uipc_socket2.c revision 1.141 1 1.141 riastrad /* $NetBSD: uipc_socket2.c,v 1.141 2022/04/09 23:52:23 riastradh Exp $ */
2 1.91 ad
3 1.91 ad /*-
4 1.91 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.91 ad * All rights reserved.
6 1.91 ad *
7 1.91 ad * Redistribution and use in source and binary forms, with or without
8 1.91 ad * modification, are permitted provided that the following conditions
9 1.91 ad * are met:
10 1.91 ad * 1. Redistributions of source code must retain the above copyright
11 1.91 ad * notice, this list of conditions and the following disclaimer.
12 1.91 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.91 ad * notice, this list of conditions and the following disclaimer in the
14 1.91 ad * documentation and/or other materials provided with the distribution.
15 1.91 ad *
16 1.91 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.91 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.91 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.91 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.91 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.91 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.91 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.91 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.91 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.91 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.91 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.91 ad */
28 1.9 cgd
29 1.1 cgd /*
30 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 1.7 mycroft * The Regents of the University of California. All rights reserved.
32 1.1 cgd *
33 1.1 cgd * Redistribution and use in source and binary forms, with or without
34 1.1 cgd * modification, are permitted provided that the following conditions
35 1.1 cgd * are met:
36 1.1 cgd * 1. Redistributions of source code must retain the above copyright
37 1.1 cgd * notice, this list of conditions and the following disclaimer.
38 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
39 1.1 cgd * notice, this list of conditions and the following disclaimer in the
40 1.1 cgd * documentation and/or other materials provided with the distribution.
41 1.54 agc * 3. Neither the name of the University nor the names of its contributors
42 1.1 cgd * may be used to endorse or promote products derived from this software
43 1.1 cgd * without specific prior written permission.
44 1.1 cgd *
45 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 cgd * SUCH DAMAGE.
56 1.1 cgd *
57 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 1.1 cgd */
59 1.42 lukem
60 1.42 lukem #include <sys/cdefs.h>
61 1.141 riastrad __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.141 2022/04/09 23:52:23 riastradh Exp $");
62 1.51 martin
63 1.122 pooka #ifdef _KERNEL_OPT
64 1.131 msaitoh #include "opt_ddb.h"
65 1.139 msaitoh #include "opt_inet.h"
66 1.51 martin #include "opt_mbuftrace.h"
67 1.58 thorpej #include "opt_sb_max.h"
68 1.122 pooka #endif
69 1.1 cgd
70 1.5 mycroft #include <sys/param.h>
71 1.5 mycroft #include <sys/systm.h>
72 1.5 mycroft #include <sys/proc.h>
73 1.5 mycroft #include <sys/file.h>
74 1.5 mycroft #include <sys/buf.h>
75 1.5 mycroft #include <sys/mbuf.h>
76 1.5 mycroft #include <sys/protosw.h>
77 1.91 ad #include <sys/domain.h>
78 1.55 christos #include <sys/poll.h>
79 1.5 mycroft #include <sys/socket.h>
80 1.5 mycroft #include <sys/socketvar.h>
81 1.11 christos #include <sys/signalvar.h>
82 1.71 elad #include <sys/kauth.h>
83 1.91 ad #include <sys/pool.h>
84 1.98 pooka #include <sys/uidinfo.h>
85 1.1 cgd
86 1.131 msaitoh #ifdef DDB
87 1.131 msaitoh #include <sys/filedesc.h>
88 1.131 msaitoh #endif
89 1.131 msaitoh
90 1.1 cgd /*
91 1.91 ad * Primitive routines for operating on sockets and socket buffers.
92 1.91 ad *
93 1.116 rmind * Connection life-cycle:
94 1.116 rmind *
95 1.116 rmind * Normal sequence from the active (originating) side:
96 1.116 rmind *
97 1.116 rmind * - soisconnecting() is called during processing of connect() call,
98 1.116 rmind * - resulting in an eventual call to soisconnected() if/when the
99 1.116 rmind * connection is established.
100 1.116 rmind *
101 1.116 rmind * When the connection is torn down during processing of disconnect():
102 1.116 rmind *
103 1.116 rmind * - soisdisconnecting() is called and,
104 1.116 rmind * - soisdisconnected() is called when the connection to the peer
105 1.116 rmind * is totally severed.
106 1.116 rmind *
107 1.116 rmind * The semantics of these routines are such that connectionless protocols
108 1.116 rmind * can call soisconnected() and soisdisconnected() only, bypassing the
109 1.116 rmind * in-progress calls when setting up a ``connection'' takes no time.
110 1.116 rmind *
111 1.116 rmind * From the passive side, a socket is created with two queues of sockets:
112 1.116 rmind *
113 1.116 rmind * - so_q0 (0) for partial connections (i.e. connections in progress)
114 1.116 rmind * - so_q (1) for connections already made and awaiting user acceptance.
115 1.116 rmind *
116 1.116 rmind * As a protocol is preparing incoming connections, it creates a socket
117 1.116 rmind * structure queued on so_q0 by calling sonewconn(). When the connection
118 1.116 rmind * is established, soisconnected() is called, and transfers the
119 1.116 rmind * socket structure to so_q, making it available to accept().
120 1.116 rmind *
121 1.116 rmind * If a socket is closed with sockets on either so_q0 or so_q, these
122 1.116 rmind * sockets are dropped.
123 1.116 rmind *
124 1.91 ad * Locking rules and assumptions:
125 1.91 ad *
126 1.91 ad * o socket::so_lock can change on the fly. The low level routines used
127 1.91 ad * to lock sockets are aware of this. When so_lock is acquired, the
128 1.91 ad * routine locking must check to see if so_lock still points to the
129 1.91 ad * lock that was acquired. If so_lock has changed in the meantime, the
130 1.116 rmind * now irrelevant lock that was acquired must be dropped and the lock
131 1.91 ad * operation retried. Although not proven here, this is completely safe
132 1.91 ad * on a multiprocessor system, even with relaxed memory ordering, given
133 1.91 ad * the next two rules:
134 1.91 ad *
135 1.91 ad * o In order to mutate so_lock, the lock pointed to by the current value
136 1.91 ad * of so_lock must be held: i.e., the socket must be held locked by the
137 1.141 riastrad * changing thread. The thread must issue membar_release() to prevent
138 1.91 ad * memory accesses being reordered, and can set so_lock to the desired
139 1.91 ad * value. If the lock pointed to by the new value of so_lock is not
140 1.91 ad * held by the changing thread, the socket must then be considered
141 1.91 ad * unlocked.
142 1.91 ad *
143 1.91 ad * o If so_lock is mutated, and the previous lock referred to by so_lock
144 1.91 ad * could still be visible to other threads in the system (e.g. via file
145 1.91 ad * descriptor or protocol-internal reference), then the old lock must
146 1.91 ad * remain valid until the socket and/or protocol control block has been
147 1.91 ad * torn down.
148 1.91 ad *
149 1.91 ad * o If a socket has a non-NULL so_head value (i.e. is in the process of
150 1.91 ad * connecting), then locking the socket must also lock the socket pointed
151 1.91 ad * to by so_head: their lock pointers must match.
152 1.91 ad *
153 1.91 ad * o If a socket has connections in progress (so_q, so_q0 not empty) then
154 1.91 ad * locking the socket must also lock the sockets attached to both queues.
155 1.91 ad * Again, their lock pointers must match.
156 1.91 ad *
157 1.116 rmind * o Beyond the initial lock assignment in socreate(), assigning locks to
158 1.91 ad * sockets is the responsibility of the individual protocols / protocol
159 1.91 ad * domains.
160 1.1 cgd */
161 1.1 cgd
162 1.116 rmind static pool_cache_t socket_cache;
163 1.116 rmind u_long sb_max = SB_MAX;/* maximum socket buffer size */
164 1.116 rmind static u_long sb_max_adj; /* adjusted sb_max */
165 1.1 cgd
166 1.7 mycroft void
167 1.37 lukem soisconnecting(struct socket *so)
168 1.1 cgd {
169 1.1 cgd
170 1.91 ad KASSERT(solocked(so));
171 1.91 ad
172 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
173 1.1 cgd so->so_state |= SS_ISCONNECTING;
174 1.1 cgd }
175 1.1 cgd
176 1.7 mycroft void
177 1.37 lukem soisconnected(struct socket *so)
178 1.1 cgd {
179 1.37 lukem struct socket *head;
180 1.1 cgd
181 1.37 lukem head = so->so_head;
182 1.91 ad
183 1.91 ad KASSERT(solocked(so));
184 1.91 ad KASSERT(head == NULL || solocked2(so, head));
185 1.91 ad
186 1.113 rmind so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
187 1.1 cgd so->so_state |= SS_ISCONNECTED;
188 1.97 tls if (head && so->so_onq == &head->so_q0) {
189 1.97 tls if ((so->so_options & SO_ACCEPTFILTER) == 0) {
190 1.116 rmind /*
191 1.116 rmind * Re-enqueue and wake up any waiters, e.g.
192 1.116 rmind * processes blocking on accept().
