitoh 		else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
   1712  1.131   msaitoh 			family = "KEY";
   1713  1.131   msaitoh 		else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
   1714  1.131   msaitoh 			family = "ROUTE";
   1715  1.131   msaitoh 		else
   1716  1.131   msaitoh 			continue;
   1717  1.131   msaitoh 
   1718  1.131   msaitoh 		sb_snd = &so->so_snd;
   1719  1.131   msaitoh 		sb_rcv = &so->so_rcv;
   1720  1.131   msaitoh 
   1721  1.131   msaitoh 		if (opt_v != true &&
   1722  1.131   msaitoh 		    sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
   1723  1.131   msaitoh 			continue;
   1724  1.131   msaitoh 
   1725  1.131   msaitoh 		pr("---SOCKET %p: type %s\n", so, family);
   1726  1.131   msaitoh 		if (opt_p != true)
   1727  1.131   msaitoh 			sofindproc(so, opt_a == true ? 1 : 0, pr);
   1728  1.131   msaitoh 		pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
   1729  1.131   msaitoh 		pr("Send Buffer mbufs:\n");
   1730  1.131   msaitoh 		m_rec = m = sb_snd->sb_mb;
   1731  1.131   msaitoh 		nrecs = 0;
   1732  1.131   msaitoh 		nmbufs = 0;
   1733  1.131   msaitoh 		while (m_rec) {
   1734  1.131   msaitoh 			nrecs++;
   1735  1.131   msaitoh 			if (opt_m == true)
   1736  1.131   msaitoh 				pr(" mbuf chain %p\n", m_rec);
   1737  1.131   msaitoh 			while (m) {
   1738  1.131   msaitoh 				nmbufs++;
   1739  1.131   msaitoh 				m = m->m_next;
   1740  1.131   msaitoh 			}
   1741  1.131   msaitoh 			m_rec = m = m_rec->m_nextpkt;
   1742  1.131   msaitoh 		}
   1743  1.131   msaitoh 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
   1744  1.131   msaitoh 
   1745  1.131   msaitoh 		pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
   1746  1.131   msaitoh 		pr("Recv Buffer mbufs:\n");
   1747  1.131   msaitoh 		m_rec = m = sb_rcv->sb_mb;
   1748  1.131   msaitoh 		nrecs = 0;
   1749  1.131   msaitoh 		nmbufs = 0;
   1750  1.131   msaitoh 		while (m_rec) {
   1751  1.131   msaitoh 			nrecs++;
   1752  1.131   msaitoh 			if (opt_m == true)
   1753  1.131   msaitoh 				pr(" mbuf chain %p\n", m_rec);
   1754  1.131   msaitoh 			while (m) {
   1755  1.131   msaitoh 				nmbufs++;
   1756  1.131   msaitoh 				m = m->m_next;
   1757  1.131   msaitoh 			}
   1758  1.131   msaitoh 			m_rec = m = m_rec->m_nextpkt;
   1759  1.131   msaitoh 		}
   1760  1.131   msaitoh 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
   1761  1.131   msaitoh 	}
   1762  1.131   msaitoh }
   1763  1.131   msaitoh #endif /* DDB */
   1764