193 1.116 rmind */
194 1.97 tls soqremque(so, 0);
195 1.97 tls soqinsque(head, so, 1);
196 1.97 tls sorwakeup(head);
197 1.97 tls cv_broadcast(&head->so_cv);
198 1.97 tls } else {
199 1.97 tls so->so_upcall =
200 1.97 tls head->so_accf->so_accept_filter->accf_callback;
201 1.97 tls so->so_upcallarg = head->so_accf->so_accept_filter_arg;
202 1.97 tls so->so_rcv.sb_flags |= SB_UPCALL;
203 1.97 tls so->so_options &= ~SO_ACCEPTFILTER;
204 1.104 tls (*so->so_upcall)(so, so->so_upcallarg,
205 1.104 tls POLLIN|POLLRDNORM, M_DONTWAIT);
206 1.101 yamt }
207 1.1 cgd } else {
208 1.91 ad cv_broadcast(&so->so_cv);
209 1.1 cgd sorwakeup(so);
210 1.1 cgd sowwakeup(so);
211 1.1 cgd }
212 1.1 cgd }
213 1.1 cgd
214 1.7 mycroft void
215 1.37 lukem soisdisconnecting(struct socket *so)
216 1.1 cgd {
217 1.1 cgd
218 1.91 ad KASSERT(solocked(so));
219 1.91 ad
220 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
221 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
222 1.91 ad cv_broadcast(&so->so_cv);
223 1.1 cgd sowwakeup(so);
224 1.1 cgd sorwakeup(so);
225 1.1 cgd }
226 1.1 cgd
227 1.7 mycroft void
228 1.37 lukem soisdisconnected(struct socket *so)
229 1.1 cgd {
230 1.1 cgd
231 1.91 ad KASSERT(solocked(so));
232 1.91 ad
233 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
234 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
235 1.91 ad cv_broadcast(&so->so_cv);
236 1.1 cgd sowwakeup(so);
237 1.1 cgd sorwakeup(so);
238 1.1 cgd }
239 1.1 cgd
240 1.94 ad void
241 1.94 ad soinit2(void)
242 1.94 ad {
243 1.94 ad
244 1.94 ad socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
245 1.94 ad "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
246 1.94 ad }
247 1.94 ad
248 1.1 cgd /*
249 1.116 rmind * sonewconn: accept a new connection.
250 1.116 rmind *
251 1.116 rmind * When an attempt at a new connection is noted on a socket which accepts
252 1.116 rmind * connections, sonewconn(9) is called. If the connection is possible
253 1.116 rmind * (subject to space constraints, etc) then we allocate a new structure,
254 1.116 rmind * properly linked into the data structure of the original socket.
255 1.116 rmind *
256 1.116 rmind * => If 'soready' is true, then socket will become ready for accept() i.e.
257 1.116 rmind * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
258 1.116 rmind * => May be called from soft-interrupt context.
259 1.116 rmind * => Listening socket should be locked.
260 1.116 rmind * => Returns the new socket locked.
261 1.1 cgd */
262 1.1 cgd struct socket *
263 1.116 rmind sonewconn(struct socket *head, bool soready)
264 1.1 cgd {
265 1.116 rmind struct socket *so;
266 1.116 rmind int soqueue, error;
267 1.91 ad
268 1.91 ad KASSERT(solocked(head));
269 1.1 cgd
270 1.116 rmind if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
271 1.123 tls /*
272 1.123 tls * Listen queue overflow. If there is an accept filter
273 1.123 tls * active, pass through the oldest cxn it's handling.
274 1.123 tls */
275 1.123 tls if (head->so_accf == NULL) {
276 1.123 tls return NULL;
277 1.123 tls } else {
278 1.123 tls struct socket *so2, *next;
279 1.123 tls
280 1.123 tls /* Pass the oldest connection waiting in the
281 1.123 tls accept filter */
282 1.123 tls for (so2 = TAILQ_FIRST(&head->so_q0);
283 1.123 tls so2 != NULL; so2 = next) {
284 1.123 tls next = TAILQ_NEXT(so2, so_qe);
285 1.123 tls if (so2->so_upcall == NULL) {
286 1.123 tls continue;
287 1.123 tls }
288 1.123 tls so2->so_upcall = NULL;
289 1.123 tls so2->so_upcallarg = NULL;
290 1.123 tls so2->so_options &= ~SO_ACCEPTFILTER;
291 1.123 tls so2->so_rcv.sb_flags &= ~SB_UPCALL;
292 1.123 tls soisconnected(so2);
293 1.123 tls break;
294 1.123 tls }
295 1.123 tls
296 1.123 tls /* If nothing was nudged out of the acept filter, bail
297 1.123 tls * out; otherwise proceed allocating the socket. */
298 1.123 tls if (so2 == NULL) {
299 1.123 tls return NULL;
300 1.123 tls }
301 1.123 tls }
302 1.116 rmind }
303 1.116 rmind if ((head->so_options & SO_ACCEPTFILTER) != 0) {
304 1.116 rmind soready = false;
305 1.116 rmind }
306 1.116 rmind soqueue = soready ? 1 : 0;
307 1.113 rmind
308 1.116 rmind if ((so = soget(false)) == NULL) {
309 1.100 dyoung return NULL;
310 1.116 rmind }
311 1.1 cgd so->so_type = head->so_type;
312 1.116 rmind so->so_options = head->so_options & ~SO_ACCEPTCONN;
313 1.1 cgd so->so_linger = head->so_linger;
314 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
315 1.1 cgd so->so_proto = head->so_proto;
316 1.1 cgd so->so_timeo = head->so_timeo;
317 1.1 cgd so->so_pgid = head->so_pgid;
318 1.24 matt so->so_send = head->so_send;
319 1.24 matt so->so_receive = head->so_receive;
320 1.67 christos so->so_uidinfo = head->so_uidinfo;
321 1.138 christos so->so_egid = head->so_egid;
322 1.96 yamt so->so_cpid = head->so_cpid;
323 1.119 rmind
324 1.119 rmind /*
325 1.119 rmind * Share the lock with the listening-socket, it may get unshared
326 1.119 rmind * once the connection is complete.
327 1.141 riastrad *
328 1.141 riastrad * so_lock is stable while we hold the socket locked, so no
329 1.141 riastrad * need for atomic_load_* here.
330 1.119 rmind */
331 1.119 rmind mutex_obj_hold(head->so_lock);
332 1.119 rmind so->so_lock = head->so_lock;
333 1.119 rmind
334 1.119 rmind /*
335 1.119 rmind * Reserve the space for socket buffers.
336 1.119 rmind */
337 1.49 matt #ifdef MBUFTRACE
338 1.49 matt so->so_mowner = head->so_mowner;
339 1.49 matt so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
340 1.49 matt so->so_snd.sb_mowner = head->so_snd.sb_mowner;
341 1.49 matt #endif
342 1.119 rmind if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
343 1.103 christos goto out;
344 1.119 rmind }
345 1.83 tls so->so_snd.sb_lowat = head->so_snd.sb_lowat;
346 1.83 tls so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
347 1.84 tls so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
348 1.84 tls so->so_snd.sb_timeo = head->so_snd.sb_timeo;
349 1.107 christos so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
350 1.107 christos so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
351 1.116 rmind
352 1.116 rmind /*
353 1.119 rmind * Finally, perform the protocol attach. Note: a new socket
354 1.119 rmind * lock may be assigned at this point (if so, it will be held).
355 1.116 rmind */
356 1.119 rmind error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
357 1.116 rmind if (error) {
358 1.103 christos out:
359 1.119 rmind KASSERT(solocked(so));
360 1.116 rmind KASSERT(so->so_accf == NULL);
361 1.91 ad soput(so);
362 1.116 rmind
363 1.116 rmind /* Note: the listening socket shall stay locked. */
364 1.116 rmind KASSERT(solocked(head));
365 1.100 dyoung return NULL;
366 1.1 cgd }
367 1.119 rmind KASSERT(solocked2(head, so));
368 1.116 rmind
369 1.116 rmind /*
370 1.117 rmind * Insert into the queue. If ready, update the connection status
371 1.117 rmind * and wake up any waiters, e.g. processes blocking on accept().
372 1.116 rmind */
373 1.117 rmind soqinsque(head, so, soqueue);
374 1.116 rmind if (soready) {
375 1.116 rmind so->so_state |= SS_ISCONNECTED;
376 1.1 cgd sorwakeup(head);
377 1.91 ad cv_broadcast(&head->so_cv);
378 1.1 cgd }
379 1.100 dyoung return so;
380 1.1 cgd }
381 1.1 cgd
382 1.91 ad struct socket *
383 1.91 ad soget(bool waitok)
384 1.91 ad {
385 1.91 ad struct socket *so;
386 1.91 ad
387 1.94 ad so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
388 1.91 ad if (__predict_false(so == NULL))
389 1.91 ad return (NULL);
390 1.91 ad memset(so, 0, sizeof(*so));
391 1.91 ad TAILQ_INIT(&so->so_q0);
392 1.91 ad TAILQ_INIT(&so->so_q);
393 1.91 ad cv_init(&so->so_cv, "socket");
394 1.91 ad cv_init(&so->so_rcv.sb_cv, "netio");
395 1.91 ad cv_init(&so->so_snd.sb_cv, "netio");
396 1.91 ad selinit(&so->so_rcv.sb_sel);
397 1.91 ad selinit(&so->so_snd.sb_sel);
398 1.91 ad so->so_rcv.sb_so = so;
399 1.91 ad so->so_snd.sb_so = so;
400 1.91 ad return so;
401 1.91 ad }
402 1.91 ad
403 1.91 ad void
404 1.91 ad soput(struct socket *so)
405 1.91 ad {
406 1.91 ad
407 1.91 ad KASSERT(!cv_has_waiters(&so->so_cv));
408 1.91 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
409 1.91 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
410 1.91 ad seldestroy(&so->so_rcv.sb_sel);
411 1.91 ad seldestroy(&so->so_snd.sb_sel);
412 1.91 ad mutex_obj_free(so->so_lock);
413 1.91 ad cv_destroy(&so->so_cv);
414 1.91 ad cv_destroy(&so->so_rcv.sb_cv);
415 1.91 ad cv_destroy(&so->so_snd.sb_cv);
416 1.94 ad pool_cache_put(socket_cache, so);
417 1.91 ad }
418 1.91 ad
419 1.116 rmind /*
420 1.116 rmind * soqinsque: insert socket of a new connection into the specified
421 1.116 rmind * accept queue of the listening socket (head).
422 1.116 rmind *
423 1.116 rmind * q = 0: queue of partial connections
424 1.116 rmind * q = 1: queue of incoming connections
425 1.116 rmind */
426 1.7 mycroft void
427 1.37 lukem soqinsque(struct socket *head, struct socket *so, int q)
428 1.1 cgd {
429 1.116 rmind KASSERT(q == 0 || q == 1);
430 1.91 ad KASSERT(solocked2(head, so));
431 1.116 rmind KASSERT(so->so_onq == NULL);
432 1.116 rmind KASSERT(so->so_head == NULL);
433 1.22 thorpej
434 1.1 cgd so->so_head = head;
435 1.1 cgd if (q == 0) {
436 1.1 cgd head->so_q0len++;
437 1.22 thorpej so->so_onq = &head->so_q0;
438 1.1 cgd } else {
439 1.1 cgd head->so_qlen++;
440 1.22 thorpej so->so_onq = &head->so_q;
441 1.1 cgd }
442 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
443 1.1 cgd }
444 1.1 cgd
445 1.116 rmind /*
446 1.116 rmind * soqremque: remove socket from the specified queue.
447 1.116 rmind *
448 1.116 rmind * => Returns true if socket was removed from the specified queue.
449 1.116 rmind * => False if socket was not removed (because it was in other queue).
450 1.116 rmind */
451 1.116 rmind bool
452 1.37 lukem soqremque(struct socket *so, int q)
453 1.1 cgd {
454 1.116 rmind struct socket *head = so->so_head;
455 1.1 cgd
456 1.116 rmind KASSERT(q == 0 || q == 1);
457 1.116 rmind KASSERT(solocked(so));
458 1.116 rmind KASSERT(so->so_onq != NULL);
459 1.116 rmind KASSERT(head != NULL);
460 1.91 ad
461 1.22 thorpej if (q == 0) {
462 1.22 thorpej if (so->so_onq != &head->so_q0)
463 1.116 rmind return false;
464 1.1 cgd head->so_q0len--;
465 1.1 cgd } else {
466 1.22 thorpej if (so->so_onq != &head->so_q)
467 1.116 rmind return false;
468 1.1 cgd head->so_qlen--;
469 1.1 cgd }
470 1.91 ad KASSERT(solocked2(so, head));
471 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe);
472 1.22 thorpej so->so_onq = NULL;
473 1.22 thorpej so->so_head = NULL;
474 1.116 rmind return true;
475 1.1 cgd }
476 1.1 cgd
477 1.1 cgd /*
478 1.116 rmind * socantsendmore: indicates that no more data will be sent on the
479 1.1 cgd * socket; it would normally be applied to a socket when the user
480 1.1 cgd * informs the system that no more data is to be sent, by the protocol
481 1.120 rtr * code (in case pr_shutdown()).
482 1.1 cgd */
483 1.4 andrew void
484 1.37 lukem socantsendmore(struct socket *so)
485 1.1 cgd {
486 1.91 ad KASSERT(solocked(so));
487 1.91 ad
488 1.1 cgd so->so_state |= SS_CANTSENDMORE;
489 1.1 cgd sowwakeup(so);
490 1.1 cgd }
491 1.1 cgd
492 1.116 rmind /*
493 1.116 rmind * socantrcvmore(): indicates that no more data will be received and
494 1.116 rmind * will normally be applied to the socket by a protocol when it detects
495 1.116 rmind * that the peer will send no more data. Data queued for reading in
496 1.116 rmind * the socket may yet be read.
497 1.116 rmind */
498 1.4 andrew void
499 1.37 lukem socantrcvmore(struct socket *so)
500 1.1 cgd {
501 1.91 ad KASSERT(solocked(so));
502 1.91 ad
503 1.1 cgd so->so_state |= SS_CANTRCVMORE;
504 1.1 cgd sorwakeup(so);
505 1.1 cgd }
506 1.1 cgd
507 1.1 cgd /*
508 1.128 roy * soroverflow(): indicates that data was attempted to be sent
509 1.128 roy * but the receiving buffer overflowed.
510 1.128 roy */
511 1.128 roy void
512 1.128 roy soroverflow(struct socket *so)
513 1.128 roy {
514 1.128 roy KASSERT(solocked(so));
515 1.128 roy
516 1.128 roy so->so_rcv.sb_overflowed++;
517 1.133 christos if (so->so_options & SO_RERROR) {
518 1.133 christos so->so_rerror = ENOBUFS;
519 1.133 christos sorwakeup(so);
520 1.133 christos }
521 1.128 roy }
522 1.128 roy
523 1.128 roy /*
524 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
525 1.1 cgd */
526 1.7 mycroft int
527 1.37 lukem sbwait(struct sockbuf *sb)
528 1.1 cgd {
529 1.91 ad struct socket *so;
530 1.91 ad kmutex_t *lock;
531 1.91 ad int error;
532 1.1 cgd
533 1.91 ad so = sb->sb_so;
534 1.1 cgd
535 1.91 ad KASSERT(solocked(so));
536 1.1 cgd
537 1.91 ad sb->sb_flags |= SB_NOTIFY;
538 1.91 ad lock = so->so_lock;
539 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0)
540 1.91 ad error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
541 1.91 ad else
542 1.91 ad error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
543 1.141 riastrad if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
544 1.91 ad solockretry(so, lock);
545 1.91 ad return error;
546 1.1 cgd }
547 1.1 cgd
548 1.1 cgd /*
549 1.1 cgd * Wakeup processes waiting on a socket buffer.
550 1.1 cgd * Do asynchronous notification via SIGIO
551 1.39 manu * if the socket buffer has the SB_ASYNC flag set.
552 1.1 cgd */
553 1.7 mycroft void
554 1.55 christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
555 1.1 cgd {
556 1.90 rmind int band;
557 1.90 rmind
558 1.91 ad KASSERT(solocked(so));
559 1.91 ad KASSERT(sb->sb_so == so);
560 1.91 ad
561 1.140 thorpej switch (code) {
562 1.140 thorpej case POLL_IN:
563 1.90 rmind band = POLLIN|POLLRDNORM;
564 1.140 thorpej break;
565 1.140 thorpej
566 1.140 thorpej case POLL_OUT:
567 1.90 rmind band = POLLOUT|POLLWRNORM;
568 1.140 thorpej break;
569 1.140 thorpej
570 1.140 thorpej case POLL_HUP:
571 1.140 thorpej band = POLLHUP;
572 1.140 thorpej break;
573 1.140 thorpej
574 1.140 thorpej default:
575 1.140 thorpej band = 0;
576 1.140 thorpej #ifdef DIAGNOSTIC
577 1.140 thorpej printf("bad siginfo code %d in socket notification.\n", code);
578 1.140 thorpej #endif
579 1.140 thorpej break;
580 1.140 thorpej }
581 1.140 thorpej
582 1.91 ad sb->sb_flags &= ~SB_NOTIFY;
583 1.91 ad selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
584 1.91 ad cv_broadcast(&sb->sb_cv);
585 1.90 rmind if (sb->sb_flags & SB_ASYNC)
586 1.57 christos fownsignal(so->so_pgid, SIGIO, code, band, so);
587 1.24 matt if (sb->sb_flags & SB_UPCALL)
588 1.104 tls (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
589 1.1 cgd }
590 1.1 cgd
591 1.1 cgd /*
592 1.95 ad * Reset a socket's lock pointer. Wake all threads waiting on the
593 1.95 ad * socket's condition variables so that they can restart their waits
594 1.95 ad * using the new lock. The existing lock must be held.
595 1.141 riastrad *
596 1.141 riastrad * Caller must have issued membar_release before this.
597 1.95 ad */
598 1.95 ad void
599 1.95 ad solockreset(struct socket *so, kmutex_t *lock)
600 1.95 ad {
601 1.95 ad
602 1.95 ad KASSERT(solocked(so));
603 1.95 ad
604 1.95 ad so->so_lock = lock;
605 1.95 ad cv_broadcast(&so->so_snd.sb_cv);
606 1.95 ad cv_broadcast(&so->so_rcv.sb_cv);
607 1.95 ad cv_broadcast(&so->so_cv);
608 1.95 ad }
609 1.95 ad
610 1.95 ad /*
611 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
612 1.1 cgd *
613 1.1 cgd * Each socket contains two socket buffers: one for sending data and
614 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
615 1.1 cgd * information about the number of mbufs and amount of data in the
616 1.13 mycroft * queue, and other fields allowing poll() statements and notification
617 1.1 cgd * on data availability to be implemented.
618 1.1 cgd *
619 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
620 1.1 cgd * Each record is a list of mbufs chained together with the m_next
621 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
622 1.1 cgd * level routine soreceive() expects the following conventions to be
623 1.1 cgd * observed when placing information in the receive buffer:
624 1.1 cgd *
625 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
626 1.1 cgd * name, then a record containing that name must be present before
627 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
628 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
629 1.1 cgd * just additional data associated with the message), and there are
630 1.1 cgd * ``rights'' to be received, then a record containing this data
631 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL).
632 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
633 1.1 cgd * a data record, perhaps of zero length.
634 1.1 cgd *
635 1.1 cgd * Before using a new socket structure it is first necessary to reserve
636 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
637 1.1 cgd * some of the available buffer space in the system buffer pool for the
638 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
639 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
640 1.1 cgd */
641 1.1 cgd
642 1.7 mycroft int
643 1.58 thorpej sb_max_set(u_long new_sbmax)
644 1.58 thorpej {
645 1.58 thorpej int s;
646 1.58 thorpej
647 1.58 thorpej if (new_sbmax < (16 * 1024))
648 1.58 thorpej return (EINVAL);
649 1.58 thorpej
650 1.58 thorpej s = splsoftnet();
651 1.58 thorpej sb_max = new_sbmax;
652 1.58 thorpej sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
653 1.58 thorpej splx(s);
654 1.58 thorpej
655 1.58 thorpej return (0);
656 1.58 thorpej }
657 1.58 thorpej
658 1.58 thorpej int
659 1.37 lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
660 1.1 cgd {
661 1.116 rmind KASSERT(so->so_pcb == NULL || solocked(so));
662 1.91 ad
663 1.74 christos /*
664 1.74 christos * there's at least one application (a configure script of screen)
665 1.74 christos * which expects a fifo is writable even if it has "some" bytes
666 1.74 christos * in its buffer.
667 1.74 christos * so we want to make sure (hiwat - lowat) >= (some bytes).
668 1.74 christos *
669 1.74 christos * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
670 1.74 christos * we expect it's large enough for such applications.
671 1.74 christos */
672 1.74 christos u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
673 1.74 christos u_long hiwat = lowat + PIPE_BUF;
674 1.1 cgd
675 1.74 christos if (sndcc < hiwat)
676 1.74 christos sndcc = hiwat;
677 1.59 christos if (sbreserve(&so->so_snd, sndcc, so) == 0)
678 1.1 cgd goto bad;
679 1.59 christos if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
680 1.1 cgd goto bad2;
681 1.1 cgd if (so->so_rcv.sb_lowat == 0)
682 1.1 cgd so->so_rcv.sb_lowat = 1;
683 1.1 cgd if (so->so_snd.sb_lowat == 0)
684 1.74 christos so->so_snd.sb_lowat = lowat;
685 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
686 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
687 1.1 cgd return (0);
688 1.37 lukem bad2:
689 1.59 christos sbrelease(&so->so_snd, so);
690 1.37 lukem bad:
691 1.1 cgd return (ENOBUFS);
692 1.1 cgd }
693 1.1 cgd
694 1.1 cgd /*
695 1.1 cgd * Allot mbufs to a sockbuf.
696 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
697 1.1 cgd * if buffering efficiency is near the normal case.
698 1.1 cgd */
699 1.7 mycroft int
700 1.59 christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
701 1.1 cgd {
702 1.75 ad struct lwp *l = curlwp; /* XXX */
703 1.62 christos rlim_t maxcc;
704 1.67 christos struct uidinfo *uidinfo;
705 1.1 cgd
706 1.116 rmind KASSERT(so->so_pcb == NULL || solocked(so));
707 1.91 ad KASSERT(sb->sb_so == so);
708 1.91 ad KASSERT(sb_max_adj != 0);
709 1.91 ad
710 1.58 thorpej if (cc == 0 || cc > sb_max_adj)
711 1.1 cgd return (0);
712 1.93 christos
713 1.105 elad maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
714 1.93 christos
715 1.93 christos uidinfo = so->so_uidinfo;
716 1.67 christos if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
717 1.62 christos return 0;
718 1.132 riastrad sb->sb_mbmax = uimin(cc * 2, sb_max);
719 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
720 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
721 1.131 msaitoh
722 1.1 cgd return (1);
723 1.1 cgd }
724 1.1 cgd
725 1.1 cgd /*
726 1.91 ad * Free mbufs held by a socket, and reserved mbuf space. We do not assert
727 1.91 ad * that the socket is held locked here: see sorflush().
728 1.1 cgd */
729 1.7 mycroft void
730 1.59 christos sbrelease(struct sockbuf *sb, struct socket *so)
731 1.1 cgd {
732 1.1 cgd
733 1.91 ad KASSERT(sb->sb_so == so);
734 1.91 ad
735 1.1 cgd sbflush(sb);
736 1.87 yamt (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
737 1.59 christos sb->sb_mbmax = 0;
738 1.1 cgd }
739 1.1 cgd
740 1.1 cgd /*
741 1.1 cgd * Routines to add and remove
742 1.1 cgd * data from an mbuf queue.
743 1.1 cgd *
744 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
745 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
746 1.1 cgd * space is available, comparing the function sbspace() with the amount
747 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
748 1.1 cgd * that data supplied is treated as the beginning of a new record.
749 1.1 cgd * To place a sender's address, optional access rights, and data in a
750 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
751 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
752 1.1 cgd * should be used. In either case, the new data begins a new record.
753 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
754 1.1 cgd * for the caller that there will be enough space to store the data.
755 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
756 1.1 cgd * to store additional information in.
757 1.1 cgd *
758 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
759 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
760 1.129 maxv * send buffer in a protocol with m_copym for output to a peer,
761 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
762 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
763 1.1 cgd */
764 1.1 cgd
765 1.43 thorpej #ifdef SOCKBUF_DEBUG
766 1.43 thorpej void
767 1.43 thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
768 1.43 thorpej {
769 1.43 thorpej struct mbuf *m = sb->sb_mb;
770 1.43 thorpej
771 1.91 ad KASSERT(solocked(sb->sb_so));
772 1.91 ad
773 1.43 thorpej while (m && m->m_nextpkt)
774 1.43 thorpej m = m->m_nextpkt;
775 1.43 thorpej
776 1.43 thorpej if (m != sb->sb_lastrecord) {
777 1.43 thorpej printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
778 1.43 thorpej sb->sb_mb, sb->sb_lastrecord, m);
779 1.43 thorpej printf("packet chain:\n");
780 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
781 1.43 thorpej printf("\t%p\n", m);
782 1.47 provos panic("sblastrecordchk from %s", where);
783 1.43 thorpej }
784 1.43 thorpej }
785 1.43 thorpej
786 1.43 thorpej void
787 1.43 thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
788 1.43 thorpej {
789 1.43 thorpej struct mbuf *m = sb->sb_mb;
790 1.43 thorpej struct mbuf *n;
791 1.43 thorpej
792 1.91 ad KASSERT(solocked(sb->sb_so));
793 1.91 ad
794 1.43 thorpej while (m && m->m_nextpkt)
795 1.43 thorpej m = m->m_nextpkt;
796 1.43 thorpej
797 1.43 thorpej while (m && m->m_next)
798 1.43 thorpej m = m->m_next;
799 1.43 thorpej
800 1.43 thorpej if (m != sb->sb_mbtail) {
801 1.43 thorpej printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
802 1.43 thorpej sb->sb_mb, sb->sb_mbtail, m);
803 1.43 thorpej printf("packet tree:\n");
804 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
805 1.43 thorpej printf("\t");
806 1.43 thorpej for (n = m; n != NULL; n = n->m_next)
807 1.43 thorpej printf("%p ", n);
808 1.43 thorpej printf("\n");
809 1.43 thorpej }
810 1.43 thorpej panic("sblastmbufchk from %s", where);
811 1.43 thorpej }
812 1.43 thorpej }
813 1.43 thorpej #endif /* SOCKBUF_DEBUG */
814 1.43 thorpej
815 1.63 jonathan /*
816 1.63 jonathan * Link a chain of records onto a socket buffer
817 1.63 jonathan */
818 1.63 jonathan #define SBLINKRECORDCHAIN(sb, m0, mlast) \
819 1.43 thorpej do { \
820 1.43 thorpej if ((sb)->sb_lastrecord != NULL) \
821 1.43 thorpej (sb)->sb_lastrecord->m_nextpkt = (m0); \
822 1.43 thorpej else \
823 1.43 thorpej (sb)->sb_mb = (m0); \
824 1.63 jonathan (sb)->sb_lastrecord = (mlast); \
825 1.43 thorpej } while (/*CONSTCOND*/0)
826 1.43 thorpej
827 1.63 jonathan
828 1.63 jonathan #define SBLINKRECORD(sb, m0) \
829 1.63 jonathan SBLINKRECORDCHAIN(sb, m0, m0)
830 1.63 jonathan
831 1.1 cgd /*
832 1.1 cgd * Append mbuf chain m to the last record in the
833 1.1 cgd * socket buffer sb. The additional space associated
834 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
835 1.1 cgd * discarded and mbufs are compacted where possible.
836 1.1 cgd */
837 1.7 mycroft void
838 1.37 lukem sbappend(struct sockbuf *sb, struct mbuf *m)
839 1.1 cgd {
840 1.37 lukem struct mbuf *n;
841 1.1 cgd
842 1.91 ad KASSERT(solocked(sb->sb_so));
843 1.91 ad
844 1.115 christos if (m == NULL)
845 1.1 cgd return;
846 1.43 thorpej
847 1.49 matt #ifdef MBUFTRACE
848 1.65 jonathan m_claimm(m, sb->sb_mowner);
849 1.49 matt #endif
850 1.49 matt
851 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 1");
852 1.43 thorpej
853 1.43 thorpej if ((n = sb->sb_lastrecord) != NULL) {
854 1.43 thorpej /*
855 1.43 thorpej * XXX Would like to simply use sb_mbtail here, but
856 1.43 thorpej * XXX I need to verify that I won't miss an EOR that
857 1.43 thorpej * XXX way.
858 1.43 thorpej */
859 1.1 cgd do {
860 1.1 cgd if (n->m_flags & M_EOR) {
861 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
862 1.1 cgd return;
863 1.1 cgd }
864 1.1 cgd } while (n->m_next && (n = n->m_next));
865 1.43 thorpej } else {
866 1.43 thorpej /*
867 1.43 thorpej * If this is the first record in the socket buffer, it's
868 1.43 thorpej * also the last record.
869 1.43 thorpej */
870 1.43 thorpej sb->sb_lastrecord = m;
871 1.1 cgd }
872 1.1 cgd sbcompress(sb, m, n);
873 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 2");
874 1.43 thorpej }
875 1.43 thorpej
876 1.43 thorpej /*
877 1.43 thorpej * This version of sbappend() should only be used when the caller
878 1.43 thorpej * absolutely knows that there will never be more than one record
879 1.43 thorpej * in the socket buffer, that is, a stream protocol (such as TCP).
880 1.43 thorpej */
881 1.43 thorpej void
882 1.44 thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
883 1.43 thorpej {
884 1.43 thorpej
885 1.91 ad KASSERT(solocked(sb->sb_so));
886 1.43 thorpej KDASSERT(m->m_nextpkt == NULL);
887 1.43 thorpej KASSERT(sb->sb_mb == sb->sb_lastrecord);
888 1.43 thorpej
889 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
890 1.43 thorpej
891 1.49 matt #ifdef MBUFTRACE
892 1.65 jonathan m_claimm(m, sb->sb_mowner);
893 1.49 matt #endif
894 1.49 matt
895 1.43 thorpej sbcompress(sb, m, sb->sb_mbtail);
896 1.43 thorpej
897 1.43 thorpej sb->sb_lastrecord = sb->sb_mb;
898 1.43 thorpej SBLASTRECORDCHK(sb, __func__);
899 1.1 cgd }
900 1.1 cgd
901 1.1 cgd #ifdef SOCKBUF_DEBUG
902 1.7 mycroft void
903 1.37 lukem sbcheck(struct sockbuf *sb)
904 1.1 cgd {
905 1.91 ad struct mbuf *m, *m2;
906 1.43 thorpej u_long len, mbcnt;
907 1.1 cgd
908 1.91 ad KASSERT(solocked(sb->sb_so));
909 1.91 ad
910 1.37 lukem len = 0;
911 1.37 lukem mbcnt = 0;
912 1.91 ad for (m = sb->sb_mb; m; m = m->m_nextpkt) {
913 1.91 ad for (m2 = m; m2 != NULL; m2 = m2->m_next) {
914 1.91 ad len += m2->m_len;
915 1.91 ad mbcnt += MSIZE;
916 1.91 ad if (m2->m_flags & M_EXT)
917 1.91 ad mbcnt += m2->m_ext.ext_size;
918 1.91 ad if (m2->m_nextpkt != NULL)
919 1.91 ad panic("sbcheck nextpkt");
920 1.91 ad }
921 1.1 cgd }
922 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
923 1.43 thorpej printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
924 1.1 cgd mbcnt, sb->sb_mbcnt);
925 1.1 cgd panic("sbcheck");
926 1.1 cgd }
927 1.1 cgd }
928 1.1 cgd #endif
929 1.1 cgd
930 1.1 cgd /*
931 1.1 cgd * As above, except the mbuf chain
932 1.1 cgd * begins a new record.
933 1.1 cgd */
934 1.7 mycroft void
935 1.37 lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
936 1.1 cgd {
937 1.37 lukem struct mbuf *m;
938 1.1 cgd
939 1.91 ad KASSERT(solocked(sb->sb_so));
940 1.91 ad
941 1.115 christos if (m0 == NULL)
942 1.1 cgd return;
943 1.43 thorpej
944 1.49 matt #ifdef MBUFTRACE
945 1.65 jonathan m_claimm(m0, sb->sb_mowner);
946 1.49 matt #endif
947 1.1 cgd /*
948 1.1 cgd * Put the first mbuf on the queue.
949 1.1 cgd * Note this permits zero length records.
950 1.1 cgd */
951 1.1 cgd sballoc(sb, m0);
952 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 1");
953 1.43 thorpej SBLINKRECORD(sb, m0);
954 1.1 cgd m = m0->m_next;
955 1.1 cgd m0->m_next = 0;
956 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
957 1.1 cgd m0->m_flags &= ~M_EOR;
958 1.1 cgd m->m_flags |= M_EOR;
959 1.1 cgd }
960 1.1 cgd sbcompress(sb, m, m0);
961 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 2");
962 1.1 cgd }
963 1.1 cgd
964 1.1 cgd /*
965 1.1 cgd * As above except that OOB data
966 1.1 cgd * is inserted at the beginning of the sockbuf,
967 1.1 cgd * but after any other OOB data.
968 1.1 cgd */
969 1.7 mycroft void
970 1.37 lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
971 1.1 cgd {
972 1.37 lukem struct mbuf *m, **mp;
973 1.1 cgd
974 1.91 ad KASSERT(solocked(sb->sb_so));
975 1.91 ad
976 1.115 christos if (m0 == NULL)
977 1.1 cgd return;
978 1.43 thorpej
979 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 1");
980 1.43 thorpej
981 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
982 1.1 cgd again:
983 1.1 cgd switch (m->m_type) {
984 1.1 cgd
985 1.1 cgd case MT_OOBDATA:
986 1.1 cgd continue; /* WANT next train */
987 1.1 cgd
988 1.1 cgd case MT_CONTROL:
989 1.11 christos if ((m = m->m_next) != NULL)
990 1.1 cgd goto again; /* inspect THIS train further */
991 1.1 cgd }
992 1.1 cgd break;
993 1.1 cgd }
994 1.1 cgd /*
995 1.1 cgd * Put the first mbuf on the queue.
996 1.1 cgd * Note this permits zero length records.
997 1.1 cgd */
998 1.1 cgd sballoc(sb, m0);
999 1.1 cgd m0->m_nextpkt = *mp;
1000 1.43 thorpej if (*mp == NULL) {
1001 1.43 thorpej /* m0 is actually the new tail */
1002 1.43 thorpej sb->sb_lastrecord = m0;
1003 1.43 thorpej }
1004 1.1 cgd *mp = m0;
1005 1.1 cgd m = m0->m_next;
1006 1.1 cgd m0->m_next = 0;
1007 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
1008 1.1 cgd m0->m_flags &= ~M_EOR;
1009 1.1 cgd m->m_flags |= M_EOR;
1010 1.1 cgd }
1011 1.1 cgd sbcompress(sb, m, m0);
1012 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 2");
1013 1.1 cgd }
1014 1.1 cgd
1015 1.1 cgd /*
1016 1.1 cgd * Append address and data, and optionally, control (ancillary) data
1017 1.1 cgd * to the receive queue of a socket. If present,
1018 1.1 cgd * m0 must include a packet header with total length.
1019 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
1020 1.1 cgd */
1021 1.7 mycroft int
1022 1.61 matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
1023 1.37 lukem struct mbuf *control)
1024 1.1 cgd {
1025 1.43 thorpej struct mbuf *m, *n, *nlast;
1026 1.50 fvdl int space, len;
1027 1.1 cgd
1028 1.91 ad KASSERT(solocked(sb->sb_so));
1029 1.91 ad
1030 1.37 lukem space = asa->sa_len;
1031 1.37 lukem
1032 1.49 matt if (m0 != NULL) {
1033 1.49 matt if ((m0->m_flags & M_PKTHDR) == 0)
1034 1.49 matt panic("sbappendaddr");
1035 1.1 cgd space += m0->m_pkthdr.len;
1036 1.49 matt #ifdef MBUFTRACE
1037 1.65 jonathan m_claimm(m0, sb->sb_mowner);
1038 1.49 matt #endif
1039 1.49 matt }
1040 1.1 cgd for (n = control; n; n = n->m_next) {
1041 1.1 cgd space += n->m_len;
1042 1.49 matt MCLAIM(n, sb->sb_mowner);
1043 1.115 christos if (n->m_next == NULL) /* keep pointer to last control buf */
1044 1.1 cgd break;
1045 1.1 cgd }
1046 1.1 cgd if (space > sbspace(sb))
1047 1.1 cgd return (0);
1048 1.115 christos m = m_get(M_DONTWAIT, MT_SONAME);
1049 1.115 christos if (m == NULL)
1050 1.1 cgd return (0);
1051 1.49 matt MCLAIM(m, sb->sb_mowner);
1052 1.50 fvdl /*
1053 1.50 fvdl * XXX avoid 'comparison always true' warning which isn't easily
1054 1.50 fvdl * avoided.
1055 1.50 fvdl */
1056 1.50 fvdl len = asa->sa_len;
1057 1.50 fvdl if (len > MLEN) {
1058 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1059 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
1060 1.20 thorpej m_free(m);
1061 1.20 thorpej return (0);
1062 1.20 thorpej }
1063 1.20 thorpej }
1064 1.1 cgd m->m_len = asa->sa_len;
1065 1.82 christos memcpy(mtod(m, void *), asa, asa->sa_len);
1066 1.1 cgd if (n)
1067 1.1 cgd n->m_next = m0; /* concatenate data to control */
1068 1.1 cgd else
1069 1.1 cgd control = m0;
1070 1.1 cgd m->m_next = control;
1071 1.43 thorpej
1072 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 1");
1073 1.43 thorpej
1074 1.43 thorpej for (n = m; n->m_next != NULL; n = n->m_next)
1075 1.1 cgd sballoc(sb, n);
1076 1.43 thorpej sballoc(sb, n);
1077 1.43 thorpej nlast = n;
1078 1.43 thorpej SBLINKRECORD(sb, m);
1079 1.43 thorpej
1080 1.43 thorpej sb->sb_mbtail = nlast;
1081 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendaddr");
1082 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 2");
1083 1.43 thorpej
1084 1.1 cgd return (1);
1085 1.1 cgd }
1086 1.1 cgd
1087 1.63 jonathan /*
1088 1.63 jonathan * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1089 1.63 jonathan * an mbuf chain.
1090 1.63 jonathan */
1091 1.70 perry static inline struct mbuf *
1092 1.81 yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1093 1.64 jonathan const struct sockaddr *asa)
1094 1.63 jonathan {
1095 1.63 jonathan struct mbuf *m;
1096 1.64 jonathan const int salen = asa->sa_len;
1097 1.63 jonathan
1098 1.91 ad KASSERT(solocked(sb->sb_so));
1099 1.91 ad
1100 1.63 jonathan /* only the first in each chain need be a pkthdr */
1101 1.115 christos m = m_gethdr(M_DONTWAIT, MT_SONAME);
1102 1.115 christos if (m == NULL)
1103 1.115 christos return NULL;
1104 1.63 jonathan MCLAIM(m, sb->sb_mowner);
1105 1.64 jonathan #ifdef notyet
1106 1.64 jonathan if (salen > MHLEN) {
1107 1.64 jonathan MEXTMALLOC(m, salen, M_NOWAIT);
1108 1.64 jonathan if ((m->m_flags & M_EXT) == 0) {
1109 1.64 jonathan m_free(m);
1110 1.115 christos return NULL;
1111 1.64 jonathan }
1112 1.64 jonathan }
1113 1.64 jonathan #else
1114 1.64 jonathan KASSERT(salen <= MHLEN);
1115 1.64 jonathan #endif
1116 1.64 jonathan m->m_len = salen;
1117 1.82 christos memcpy(mtod(m, void *), asa, salen);
1118 1.63 jonathan m->m_next = m0;
1119 1.64 jonathan m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1120 1.63 jonathan
1121 1.63 jonathan return m;
1122 1.63 jonathan }
1123 1.63 jonathan
1124 1.63 jonathan int
1125 1.63 jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1126 1.63 jonathan struct mbuf *m0, int sbprio)
1127 1.63 jonathan {
1128 1.63 jonathan struct mbuf *m, *n, *n0, *nlast;
1129 1.63 jonathan int error;
1130 1.63 jonathan
1131 1.91 ad KASSERT(solocked(sb->sb_so));
1132 1.91 ad
1133 1.63 jonathan /*
1134 1.63 jonathan * XXX sbprio reserved for encoding priority of this* request:
1135 1.63 jonathan * SB_PRIO_NONE --> honour normal sb limits
1136 1.63 jonathan * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1137 1.63 jonathan * take whole chain. Intended for large requests
1138 1.63 jonathan * that should be delivered atomically (all, or none).
1139 1.63 jonathan * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1140 1.63 jonathan * over normal socket limits, for messages indicating
1141 1.63 jonathan * buffer overflow in earlier normal/lower-priority messages
1142 1.63 jonathan * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1143 1.63 jonathan * Intended for kernel-generated messages only.
1144 1.63 jonathan * Up to generator to avoid total mbuf resource exhaustion.
1145 1.63 jonathan */
1146 1.63 jonathan (void)sbprio;
1147 1.63 jonathan
1148 1.63 jonathan if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1149 1.63 jonathan panic("sbappendaddrchain");
1150 1.63 jonathan
1151 1.114 martin #ifdef notyet
1152 1.63 jonathan space = sbspace(sb);
1153 1.66 perry
1154 1.66 perry /*
1155 1.63 jonathan * Enforce SB_PRIO_* limits as described above.
1156 1.63 jonathan */
1157 1.63 jonathan #endif
1158 1.63 jonathan
1159 1.63 jonathan n0 = NULL;
1160 1.63 jonathan nlast = NULL;
1161 1.63 jonathan for (m = m0; m; m = m->m_nextpkt) {
1162 1.63 jonathan struct mbuf *np;
1163 1.63 jonathan
1164 1.64 jonathan #ifdef MBUFTRACE
1165 1.65 jonathan m_claimm(m, sb->sb_mowner);
1166 1.64 jonathan #endif
1167 1.64 jonathan
1168 1.63 jonathan /* Prepend sockaddr to this record (m) of input chain m0 */
1169 1.64 jonathan n = m_prepend_sockaddr(sb, m, asa);
1170 1.63 jonathan if (n == NULL) {
1171 1.63 jonathan error = ENOBUFS;
1172 1.63 jonathan goto bad;
1173 1.63 jonathan }
1174 1.63 jonathan
1175 1.63 jonathan /* Append record (asa+m) to end of new chain n0 */
1176 1.63 jonathan if (n0 == NULL) {
1177 1.63 jonathan n0 = n;
1178 1.63 jonathan } else {
1179 1.63 jonathan nlast->m_nextpkt = n;
1180 1.63 jonathan }
1181 1.63 jonathan /* Keep track of last record on new chain */
1182 1.63 jonathan nlast = n;
1183 1.63 jonathan
1184 1.63 jonathan for (np = n; np; np = np->m_next)
1185 1.63 jonathan sballoc(sb, np);
1186 1.63 jonathan }
1187 1.63 jonathan
1188 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1189 1.64 jonathan
1190 1.63 jonathan /* Drop the entire chain of (asa+m) records onto the socket */
1191 1.63 jonathan SBLINKRECORDCHAIN(sb, n0, nlast);
1192 1.64 jonathan
1193 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1194 1.64 jonathan
1195 1.63 jonathan for (m = nlast; m->m_next; m = m->m_next)
1196 1.63 jonathan ;
1197 1.63 jonathan sb->sb_mbtail = m;
1198 1.64 jonathan SBLASTMBUFCHK(sb, "sbappendaddrchain");
1199 1.64 jonathan
1200 1.63 jonathan return (1);
1201 1.63 jonathan
1202 1.63 jonathan bad:
1203 1.64 jonathan /*
1204 1.64 jonathan * On error, free the prepended addreseses. For consistency
1205 1.64 jonathan * with sbappendaddr(), leave it to our caller to free
1206 1.64 jonathan * the input record chain passed to us as m0.
1207 1.64 jonathan */
1208 1.64 jonathan while ((n = n0) != NULL) {
1209 1.64 jonathan struct mbuf *np;
1210 1.64 jonathan
1211 1.64 jonathan /* Undo the sballoc() of this record */
1212 1.64 jonathan for (np = n; np; np = np->m_next)
1213 1.64 jonathan sbfree(sb, np);
1214 1.64 jonathan
1215 1.64 jonathan n0 = n->m_nextpkt; /* iterate at next prepended address */
1216 1.124 christos np = m_free(n); /* free prepended address (not data) */
1217 1.64 jonathan }
1218 1.114 martin return error;
1219 1.63 jonathan }
1220 1.63 jonathan
1221 1.63 jonathan
1222 1.7 mycroft int
1223 1.37 lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1224 1.1 cgd {
1225 1.43 thorpej struct mbuf *m, *mlast, *n;
1226 1.37 lukem int space;
1227 1.1 cgd
1228 1.91 ad KASSERT(solocked(sb->sb_so));
1229 1.91 ad
1230 1.37 lukem space = 0;
1231 1.115 christos if (control == NULL)
1232 1.1 cgd panic("sbappendcontrol");
1233 1.1 cgd for (m = control; ; m = m->m_next) {
1234 1.1 cgd space += m->m_len;
1235 1.49 matt MCLAIM(m, sb->sb_mowner);
1236 1.115 christos if (m->m_next == NULL)
1237 1.1 cgd break;
1238 1.1 cgd }
1239 1.1 cgd n = m; /* save pointer to last control buffer */
1240 1.49 matt for (m = m0; m; m = m->m_next) {
1241 1.49 matt MCLAIM(m, sb->sb_mowner);
1242 1.1 cgd space += m->m_len;
1243 1.49 matt }
1244 1.1 cgd if (space > sbspace(sb))
1245 1.1 cgd return (0);
1246 1.1 cgd n->m_next = m0; /* concatenate data to control */
1247 1.43 thorpej
1248 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1249 1.43 thorpej
1250 1.43 thorpej for (m = control; m->m_next != NULL; m = m->m_next)
1251 1.1 cgd sballoc(sb, m);
1252 1.43 thorpej sballoc(sb, m);
1253 1.43 thorpej mlast = m;
1254 1.43 thorpej SBLINKRECORD(sb, control);
1255 1.43 thorpej
1256 1.43 thorpej sb->sb_mbtail = mlast;
1257 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendcontrol");
1258 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1259 1.43 thorpej
1260 1.1 cgd return (1);
1261 1.1 cgd }
1262 1.1 cgd
1263 1.1 cgd /*
1264 1.1 cgd * Compress mbuf chain m into the socket
1265 1.1 cgd * buffer sb following mbuf n. If n
1266 1.1 cgd * is null, the buffer is presumed empty.
1267 1.1 cgd */
1268 1.7 mycroft void
1269 1.37 lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1270 1.1 cgd {
1271 1.37 lukem int eor;
1272 1.37 lukem struct mbuf *o;
1273 1.1 cgd
1274 1.91 ad KASSERT(solocked(sb->sb_so));
1275 1.91 ad
1276 1.37 lukem eor = 0;
1277 1.1 cgd while (m) {
1278 1.1 cgd eor |= m->m_flags & M_EOR;
1279 1.1 cgd if (m->m_len == 0 &&
1280 1.1 cgd (eor == 0 ||
1281 1.1 cgd (((o = m->m_next) || (o = n)) &&
1282 1.1 cgd o->m_type == m->m_type))) {
1283 1.46 thorpej if (sb->sb_lastrecord == m)
1284 1.46 thorpej sb->sb_lastrecord = m->m_next;
1285 1.1 cgd m = m_free(m);
1286 1.1 cgd continue;
1287 1.1 cgd }
1288 1.40 thorpej if (n && (n->m_flags & M_EOR) == 0 &&
1289 1.40 thorpej /* M_TRAILINGSPACE() checks buffer writeability */
1290 1.40 thorpej m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1291 1.40 thorpej m->m_len <= M_TRAILINGSPACE(n) &&
1292 1.40 thorpej n->m_type == m->m_type) {
1293 1.82 christos memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1294 1.1 cgd (unsigned)m->m_len);
1295 1.1 cgd n->m_len += m->m_len;
1296 1.1 cgd sb->sb_cc += m->m_len;
1297 1.1 cgd m = m_free(m);
1298 1.1 cgd continue;
1299 1.1 cgd }
1300 1.1 cgd if (n)
1301 1.1 cgd n->m_next = m;
1302 1.1 cgd else
1303 1.1 cgd sb->sb_mb = m;
1304 1.43 thorpej sb->sb_mbtail = m;
1305 1.1 cgd sballoc(sb, m);
1306 1.1 cgd n = m;
1307 1.1 cgd m->m_flags &= ~M_EOR;
1308 1.1 cgd m = m->m_next;
1309 1.1 cgd n->m_next = 0;
1310 1.1 cgd }
1311 1.1 cgd if (eor) {
1312 1.1 cgd if (n)
1313 1.1 cgd n->m_flags |= eor;
1314 1.1 cgd else
1315 1.15 christos printf("semi-panic: sbcompress\n");
1316 1.1 cgd }
1317 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
1318 1.1 cgd }
1319 1.1 cgd
1320 1.1 cgd /*
1321 1.1 cgd * Free all mbufs in a sockbuf.
1322 1.1 cgd * Check that all resources are reclaimed.
1323 1.1 cgd */
1324 1.7 mycroft void
1325 1.37 lukem sbflush(struct sockbuf *sb)
1326 1.1 cgd {
1327 1.1 cgd
1328 1.91 ad KASSERT(solocked(sb->sb_so));
1329 1.43 thorpej KASSERT((sb->sb_flags & SB_LOCK) == 0);
1330 1.43 thorpej
1331 1.1 cgd while (sb->sb_mbcnt)
1332 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
1333 1.43 thorpej
1334 1.43 thorpej KASSERT(sb->sb_cc == 0);
1335 1.43 thorpej KASSERT(sb->sb_mb == NULL);
1336 1.43 thorpej KASSERT(sb->sb_mbtail == NULL);
1337 1.43 thorpej KASSERT(sb->sb_lastrecord == NULL);
1338 1.1 cgd }
1339 1.1 cgd
1340 1.1 cgd /*
1341 1.1 cgd * Drop data from (the front of) a sockbuf.
1342 1.1 cgd */
1343 1.7 mycroft void
1344 1.37 lukem sbdrop(struct sockbuf *sb, int len)
1345 1.1 cgd {
1346 1.124 christos struct mbuf *m, *next;
1347 1.1 cgd
1348 1.91 ad KASSERT(solocked(sb->sb_so));
1349 1.91 ad
1350 1.115 christos next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1351 1.1 cgd while (len > 0) {
1352 1.115 christos if (m == NULL) {
1353 1.115 christos if (next == NULL)
1354 1.112 matt panic("sbdrop(%p,%d): cc=%lu",
1355 1.112 matt sb, len, sb->sb_cc);
1356 1.1 cgd m = next;
1357 1.1 cgd next = m->m_nextpkt;
1358 1.1 cgd continue;
1359 1.1 cgd }
1360 1.1 cgd if (m->m_len > len) {
1361 1.1 cgd m->m_len -= len;
1362 1.1 cgd m->m_data += len;
1363 1.1 cgd sb->sb_cc -= len;
1364 1.1 cgd break;
1365 1.1 cgd }
1366 1.1 cgd len -= m->m_len;
1367 1.1 cgd sbfree(sb, m);
1368 1.124 christos m = m_free(m);
1369 1.1 cgd }
1370 1.1 cgd while (m && m->m_len == 0) {
1371 1.1 cgd sbfree(sb, m);
1372 1.124 christos m = m_free(m);
1373 1.1 cgd }
1374 1.1 cgd if (m) {
1375 1.1 cgd sb->sb_mb = m;
1376 1.1 cgd m->m_nextpkt = next;
1377 1.1 cgd } else
1378 1.1 cgd sb->sb_mb = next;
1379 1.43 thorpej /*
1380 1.45 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second part
1381 1.43 thorpej * makes sure sb_lastrecord is up-to-date if we dropped
1382 1.43 thorpej * part of the last record.
1383 1.43 thorpej */
1384 1.43 thorpej m = sb->sb_mb;
1385 1.43 thorpej if (m == NULL) {
1386 1.43 thorpej sb->sb_mbtail = NULL;
1387 1.43 thorpej sb->sb_lastrecord = NULL;
1388 1.43 thorpej } else if (m->m_nextpkt == NULL)
1389 1.43 thorpej sb->sb_lastrecord = m;
1390 1.1 cgd }
1391 1.1 cgd
1392 1.1 cgd /*
1393 1.1 cgd * Drop a record off the front of a sockbuf
1394 1.1 cgd * and move the next record to the front.
1395 1.1 cgd */
1396 1.7 mycroft void
1397 1.37 lukem sbdroprecord(struct sockbuf *sb)
1398 1.1 cgd {
1399 1.37 lukem struct mbuf *m, *mn;
1400 1.1 cgd
1401 1.91 ad KASSERT(solocked(sb->sb_so));
1402 1.91 ad
1403 1.1 cgd m = sb->sb_mb;
1404 1.1 cgd if (m) {
1405 1.1 cgd sb->sb_mb = m->m_nextpkt;
1406 1.1 cgd do {
1407 1.1 cgd sbfree(sb, m);
1408 1.124 christos mn = m_free(m);
1409 1.11 christos } while ((m = mn) != NULL);
1410 1.1 cgd }
1411 1.45 thorpej SB_EMPTY_FIXUP(sb);
1412 1.19 thorpej }
1413 1.19 thorpej
1414 1.19 thorpej /*
1415 1.19 thorpej * Create a "control" mbuf containing the specified data
1416 1.19 thorpej * with the specified type for presentation on a socket buffer.
1417 1.19 thorpej */
1418 1.19 thorpej struct mbuf *
1419 1.111 christos sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1420 1.19 thorpej {
1421 1.37 lukem struct cmsghdr *cp;
1422 1.37 lukem struct mbuf *m;
1423 1.111 christos int space = CMSG_SPACE(size);
1424 1.19 thorpej
1425 1.111 christos if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1426 1.111 christos printf("%s: message too large %d\n", __func__, space);
1427 1.30 itojun return NULL;
1428 1.30 itojun }
1429 1.30 itojun
1430 1.111 christos if ((m = m_get(flags, MT_CONTROL)) == NULL)
1431 1.111 christos return NULL;
1432 1.111 christos if (space > MLEN) {
1433 1.111 christos if (space > MCLBYTES)
1434 1.111 christos MEXTMALLOC(m, space, M_WAITOK);
1435 1.111 christos else
1436 1.111 christos MCLGET(m, flags);
1437 1.30 itojun if ((m->m_flags & M_EXT) == 0) {
1438 1.30 itojun m_free(m);
1439 1.30 itojun return NULL;
1440 1.30 itojun }
1441 1.30 itojun }
1442 1.19 thorpej cp = mtod(m, struct cmsghdr *);
1443 1.111 christos *p = CMSG_DATA(cp);
1444 1.111 christos m->m_len = space;
1445 1.35 itojun cp->cmsg_len = CMSG_LEN(size);
1446 1.19 thorpej cp->cmsg_level = level;
1447 1.19 thorpej cp->cmsg_type = type;
1448 1.134 maxv
1449 1.134 maxv memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
1450 1.134 maxv memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
1451 1.134 maxv
1452 1.111 christos return m;
1453 1.111 christos }
1454 1.111 christos
1455 1.111 christos struct mbuf *
1456 1.111 christos sbcreatecontrol(void *p, int size, int type, int level)
1457 1.111 christos {
1458 1.111 christos struct mbuf *m;
1459 1.111 christos void *v;
1460 1.111 christos
1461 1.111 christos m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1462 1.111 christos if (m == NULL)
1463 1.111 christos return NULL;
1464 1.111 christos memcpy(v, p, size);
1465 1.111 christos return m;
1466 1.1 cgd }
1467 1.91 ad
1468 1.91 ad void
1469 1.91 ad solockretry(struct socket *so, kmutex_t *lock)
1470 1.91 ad {
1471 1.91 ad
1472 1.141 riastrad while (lock != atomic_load_relaxed(&so->so_lock)) {
1473 1.91 ad mutex_exit(lock);
1474 1.141 riastrad lock = atomic_load_consume(&so->so_lock);
1475 1.91 ad mutex_enter(lock);
1476 1.91 ad }
1477 1.91 ad }
1478 1.91 ad
1479 1.91 ad bool
1480 1.127 christos solocked(const struct socket *so)
1481 1.91 ad {
1482 1.91 ad
1483 1.141 riastrad /*
1484 1.141 riastrad * Used only for diagnostic assertions, so so_lock should be
1485 1.141 riastrad * stable at this point, hence on need for atomic_load_*.
1486 1.141 riastrad */
1487 1.91 ad return mutex_owned(so->so_lock);
1488 1.91 ad }
1489 1.91 ad
1490 1.91 ad bool
1491 1.127 christos solocked2(const struct socket *so1, const struct socket *so2)
1492 1.91 ad {
1493 1.127 christos const kmutex_t *lock;
1494 1.91 ad
1495 1.141 riastrad /*
1496 1.141 riastrad * Used only for diagnostic assertions, so so_lock should be
1497 1.141 riastrad * stable at this point, hence on need for atomic_load_*.
1498 1.141 riastrad */
1499 1.91 ad lock = so1->so_lock;
1500 1.91 ad if (lock != so2->so_lock)
1501 1.91 ad return false;
1502 1.91 ad return mutex_owned(lock);
1503 1.91 ad }
1504 1.91 ad
1505 1.91 ad /*
1506 1.116 rmind * sosetlock: assign a default lock to a new socket.
1507 1.91 ad */
1508 1.91 ad void
1509 1.91 ad sosetlock(struct socket *so)
1510 1.91 ad {
1511 1.116 rmind if (so->so_lock == NULL) {
1512 1.116 rmind kmutex_t *lock = softnet_lock;
1513 1.91 ad
1514 1.91 ad so->so_lock = lock;
1515 1.91 ad mutex_obj_hold(lock);
1516 1.91 ad mutex_enter(lock);
1517 1.91 ad }
1518 1.91 ad KASSERT(solocked(so));
1519 1.91 ad }
1520 1.91 ad
1521 1.91 ad /*
1522 1.91 ad * Set lock on sockbuf sb; sleep if lock is already held.
1523 1.91 ad * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1524 1.91 ad * Returns error without lock if sleep is interrupted.
1525 1.91 ad */
1526 1.91 ad int
1527 1.91 ad sblock(struct sockbuf *sb, int wf)
1528 1.91 ad {
1529 1.91 ad struct socket *so;
1530 1.91 ad kmutex_t *lock;
1531 1.91 ad int error;
1532 1.91 ad
1533 1.91 ad KASSERT(solocked(sb->sb_so));
1534 1.91 ad
1535 1.91 ad for (;;) {
1536 1.91 ad if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1537 1.91 ad sb->sb_flags |= SB_LOCK;
1538 1.91 ad return 0;
1539 1.91 ad }
1540 1.91 ad if (wf != M_WAITOK)
1541 1.91 ad return EWOULDBLOCK;
1542 1.91 ad so = sb->sb_so;
1543 1.91 ad lock = so->so_lock;
1544 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0) {
1545 1.91 ad cv_wait(&so->so_cv, lock);
1546 1.91 ad error = 0;
1547 1.91 ad } else
1548 1.91 ad error = cv_wait_sig(&so->so_cv, lock);
1549 1.141 riastrad if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
1550 1.91 ad solockretry(so, lock);
1551 1.91 ad if (error != 0)
1552 1.91 ad return error;
1553 1.91 ad }
1554 1.91 ad }
1555 1.91 ad
1556 1.91 ad void
1557 1.91 ad sbunlock(struct sockbuf *sb)
1558 1.91 ad {
1559 1.91 ad struct socket *so;
1560 1.91 ad
1561 1.91 ad so = sb->sb_so;
1562 1.91 ad
1563 1.91 ad KASSERT(solocked(so));
1564 1.91 ad KASSERT((sb->sb_flags & SB_LOCK) != 0);
1565 1.91 ad
1566 1.91 ad sb->sb_flags &= ~SB_LOCK;
1567 1.91 ad cv_broadcast(&so->so_cv);
1568 1.91 ad }
1569 1.91 ad
1570 1.91 ad int
1571 1.121 matt sowait(struct socket *so, bool catch_p, int timo)
1572 1.91 ad {
1573 1.91 ad kmutex_t *lock;
1574 1.91 ad int error;
1575 1.91 ad
1576 1.91 ad KASSERT(solocked(so));
1577 1.121 matt KASSERT(catch_p || timo != 0);
1578 1.91 ad
1579 1.91 ad lock = so->so_lock;
1580 1.121 matt if (catch_p)
1581 1.101 yamt error = cv_timedwait_sig(&so->so_cv, lock, timo);
1582 1.101 yamt else
1583 1.101 yamt error = cv_timedwait(&so->so_cv, lock, timo);
1584 1.141 riastrad if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
1585 1.91 ad solockretry(so, lock);
1586 1.91 ad return error;
1587 1.91 ad }
1588 1.131 msaitoh
1589 1.131 msaitoh #ifdef DDB
1590 1.131 msaitoh
1591 1.131 msaitoh /*
1592 1.131 msaitoh * Currently, sofindproc() is used only from DDB. It could be used from others
1593 1.131 msaitoh * by using db_mutex_enter()
1594 1.131 msaitoh */
1595 1.131 msaitoh
1596 1.131 msaitoh static inline int
1597 1.131 msaitoh db_mutex_enter(kmutex_t *mtx)
1598 1.131 msaitoh {
1599 1.131 msaitoh extern int db_active;
1600 1.131 msaitoh int rv;
1601 1.131 msaitoh
1602 1.131 msaitoh if (!db_active) {
1603 1.131 msaitoh mutex_enter(mtx);
1604 1.131 msaitoh rv = 1;
1605 1.131 msaitoh } else
1606 1.131 msaitoh rv = mutex_tryenter(mtx);
1607 1.131 msaitoh
1608 1.131 msaitoh return rv;
1609 1.131 msaitoh }
1610 1.131 msaitoh
1611 1.131 msaitoh int
1612 1.131 msaitoh sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1613 1.131 msaitoh {
1614 1.131 msaitoh proc_t *p;
1615 1.131 msaitoh filedesc_t *fdp;
1616 1.131 msaitoh fdtab_t *dt;
1617 1.131 msaitoh fdfile_t *ff;
1618 1.131 msaitoh file_t *fp = NULL;
1619 1.131 msaitoh int found = 0;
1620 1.131 msaitoh int i, t;
1621 1.131 msaitoh
1622 1.131 msaitoh if (so == NULL)
1623 1.131 msaitoh return 0;
1624 1.131 msaitoh
1625 1.137 ad t = db_mutex_enter(&proc_lock);
1626 1.131 msaitoh if (!t) {
1627 1.131 msaitoh pr("could not acquire proc_lock mutex\n");
1628 1.131 msaitoh return 0;
1629 1.131 msaitoh }
1630 1.131 msaitoh PROCLIST_FOREACH(p, &allproc) {
1631 1.131 msaitoh if (p->p_stat == SIDL)
1632 1.131 msaitoh continue;
1633 1.131 msaitoh fdp = p->p_fd;
1634 1.131 msaitoh t = db_mutex_enter(&fdp->fd_lock);
1635 1.131 msaitoh if (!t) {
1636 1.131 msaitoh pr("could not acquire fd_lock mutex\n");
1637 1.131 msaitoh continue;
1638 1.131 msaitoh }
1639 1.135 riastrad dt = atomic_load_consume(&fdp->fd_dt);
1640 1.131 msaitoh for (i = 0; i < dt->dt_nfiles; i++) {
1641 1.131 msaitoh ff = dt->dt_ff[i];
1642 1.131 msaitoh if (ff == NULL)
1643 1.131 msaitoh continue;
1644 1.131 msaitoh
1645 1.136 riastrad fp = atomic_load_consume(&ff->ff_file);
1646 1.131 msaitoh if (fp == NULL)
1647 1.131 msaitoh continue;
1648 1.131 msaitoh
1649 1.131 msaitoh t = db_mutex_enter(&fp->f_lock);
1650 1.131 msaitoh if (!t) {
1651 1.131 msaitoh pr("could not acquire f_lock mutex\n");
1652 1.131 msaitoh continue;
1653 1.131 msaitoh }
1654 1.131 msaitoh if ((struct socket *)fp->f_data != so) {
1655 1.131 msaitoh mutex_exit(&fp->f_lock);
1656 1.131 msaitoh continue;
1657 1.131 msaitoh }
1658 1.131 msaitoh found++;
1659 1.131 msaitoh if (pr)
1660 1.131 msaitoh pr("socket %p: owner %s(pid=%d)\n",
1661 1.131 msaitoh so, p->p_comm, p->p_pid);
1662 1.131 msaitoh mutex_exit(&fp->f_lock);
1663 1.131 msaitoh if (all == 0)
1664 1.131 msaitoh break;
1665 1.131 msaitoh }
1666 1.131 msaitoh mutex_exit(&fdp->fd_lock);
1667 1.131 msaitoh if (all == 0 && found != 0)
1668 1.131 msaitoh break;
1669 1.131 msaitoh }
1670 1.137 ad mutex_exit(&proc_lock);
1671 1.131 msaitoh
1672 1.131 msaitoh return found;
1673 1.131 msaitoh }
1674 1.131 msaitoh
1675 1.131 msaitoh void
1676 1.131 msaitoh socket_print(const char *modif, void (*pr)(const char *, ...))
1677 1.131 msaitoh {
1678 1.131 msaitoh file_t *fp;
1679 1.131 msaitoh struct socket *so;
1680 1.131 msaitoh struct sockbuf *sb_snd, *sb_rcv;
1681 1.131 msaitoh struct mbuf *m_rec, *m;
1682 1.131 msaitoh bool opt_v = false;
1683 1.131 msaitoh bool opt_m = false;
1684 1.131 msaitoh bool opt_a = false;
1685 1.131 msaitoh bool opt_p = false;
1686 1.131 msaitoh int nrecs, nmbufs;
1687 1.131 msaitoh char ch;
1688 1.131 msaitoh const char *family;
1689 1.131 msaitoh
1690 1.131 msaitoh while ( (ch = *(modif++)) != '\0') {
1691 1.131 msaitoh switch (ch) {
1692 1.131 msaitoh case 'v':
1693 1.131 msaitoh opt_v = true;
1694 1.131 msaitoh break;
1695 1.131 msaitoh case 'm':
1696 1.131 msaitoh opt_m = true;
1697 1.131 msaitoh break;
1698 1.131 msaitoh case 'a':
1699 1.131 msaitoh opt_a = true;
1700 1.131 msaitoh break;
1701 1.131 msaitoh case 'p':
1702 1.131 msaitoh opt_p = true;
1703 1.131 msaitoh break;
1704 1.131 msaitoh }
1705 1.131 msaitoh }
1706 1.131 msaitoh if (opt_v == false && pr)
1707 1.131 msaitoh (pr)("Ignore empty sockets. use /v to print all.\n");
1708 1.131 msaitoh if (opt_p == true && pr)
1709 1.131 msaitoh (pr)("Don't search owner process.\n");
1710 1.131 msaitoh
1711 1.131 msaitoh LIST_FOREACH(fp, &filehead, f_list) {
1712 1.131 msaitoh if (fp->f_type != DTYPE_SOCKET)
1713 1.131 msaitoh continue;
1714 1.131 msaitoh so = (struct socket *)fp->f_data;
1715 1.131 msaitoh if (so == NULL)
1716 1.131 msaitoh continue;
1717 1.131 msaitoh
1718 1.131 msaitoh if (so->so_proto->pr_domain->dom_family == AF_INET)
1719 1.131 msaitoh family = "INET";
1720 1.131 msaitoh #ifdef INET6
1721 1.131 msaitoh else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1722 1.131 msaitoh family = "INET6";
1723 1.131 msaitoh #endif
1724 1.131 msaitoh else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1725 1.131 msaitoh family = "KEY";
1726 1.131 msaitoh else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1727 1.131 msaitoh family = "ROUTE";
1728 1.131 msaitoh else
1729 1.131 msaitoh continue;
1730 1.131 msaitoh
1731 1.131 msaitoh sb_snd = &so->so_snd;
1732 1.131 msaitoh sb_rcv = &so->so_rcv;
1733 1.131 msaitoh
1734 1.131 msaitoh if (opt_v != true &&
1735 1.131 msaitoh sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1736 1.131 msaitoh continue;
1737 1.131 msaitoh
1738 1.131 msaitoh pr("---SOCKET %p: type %s\n", so, family);
1739 1.131 msaitoh if (opt_p != true)
1740 1.131 msaitoh sofindproc(so, opt_a == true ? 1 : 0, pr);
1741 1.131 msaitoh pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1742 1.131 msaitoh pr("Send Buffer mbufs:\n");
1743 1.131 msaitoh m_rec = m = sb_snd->sb_mb;
1744 1.131 msaitoh nrecs = 0;
1745 1.131 msaitoh nmbufs = 0;
1746 1.131 msaitoh while (m_rec) {
1747 1.131 msaitoh nrecs++;
1748 1.131 msaitoh if (opt_m == true)
1749 1.131 msaitoh pr(" mbuf chain %p\n", m_rec);
1750 1.131 msaitoh while (m) {
1751 1.131 msaitoh nmbufs++;
1752 1.131 msaitoh m = m->m_next;
1753 1.131 msaitoh }
1754 1.131 msaitoh m_rec = m = m_rec->m_nextpkt;
1755 1.131 msaitoh }
1756 1.131 msaitoh pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1757 1.131 msaitoh
1758 1.131 msaitoh pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1759 1.131 msaitoh pr("Recv Buffer mbufs:\n");
1760 1.131 msaitoh m_rec = m = sb_rcv->sb_mb;
1761 1.131 msaitoh nrecs = 0;
1762 1.131 msaitoh nmbufs = 0;
1763 1.131 msaitoh while (m_rec) {
1764 1.131 msaitoh nrecs++;
1765 1.131 msaitoh if (opt_m == true)
1766 1.131 msaitoh pr(" mbuf chain %p\n", m_rec);
1767 1.131 msaitoh while (m) {
1768 1.131 msaitoh nmbufs++;
1769 1.131 msaitoh m = m->m_next;
1770 1.131 msaitoh }
1771 1.131 msaitoh m_rec = m = m_rec->m_nextpkt;
1772 1.131 msaitoh }
1773 1.131 msaitoh pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1774 1.131 msaitoh }
1775 1.131 msaitoh }
1776 1.131 msaitoh #endif /* DDB */
1777